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REFLECTANCE CHARACTERISTICS OF

THE VIKING LANDER CAMERA REFERENCE TEST CHARTS

by

4
Stephen D. Wall, Ernest E. Burcher and Daniel J. Jobson

SUMMARY

Reference test charts will provide radiometric, colorimetric, and spatial

resolution references for the Viking lander cameras on Mars. Reflectance

measurements of these references are described, including the Zbsolute

bidirectional reflectance of the radiometric references and the relative

Ff	

spectral reflectance of both radiometric and colorimetric references. Results

show that the bidirectional reflectance of the radiometric references is

Lambertian to within +7% for incidence angles between 20 0 and 60°, and that

their spectral reflectance is constant with wavelength to within +5% over the

spectral range of the cameras. Estimated accuracy of the measurements is

+0,04 in absolute reflectance, +0.02 in relative bidirectional reflectance,

and +0.05 in relative spectral reflectance.
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Each of the two Viking lenders scheduled to land on Mars in 1976 will use

two identical cameras to spatially, radiometrically, and (to a lesser extent)

spectrally characterize the surrounding area. The camera is a multispectral

radiometer with a mechanically scanning mirror, which provides the potential

for high radiometric accuracy because of its use of single photodiodes to

image an entire scene. The cameras feature an array of 12 silicon photodiodes,

consisting of four broadband channels with selectable focus for high-resolution

imaging, one broadband channel for rapid surveys, six narrowband channels for

multispectral imaging (color and near-infrared), and one narrowband channel

for scanning the sun. This capability requires that eleven calibrations be

maintained for each camera throughout the life of the spacecrafts (since the

sun-imaging diode is not calibrated). To help meet these calibration require-

meats each lander will carry three referer..e test charts (RTC). These charts

provide eleven reflectance references (grey scales) for radiometric calibration

of the cameras, three colorimetric references for reconstruction of color

images, and three sets of tribar patterns for testing spatial frequency

response.

Of primary importance are the reflectance characteristics of the grey

scales, which are used for absolute radiometric calibration. This paper

presents measurements of their absolute bidirectional reflectance and relative

spectral reflectance, which together provide the required reflectance data.

This paper also presents measurements of the relative spectral reflectance of

the color patches, spatial data about the tribars, and an error analysis of

the reflectance measurements.
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p(t, C, g)	 illumination scattoring function

`	 pW	 spectral reflectance

pr (X), J=1 ,2,...5 published measurements of MSCO 3 , reflectance

a.^	 TZ M	 Viking camera lens transmission

Subscripts

i	 i1th RTC grey patch

r	 MgCOM reference

Superscripts
r

*	 absolute measurement

r relative measurement (normalized to 1.0)

-{	 —	 average
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GENERAL DESCRIPTION

OF THE REFERENCE TEST CHART

Physical Characteristics

The reference test chart, shown in figure 1, consists of eleven 2.5 cm 	 i

square grey patches, three 2.5 cm square red, green and blue patches, and 	 r

three sets of tribar patterns. The tribars, which are used to evaluate the

cameras spatial frequency response, consist of grey material having a

reflectance of 0.40 and black bars having a reflectance of 0.02 (ref. 1). The

spatial frequencies of the tribar patterns were measured on six non-flight test

charts. Average spatial frequencies and deviations fr^.;a the average for the

six measured charts are summarized in Table I. The two white patches in the

upper left and right corners contain boron nitride and antimony oxide pigments,

which change reflectance with the amount of absorbed ultraviolet light. These

patches are intended to measure ultraviolet light levels on Mars as a part of

the Viking Physical Properties Science Team experiment,-.

Location

Three test charts are mounted on each of the two Viking landers as shown

in figure 2. Each camera has its own chart located 1.0 m from it with the

chart surface normal to the camera line of sight. The third chart is 1.11 m

from each camera, oriented normal to the plane containing both camera lines

of sight and forming a 23 0 angle with each.

The charts are located on the. 'top of the lander between the two radio-

isotope-thermoelectric generators. This location protects the test charts to -

4

i

1



Ir_

5

some extent from degradation by windblown sand. However, it also hermits

reflection from parts of the lander structure to add to the light incident on

the charts, which impairs the accuracy of radiometric calibration. Another

disadvantage of the charts locations is that their remoteness from the Mars

surface complicates comparisons with the Martian surface. Special imaging

sequences are required to view the reference test charts, and different

illumination and viewing geometries must be accounted for.

