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DESIGN OF STRUCTURES FOR OPTIMUM GEOMETRY

Garret N. VANDERPLAATS, Research Scientist
NASA, Ames Research Center
Moffett Field, California, USA

1. Introduction

Optimization of finite element structures has received con-
siderable attention in recent years. The majority of this work has
dealt with structures of specified configuration, the design varia-
bles, the cross-sectional areas of bar elements and the thicknesses
of membrane panels. Relatively little effort has been directed
toward determination of the opiimum configuration of the structure.
However, that work which has been reported [1 - 10] is sufficient to
demonstrate that major design improvements can be achieved by allow-
ing for configuration changes during the automated design process.

A general method is presented here for geometric optimization
of finite element structures. It is assumed that a reasonable
initial geometry is specified. The number of finite elements, the
number of joints and the element-joint relationehips are specified
and are not changed during the optimization process. Th: structure
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may be statically indeterminate and may support multiple loading
conditions. Design variables include geometric and member sizing
parameters. The design objective may be minimum weight or cost, and
constraints include strength and stiffness limitations. The optimi-
zation procedure is a general mathematical programming zpproach.

The general optimization problem is formulated and the itera-
tive design algorithm is outlined. This formulation is specialized
for truss structures and design examples are presented. Conclusions

based on this study are also presented.

2. General Formulatiun

The general design problem considered here is to minimize the
weight or cost of the structure. Constraints on the design can
include allowable stress, buckling, displacement, dynamic and aero-
elastic response limitations. The geometric location of the joints,
along with the element sizing variables, such as thickness or cross-
sectional area, will be changed in order to optimize the structure.
The general probl... ' stated mathematically as:

Minimize F(X) (1)

Subject to:

6, (X) <0 j=1,m (2)

where

Xe

=\ 3 (3)

*

F(X) 1is veferred to as the objective function., The set of m

>

constraints which are imposed on the design are defined by (2). The
vector of design variables, X, includes geometric design variables,
Xg, and member sizing design variables, X, that will be changed dur-
ing the optimization process. The geometric design variables may be
the coordinates of the joints themselves or may be the coefficients
of any functional relationship which describes the geometry. For
exzmple, the surface of an aircraft wing may be described by a poly-
nomial representation in order to convrniently interface the required
aerodynamic analysis with the structural analysis. In this case, the
geometry desizn variables may be the coefficients of this polynomial.
Similarly, the element member .izing variables, iH' may be the actual

thicknesses, of membrane elemc.ats, or they way be the coefficients
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of a polynomial representation of the skin thickness distribution of
a wing.

In developing a geometric optimization capability, it is
desirable to devise a technique which (1) deals with as few design
variables as is practicable at any point in the optimizatio- process,
(2) will reduce the i{ll-conditioning introduced by mixing member
sizing and geometric design variables, and (3) take full advantage of
state-of-the-art techniques in fixed-geometry design.

The approach used here is to treat the geometric design param-
eters as independent design variables. The memver sizing parameters
are treated as dependent variables which are determined as a sub-
problem. This is essentially the same as the approach used in (6],
but is extended here, using the techniques of [11], to deal with
general finite el ment structures subject to generalized constraints.
Beginning with an initial geometric design vector, io. the design
proceeds iteratively by the following relationship:

2 534 a; 8 (%)
where q is the iteration number and 59 {s the search direction which
is yet to be determined. u; is a scalar parameter determining the
distance of travel in the design space.

For each proposed geometric vector, iG' the structure is opti-

mized with respect to the member sizing variables, iu. by solving the

following suboptimization problem:

Minimize r()'g') (5)

Subject to:
cj(iu) <0 j=1,m (6)

Equations (5) and (6) are simply the standard form of the fixed-
geometry optimization problem, and can be solved using any one of a
varietv ~f available algorithms.

It is now necessary to determine the search direction, §G‘
Assume that for the initial geometry the structure has been optimized
with respect to the member sizing variables, and that for this sub-
optimum design there are L active constraints:

cyri) =0 k=1, ¢ (7)

In practice, constraint G (X) will be defined as active if its

value is near zero, since precise zero is seldom meaningful on a
3



digital computer. It is nrw necessary to find a search direction,
§c. 80 that by moving in this direction in the geometric design
space, the objective function will be reduced. This direction may be

found by solving the following subproblem:
Minimize VF(X) + § (8)

Subject to:

6, (X) + § <0 k=1, % (9)
§+5§5<1 (10)
where
.
aX,
S
G
. )2
vVid D, 8§ &) comem- (11)
2%,
Q
M
= 2
X

