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GENERAL DESCRIPTION OF WORK, ETC. 

The work described concerns the last period of electrochemical 

research carried out for N.A.S.A. in the Electrochemistry Laboratory_ 

To gain perspective, it is stated that, over the ten years of continuous 

support of N.A.S.A. to the Electrochemistry Laboratory, the basis 

governing the direction of the work was N.A.S.A.'s interest in electro

chemical energy conversion, i.e., in fuel cells. For this reason, much 

of the work published earlier in the decade was with respect to topics 

such as the potential of zero charge, electrocatalysis, and porous 

electrode theory. From 1968, the emphasis in the work changed, as a 

consequence of the technological success of N.A.S.A.'s fuel cell efforts. 

The new emphasis went onto electrochemical energy storage devices. 

However, in keeping with all the work supported Vy N.A.S.A. in the 

Electrochemistry Laboratory, work done was entirely fundamental in 

character. 
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WORK OF DR. E. BUCK 

ADSORPTION OF DENDRITE INHIBITORS ON ZINC 

INTRODUCTION 

The formation of dendritic zinc is a major obstacle 

hindering the attainment of optimum efficiency in alkaline zinc 

batteries. Previous work 1 in this laboratory has showed the 

efficacy of quaternary amines in inhibiting the growth of zinc 

dendrites during the charging cycle in alkaline zmncate solutions. 

Dendritic growth occurs during the charging cycle at cathodic over

potentials greater than 70 millivolts. 

In order to most effectively exploit the observation that 

some quaternary amines inhibit zinc dendrite growth, it is necessary 

to understand the parameters governing the adsorption of various 

quaternary amines on a solid zinc electrode. These parameters are, 

in general, obtainable from electroc~pillary data. Unfortunately 

however, zinc is not an ideally polarizable electrode; consequently 

electrocapillary data is or even pseudo-electrocapillary data is 

experimentally unobtainable. 

Since the thermodynamic quantities (surface excesses, etc.) 

are not available to us, the only alternative is to measure the total 

amount of the quaternary amines adsorbed in the interphase as a function 

of its bulk concentration and as a function of the zinc electrode poten

tial. There are several experimental techniques that are possibly 

useful for such measurements. 
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Two possible electrochemical methods of adsorption study 

are differential capacitance measurements and oxidation of the adsorbed 

inhibi.tor. The difficulty with the latter technique is that it 

necessitates an assignment of a fraction of a total current to the 

oxidative process of the adsorbate; such assignment in the case of 

a zinc electrode which has a large exchange current density is tenuous 

at best. The situation with any differential capacitance technique 

is even more arbitrary in that a model must be invoked in order to 

arrive at an amount adsorbed. The overriding difficulty of both 

methods, however, is that hydrogen is adsorbed in the potential 

region of interest. 

The situation with non-electrochemical techniques is 

marginally better. The obv~ous methods here are of two kinds: 

analytical determination of the change in bulk concentration of 

adsorbate and measurement of the amount of adsorbate on (or very near) 

the electrode. The difficulty inherent in the first method is the 

-5 very low (ca. 10 M) bulk concentration of the adsorbate; few tech-

niques are available for determining quaternary amines at this 

concentration level. Two techniques are available for measurement 

of the total amount adsorbed. They are ellipsometry and radiotracers. 

PRELIMINARY INVESTIGATIONS 

Preliminary investigations with the e11ipsometric method 

showed it to be unsuitable for the present problem. The essential 

difficulty was the impossibility of maintaining a specularly reflective 

zinc electrode surface. The experimental conditions were such that 

roughening of the zinc surface was unavoidable. 
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The above considerations effectively limit the suitable 

methods of study to radioactive techniques of 11hich there are two 

general types. Those in which count rates are determined in situ 

and those in which the adsorbent is removed from the bulk adsorbate 

and counted externally. The latter type of technique was chosen as 

the type most amenable to the present problem. 

The technique selected was developed in this laboratory 

in the early 1960's by Swinkels, et a1 2
• In essence, the method 

consists of adsorbing C14 labeled organic compounds on a continuous 

metal tape, which is connected as a working electrode in a usual 

3-electrode potentiostat circuit. The tape electrode, when slowly 

withdrawn from the cell at a uniform speed through a slit, has only 

a quite thin (ca. I micron) film of solution on it. The amount of 

C14-1abe1ed compound adsorbed on the tape (together with that in the 

adhering solution film for which a correction can be made) is determined 

by means of two parallel - one above and one below the tape - gas flow 

proportional counters. 

EXPERIMENTAL DIFFICULTIES 

The two experimental difficulties immediately encountered 

were insufficient sensitivity of the radiation detection system and 

grossly irreproducible solution film thicknesses. Radiation detection 

system sensitivity is improvable to a large extent by changing the 

detectors and/or their geometry. 

film uniformity. 

The more serious problem i; that of 
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The obvious cause of the latter difficulty was, of 

course, the slit system. The slits were first fabricated of Teflon. 

The Teflon has both a low hardness and a low surface free energy. 

The low hardness and lack of dimensional stability of the Teflon is 

the cause of excessive wear when used in conjunction with the metal 

tape electrode. More serious still is the low surface free energy 

of the Teflon, the result of which is that it is not water wet whereas 

the tape electrode is; the mechanical instability thus created causes 

the film thickness to be unduly' sensitive to slight pressure changes 

at the exit slit. 

EXPERIMENTAL DETAILS 

A new cell with glass exit slits was designed and built (see 

previous reports). Even with the most carefully made slits, however, 

it was not possibre to prevent leakage of the solution at the slit, tape, 

solution juncture when even very low gas pressures were applied to the 

drying compartment. It is, of course, necessary to do this in order 

to sparge the solution. The ultmmate solution to this problem was the 

careful and accurate regulation of a vacuum system (water aspirator 

as a source) connected to both the cleaning and adsorption cells. 

The sparging gas, He, was admitted through the drying compartment. 

Very fine metering valves (Nupro) were found suitable for control of 

the pressure and vacuum systems. 

The insensitivity of the radiation detection system was 

traced tlJ the anode in the gas flow detectors. New anodes were 

fabricated in the laboratory from 1 mil platinum wire which was soldered 
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onto a stainless steel tube that was made part of an HN connector. 

With the new anodes and using PR-IO gas~ the detectors exhibited Geiger 

regions of over 300 volts with a slope of about 2% per 100 volts. 

Since the E for the beta decay of carbon 14 is about max 

150 keY, the thinnest possible windows are required for the detectors 

in order to gain sensitivity sufficient to make meaningful measurements 

on the very small amounts of radiation to be measured (of the order of 

10-9 moles). Micro (85 ~g/cm2) gold foil windows are the best 

available choice of windows in as much as they are the lea.st 

adsorptive ones obtainable. 

The tape detector system was calibrated with labeled Na2c
l403 . 

* A 0.001 M solution of the Na2C 03 was prepared by determinative weighing. 

A small quantity (t}~ically 0.1 ml) of this solution was placed on a 

clean tape with a ~icropipette and allowed to spread. The tape was located 

between the detectors in the same position it would occupy when adsorp-

tion were made. The apparent counter efficiency obtained was 190%. 

Note that this figure represents the total number of counts by two 

2 detectors divided by the calculated number of disintergrations per cm 

of tape. The actual area of tape counted is indeterminate, but in 

2 excess of 10 cm • 

In the actual adsorption studies the procedure was to clean 

the tape in the cleaning cell which contained 1 M NaOH in conductivity 

water by alternate oxidation then reduction of the electl'ode. The 

bright electrode was then moved through the drying compartment which 

contained dry He to the adsorption cell. In the adsorption cell the 

Zn tape electrode was potentiostated at a pre-selected potential using 

a saturated calomel electrode as refe:rence. The tape potential was 
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maintained for a time sufficient to allow the establishment of adsorption 

equilibrium. The amount of time required - on the order of 15 minutes -

was determined experimentally by plotting observed count rate vs time of 

adsorption. After the suitable period of time had elapsed, the tape, 

still under potential control, was moved from the adsorption cell to its 

position between the two gas flow detectors and counted. The count 

time was adjusted so that at least a minimwn of 1,000 counts was 

recorded. 

EXPERIMENTAL MEASUREMENTS CARRIED OUT 

Adsorption measurements were made on zinc tape of 99.999% 

purity which was furnished by Cominco American, Spokane, Washington, 

in the form of a strip 2 mils thick by 500 mils wide. The adsorption 

solution was prepared by diluting a stock solution of the appropriate 

quaternary amine with 1 M KDH to give the desired concentrations. 

The concentrations selected for study were: 10- 6 M, -6 2.5 x 10 M, 

10- 6 M, -6 -5 M 10-5 M. 5 x 7.5 x 10 M, 10 ,and 2.5 x The cetyl trim'ethyl 

anunonium bromide used was furnished by Amersham/Searle with a specific 

activity of 6 mCi/mM. 

RESULTS 

Results of thes.e experiments indicate that cetyl trimethyl 

anunonium bromide is strongly adsorbed at potentials within 200 mv of the 

open circuit potential (ca. -1.5 V vs SCE). The amount adsorbed in this 

potential region is only weakly concentration dependent. At potentials 

more than 200 mv cathodic to the open circuit potentials the quaternary 

amine desorbs strongly. 
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The at first surprising result that an organic cation 

is desorbed by a negatively charged electrode is at second glance 

quite reasonable. At the large potential drops in the electrical 

double layer during the extreme cathodic polarization to which the 

stated condition corresponds, it would be expected that small 

inorganic cations (in this case K+) and even water dipole:; could 

displace the large quaternary amine cations. 

Less conclusive experiments with tetraethyl ammonium 

bromide indicate somewhat similar behaviour but with desorption 

occurring at less cathodic potentials than with the cetyl ammonium 

bromide. This result would argue for the case of the cetyl quaternary 

amine in preference to a smaller one for dendrite inhibition. 

REFERENCES 

1. J.W. Diggle and A. Damjanovic, J. Electrochem. Soc.; 117, 65 (1970). 

2. M. Green, D.A.J. Swinkels and J.O'M. Bockris, Rev. Sci. Instr., 

, 33, 18 (1962). 

, . CONCLUSIONS 

(1) NR4+ ions are suitable for dendritic growth inhibition 

because of the highly -ve position of the potential of zero charge. 

(2) In the absence of satisfactory results for the concen

tration dependence, we do not know if the adsorption effects are 

heterogeneous. 
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FURTHER WORK NEEDED 

The ideal dendritic inhibitor would be one in which there 

is a minimal concentration in solution for blockage of the rotation 

of spirals which is the preliminary to dendritic growth. 

We need, therefore, a study of adsorption heterogeneity to 

determine where the ions are going, and we need examination of a 

series of cations to get the law between inhibition and size. 
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WORK OF'MR~ R.K. SEN 

THEORETICAL CONTRIBUTIONS TO ELECTRODE PROCESSES 

GENERAL 'DESCRIPTION OF WORK. 