Use For Radiometric Calibration

The primary purpose of the test chart is to provide reference surfaces

with known reflectance properties which can be compared to elements of the

Martian surface to dTtermine their reflectance without relying on pre—flight

calibrations. It makes such comparisons appreciably easier if the reference

surfaces have a spectrally flat reflectance within the camera spectral bandwidth

and a Lambertian illumination scattering function (ref. 2). High accuracy

calibration using the test charts would require that any departures of the

reflectances from spectral flatness or Lambertian scattering be taken into,

consideration before making comparisons with the Mars surface.

4



14EASUREMENT THEORY AM PROCEDUPES

f,ssiLmptions and Theory

Separation of variab les .- Complete characterization of absolute

reflectance r*(ti, e, g, N) as a function of wavelength and illumination

and viewing geometry is generally not practical because of the large number of

measurements involved. It has therefore become customary to aac+:me that the

wavelength dependence of the reflectance function is independent of illumination

and viewing angles, and hence to separate absolute spectral reflectance or

albedo, p*(1), from relative bidirectional reflectance or illumination

scattering function, ^(i, e, g), so that

r*(1e ee g e X) = p* W $( I , e e g)

where i is the illumination angle, a the viewing angle, g the phase

angle, and a wavelength. The tilde (-) is used to indicate normalization

to a peak value of 1.0, and the asterisk (*) to indicate an absolute

measurement.

The use of this separation in measuring r *(i, e, g, A) has the inherent

disadvantage that it requires narrowband absolute measurements. If instead

the absolute bidirectional reflectance is measured with a spectrally unfiltered

(i.e., broadband) photosensor, then higher signal-to -noise ratios, and hence

accuracies, can be obtained for the wide bandwidth required to make rapid

measurements. For this reason, the absoiute reflectance of the 1 1 th test

chart patch, r*(t, e, g, h) is assumed to be separable intoi

ri(i e ee g e T) = P iM rif l e ee g )	 (1)

6
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where -P M is the relative spectral reflectance, 0 .`'_ P1 < 1.0 1 cued

g) the absolute bidirectional reflectance.
i

`	 Absolute bidirectional measurements.- The absolute bidirectional

reflectance of the grey patch?: was determined by measuring the radiance of

Cthe 11 th RTC patch relative to that of a magnesium carbonate (MGCO ) reference

i	

under identical illumination. The ratio of signals generated by these
Mi	

radiances is given by

tt	 Ii(I, E , g )	 ri (t, E , g) I R(a) Pi(a) R(X) T,(X) aX

Ir ( t=10°, E=00 , 3=100 )	 rT ( 1=10°, E=0°, G=10°) I H(X)Pr (X)R(A)TQ (X) dX

where I is the detector signal and II(X) the irradiance of the sample

yplane. A comparison with magnesium carbonate was made at t = 100 , E = 00,

g = 100 to avoid the known backscatter peak near zerophase angle ,yet

maintain high signal level. For this geometry, the value of r  is taken

to be (0.968)(cos 100 ), which is a mean value of published data as discussed
C

later in the error analysis section. The cosine factor can be used because

the magnesium carbonate is a nearly Lambertian scatterer Eor the selected

illumination and viewing geometry (ref. 3). If it is al..a assumed that the

grey scales and reference are spectrally similar, so that

PM P i (a)R(a)TQ(a)dX = J H(a)Pr(a)R(a)TR(A)da
then the following equation results for the absolute bidirectional reflectance

of the i'th RTC grey patch:

L
E, g ) = h (0.968)(cos 1Q°)	 (2)

r
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The equivalent geometric Lambertian ref';ectance, R i , is given by

Ri ft, e, r,)	 r (t, 6, g)/cos t
	

(3)

It is convenient to express the deviation from Lambertian reflectance at
„ y,

each point as

61(1, e, g ) = IRi (t, e, g ) - R I
	

(4)

where R is the average of the R  over ail measured illumination angles.

The largest of these, d1 , is reported here as an overal.^ measure of deviation
i

From Lambertian. A somewhat more useful measure is A l i , the maximum

deviation of each patch frog Nambertian over the more limited range of

illumination angles 20 0 < ItI < 600 likely to be useful, for imaging on Mars.

In this range, deviations from Lambertian are much smaller.