Equations (8 - 10) themselves define an optimization problem in which
the design variables are the components of S. This has the same form
as the direction finding problem in the method of feasible directions,
and the details for its solution are described in [12] and [13]. The
§G portion of § is now substituted into (4) and a one-dimensional
search on “E is performed to updace the geomet
The geometric optimization problem can . 2 summarized in the
following algorithm:
1. Choose an initial set of design variables, X. Set q = 0.
2. For the current set of geometric variables, RE. optimize the
structure with respect to the member sizing variables, Xy, using
(5) and (6).
3. Determine the number of active constraints (7) and obtain the
gradients of the objective and active constraints (11).
4. Determine the search direction, §g. using (8 - 10).
Perform a one-dimensional search in accordance with (4) to deter-
mine the value of ua which will minimize the objective function
subject to the constraints on geometry. For each proposed
geometry, xG. update the member sizes using step 2.
6. Check to see if the design has converged to the optimum. If no

improvement has been achieved, terminate. If the design has been
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improved, increase q by 1 and return to step 3,

3. Application to Truss Structures
The design algorithm is demonstrated here with application to

three-dimensional statically indeterminate truss structures. The
structure is assumed to be linearly elastic and is subject to mul-
tiple loading conditions. The objective is to minimize the total
weight of the structure. Constraints include limits on member siz-
ing, element stresses, joint displacements and Euler buckling of the

elements. The weight objective function is

NE

i=1
where p, is the material density, A, the 'ross-sectional area and L
i i i

the length of member i. NE is the total number of elements in the
structure. Constraints on the design are defined as follows:

Side constraints, Ai-AI <0 (13)
Stress, cijloci'l <0 (14)
04470471 <0 (15)
Displacement, 61kjlélkj -1<0 (16)
Euler buckling, o”lob1 =1<0 (17)
where

Ai = lower bound on member area i,

aij = calculated stress in member i under load condition j,

Sci. Sti = compressive and tensile stress allowable, respec-

tively, in member i,

o,, = stress at which Euler buckling occurs in member i,

bi

élkj = displacement at joint & in direction k (k = 1, 2, 3)
under load condition j,

Elkj = allowable displacement at joint & in directions k under

load condition j.
The stress at which Euler buckling occurs is defined by the relation-
ship:
-K,A.E

- _..1__1__1_ (18)
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where !1 g
determined constant which depends on the cross section of the bar

is Young's modulus for element number i and K, is a pre-

element.

The fixed geometry design utilized the constrained function min-
imization program described in [1l4]). This program is based on
Zoutendijk's method of feasible directions [12] with modifications to
deal with initially infeasible designs '13]. Recent developments in
approximation concepts by Schmit et al. [15 - 17] were utilized to
gain maximum cffféiency in the suboptimization problem.

Three basic techniques were incorporated here for sub=-
optimization. The first is refeorred to as constraint deletion, where
at each stage in the fixed geometry optimization problem only thrse
active or near-active constraints are included in the computations.
The second is the use of the reciprocal design variables to transform
the constraint functions into approximately linear form. The objec-
tive is nonlinear in reciprocal space, but is still explicit and is
easily evaluated. Because of this approximate linearity of the con-
straints, it is logical to include as the third technique a Taylor
series expansion on the constraint functions which have not been
deleted. This yields a linearized explicit form of the constraints.
However, this is complicated somewkhat by dealing with Euler buckling
constraints as defined by (17). The stress at which Euler buckling
occurs is a function of the design variables yielding a nonlinear
constraint, even in reciprocal space. In this case, the Taylor series
expansion is performed on the stress in member i under load condition
4§ to yield an explicit linear form of the stress. The Euler buckling
stress can then be reevaluated for each new proposed design, so that
(17) is now explicit, but nonlinear, in the new design variables.

The fixed geometry design proceeds by first analyzing the struc-
ture and determining which constraints are active or near active.

The appropriate Taylor series expansion is then performed on these
constraints and this explicit form of the problem is used to mini-
mize the weight. If the structure is statically determinate, the
solution 1is now complete. In the case of indeterminate structures,
the structure is reanalyzed and the process is repeated until con-
vergence is obtained. Even in highly indeterminate structures, this
iterative procedure seldom requires more than 10 analyses, and a
near-optimum design is usually obtained with only 5.
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For geometric optimization, the joint coordinates of the
structure were chosen as the design variables,.

4. Design Examples

A compicer program using these techniques was written for truss
optimization. The finite element displacement method is used for
structural analysis and all gradient information is computed directly
in closed form. The programming language is FORTRAN IV and the
examples were run on a CDC 7600 computer.

Case 1—26-bar space truse with atrese and buckling conmatrainta,
Consider the 25-bar truss shown in figure 1. This structure has been
used elsewhere as an example for fixed geometry design [18] and con-
figuration optimization [6].

T

- 1905 m) >
| 781n

(254m)
lOan.