Mr. Sen was put to work on a variety of theoretical 

problems which cameup in discussions during 1970 and 1971 of 

batteries and their pro51ems. 

reported. 

Tn the following/the work is 

A summary is then given of the findings. 
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VARIATION'OFOTHE:COEFFICIENTOOF'FRICTION WITH 

POTENTIALFOR'A'SOLID~SOLUTION CONTACT: 

A REVISED CALCULATION. 

Several authors1 ,2 have pointed out that a linear re1ation-

ship exists between the coefficient of friction for a wet contact and 

the associated potential difference. Bockris, Argade and Gi1eadi 3 

reported experiments showing a parabolic relation between friction and 

the potential difference. Bockris and Argade 4 then attempted a 

quantitative calculation of the dependence. The essential aspect of 

their model was as follows: 

The coefficient of static friction is given as: 

].If = FIR, 

where F is the frictional force, i.e., the tangential force required to 

separate the region of microcontact. Then F = ~o' where a is the 

tensile strength of the softer of the two metals in contact and Ao is 

the area of microcontact. R is the normal reaction, given as: 

R = [w cose - F (A - A )] - P A + F l(A - A ), a 0 0 0 e 0 

where w is the weight of the slider, e is defined in Fig. 1, Fa is the 

attractive force per unit area between the solids not in contact, p is the o 

attractive surface field force per unit area in the microcontact region 

and Fe1 is the net repulsion between the double layers per unit area. 
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However, it can be shown that if Amontons law is valid 5 , i.e., 

the coefficient of friction is independent of the geometric area of the 

contact and the weight of the slider, then 

w cose + F l(A - A ) > p A + F (A - A ). eo· 00 a 0 

So eq. (1) then becomes 

llf = (3) w cose + F l(A - A ) e 0 

To estimate Fel Bockris and Argade's~ analysis involved the 

calculation of the repulsion of two plane sheets of charge, i.e., the 

other side of the charge on each double layer. This probably is an 

unacceptable simplification. In the present note, the problem is 

resolved on the following model: it is assumed that in the double 

layer concerned, specific adsorption is relatively small. In that 

case, it is possible to regard the interaction approximately as that 

between two Gouy layers*. This repulsion can be calculated by getting 

the double layer field due to one double layer at x and finding out the 

force it exerts on the diffuse layer charges of the other double layer, 

taking qdiff to be localized as a sheet of charge at 11K distance from 

the solid surface - see fig. 2a. Hence, 

F ( K,It e-KX) (,It -K (x + 11K)) 
el =~diff - ~o + qM - K~o e • 

Under the assumptions made above qM = qdiff. Hence, 

F - ,It [-KX -K(X + 11K)] 
el - qdiffK~o e - e . 

Substituting 
o Ze 

(En kT;~ ", ~ 
qdiff = (iK)'2 ~o kT 

in e.qn •. (5.) .. yields 

* Repulsion of two Gouy layers was also calcul-ted by Frumkin6 using a 
different approach. 

• 
(4) 

(5) 
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On the other hand, expressing K1jJ , o 

47rqdiff[ . 
Fel = E exp{-

Introducing eq. (6) or (7) in eq. (3) yields eqs. (8) and (9) 

11£ = 

[ J
~ 

o 2 Ze 
K En kT --..£. t/J2 

2A kT 0 
w cose + [ -KX -K(X + l/K)]{A - A ) e - e 0 

and 

Th ° ht f th lOd 7 1 1.266 x 106 g em- 2 e welg 0 e s l. er \~as • g, aT = 

7 -6 A was evaluated by Argade and was found t~ he 7.2 x 10 . Eq. (9) was o 
-7 1 7 -1 2 evaluated for x = 6 x 10 cm and K = 3 x 10 em ; qdiff was obtained from 

the integration of the C-V plots. The results are shown in fig. 3 and 

compared with experiment. The agreement seems fair. 

(6) 

(7) 

(8) 

(9) 

Argade's experiments further showed that when the ring was made of 

quartz a similar dependence of ~f on potential was obtained. The explanation 

of this phenomena can also be obtained from the above theory. The quartz 

being an insulator can be approximated to a very lowly conducting semi-

conductor having a very large Debye length (l/Kl ). 

be shown, e.g., for an intrinsic semiconductor 

and 

This can very easily 
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[sAD.. e2/EkT]\ Kl =. 1n 0 

Taking E = 4 and E , the band gap, of 0.7 g 
4 eV, Kl comes out to be 5.S5 x 10 

-1 . -4 cm , 1.e., 11K = 1.7 x 10 • 

Now the model is as shown in fig. 4 and following essentially 

the same principles used above, we can write 

F =[En0kT l~ Zeo ~2[e-KX 
el A kT 0 

-7 Now Fel can be evaluated for 11K = 3 x 10 -4 cm, llKl - 1. 7 x 10 cm and 

x = 6 x 10-7 cm. The value of Fel was used to calculate ~f from eq. 

(3) • The values are plotted in curve 2 of fig. 5. The agreement again 

is fair. 

REFERENCES 

(1) J.O'M. Bockris and R. Parry-Jones, Nature, 171, 930 (1953). 

(2) D.N. Staicopolus, J. Electrochem. Soc., lOS, 900 (1961). 

(3) J.O'M. Bockris, S.D. Argade and E. Gileadi, Electrochim. Acta, 14, 

1259 (1969). 

(4) J.O'M. Bockris and S.D. Argade, J. Chern. Phys., 50,1622 (19169). 

(5) J.A. Kitchener and A.P. Prosser, Proc. Roy. Soc. (London), A242, 

403 (1957). 

(6) A. Frumkin and A. Gorodetzkaja, Acta Physiochem. USSR ~, 327 (193S). 

(7) S.D. Argade, Thesis, University of Pennsylvania, 1965. 
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ANNOTATIONS TO FIGURES 

Figure 1. Forces involved in friction. 

Figure 2. Model of interactions of the Gouy layers between two metal plates. 

Figure 3. Coefficient of friction versus potential for Pt on Pt in HCI04• 

Figure 4. Model of two interacting Gouy layers between a metal and a 

semiconductor. 

Figure 5. Variation of the coefficient of friction with potential at metal

quartz junction. (a) Experiment; (b) theory. 
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DEVELOPMENTS OF THE BDMMODELOF'THE'DOUBLE LAYER 

Abstract 

Following the publication of the Bockris-Devanathan-Muller 

model of the double layer, several discussions in support and against 

various aspects of that model have appeared. A critical discussion of 

the present status of the model is presented. 

I. INTRODUCTION 

In 1963 Bockris, Devanathan and Muller l (BDM) published an 

attempt modelistically to interpret several facts, at that time 

unrationalised, concerning the double layer at a mercury-solution 

interface, namely: (1) The capacity is constant at l6~F cm- 2 for the 

double layer region on Hg, whilst the cation size is varied. 

is an inflection in the experimental q . -Q t 1 relation. an10n iIIe a 

(2) There 

(3) There 

is a hump on the capacity-potential curves. (4) The relation between 

coverage on the surface of Hg with organic molecules and the charge of 

the electrode is parabolic and symmetrical, if small aliphatic molecules 

are being adsorbed. 

BDM explained the independence of the double layer capacitance 

upon cation size by modifying a proposal made by Watts-Tobin~ Mott and 

Parsons 2
, where it was suggested that the capacitance could be explained 

in terms of that of a low dielectric water layer; and a high dielectric 

second layer, further out towards the solution, in series with the low 

dielectric layer. The shape of the isotherm and the capacitance hump 

were explained in terms of anion repulsion among the specifically adsorbed 

molecules. A calculation of the charge at which the capacitance hump 

occurs has been shown to agree well with the available data'. The parabolic 
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dependence of coverage on potential for the adsorption of aliphatic 

organic molecules was interpreted in terms of the dependence of the 

strengths of attachment of the water dipoles to the electrode, the dipoles 

having a two state configuration. It is the turning round of the water 

molecules which causes the maximum in adsorption of an organic. The 

presence of quadratic terms in the field, arising from the polarisability 

term, was shown to be numerically insufficient to explain the observed 

parabolic 8-V shape. Bockris, Gileadi and MulIers (BDM) published a 

better approximation of the BDM model for organic adsorption, in which 

both solvent solute dipoles interact with the field. Coverage-charge 

relations of numerous shapes were deduced. However, the lateral inter-

actions between adsorbed organic particles and between organic and water 

molecules, were still neglected. 

Thus, the BDM model features potential-dependent water 

molecules as a primary constituent of the double layer; differs from a 

previous model 2 in holding the distance of closest approach of non-

specifically-adsorbed ions as outside this water layer; and attributes 

the capacitance hump to anion repulsion rather than to a contribution 

to the capacitance due to water molecules 6 .* 

Support for the BDM model in terms of the isotherm? was also given 

by Wroblowa and MulIers, who showed that the model's neglect of imaging in 

* A water capacitance hump is also implicit in the BDM model. Whether one 
observes a capacitance hump due to anion repulsion, or to water oriimtations 6

, 

turns out 1 to depend on the water-water interaction energy, which has been 
neglected in the approximations of Mott and Watts-Tobin6 and of MacDonald 
and Barlow2s In BDM's evaluation, these interactions are shown to make 
water give a capacitance too large to be observed. Anion humps are 
qualitatively consistent with the qualitative facts of hump-dependence 
of anions. Whether capacitance humps are always anionic will depend on 
solvent as well as anion. 
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the solution gave a'better agreement with experiment than the consequences 

of the assumption that there is perfect electrostatic imaging at both the 

metal surface and the OHP (which involves the assumption that there is a 

sharp electrostatic discontinuity between the double layer and solution 

regions). Gileadi 9 has shown that the terms (of water-electrode interaction) 

used in the BDM model for organic adsorption, have a much greater numerical 

weight (in the potential range accessible experimentally); than terms 

representing the change of energy of the double layer which arises in the 

classical thermodynamic approach 1B to the coverage-charge relation~ 

organic adsorption (cf. the earlier discussion by Wroblowa and Green 17) 

Gileadi and Stoner 10 have developed the BDM model, with respect to the 

dipole contributions to the double layer potential, as an interpretation of ano

malous current potential relations. Reddyll has reaffirmed the model, with 

special reference to the water contributions. Barradas 12 has argued that 

BGM 3 model represents consistently some phenomenology of organic adsorption. 

Bonciocat 13 has shown that the BDM isotherm gives rise not only to the 

hump, but also to the minimum in capacitance observed at potentials positive 

to the hump, and that the isotherm rationalizes the temperature dependence .. 

of the hump. Isotherms which take into account multiple imaging, such as, 

that of Levine, Bell and Calvert, or MacDonald and Barlow, do not do this. 

Levine, Mingus and Be11 14 , and MacDonald and Barlow 1S , had criticised 

the BDM model because of its lack of multiple imaging (cf. Wroblowa and 

Muller 8). An alternative theory6, in terms of capacitance humps in 

terms of water rotation capacitance, competes with the BDM model. 