Instrumentation

Absolute Bidirectional Measurements.- A bidirectional aonioradiometer

was developed which could make rapid, computer-assisted measurements on the

reference test charts. The gonioradiometer is shownt in figure 3. P'oth the

illumination and viewing arms are gimbal mounted on two axes to provide

movement in azimuth and elevation directions and are positive indexed at 50

intervals to ensure accurate positioning.

A tungsten filament lamp mounted 41 cm from the sample acts as source

for the illumination. The filament subtends a 0.40 angle from the sample

plane. Baffling limits the area illuminated to an area 5 cm in diameter,

also limiting the stray light reflected to the satnple from the gimbals of

I
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the gonioradiometer. The area illuminated in the sample plane is uniform to

within less than 1% in the viewing area, as shown in figure 4. The irradiance

I	 in the sample plane is 140WW/cm2 in the silicon bandwidth, The sample plane

I -

	

	 contains a movable slide holding the teat chart, a block of maCnonium carbonate,

and a Rayleight terminator, which serves as a dark reference. A Rayleigh

terminator is a glass horn, painted black on the outside, which reflects light

incident on the opening towards the inside and thus absorbs essentially all ofr,

the incident light (ref. 4).

The viewing head is composed of a silicon detector similar to the broad-

band Viking camera detectors, and a Viking camera lens, mounted so that the

second principal plane of the lens is 48 cm from the sample plane. The

.^

	

	 detector field of view at the sample plane is roughly circuaav with a diameter

of 0.2 cm. The detector sensitivity profile is shown in its correct relation
t a

to the illuminated area in figure 4.

t	 Signals from the detector were amplified and processed through a 24 Hz
.!5

r

	

	 electronic filter. This bandwidth was chosen as a compromise between reducing

electronic noise and malting measurements rapidly. A 12-bit analog to digital

conversion was performed with a time aperture of 20 us, and the resulting

f	 digital word wee fed to an HP 2100A computer for data reduction and plotting.

The measurement procedure was as follows. First, the magnesium carbonate

block was placed in the sample area and the resulting signal stored its the
v

computer. The Rayleigh terminator was then substituted and the signal stored
s

I

	

	 as a zero reflectance (dark current) signal. The patch to be measured was then

placed in the sample plane and the photosensor signal was recorded for

illumination angle settings from -901 to +901 in the azimuth direction in 100

increments, and from -15 0 to +90 0 in the elevation direction, in 150 increments.

F`
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The position t = e a 01 was skipped since the illumination and viewing optics

could not occupy the same space. This range of elevation and azimuth illumi-

nation angles covers the anticipated range of sun incidence angles on thr., ;prat

chart on Mars.

Relative spectral Measurements.- The relative spectral reflectance of the

test chart patches was measured using a Cary model 14 recording spectrophoto-

meter with a model 1411 diffuse reflectance attachment. The total spectral

y	 range of the measurement was 0.35 to 1.10 um, with spectral resolution of

{	 0.0001 M.

Ik

	

	
Measurements were made from 0.4 to 0.65 pm by alternately illuminating an

area 2.2 cm by 0.79 cm of each test chart patch and a magnesium carbonate
i
i	 reference with monochromatic light at 50 incidence angle. An integrating sphere

icol;tec>tmd tihe light from sample or reference, and the sphere output was measured

by a 1p28 phototube. From 0.65 to 1.10 pm the instrument requires that the

a

	

	 path be reversed. White light diffusely illuminated the sample and reference

through the integrating sphere, and sample and reference were alternately

viewed at 5° by a monochromator and lead sulfide detector (ref. 5). In this

mode there was considerably more system noise, as is accounted for by the error

analysis.

I'
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Absolute bidirectional reflectance measurements.- From the bidirectional

,reflectance data, graphs of reflectance versus azimuth illumination angle were

	

5	 prepared at each elevation angle. From these graphs, the average equivalent

Lambertian reflectance was determined as discussed earlier (see equation 4).	 ^.

The maximum deviation from Lambertian over the full measurement range and over

the reduced range 2o° < i < 6o°, Ai and Ai, were calculated, These data are

shown in Table II for the three measured charts, identified by their serial

	

4 ^ I	 numbers 14, 15 and 17. The mean of these three, together with maximum

deviation from this mean, is also shown. These data may be used as an estimate

of the reflectance of the other three test charts. It may be noted that in all

cases the maximum deviation from Lambertian over the full range of illumination

is less than +11 percent and over the reduced range is less than ±7,5 percent.