(2.54m)
|°?Iﬂ,

1
X ={s.08m)200in
Y . (5.08m)

200in. ‘

Figure 1 - Twenty-Five-Bar Space T-uss

The truss was required to support two load conditions and was designed
subject to constraints on member stresses and on Euler buckling. The
loading is the same as that used in [6].

A minimum allowable cross-sectional area of 6.65:10-6 '2
(0.01 in.?) was specified. The allowable stresses for all members
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were specified as 27.58!107 N/m? (40,000 psi) in both tension and
compression. Young's modulus was taken as 6.89-107 Nlmz (107 psi),
and the material dens:iy p = 2767 kg/m’ (0.1 1b/1n.3).
were considered to be tubular with the nominal diameter-to-thickness
ratio of D/t = 100 to give an Euler buckling constant (18) of K, =

i
39.274 for all members. The truss was required to remain symmetric

The members

with respect to both the x-z and the y-z planes. The independent

coordinate variables were taken as Xuo Yur 240 % and Vg The remain-

ing coordinates were linked to these design varigbles to maintain
symmetry. The coordinates of joints 1 and 2 were held constant, and
joints 7 through 10 were required to lie in the x-z plane. Member
areas were linked in the following groups: Al' AZ-AS. Ab-Aq' AIO-
All' ‘12"13' AIA'A17' AIB.AZI and A22-A25' There were then a total
of five independent coordina“e variables and eight independent area
variables.

The resulting optimum geometry is given in Table 1. For the

final design, member 1 was constrained by its allowable tensile

TABLE I. - 25-BAR TRUSS GEOMETRY

Coordinates in m (in.)
Joine Initial Final - Case 1 Final - Case 2
4 x = 0.952 0.544 0.831
(37.5) (21.4) (32.7)
y = 0.952 1.176 1.519
(37.5) (46.3) (59.8)
z = 2,54 233 2.939
(100.0 (99.7) (115.7)
8 x = 2.54 0.366 1.255%
(100.0) (14.4) (49.4)
y = 2.54 2:123 3.576
(100.0 (83.6) (140.8)

atress. All other members were constrained by their respective buck=-
ling stresses in at least one member of each group. The weight of
the truss was reduced by 48% from an optimum of 104.3 kg (229.9 1b)
for the initial geometry to 54.4 kg (119.9 1b) for the final geometry.
A total of 8 iterations (4) on geometry were required to reach the
optimum. A graph of weight versus iteration is given in figure 2.
The optimization required 27 fixed-geometry designs using 171 analy-
ses and 16.5 CPU seconds of computer time. A near-optimum design of



61.0 kg (134.5 1b) was achieved in 4 geometry iterations requiring 15
fixed-geometry designs with 81 analyses.
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Figure 2. - Weight Versus Geometry Iteration Number

Case 2--"J-bar space truss with stress, buckling and displace-
ment conatrainte. The structure designed as Case 1| was reoptimized
here with the additional requirement that the joint displacements not
exceed 0.00889 m (0.35 in.) in any of the coordinate directions
under any load condition. All other design conditions were the same
as Case 1. The optimum design for the initial configuration weighed
255.6 kg (563.5 1b) and was constrained by the displacement limits at
joints 1 and 2. The optimum configuraiion weighed 74.3 kg (163.8 1b)
and was achieved in 10 geometry iterations. The resulting geometry
is given in Table I and the iteration history in figure 2. For this
configuration, members 1, 10 and 11 were minimum size. The remaining
cross-sectional areas were constrained by the Euler buckling limita-
tion in at least one member of each group, with the exception that no
stress or buckling constraints were active on members 6 - 9. Also,
displacement limits were active on joints 1 and 2. The design
required 35 fixed-geometry optimizations using 204 analyses. The
computer time was 20.9 CPU seconds. A near-optimum geometry weigh-
ing 79.7 kg (175.7 1b) was achieved in 3 geometry iterations requir-
ing 14 fixed-geometry optimizations and 72 analyses.

5. Conclusions

A general design algorithm has been presented for the optimum
geometry design of finite element structures where a reasonable
initial geometry has been specified.

The basic conclusions of this study are:

(1) Structural geometry can efficiently be treated as a design
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parameter and major weight reductions can often be achleved as a
resuit of geometric changes.

(2) By considering two separate design spaces, geometry and mem=
ber sizing, the ill conditioning problems usually associated with
combining member sizing and coordinate variables are seldom encoun=-
tered. Also, this approach allows for the application of very effi-
cient fixed geometry optimization techniques currently available,

(3) The technique maintains the generality of mathematical pro=-
gramming, thereby allowing for the simultaneous consideration of a
wide variety of constraints on the design.

(4) The method converges rapidlv to a near-optimum geometry
(see fig. 2).

(5) The computational technique is in no way limited to trusses
and applies directly to general finite element structures.
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