Damaskin 16 has suggested that consequences of the BDM model of organic 

adsorption are inconsistent with thermodynamic reasoning. He has suggested 

I 



- 19 -

that a neglect of th.e energy of charging the double layer is important 

(but cf. Gileadi 9 , Wroblowa and Green17). The neglect of electrode-

organic interactions in the original BDM has been criticised by Frumkin 18
, 

but this objection is no longer relevant because a second approximation of 

BDM (that of GBM) took this into account. The neglect of a polarizability 

term in ~aF2 has been criticised also by Damaskin 16 : Mohilner 19 has 

suggested that the dipole potential arising from the BDM model is too 

large. 

II. DEGREE OF CONSISTENCE OF THE BDM MOPEL 

1. The IorticAdsorptionIsotherm 

The BDM isotherm can be represented in the form: 

8 0 a+ 3/2 
R-n l _8 = -f:,G /RT + R-n-=- + AqM + Be. (1) ao 

This isotherm is obtained using single imaging for the 

evaluation of the lateral interaction terms. Levine, Bell and Mingus 14 

and MacDonald and Barlow 15 preferred multiple imaging. The multiple 

imaging results in a higher screening effect, decreasing the lateral 

interaction energy, which then becomes proportional to 8 instead of e3/ 2 

obtained by BDM. Thus, the Levine, Bell and Calvert 28 isotherm is of the 

form: 

(2) 

where p = ranion/rwater (assumed approx. 1 in BDM). 

Which of the two approximations for imaging agrees more closely 

with the physical situation? The tests that can be carried out are (1) 

3/2 P plotting the log a±(1-8)/8qM vs 8 and log a±(1-p8) /8qM vs 8, to examine 

the linearity as well as the slope from experimental data, and (2) by 
8 

examining the Essin-Markhov effect. Wroblowa and Muller made these tests 
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and their results can be summarised as (1) the slopes Band C of 

equation (1) and (2) when compared with experiment from the above 

mentioned p16t~, show that the predictions of B from BDM model agree 

within about 15-20% of the experimental results, whereas the C values 

predicted by the LBC isotherm, taking p = 1, exceed the experimental 

ones by four to twelve times for the anions Cl-, CN-, ClO-4,1, 

Cl0
3
-, Br03- and CNS-, and (2) for p ~1 the constancy of 

(dq~A/dqMJ at coverages usually encountered in ionic adsorption is 
a+ 

not obtained from the LBC isotherm, whereas the same quantity from the 

BDM model does almost stay constant. 

The single-imaging approximation gains in these tests. 

Single and infinite imaging are limiting cases of a more complicated 

situation which neither equation (1) nor equation (2) represents 

accurately. It is more difficult to think, however, that conductive 

imaging (the assumption of LBC) in the relatively poor conductor, an 

ionic solution, will occur to a significant extent. MacDonald and 

Barlow 1S pointed out that, even in the metal, imaging at molecular 

distances is not perfect. Due to the lack of sharpness of the dielectric 

boundary between the OHP and the rest o.f the solution, dielectric imaging 

beyond the OHP will be far from perfect, and that is probably why single-

imaging gives better agreement with experiment. An estimate of 

partia.l imaging, on the solution side, is desirable. Some attempt has 

been made in this direction by Buff and Goel 29 • In concurrence with the 

present discussions, their results show that the more gradual is the 

change in the dielectric constant the less pronounced is the degree of 

imaging in the solution. 
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Recently, Levine so has recalculated the results obtained 

by Wroblowa and MulIers from his multiple imaging model, but using 

a value of p = 2, for his isotherm. The term p represents the radius 

ratio of an ion to water and it is nearer to 1 than 2 for most anions 

concerned. The use of p as an adjustable parameter and its substitution 

in LBC decreases' the discrepancies with experiment which this model has 

for p = 1, so far as the slope and the Essin-Markhov effect goes. 

(It is clear that all isotherms should be formulated with a p value of 

2 2 r l /rH 0)· We, therefore, compare the single and multiple imaging 
2 

models in respect to the capacitance hump phenomena. In respect to 

the BDM model, the q~A vs qM curve (and thus the hump, with anion 

dependence) is predicted7
, and recently it has been shown 13 that both the 

capacitance hump and the subsequent minimum are predicted by the BDM 

theory. Let us see whether the prediction of humps from an LBC isotherm 

is also consistent with experiment. The LBC isotherm can be written 

(p = 2) as: 

Hence: 

So: 

Let x 1 4 =-+---e l-2e 

Then: 

AlqM = lne - In(1-2~)2 - lna± - ce + constant. 

C • 

AI 
dqM 1 4(1-28) - C de = -+ 

(1_28)2 8 

= (~+ (l-~e) - C). 

'de AI 
dqM =(1." 4 te' + l-2e :-

de 'AI 
dqM = x 

(3) 

(4) 

(5) 
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Now: 

= (A,)2 dx 
. 3 • de • 
x 

'dx 
Let us now evaluate d8 . 

So: dx d (1. 4 
d8 = d8 e + (1-28) - C) 

1 8 
= 82 + (1-28) 

482 
t 48 -1 = --;00---'--'-:-

82(1_28)2 

Thus: 

dd
28

2 = (A~)2 [48
2

2
+ 48 - 12 ]. 

qM 8 (1 - 28) 

d28 
For the inflection point dqM2 = O. 

Thus: 

2 AI ~ o. Thus: 48 + 48 - 1 = 0 . 

(6) 

(7) 

(8) 

Or: 81 = }(/2 - 1) or 82 = - }(h + 1) . (9) 

A negative value of 8 has no physical significance. Thus, the inflection 

point is given by the root 81. Hence (cf. relation (9)), the inflection 

in LBC is independent of any property of the ion, or the value of qM. Thus, 

for ions to which the LBC isotherm is intended, the plot of q~A vs ~ the 

inflection should occur at the same point for every anion. This is not 
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the case. The plot of q. fl t" vs qh would not give a straight line 1n ec 10n ump 

with a slope of unity as is obtained from the BOM theory. 

Thus, the multiple imaging approach of Levine et a1 29 does give 

less consistence with experiment (qualitatively as well as quant~ively) 

in its application to predict the inflection on the plot of q~A vs qM' 

2. The capacitance hump 

The most discussed aspect of the recent double layer theory has 

been the rationalization of the hump observed in capacity-potential relation. 

The ROM model formulates in terms of single imaging an idea suggested 

qualitatively by Oevanathan 20 and supported by Watanabe21 • In BOM, it is 

the contribution of the repulsive forces to the standard free energy of 

adsorption which provides an inflection on the q- - qM curve, and thus gives 
CA 

a hump in the C - qM curves. 

coverage can be written as: 

The BOM ionic adsorption isotherm for low 

In(~) = 1-8 constant + In a. + Aq - B8 3/ 2 
1 M ' 

where constant = 

(- ~~; - mao) • 

The condition for the inflection point in the 8 = f(qM) curve can be 

written as: 

2 - 48 - ~83/2 + B8S/ 2 = 0, 

where: 

where the terms have their usual meaning. 

This equation has two roots 13
: 

(10) 

(11) 
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2/3 81 = (4/38) and 82 = 1/2 • 

81 corresponds to a local maximum, i.e., the hump in the C - qM curve, 

and 82 is the local minimum. 

On the other hand, considering the root of the LBC isotherm, 

it can be shown 13 that it does represent the maximum. But, since the 

root 81 of the LBC isotherm does not depend on the nature of the anion, the 

capacitance hump in this approach is independent of the nature of the anions 

which is at variance with experimental observations 21 • The LBC isotherm 

furthermore does not predict any minimum after the hump, whereas the BDM 

model does. 

Others 22 ,23 consider the hump is due to a solvent effect. 

There are qualitative objections to the solvent reorientation model for 

the hump. (i) Por common anions except P-, the region of charge near to 

the hump sees the onset of anion adsorption24 ; (ii) the magnitude and 

location of the hump varies with the anion 25 ; (iii) in some polar non,.. 

aqueous solvents, no hump is observed25
; (iv) if solvent reorientation did 

give rise to a maximum in local permittivity, and hence the hump, it would 

do so for aqueous solutions on the cathodic side of the pzc24
• 

In favour of a solvent reorientation theory of the hump is that 

humps occur for F-. There is considerable evidence26 that the F is not 

specifically adsorbed. However, this conclusion relies on the applicability 

of the Gouy-Chapman diffuse layer theory, the assumption of zero specific 

adsorption of water, etc. It is possible that F- merely differs in 

degree of adsorption from other halide ions. The evidence is strong that 

specifically adsorbed anions playa role in causing the hlJmp. 

quantitatively predicts the phenomenology. 

The BDM model 
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Payne 27 found in N-methyl formamide system two humps, one 

on the cathodic side and the other on the anodic side of the e.c.m. Both 

BOM and solvent reorientation theories find difficulty in explaining both 

humps. However, if solvent-solvent repulsion is relatively small, BOM 

also predicts a solvent capacitance hump as does the interaction-free, 

anticedent model of Mott and Watts-TobinG• In two hump systems, one 

hump may be due to anion-repulsion, the other to dipole orientation. 

3. Organic Adsorption 

The BOM competition theory of organic adsorption is a development 

of the water competition model proposed by Butler~. It will not be 

applicable to potential regions in which there is significant chemisorbed 

hydrogen or oxygen on the surface, nor to situations in which there is 

dissociation of the organic molecule on adsorption. The original version 

of the model 1 will only be applicable to systems in which there is no 

electrical interaction of the double layer with dipole moments of the 

organic molecules. This assumption applies to a situation in which the 

organic has its pola.r groups in the diffuse layer, where the field is 

negligible compared with that on the water dipole, which is inside the 

compact layer. In the BGM s approximation, various orientations of the 

adsorbed species were considered and then interactions with the electric 

field explicitly calculated. The model was able to interpet most of the 

shapes of the 8-qM curves obtained. 

(i) Is 'tIi.e . BOM 'model iJicoJisisteJitwith thermodtrtamic reasoning? 

Let us take a general isotherm, congruent with respect to charge 

of the form: 
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G (q)c = f(r) 

where f(r) is a function of the surface excess, r. 

Thermodynamic treatment 16 yields an equation of the form: 

(12) 

where G is the value of G at q = 0, A = RT r, K is the capacity of the o 0 

double layer when the coverage of the organic, i. e., 8 = 0 and c' is the 

capacity when 8 = 1, q is the charge, ~X is the surface potential and 

E~rg is the potential drop due to the oriented adsorption of the organic 

dipoles. 

Similarly, if we take the BOM organic adsorption isotherm which 

is: 

C _~Go /RT n~Go /RT -(Ec/kT) ((4 /) _ REC) 8 ~ org c e 1T]lq e; kT' 
1-8 = C e e 

W 

we can rewrite it in the form: 

G(q) = Go exp(-nR(]lX - REC)/kT) 

41TqM 
where X = electric field strength = --e;-- , 

and R is given as: 

(14) 

(15) 

where G(q) and G have the meaning of equation (13), n is the number of o 

water molecules displaced during the adsorption of a single organic 

molecule, ]l is the dipole moment of water, X is the electric field acting 

in water, E is the lateral interaction energy between water molecules, and 

C is the effective coordination number of the w'ater molecules at the electrode. 
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Equations (13) and (15) differ importantly. 