Target-to-target variations are less than ±2.5 percent.

Relative spectral reflectance measurements.- Spectral measurements made

on a non-flight RTC (serial number 2) are shown in figure 5(a). These

measurements are relative to magnesium carbonate, and absolute levels vary

from chart to chart as discussed above. Spectral curves for the color n+itches

are shown in figure 5(b).

The data shows that the grey patches are spectrally flat to within +0.02

reflectance unit, which is within the experimental error. The reflectance

curves of the grey patches tend to rise slightly towards shorter wavelengths,

which may be a result of the lower blue reflectance of the reference (figure 6).

	f	 Four of the grey patches also show a noticeable increase in the infrared. The

three color patches have very high infrared reflectance, the green and blue

11
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patches showing an abrupt change around 0.7 um. Since the eye is not sensitive

to radiation past 0.7 um, this contribution should not affect visual color.

But because of infrared leaks in the camera color filters and the silicon

diode increased sensitivity in the 0.7 to 0.9 pm region, this high infrared

reflectance will tend to reduce the accuracy to which these colors will be

reconstructed (ref. 6 and 9).
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ERROR ANALYSIS

Errors introduced by assumptions made to simplify measurements, by the

measurements themselves, and by the calibration standard must be accounted for

i	 to determine the error budget of the reflectance measurements.	 In gegeral, the

error sources are not strongly dependent on the magnitude of the signal.	 Thus

it is appropriate to present errors as absolute rather than percentage, since

these errors represent increasingly larger percentages towards the lower

reflectances.

Shot and Johnson noise, drift, non-repeatability errors, instrumentation

and reference standard errors are assumed to be statistically independent.

Quantization noise is not strictly independent of drift as it is of the other

noise sources, but the error introduced by treating it as independent is

negligible.

{

Simplifying Assumptions

• In a preceding section, the assumption was made that

H(a)Pr (a)TZ (a)R(a) dX
Z	 l

b
f H(a P

i
* (a)TQ(X)R(X) dX

The error in the assumption cap be estimated by a numerical integration of

both integrals.	 Using National Bureau of Standards irradiance measurements

for	 H(1), magnesium carbonate reflectance data from reference 5 	 for	 Pr(a)

and measured values for the lens transmittance 	 T R (a)	 and photosensor

13
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responsivity R(a), the maximum value of the ratio was found to be 1.016. The

assumption, and therefore this error, applies only to the bidirectional

measurements.

Measurement Hrrors

Bidirectional reflectance measurements.- Angular positioning errors of

source and detector, sample and reference position errors, and non-coincidence

of the gonioradiometer axes are negligible because of the large dimensions and

accurate construction of the gonioradiometer.

Silicon detectors are known to have drift in dark current levels. To

eliminate the effect of this drift both dark and reference measurements were

made at each elevation illumination angle setting. Thus at most 5 to 10

seconds elapsed between data points and dark or reference points. Typical

voltage drift during this time period, Vd , was observed to be less than 2 mV.

The error sources in the signal processing chain are (1) shot noise

resulting from the random passage of carriers across the photodiode junction;

(2) Johnson noise generated by the preamplifier load resistor; and (3)

quantization noise which occurs as a result of the limited accuracy of the

analog-to-digital converter.

The shot noise current is determined by the photodiode current (ref. 8)

and is approximately 2 x 10 -15 A/ Hz for this circuit. Johnson noise is

a function of preamplifier load resistance and is approximately 2 x 10 -14

A/ Hz. The total electronic noise current is thus

In = ^ (22 + 0.22 )1/2 x 10-14 Z 10-13 amp

i^
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and the noise voltage is

V  = (108 2)(10
-13 A) = 10-

5
 V

The peak-to-peak voltage excursion is about four times this value or 	 ..

approximately 40 NV.	 3

Quantization noise, Vq , is given by (ref. 7)

v= Av 
2
2 = 5.4 x 10 3 v

q	 12k`

where AV(=10V) is the total dynamic range and k(=64) is the number of

quantization levels.

The total noise voltage is thus

( V2 + (4Vn ) 2 + 
V2q) 1/2 = 6 mV

A 10 volt signal represents a reflectance of 1.00. Therefore the total noise

represents an error of 0.0006 in reflectance.