[ 
-1 (Ko ~ c') 2]· (org) 

The terms A 2Kox' q and qEN are absent in (15). Since 

equation (13) is derived16 from a charge-congruent isotherm, it should 

be thermodynamically consistent solution of the problem. As the BDM 

isotherm, represented by equation (15), omits two terms of the isotherm 

of equation (13), it has been argued16 that the BDM isotherm is incon-

sistent with thermodynamics. 

In the derivation of equation (13), given by Damaskin16 , 

one involves the equation: 

E = E (1 - 6) + E6 o 

where E is the total potential*, E' the potential at 6 = 1, and 

Eo is the potential when 6 = O. This equation is based on the 

(16) 

modelistic assumption that, at a given charge q, there is a linear 

variation between E and 6. This will only be true if the free energy of 

adsorption is not coverage dependent, which is not generally true. 

This fact has been pointed out by Delahay 31. Thus, equation (16) is not 

purely thermodynamic. It represents a model. Consequently, equation 

(13) cannot be purely thermodynamic. Thus, both equations (13) and (15) 

involve modelistic assumptions and, as these differ, their consequences 

would not be expected to be the same. 

* E in the Russian literature is defined as the total potential~ 
It is implicitly assumed that the rest of the potential in a cell 
remains constant so that change in E reflects the change in the potential 
at an electrode solution interface. . 
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An argument of a similar nat.ure arises because equation (13) 

is obtained from equation (12), which is an adsorption isotherm based on 

a model (essentially, electrode-water and electrode-organic interactions 

are considered), and equation (15) arises from a different model (essentially, 

interaction of water molecules with the electrode and each other). The 

first and third term of equation (12) correspond to a change in the double 

layer energy due to organic adsorption, and the reorientation energy of 

the organic dipole, respectively. However, the BOM model involves an 

initial assumption of a condition such that these energies are smaller 

than the electrostatic interaction of water (and, in BGM, the organic), 

with the electrode. It may be right to argue that the neglect of change 

of energy in the double layer due to change of capacitance on organic 

adsorption is a poor approximation (see next section). However, it is 

not rational to claim, as did Oamaskin 16 , an inconsistence with thermo

dynamic principles because another model (which has been formulated in a 

way which involved thermodynamic equations) predicts some other behaviour. 

(ii) Neglect of the change of the energy of the double layer upon 

adsorption of the organic: 

It has been argued 1G that this approximation in the BOM theory 

could lead to important discrepancies with experiment. Recently, Gileadi9 

evaluated the relative contribution of the term corresponding to the energy 

change due to water dipole reorientation, and the term due to the energy 

change of the ionic double layer due to organic adsorption. 

are summarised in T able I. 

The results 
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. 'TABLE I 

Relative'contributions of·the·Frumkirt·term and 'the Bockris 

et alterm 

Potential in volts 0.5 

Term corresponding to 
energy change in ionic 
double layer ~ 7.6 

Water dipole re-orienta-
tion term % 92.4 

1 

14 

86 

2 5 

25 45 

75 55 

10 

62 

38 

Table I shows the relative contributions of the two terms 

to the total variation of the adsorption equilibrium consistent with 

potential at different values of E. Although the term corresponding 

to the change of energy of the double layer is not negligible (as 

assumed in BDM), its contribution will be relatively small over the 

potential range accessible experiment ('\.01 volt). Thus, this objection 16 

is not a weighty one. 

(iii) Is the Electrode Charge predicted for the Adsorption Maximum 

BDM (or BGM) inconsistent with experiment? 

It has been inferred16 that, since in the BDM theory the 

maximum of organic adsorption occurs at the point where Nt = N+ the 

maximum of organic adsorption should occur only at the pzc. Since 

experimentally this is not observed, the argument was that the BDM model 

does not predict the experimental results well. This criticism is due 

to a misTeading of the original papers. In BDM, although it is argued 

that the maximum of organic adsorption occurs at the point where Nt = N+, 

it is pointed out that this situation should not arise at the pzc, because 

of the stronger binding of the water molecules in one orientation than 

• 

l."' 
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in the other.* Bockris. and Swinkels 32
, using the BOM model, showed 

that the maximum of organic adsorption will occur when: 

(16) 

where ~Gct and ~Gc+ are the free energies of adsorption of water in up 

and down position. 

This is expected for a model in which there is no electrical 

interaction of the organic molecule with the electrode. For the more 

general (BGM) modelS, in which such an interaction is accounted for, the 

adsorption maximum will depend not only on the water-electrode, but also 

organic-electrode interactions. It will. finally, depend on all 

interactions (e.g., also organic-organic and water-organic), although 

others may not have a great effect (see Section V) on the adsorption of 

aliphatic molecules. 

(iv) Is there any relation between the hump on the capacitance vs electrode 

charge curve and the maximum of organic adsorption? 

It has been argued 16 that there is a relation predicted by 

the BOM model between the potential of the hump of the capacitance curve 

and the potential of maximum organic adsorption. The BOM model predicts 

that the peak of organic adsorption occurs at the point where Nt = N+. 

Since the capacitance hump (if it is attributed to the solvent) would 

also occur at the point where Nt = N+, the two potentials ought to be 

the same. Experimental results do not show such a correlation. Hence, 

the BOM model is inconsistent with experiment. 

* The difference may arise, int~r alia, from the lack of symmetry and hence 
water-metal image energy, in the two positions. 
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However, this. argwnent misrepresents the BOM model: the 

capacitance hump in this model is not generally due to solvent reorientation, 

but anion repulsion (Section II, 1). There is absolutely no relation, 

in the BOM model, between the potential or the electrode charge, at which 

there is an adsorption maximum, and that at which a capaci:tance maximum 

occurs - in agreement with experimental observations. 

(v) Is the BOMmodel neglect of orgariic~orgariic and organic-water 

interactions significant? 

The neglect of the organic-electrode interactions (one of many 

approximations in the BOM model) was revised in BGM. Bockris and Swinkels 32 

made an estimate of the organic-organic interactions, but they have not 

yet been introduced into the general equations of improvements in the 

treatment of the BOM model, largely owing to algebraic difficulties. 

The BOM model has been criticised for neglect of organic-organic 

interactions. Let us, therefore, make a crude estimate of the importance 

of organic-organic interactions in organic adsorption. We will assume for 

simplicity that there are only two positions of the organic molecule. The 

interaction of a pair of these, when they are pointing in the same direction, 

is: 
1.I 2 s 

E12 = --:r (17) 
£r 

Oue to the effect of the value of £, E12 for water is about 7 times larger 

than that of the butanol-butanol intcTaction. Even for e = 0.5, where 

the distance between water molecules and the organic molecules are 

approximately the same, i.e., r is the same, the organic-organic interaction 
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energies are one-tenth of the water-water interactions. Only when the 

coverage by the organic approaches 0.8 does the organic-organic inter

actions become of the comparable order of magnitude as that of the water-

water interactions. Thus, neglect of the organic-organic interactions 

in studying organic adsorption seems a reasonable compromise with the 

complexity of the expressions relating coverage to electrode charge. 

However, organic-organic interactions at higher coverage may dominate 

the interaction situation where the organic dipole lies on the electrode 

(see Fig. 1). In such a case, the obj ect.ion is valid. 

In a recent article Outkewicz, Garnish and Parsons 34 showed that 

for 1:4 butane diol and 1:4 but-2-yne diol the charge dependence of the 

free-energy of adsorption does not give the same result as obtained from 

the Bockris, Oevanathan and Muller theory. They have interpreted the 

discrepancy as arising due to the neglect of the water-organic interactions. 

It is clear that organic-water interactions srQuld be accounted for in 

principle, and that they will become significant if the dipole of the 

organic sits in a position where it is exposed to a field of about the 

same magnitude as that of the water. The BOM formulation would apply when 

the organic dipole: is in the diffuse layer and the approximation gets 

better in the organic dipole away from the water. The discrepancy would 

be particularly great if the organic molecules are lying flat on the 

electrode surface. 

However, physically when the organic polar groups are in the 

high. dielectric constant region, whereas the water dipoles are in the low 

dielectric constant region, there seems to be little reason why the 

interaction should become very important. 
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(vi) Neglect'of'tliepolatiZab.iHtytetrn'iri electtodemolecule interaction: 

-2 It is trivial to show that, for (qM)<IO].l coul cm : 

4nqM 
where X = ----- and E is taken as 6. 

E 
This conclusion assumes the two-state 

water dipole model, and in both, the dipole is perpendicular to the 

electrode. 

-2 At qM>IO].l coul cm ,the polarizability term will become 

increasingly significant and should be included in a further appoximation 

for the mode I • However, it is important to note that the small value of 

2 I 2 1/2ax (or ~V ) compared with ].lX, at X + 0, means that change in direction 

of the converage-charge relation cannot arise (as in the former models), 

by virtue of the quadratic term. It is therefore necessary to have some 

change in position of an electrically interacting entity in the double 

layer, near the adsorption maximum. This was the origin of BDM's suggestion 

that this change is in the orientation of the water dipole.* 

4. Surface Potential: 

Mohilner 19 stated that, assuming full coverage of the electrode 

* The two state model assumed for water is, of course, also an approximation 
(cf. MacDonald and Barlow, who discussed a multi-state arrangement). 
The effect of several molecular orientations in respect to sample organic 
molecules is formulated in BGM. The symmetry of the 8-qM relation often 

observed does support the two-state model for water in BDM. However, other 
possibilities (which would reduce the dominance of the water effects) are: 
(a) The introduction of a degree of dimerization; (b) A two state model in 
which the effective dipole moment is reduced due to orientation other than 
vertical. 

, 
f 
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with water molecules, the value of the surface potential /:"X from the 

BDM model is unrealis·tically high. 

In the BDM theory (oold for an organic of zero dipole moment): 

.4'IT11NT (l1X' REc) 
IS.X = E tanh kT - kTJ ' 

= tanh (l1X _ R' Ec l 
kT kT:J· 

(18) 

where R 

Moreover, to eliminate the water hump in the capacitance 

potential curve, dXdiPOle -2 
dqM 0.01 when qM = 2011 coul cm 

i. e., = 
8'IT2112N

T 
c;2kT 

(l-R) 2 
----~~~--~2- < 0.01 • 

CEc) (l-R ) 1 + kT 

(19) 

In judging what parameters should be used to test this equation, 

there are two constraints. The change of /:,.X with potential must not be too 

high, because if it is, it will not be consistent with the observed linearity 

of the Tafel line. 

Now: 

and « 0.01 . 

Evaluating these two equations with the above constraint yields 

14 2 E /:,.X ~ 100 mvfur NT ~ 10 mo1ecu1es/cm for kT = 0.5 (the value assumed by 

BDM) . The problem is that the value of NT thus required is significantly 

less than the close packing value for the water molecules. To obtain a 

14 -2 0 0 total coverage of only c.lO molecu)es/cm ,rH 0 ~ 3.9A instead of 1.4A. 
2 

I 
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How may we reduce this difficulty? Examination of the above 

equation shows that, as we increase E 
the value of kT ' the value of 

1 
~---, and also the value of ~X, also decreases. 
Cd· 1p 

E 
For kT ~l, the 

value of ~X ~ 100 mv is obtained for NT ~ 5 x 1014 molecules/cmZ, 

which is the close packing value if we assume the radius of water 

to be ~ zR. The problem, therefore, is physically to rationalize 

the value of ~T ~ 1. Let us assume that the lateral interaction 

energy is given by dipole-dipole forces plus the quadrupole-quadrupole 

forces. Thus: 

Evaluating this for interaction between two water molecules separated 

by zR, yields E 
]..1]..1 

0.58 Kcal/mole. 

~ 0.5 Kcal/mole and EQQ= 0.08 Kcal/mole. So, E = 

Hence, ~T = 0.966 which is near to the value needed 

to give reasonable agreement for the close packing value of NT' 

Thus, a reasonable value for ~X does arise on a BDM model if a better 

approximation is used for E, the water-water interaction energy. 

III. PRESENT POSITION OF THE BDM MODEL 

The BDM model gives a prediction of humps with those observed: 
8 ~ 

its prediction of linearity in log a± - log 1-8 versus 8 2 is consistent 

with experiment. Some degree of multiple imaging should be introduced, 

but it must be less than that of the multiple imaging models to retain the 

consistencies of the single imaging model. The BDM model is consistent 

with a solvent hump, if the lateral interaction among the solvent molecules 

is low enough. 
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For organic adsorption, some of the criticisms published 

involved misunderstanding of the model, e.g., that about the position 

of the hump, the peak of organic adsorption, and that which neglected 

the BGM organic interactions. The most serious criticism, that the 

model was in disagreement with thermodynamics, is not correct: BDM is 

not consistent with another model, which has used thermodynamics in its 

formulation. The neglect of the ionic double layer energy seems a 

reasonable approximation over the potential range accessible. 

The three principal contributions of the BDM model are 

the consequences of interactions among water in a two state model; 

the demonstration that such a model rationalizes the 8-qM parabolas 

for aliphatic adsorption (and that models which rely on quadratic terms 

in V or q will not do this); the position of the outer Helmholtz plane 

as being outside this layer; and the demonstration of a reasonable 

degree of consistence with experiment for single imaging. These 

contributions seem not to be challenged by valid criticism. The most 

important directions in which the model should be developed is in respect 

to a better evaluation of the water-water interactions, with an examina

tion of the effects of various other configurations for water, the 

inclusion of organic-water and organic-organic interactions, and perhaps 

an attempt at a realistic multiple imaging calculation. The last 

modification seems the least needed (in respect to consistency of ionic 

isotherms with experiment) and the most difficult 33
• 

The continued neglect of contributions to the double layer 

properties of the potential dependent water dipoles, except by MacDonald 

and Barlow23
, seems the major anomaly of the last decade of double layer 

research. 

a 

. .... 4 
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IV. GENEALOGY OF THE BDM MODEL 

Lange and Miscenko41 suggested the presence of a surface-

potential, ~X, in double layer studies. A formulation of the water 

layer at an electrode solution interface in terms of a dipole layer, 

was first formulated quantitatively by Bockris and Potter35 in connec-

tion with the interpretations of pH effects in the hydrogen evolution 

on Ni. They were the first to introduce a field dependent contribution 

to an electrode potential from the oriented water dipoles. The water 

dipole model was used by Bockris and Conway36 (1958) to examine double 

layer properties with respect to the dependence on frequency of the 

double layer capacity. Mott and Watts-Tobin6 (1961) picked up the 

concept of Bockris and Conway6 (1958) ("waggling" dipoles), and suggested 

a two-state model for the water-electrode interaction to predict the 

hump on the capacity potential relations. Correspondingly, MacDonald 37 

(1959) suggested a treatment of the water layer, assuming all orientations 

of the water molecules to be equally probable, to explain the hump on the 

capacity-potential relationship. MacDonald 38 (1960) and MacDonald and 

Barlow23 (1962) qualified the model of the water layer proposed by 

MacDonald 37 (1959). However, both Mott and Watts-Tobin23 (1962) omitted 

the water-water repulsion, i.e., treated the layer as if it were a gas 

layer. 

BDM picked up the two state model proposed by Mott and Watts

Tobin 6 (1961) and introduced dipole-dipole repulsion energy. They 

showed that a two-state model was needed to give the parabola observed 

Taking the repulsion energy into account helped BDM to 

observe the fact that dipole reorientation may not make significant 

contributions to the hump, becausla the dipole capacity was too large to 
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have a significant effect. However, BOM showed the importance of 

the dipole reorientation (reduced in magnitude by water-water inter-

actions) in calculating the surface potential as well as in organic 

adsorption. 

BOM showed that the hydration shells of the cations must 

be outside the water layer. A layer of oriented water dipoles lies 

between the electrode and the hydrated cations. 

Mott and Parsons 2). 

(Cf. Watts-Tobin, 

BOM's proposal that ionic adsorption isotherms were better 

calculated on a single imaging theory was independent of Levine, Bell 

and Calvert 28 (1962) who had developed the multiple imaging isotherm. 

Another approach, more or less similar to the multiple imaging approach 

of Levine, Bell and Calvert 28
, but using a hexagonal lattice model was 

made by Barlow and MacOonald 42 (1964), which yielded results very much 

similar to the results obtained by Levine, Bell and Calvert28 • 

The approach to explain the capacitance hump in the BOM model 

had an antecedent in the work of Oevanathan40 (1954), who had shown that: 

However, Oevanathan did not reiate qCA to ~ as was done, and compared 

with experiment, by BDM. 
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ANNOTATION FOR FIGURE 

Figure 1. Adsorption of organics on electrode: 

(1) Up position - organic dipole in diffuse layer. 

(2) Flat position - organic dipole on electrode surface. 
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QUANTUM Mf,CHANICAL FORMULATION OF ELECTRON TRANSFER RATES 

Formulation of electron transfer rates in solution and at 

electrodes has for long been carried out in terms of continuum theory 

of dielectrics 1 ,2. Some displacement, only recently defined, in the 

solvent causes the potential energy of the ion concerned to change to 

a value suitable for the acceptance of an electron, in a radiationless 

transfer process. The displacement of the solvent has been taken as 

simple harmonic, and a detailed model has been suggested 3
• A classical 

libratory movement of the solvent interacts electrostatically with the 

ion. Certain long range fluctuations in this energy, rather than 

the thermally activated vibration-rotation levels involving short range 

interaction in the ion solvent complex, give rise to the energy states 

in the ions to and from which electrons transfer. 

Two reasons have been ad~,ap,::::ed 3 for the concept that 

thermally activated vibration-rotati.on levels usually considered in 

solution reaction do not take part i.n an electrode reaction. 

First, in electrochemical reactions, variation of electrode 

potential is brought about by effecting a change of excess charge on the 

electrode from an outside source, thus causing the Fermi level to change 

by up to leV. + Regarding the H30 levels as only those of vibration, 

there would be a gap of about 0.5 eV between levels available for the 

acceptance of electrons. The rate-potential relation is, however, a 

completely smooth one. Hence, available levels for the relevant quantum 

transition must be produced by some other means. 2 This argument, 

however, neglects rotational levels between the vibrational levels in 

+ 
H30 (ref. 4), and the considerable line broadening in the spectrum of 
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+ H30 caused by the introduction of solvents. Schiffer and Hornig 6 

interpreted line broadening of the O-H bond, and enhanced Fermi resonance 

in water, by assuming a classical distribution for free water molecules 

giving rise to a Boltzmann distribution for the energy of the O-H bond. 

Similar arguments may be applied to the O-H+ bond in water as well. 

Second, it has. been suggested7 that there is an insufficient 

number of thermal states to sustain charge transfer reactions. 

The following analysis sho!"s, h0wever, that this supposition 

is not supported by considerations of the Boltzmann distribution in 

solution to experimental activation energies. Thus, the rate of the 

proton discharge reaction can be written as 

1· = F kT C 6S+/R -4H+/RT 
• h· H O+·e .e 

3 

where Nf + is the number of H30+ ions having sufficiently energetic 
H30 

rotation-vibration levels for radiationless transfer. 

discharge reaction on Hg from acid solution, i ~ 10-11 
o 

1013 molecules cm- 2, and 6S+ ~ - 10 e.u. (estimated by 

For the proton 

-2 C amp cm 
H 0+ 

Temkin 8 3 

--

and by Bockris and Sen, unpublished). Thus, N + ~ 10-3 molecule cm- 2• 
H30 

For 6H* :::: 20 kcal mol-l.-CConway9), the number of particles in the second 

-2 -2 vibrationally excited levels is about 2 x 10 molecules cm - sufficient 

to sustain the reaction. 

Thus, participation of thermally activated states in electrode 

reactions is likelylO-12. The fact that solvent fluctuation is unlikely 
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to be a dominating cause of activation in electron transfer reactions 

is shown by the following. (1) If one compares the "experimental" 

standard free energy of activation for a large number of redox reactions 

in solution with what is calculated on the assumption that solvent 

fluctuation is the preferred mechanism, there is little correspondence 

between the two figures 13 • (2) In electrode reactions, the logarithm 

of the rate is proportional to the overpotential applied. This relation 

does not follow from the theory of solvent fluctuations, which indicates 

a continuous curved relation between log i and overpotential 13 • 

(3) The polaron theory has been used to estimate the electrostatic 

fluctuation energy. Polaron theory is applicable in solid lattices, 

and its applicability to liquids is questionable12'~, and involves 

correction factors, knowledge of which is not readily available2• 

(4) Direct evidence for the partial nature of the contribution of the 

continuum energy considerations to charges in solution has been offered 

by Fueki et al 7 • For energy changes of hydrated electrons, approximately 

half comes from the contimuum electrostatic energy, the rest from the 

first layer of water molecules around the cavity of the electron, a 

contribution entirely neglected in the electrostatic fluctuation model. 

(5) The reorganization energy in the solvent fluctuation models has 

been given by the Born-Landau equation. The derivation of this equation 

involves the electronic adiabatic approximation, but Jortner lS points 

out that such an approximation on polar liquids, where the binding energy 

of the solvated electron (about 1.7 eV) and that of the medium electron 

(about 4eV) are of the same order of magnitude, is not applicable. 
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The above discrepancies do not mean that some contribution 

from electrostatic solvent fluctuation does not exist. It is necessary 

to compare the probability of having electrostatic fluctuations of suitab~e 

energy with that of activated vibrational levels of the same energy. 