As a further test of error on the gonioradiometer, dual runs were made

of several patches at one elevation angle. The results show that maximum

repeatability error occured where signal levels were lowest, at high

illumination angles. The largest lack of repeatability was 0.02 reflectance

units. The source of the discrepancy between the relatively large repeatability

errors compared to the small predicted system noise was not investigate&

Rather, an overall possible error of 0.02 was assumed for the measurements

even though errors of this magnitude were observed only at low illumination

angles.
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Relative spectral measurements.- Reference 5 contains a detailed

description of the Cary 14 recording spectrophotometer, together with an

extensive error analysis which yields the following results:

Instrumentation errors	 0.01

Integrating sphere inefficiency	 0.01

Standard material reflectance error 	 mll

The total error is thus 0.042. System noise, not included in the referenced

analysis, amounts to 0.0005 in reflectance for the visible (0.4 to o.65 wa)

and 0.002 for the infrared (0.65 to 1.10 Um). Taking the worse of these as

an upper bound, total errors, combine to 0.047.

Errors in Calibration Standard

A single magnesium carbonate block, viewed at 10° illumination angle,

was used as a standard reference in the absolute reflectance measurements. A

similar block was used as the diffuse reflectance reference for the relative

spectral measurements. In the bidirectional measurements, a 10 0 illumination

angle eliminated the errors associated with the backscatter peak which exists

near zero phase angle. However, the calibration accuracy of the blocks is

subject to error, an error which applies to both relative.: spectral and absolute

reflectance measurements.

Reference 5 presents five independent assessments of the hemispherical

reflectivity of MgCO3, here referred to as Pr (j), j = 1, 2, . 	 5 and

reproduced in figure 6. The value used in this paper was obtained by averaging

these measurements at small wavelength intervals and numerically integrating

over the cameras spectral bandwidth using normalized silicon responsivity as the

weighting factor; that is,

i

F
l

1
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R = f P(^) R(^) d^
r / R W dX

where

_	 5

5 J = 1 r

The resulting value is

F
r
 = 0.968 ± 0.025

, The error value results :.-om taking highest and lowest reflectance data (riven.

In addition, MgCO 3 may Luve a reflectance slightly less than a Lambertian

scatterer at 10° illumination. Data from reference 3 indicate; that the

illumination scattering function is less than 0.02 below Lar.bcrtian at this

angle. Therefore, ;he total calibration error is estimated as the root-sum-

square of these, 0.032.

Total Error

The error sources discussed above, with the exception of the random

photosensor and preamplifier noise which is negligible, are siunmarized below:

Measurement	 Error

Absolute bidirectional reflectance 	 absolute	 re';.'ive

repeatability	 +0.02	 +0.02

calibration standard	 0.032	 -

theory assumption	 0.0]6	 -

root-sum-square	 +0.041	 +0.02
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Measurement
	

Error

Relative spectral reflectance	 absolute	 relative

noise
	

±0.02

system (from ref. 3)
	

0.042

root-sum-square
	 +0.047



CONCLUSION

Broadband bidirectional reflectance characteristics of three of the six

` Viking lander camera reference test charts and spectral reflectance of one

non-flight test chart have been measured.	 Equivalent Lambertian reflectance

and maximum deviation from Lambertian are presented for the eleven grey

patches on each chart.	 Spectral curves for grey and color patches of the

' non-flight chart are also presented.

Bidirectional reflectance measurements of the grey patches show them to

be Lambertian to within +11 percent for incidence angles from 10 0 to 80 0 , and

_ within ±7 percent for incidence angles from 20 0 to 600 .	 Variations between

the measured flight charts is less than +3 percent. 	 Spectral measurements

` indicate that the grey patches are spectrally flat to within +5 percent, with

a general tendency toward higher reflectance in the near infrared.	 The three

color patches are narrowband in the visual color region from 0.4 to 0.7 dun, but
5

they have very high reflectance beyond 0.7 Um, which complicates their use

as colorimetric standards because of infrared leaks in the cameras response.

Estimated errors are +0.04 in absolute reflectance; +0.02 in relative

illumination scattering function; and ±0.05 in relative spectral reflectance.

b	 ^9	 j
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TABLE I
f

Spatial Frequencies of Tribar Patterns

E	 Pattern	 Averare	 Maximum

Location

	

	 Spatial	 Deviation, 1p/mm
Frequancya , Ip/mm

'	 Top	 0.078	 +.001.
-.006

•	 Center	 0.154	 +.004
-.001

Bottom	 0.225	 +.003
-.003

Average of six non-fl;ght charts
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