Thus, we consider an ion surrounded by N dipoles. The probability of 

the dipoles having an angle between e and de with the ion at a distance 

of Rand R + dR is given as 

3 [e~effCOS' 3 . --3" exp R2kT R dR sJ.nede 
2rw ES 

P. = ~--------------------------------
J. . iff· Jr 00 3 .[e~ effcos 8] 2 

.. . --3 exp 2 R dR sined8 
2rw ESR kT o r. J. 

where r is the radius of a water molecule, r. that of an ion plus the w J. 

diameter of a water molecule, and ~eff' following Kirkwood, is the 

effective dipole moment of the water dipoles caused by the presence 

of interactions among the water molecules themselves. Using classical 

statistical mechanics, the mean square deviation of the energy due to 

fluctuation, 0
2 , can be evaluated to give 

0
2 = CE2) - CE)2 = 0.01 x 10-24 • 

Since 0
2 is small compared with CE)2, the probability of having a 

fluctuation of 20 kcal mol- l above the average energy can be calculated 

using a Gaussian distribution. It is 10-41 • The corresponding 

-1 
probability of having an activated vibrational state of 20 kcal mol is 

-15 
10 • 
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Thus the widely acceptance of the solvent fluctuation model 

for charge transfer reactions should be modified. Thermally activated 

states, as well as electrostatic fluctuational contributions should be 

counted. For the slower reactiops, the solvent fluctuations do not seem 

to contribute significantly to the activation process. 
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MECHANISM OF ACTIVATION OF ELECTRON TRANSFER IN SOLUTION 

The velocity of electron transfer between a redox couple l - 2 

or between an electronic conductor and an ion in solutiQn4 has been 

discussed in terms of the Landau-Borns expression for the "electron 

solva~~on energy" in solution (the continuum solvent activation model). 

It is supposed 6 that the charged particles receive energy from the 

classical librations of water molecules in a region of a few hundred 

R around the ion, in both the initial and final states. The energy 

transferred from these librators creates a situation in which a radiation-

less electron transfer can occur. 

Acceptance of this model leads to several discrepancies with 

experiment. (1) Experimentally, the relation between logarithm of the 

rate of a redox reaction and its overpotential is linear over several 

decades 7 ; this fact is not predicted, even for small regions of potential, -by the continuum solvent activation model (Fig. 1); (2) the free energy 

of activation'for redox reactions in solution, predicted by the theory, 

bears little resemblance to experimental observations (Fig. 2a, b); 

(3) a piece of evidence in favour of the continuum solvent activation 

theory is that it predicts t~'rate constants for the heterogeneous reac-

tion from a knowledge of the homogeneous one. This only involves 8 the 

concept of the additiv.ity of the reorganization energy term. This fact is, 

however, not predicted only by the continuum solvent activation model but 

also arises from other models of activation where the interaction between 

the reactants is small. 

There are several reasons for the discrepancy between the con-

tinuum solvent interaction theory and experiment. (1) In the continuum 

solvent activation theory the change in the energy of the ion in solution 
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leading to the activation required for charge transfer is governed only 

by the interaction of the ion with the solvent, treated as a dielectric 

continuum. This puts out of consideration the inner solvation sphere of 

the ion6 • Such a model might be true, as a first rough approximation, 

for ions large enough to have no primary solvation sheath attached to them, 

as is clear from Fig. 2a. For reactions involving aquo-complexes, 

however, it is the oriented water molecules in contact with the ion which 

contribute most of the solvation energy of the ion and which therefore 

should make a significant contribution to the energy of activation of the 

ion. Consequently the use of the continuum solvent model to calculate 

energy changes is inappropriate for such reactions. This is also evident 

from Fig. 2b. In such cases, the inner sphere contribution becomes the 

dominant factor. This is supported by the demonstration by Kevan et a1 9 

that the energy of a solvated electron is not represented by a continuum 

Born-type expression but principally by nearest neighbour interaction 

with water dipoles. The continuum estimate i~ in error by about 2 eV. 

(2) It is implicit in the continuwn solvent activation model l
- 4 

that the energy of the perturbations which gives rise to the activation 

of the ion is proportional to the square of a displacement within the 

solvent. This might indeed be so if the activators were, for example, 

water librators at relatively large distances (for example 50 R) from the 

ion. It is not a likely representation of the energy-distance relation 

if the nearest neighbour interactions of the charge in solution are taken 

into account, because the vibrations and rotations relevant contain 

anharmonicity. It is this lack of anharmonicity in the classical theory 

which is the origin of the poor prediction of the relation between log 
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rate and overpotential. If such anharmonici ty is taken into account 

there is excellent agreement between theory and experiment (that is, 

there is linearity between log i and n) for many decadesS'lO. 

(3) One of the reasons which has been givenS for neglecting 

the inner sphere contributions in the continuum solvent model was the 

quantal character of the vibrations in the inner sphere. As a recent 

spectroscopic discussion of H30+ has shown, however, rotational motions 

in solution are classica1 11 and there is usually strong coupling between 

vibrational and rotational motion; the energy of the inner sphere may, 

therefore, be activated classically. Together with the classical 

states induced by the Bornian contribution to the total solvation energy 

~f ion, the total energy of the initial state will in effect be classical. 

This has an important consequence because no discontinuity in the log i-n 

relations is seen although the structure can be analysed to show up energy 

changes of 0.001 eV. 

One of the remaining uncertainties concerns very large ions: 

does the Landau-Born expression play an important part as a limiting case -

that is, if the ion is so large that there is no orienting structure around 

it? For this to be so, it is necessary to assume the applicability of 

the theory of polarons in water; this is, however, unlikelyS,12. 

The activating modes in most of the electron transfer reactions 

are therefore not primarily the non-equilibrium polarizations of the solvent 

treated as a continuum. 

t 
( 
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ANNOTATIONS·POR·FIGURES 

Figure 1. Tafel line for redox reactions. Theory; 

0, experiment. 

Figure 2. a, Plot of ~G* 1 against ~G* for electron transfer reac-ca c expt 

tions involving reactants with ligands other than water or 

ammonia; b, plot of ~G* 1 against ~G* t for electron trans-ca c . exp 

fer reactions involving reactants with water or ammonia 

molecules as ligands. 
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·ON'QUANTUM'ELECTROCHEMICAL·KINETICS 

Abstract 

A critical estimation is made of the theory of electrochemical 

kinetics in terms of two models of activation, thermal and e1ectro-

static. It has been shown that the electrostatic model cannot predict 

the linearity of a Tafel line and also the constancy of symmetry factor 

S with overpotentia1 and the relation of rate constants khom and khet 

does not diagnostically support the electrostatic model. 

A quantum mechanical derivation is given to show the con

sistency nf the time dependent perturbation theory with the GAMOW 

equation for the time dependent barrier concerned in charge transfer. 

1 . HISTORICAL 

Few examples 1, 2, 3 are available where an attempt has been made 

to investigate the quantum mechanical aspects of reaction rates, even 

in the gas phase. However, quantum mechanical aspects of electron 

transfer reaction in solution were first discussed by GURNEy4 in 1931: 

it was one of the first topics in Chemistry to receive quanta1 discussion. 

The Gurney4 theory was developed by Butlers) Christov6 , 

Gerischer 7 and Bockris et alB. 

The basic aspect of this type of model is tha.t there :..s a ther-

mal equilibrium between the solvated ions and the solution. A Boltzmann 

distribution is assumed to give a population of excited vibrational states 

of the ion, and the rate of the electron transfer reaction in the product 

of the probability of a quantum mechanical transition (usually of an 



- 55 -

electron) and that of the probability of finding a suitable acceptor 

(or donor) level in the ion. This model will be referred to as the 

thermal activation model. 

Another model originates with Libby9, who suggested that, in 

a redox reaction, the energy change during electron transfer could be 

expressed as the difference between the Born solvation energies of the 

initial and final states (but see ref. 10). Weiss (1954)11, followed 

by Hush (1968)12 and Marcus (1959)13 developed a view in which the 

optical polarisation associateu with a fast electron transition was the 

principal part of an expression for the heat of activation. In 1965 

Marcus 14 developed a more detailed model, which took into account 

contributions to activation from the inner solvation sheath. The 

former approach, - that based on the Born equation, - has continued to 

be developed by Levich 15
, with Dogonadze 16 and Kuznetsov l7 , with 

explicit stress upon the validity of the application of the Born equa

tion and the rejection of contributions by the inner shell of activation. 

This latter model (that which stresses the Born equation) will be referred 

to here as the continuum electrostatic approach. 

Until 1970, the physical meaning of the continuum electrostatic 

view was not differentiated from that of Weiss 11, Hush 12 and Marcus 13. 

It did not contain a molecularMlevel description of how energy was trans

ferred from the solvent to the entity to receive charge (which must exist 

in an activated state at the moment of transition). In 1970, Levich 18 

suggested a molecular model which sought to rationalise the continuum 

electrostatic view in terms of fluctuation theory. 
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In this report, we would like to make a comparison of the 

two models*. 

II. THE TWO MODELS 

1. Descriptioriof the Models 

The following is common to both models: 

(a) A radiationless electron transfer is assumed. Therefore, 

one calcula.tes a condition for setting up equal electronic energy states 

on the electrode and the solution side of the barrier, so that electron 

transfer can occur from the state EF, the Fermi level in the electrode, 

to a state of the same energy in the solution. 

(b) As with the consideration of the quantum mechanical 

transitions in reactions, the Born-Oppenheimer approximation is invoked 

to separate the fast moving electronic coordinate and the coordinates 

of the heavy particle, e.g., at H20+ ion, or the solvent. 

(c) In considering the hydrogen evolution reaction, both 

approaches consider the quantum mechanical aspect of a proton leaking 

through the barrier. But in the continuum electrostatic approach, the 

transfer of a heavy particle is pictured as occurring by means of a 

"quantum mechanical transition" of the whole system. In the develop-

ment of the thermal view the transfer of heavier particles over the 

barrier is taken into account. 

* Importance of the field gains because many biophysical reactions 

probably involve interphasial charge transfer 19 • 
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We now describe the differences. 

(i) Thermal Model 

+ The model aSSllffies that the H3U ion is in thermal equilibrium 

with the surrounding solvent and there is a Boltzman distribution of 

electronic energy levels in the ion and its solvent shell which provides 

a distribution of levels to correspond to the varying electronic level 

which occurs as the potential of the electrode is changed. Therefore, 

there must be some states in the H30+ ion which possess an energy to match 

the Fermi level of electrons in the electrode. It is to these states 

that electron transfer from the metal occurs without gain or loss in energy" 

In this approach, the permeability of the barrier to protons is 

taken into account. Depending upon the energy level in the proton, at 

penetration, there is a probability of electrons being in the same level 

in the metal, whereupon a transition of the electron to the penetrated 

protons occur. Some protons will also go over the barrier. For heavy 

ion transfer, a11 the transitions wi11 be over the barrier. For these, 

the quanta1 character of the electrode reaction will be (effectively) 

restricted to the electronic transition. 

An electrostatic contribution to the energy of the initial state 

(ion in the double layer and electron in the metal) was made explicit by 

Parsons and Bockris 2 0 and Conway and Bockris 21 • They took into account 

the electrostatic energy of the ion in defining the electron energy level 

in the initial state. These energy contributions were divided into chemical, 

ion-dipole and Born terms. They were thought of as contributions to the 

energy of the system at equilibrium. Vibrations of the inner solvation 

sphere will, however, change the radius term in the Born equation and can 
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produce a continuum electrostatic fluctuation, in addition to whatever 

other fluctuations may arise in the electronic energy of the ion due to 

the librations of nearest neighbour dipoles. 

(ii) Electrostatic Continuum Model 

This model differs radically from the basic model used in the 

theory of activation in kinetics, where the small number of excited bonds 

are the medium of the reaction. In the electrostatic continuum model, for 

a bond for which hv ~ kT, the occupancy of the level (in the thermal 

distribution) is too small at room temperature that it does not playa 

part in the reaction. But species have to be excited. To achieve this, 

the reacting ion is pictured as existing in a dielectric continuum, and 

dielectric polarization fluctuations in the continuum are suggested as the 

cause of fluctuations in the energy of the reacting species. 

LevichlB suggests that the fluctuating particles are water 

molecules, i.e., dipoles, undergoing librations in solution. They have 

11 -1 hv 
a frequency of about 10 sec ,so that for these kT ~ I, and they behave 

classically at room temperature*. These librators produce longitudinal 

polarization waves and give rise to electrostatic fluctuations in the energy 

of the ion. Since a large number of librators are needed for the activation** 

* 10-11 sec is the Oebye relaxation time in water. 
to water dipole librations by Levich 15 ,16,18. 

This has been attributed 

** Levich 18 calculates the approximate number in the following manner: If E 
be the activation energy, and each dipole has the capacity of contribut- a 
ing an amount of energy not exceeding its own energy hw , then if N dipole 
takes part in creating the reaction situation, the valug of N is given as: 

N ~ E /hw 
3 a 0 

For E ~ 0.5 ev, the N ~ 10 • 
a 

However, using w = 1011, the frequency quoted by Levich for the librators 
in water, 0 hw ~'_'_l_ k 

o 100 T. 
Thus, the majority of librators would possess about 100 quanta, in which case 
the number of particles needed for activities would be about 10. Whether a 
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possess, it is necessary that these longitudinal waves are in phase, 

i.e., the oscillators librate in phase to create a standing wave, for, 

otherwise, sufficient energy cannot be transferred to the ion. Thus, 

the concept of the polaron theory developed for solid crystals is used 

to describe the activation process. In this way (though not explicitly), 

it is suggested that energy pulses of the order of 1 eVe r~ach the ion, 

placing it thus momentarily at an energy level at which radiationless 

transfer can occur. 

Second-order time-dependent perturbation theory is used to 

solve for the quantum mechanical transition probability of the electron 

and for the proton in the hydrogen evolution reaction. 

2. The Rate-Overpotential relation according to both Models* 

Both the models start off from the fundamental equation, which 

gives the rate of an electron transfer reaction as**: 

(1) 

where i is the current per sq. cm. and gives in fact the rate of the 

electron transfer reaction. 

The main difference in approach is in the calculation of the 

transition probability, Wif(Ef ). We will examine the methodology in a 

* For list of symbols, see end. 

** The double integral is annulled in the following simple treatment by 
taking the electrons only from the Fermi level and the distance of the 
acceptor states at the outer Helmholtz plane. 
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s.implified way to show the ess,ence of each lllodel. 

(a) The Thermal Approach 

One may consider that electron transfer reactions are adiabatic, 

i.e., the. electronic motions are faster than the motions of the heavy 

particles (the ions). The probabilities of electron transfer CPT)' 

and of attaining suitable acceptor states (PH
2
0+(E)), are hence indepen-

dent. The transition probability (taken here, for simplicity, as 

occurring only from the Fermi level) is: 

(2) 

The problem is to evaluate these two probabilities separately. For the 

hydrogen evolution reaction, the rate-determining step may be chosen for 

the sake of discussion as that corresponding to: 

The potential energy profile will be as shown in Fig. 1. 

i. e., 

The vertical transition (see Fig. 1) AB corresponds to the process: 

+ of taking an electron from the Fermi level of the metal to an H30 

ion in its ground rotation-vibration state, with no change in the proton-

coordinate, d. The energy change of the system for this vertical process 

is, say, oLilio(e), (Fig. 1). 
+ Such a transition for, an H30 ion not in its 

ground state will be accompanied by an energy change ~Ho(e). Eventually, 

at the intersection point X of curves "a" and "btl in Fig. 1, m ee) = ° o 
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and electron tunneli~g from the metal to the proton becomes possible*. 

Since the thermal model assumes that a Bo1tzman distribution 

exists between the various vibrational-rotational energy states of the 

H+-OH2 ion, the probability of finding the H+-OH2 ion sufficiently 

activated, so that its energy will correspond to the intersection 

point X of Fig. 1, is given by**: 

( !::'e:.) p +(e:.) = exp - kT • 
H30 

From Fig. 1, !::'e:. is a fraction of !::,H (e), o 0 

where 0 < a < 1. 

Hence: 

Since: 

we have 

!::'e:. = a !::'H (e) o 0 

(3) 

(4) 

(5) 

* For the h.e.r., the r.d.s. of which is CH30+)dl + e;-CM)+(M-H •.. OH2)dl 

the point X in Pig. 1 is the point where the equality I + L - <I> = R + A 
is satisfied (see Bockris and Matthews 8). Rewriting the above equality 
in the form <p = I + L - R .... A shows that at the point X the radiation
less el~ctron tunneling condition is also satisfied (see Gurney~). 

** The presentation is heuristic. The quantum mechanical properties of 
the proton are suppressed, for the sake of simpl£ity in the presentation 
of principles. Such properties have been taken into account 8b • 

.J 
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The tunneling probability. assuming a square barrier* is: 

(6) 

Hence. the total current. using equation (6). is**; 

~(~H (e) + e~¢ ) 
o e 

kT 

(exp - [3~~J 

. (Sen) = 10 exp - kT· (7) 

This is Tafel's la\l. 

(b) The Electrostatic Approach 

As mentioned in Sec. IV. the electrostatic approach makes an 

initial assumption in contrast to theories of activation in collisional 

kinetics that bonds for which hV/kT ~ 1 do not take part in the reaction. 

The activation is effected by classical degrees of freedom. Moreover, the 

ion-solvent interation in the inner solvation sheath gives rise to the 

* Again. the barrier has been taken here as the simplest for heuristic 
purposes. Christov 6 • and Bockris and Matthews 8b discussed the quantum 
mechanical properties of the proton in terms of Eckert barriers. 

** Ep varies linearly with overpotential. However. EX also varies linearly 

wi th overpotential. Thus, as the overpotential changes. the state in 
H30~ to which an electron is transferred changes by the same amount and 

the height of the electron transfer barrier remains independent of potential. 
There will be a change in·field strength in the double layer as a function 
of overpotential. However, the expected changes (say, a doubling of 
field strength) can be shown8c to have a negligible effect on the shape 
and height of the electron transfer barrier. 
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inequality hv ~ kT. Thus, the number of particles in the higher energy 

states is few. This is usual in any reaction kinetic situation. In 

the present theory, it is assumed that there are too few of such higher 

energy bonds to be of interest in the process. The suggestion is that 

classical harmonic librators in the bulk of the solvent produce (by 

means of long range electrostatic interactions) fluctuations in the 

electronic energy levels of the ion, to give it its required energy 

for a quantum mechanical transition. 

Thus, the potential energy profile in the initial and final 

state are essentially produced from the intersection of two harmonic 

potential wells, as shown in Fig. 2. 

Corresponding to the heuristic presentation given of the thermal 

model, we regard the transition probability as the product of the electron 

transfer probability and the probability of the acceptor state attaining 

the level where a radiationless electron transfer takes place. Thus: 

(8) 

where PT now is the transmission coefficient, or electron transfer 

probability, and P(~E) is the probability that the acceptor state is in 

its activated configuration ready to !'l~cept an electron. To evaluate 

P(AE), consider the PE profile of Fig. 2. 

parabolas in the form24*: 

and 

2 
U = k(q - d) 

U - Q = kq2 

Putting the equation of the 

(9) 

* The ass.umption of simple harmonic behaviour arises because the displace
ment of each oscillator invohped in contributing to the activation of the 

-3 
ion is only about 10 ev. 



1. 

- 64 -

where k is a force constant. For the purpose of simplification, we 

have set the k's for the two parabolas to the same. 

At the intersection point, we can therefore write: 

2 1 
kd - kdq - Q = O. (10) 

A reorganizational energy, ES' can be defined as the energy 

difference between the ground state of the reactant and the point corres-

ponding to its displacement q to overlap the ground state of the other 

oscillator. Hence, by definition (Fig. 2): 

2 
ES = kd • 

Therefore, from equation (10): 

ES + Q + 2kq'd = 0 

or 

- [
Es + Q] 

q' = 2kd 

Hence, 
(ES + Q) 2 

E = kq,2 = -.;...,.,:---
act 4ES 

(11) 

(12) 

Since the potential energy profiles are made up of classical oscillations, 

the Boltzman distribution is valid. 

Therefore: 

(13) 

Thus, 

';"'*)!e",ws'trC 
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The potential dependent part is lumped in Q, since: 

Q = J. - J 
~n fn 

where J in and J fn are the ground state energies of the initial and final 

states. Therefore, we can write: 

Q = Qo + en. 

If, in equation (14), Q2 ~ 4ESkT, then: 

i = A expH4:~ + 2;~ + 2~~J 1 

= A' exp (- 2~~J. (15) 

Thus, we obtain the Tafel equation. 

However, to obtain this result Q2 ~4ESkT. This is not usually 

true. Thus, the electrostatic continuum model does not give a linear 

Tafel line. There are no regions on the overpotential-log current relation 

which should be linear, in contradistinction to experiment. 

3. Differences between the Two Models 

The main difference between the two models is in the mode of 

energy communication between the solvent and the ion. 

In the electrostatic continuum view, vibration-rotation levels 

due to the thermal equilibrium of the reacting species are neglected. 

Electrostatic fluctuations from long range interactions of a large number 

of dipoles (see footnote) are envisaged. The electrostatic contribution 

from librations of the inner solvation shell is neglected. 

" 
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Th.e reason put forw.ard 18 for the neglect of vibrations of 

the inner solvation sheath, is that, since the ion-solvent interaction 

of the ion is large, the thermal movements of the solvent molecules in 

the inner solvation sheath hw/kT ~ 1. It seems to be suggested that, 

because of the smllll excited to higher states, the effect of vibrational 

activation of the inner solvent sheath can be neglected (See Section IV). 

The other main difference between discussions in terms of 

thermal and electrostatic activation is in the treatment of the transi-

tion probability. In the electrostatic continuum view, the treatment 

has not been explicitly made, but it is suggested that it be made by 

means of time-dependent perturbation theory. In the thermal view, a WKB 

approximation is applied to obtain a one-dimensional probability of 

passage through a barrier (Section IV). 

III. COMPARISON WITH EXPERIMENT 

1. Relation between kh ·t and kh • e . om 

An argument which has been used to support the continuum 

electrostatic theory2S,13 is that the rate constant for the heterogeneous 

reaction can be predicted from the rate constant for the homogeneous 

reaction. The prediction is: 

[;omJ·1
/2 

= [;etJ 
hom het 

(16) 

where kh and kh t are the rate constants for the exchange reaction in om e 
. ( F 3+ F 2+ F 2+ Fe 3+) d 1 d ( solutl0n e.g., e + e + e + an at an e ectro e e.g., 

3+ 2+ Fe + e (M) + Fe ) • Let us derive this equation from the most general 

assumptions. 



'. 

- 67 -

Consider the homogeneous reaction Fe3+ + Fe2+ + Fe2'" + Fe3+ 

as proceeding along the path: 

(Fe3+) + 
equiv. solvent 
config. 

'(Fe2+) + 
equiv. solvent 
config. 

(Fe2+) + 

equiv.solvent 
config. 

(Fe3+) + 
equiv.solvent 
config. 

3+ 2+ (Fe ) ••..••••. (Fe ) 
non-equiv. 
solvent 
config. 

non-equiv. 
solvent 
config. 

II electron transfer 

[ 

2+ 2+ 1 (Fe ) ......... (Fe ) 
non-equiv. non-equiv. 
solvent solvent 
config. config. 

The free energy of activation may then be written as: 

ilF* hom 3+ = [(ilF + 
(Fe )nesc 

8F 2+ ) - (ilF 3+ + ilF 2+ ) 1 
(Fe )nesc (Fe) esc (Fe) esc 

) 

where (ilF 3 + ilF ) is the free energy of the activated 
(F +) C'Pe2+) 'e nesc nesc 

(17) 

state and (ilP 
(Fe3+) 

esc 

+ b.F 2+ ) is the free energy of the initial state. 
(Fe ) esc 

F th d ' h t reactl.' on (Fe3+ + e- tl.ij) or e correspon l.ng e erogeneous V' + 

Fe2+), proceeding according to the path: 

(Fe
3
+) + e - (M)+,[ (Fe

3
+) J electron [(Fe

2
+) J 

equiv.solvent non-equiv. non-equiv. 
config. solvent config. transfer. solvent config. 

+ 
(Fe2+) 

equiv. solvent 
config. 

The activation free energy for the forward and backward reaction can then 

be written as: 
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-+ 

6Fhet = ~(6f F 3+ + 6F 2 ) - 6F(F 3+) (18) 
(e )nesc (Fe +)nesc e esc 

. 1 
6Fhet = -(6F 

2 (F 3+) 
e nesc 

+6F 2 )-6F 
(F +) (Fe2+) e nesc esc 

(19) 

1 
where Z(6F F 3+ + 6F 2 ) is the free energy of the activated 

(e )nesc (Fe +)nesc 

state and 6F 3 and 6F are free energies of the initial 
(F +) (Fe2+) 

e esc esc 

state. 

The two activated states are in resonance and have equal 

energies. Hence: 

1 - x 2AF = AF 3+ . - Z I.J. 3+ I.J. 

(Fe )nesc (Fe )nesc 

Similarly, 

+6F 2 )= 
(Fe +)nesc 

Hence: 

= 6F 3+ 
(Fe )nesc 

(20) 

6F 2+ 
(Fe )nesc 

Moreover, at the equilibrium potential, and equal concentration of 

reactants and products: 
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+ + 

~Fhet = ~Fhet • 

New, we can rewrite equation (17) as: 

~F* = ~F 3+ hem 
(Fe )nesc 

+ + 

+ ~F-

= ~Fhet + ~Fhet 

So, at the equilibrium petentia1, 

~Fh* = 2~Fh* t . om e 

But: 

and 

Hence: 

(F 3+) 
e nesc 

[

k . ) 
zhemj 
hem 

[ 
2~FhetJ 

exp - RT = [~etJ 2 
Zhet • 

Thus: 

,-. [k J1 /2 'k J -z hem = -lz het • 
hem het 

(21) 

(22) 

(23) 

(24) 

Ne assumptiens .or mede1s have been used in this deviatien. 

Thus, re1atien (16) dees net suppert particularly the centinuum electre~ 

static view. 
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2. Predictions of th.e Free Energies' of' Activation from· Ii Continuum 

Electrostatic Theory. 

The free enrgy of activation, ~F* is given according to the calc 

continuum ~lectrostatic view18 by: 

where 

~F* calc 

Ee = [_1_ + _1_ '"' -r
l
] [-8 I - 8 I ] (ne) 2 • 

,j 2a
l 

2a
2 opt stat 

~F* I were computed for 52 reactions, including both the electron ca c 

(25) 

*2+ 3+ 3+ 2+ exchange (e.g .. , Fe + Fe + Fe* + Fe ) and usual electron transfer 

2+ 3+ 3+ 2+ . (e.g., Fe + Ce + Fc + Ce ) react1ons. They were made for various 

ligands as well. 

There are few electr~n transfer reactions for which the temper-

ature dependence of the rate has been studied. One can calculate an 

~:::::::e::::~r:::::a::: ::::.::::;rt:fz::t:::l~O~Fi~pj:U::::: ::: ::t:he 
bi-molecular collision number* of the two uncharged species in solution 

per unit volume, per unit time and is given as 14 : 

*The equation (26) used for Zbi is valid only for gas kinetic collisions. 

Application to solutions would be a drastic approximation. Let us derive 
a crude Zbi for solutions. Assume a quasi lattice model for a liquid, 

each reactant A and B being surrounded by N nearest neighbours in a 
hexagonal array. The time for a reactant to jump to a nearest lattice 
site is: 
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(26) 

Using lOll for Zbi and the experimentally determined k (the rate constant), 

the experimental ~F* t can be obtained. exp 

Fig. 3. 

The ~F* I is plotted against the experimental ~F* value in ca c 

There is no general correlation between the prediction of the 

electrostatic continuum view and experiment. A few points lie close to 

the theoretically expected line. An attempt was m8.ch;. to categorize the 

reactions on the basis of the nature of ligands and reconstructed the 

plots as shown in Fig. 4a and 4b. In Fig. 4a redox couples with CN-, 

Br ,Cl and 0- as ligands give results near to those predicted, whereas 

poor agreement is obtained with ligands like H
2
0, NH

3 , dipy, Phen. 

The most likely cases in which the electrostatic continuum 

view would have applicability would be for ions of largest radius . 

There, a set of water molecules oriented around the ion and remaining 

attached to it for times much longer than the ions jump time in diffusion 

"primary solvation", would be unlikely26. 

~F* 

The continuum viewpoint might 

be more correct. f calc Hence, a plot 0 ~F* should tend to unity with 
expt 

increasing radius. Such a test is shown in Fig. 5, and shows the theory 

to be inconsistent with this test. 

3. Variation ofS with overpotential and the Tafel relationship from 

both the approaches 

The continuum electrostatic theory predicts that for the h.e.T. 

in the normal overvoltage region, the transfer coefficient is given as: 



" 
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1 S* = - + 2 

J J o. 
f · , -1n 1n 

2ES 

Experimentally, it has been found 27 ,28 that for h.e.r. the transfer 

(27) 

coefficient remains constant over more than lev. Prom equation (27) 

this would be so only if J f ' - J? (heat of reaction at the reversible n 1n 

potential) = en. In Fig. 6 the transfer coefficient 8*, calculated 

according to the electrostatic continuum theory, varies linearly with 

overpotential. Using these values of the transfer coefficients for 

ES = 2ev, the predicted Tafel line is shown in Fig. 7. 

no linear region at variance with the experimental line. 

There is markedly 

In the thermal model, 8 is: 

I I 
Be = '2 - 2ax 

o 

The variation with potential is shown in Fig. 6. 

(28) 

The agreement is good. 

Using these S values the Tafel line was evaluated using the 

expression: 

x exp [-8 (E - E)/RT]dE • o 0 
(29) 

The equation was derived by Bockris and Matthews 8 and solved numerically 

using a digital computer. The theoretical and experimental lines are 

shown in Fig. 7. The S stays constant over a wide range of potential, 

and the Tafel line obtained agrees with experiment quite well. 
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4. Predictions of the Electrostatic (E) and TIlermal (T) Models 

Test Symbolic 
Representation 

1. (a) The current density is i = Aean 
exponentially proportional to 
the. overpotential. 

(b) Variation of a with 
overpotential. 

(a). + 0 
Tt"O 

2. Magnitude of separation 
factors on different metals. SHIT = 3-20 

3. Variation of the separation SHIT = f(~) 
factor with potential. 

4. For reaction which involves 
adsorbed intermediates, the 
current is a function of the 
heat of adsorption of one of 
the intermediates involved in 
the rate-determining step. 

S. The rate is a function of 
the: solvent die.lectric 
constant. 

6. The current density is a 
function of light. 

7. Plot of ~F* t vs. exp 
~F~alc' 

(log i) ex: 
n 

f(~H)ads 

(log i) =f(£) n 

~F* vs expt 

~F* calc 

Comments 

T predicts experiment. E 
shows continuous curvature. 
Fig. 7. 

T gives negligible variation 
ovor 1.5 V for her. E shows 
continuous variation. 
Fig. 6. 

No calculation done on E 
model. T model reproduces 
experiment for high n. 

T reproduces dS/dn better 
than E. Fig. 8. 

For h.e.r. both models are 
consistent with experiment. 
Fig. 9. 

Predicted well by T model; 
and not by E model. 
Fig. 10. 

Not yet diagnostic 3o • 

No correlation onE theory. 
Fig. 3. 

The thermal activation model gives a better agreement with 

experiment than the continuum electrostatic view, particularly in respect 

to the tests (la), (lb), (5) and (7). However,. this may arise from 

approximations at present used in the electrostatic continuum model • 

It is therefore desirable to discuss the likelihood of the models themselves • 
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IV. CRITICAL CONSIDERATION OF BOTH 

APPROACHES 

1. The Activation Mechanism 

The poor current potential relationship obtained from the 

electrostatic approach arises from the parabolic nature of the potential 

energy profile. The small perturbations in libratory oscillations of 

the solvent molecules, far away from the ion, must be harmonic. Since 

these oscillations activate the ion, the potential energy profile must 

be harmonic, too. A source of anharmonicity could be the vibrations 

and librations of the inner sphere dipoles, where there is strong inter-

action between the ion and the dipole. However, this source of activation 

is specifically rejected in the continuum electrostatic approachlB. 

The mode of activation envisaged by the electrostatic approach 

involves the fluctuations of about a 1000 dipoles (see Section II) "in 

phase". If the librations were not in phase, the large number of dipoles 

needed could not transfer energy to the ion additively at the same 

instance. Polaron theory in solids, where a system of interacting 

oscillators are coupled to one another, has postulated such fluctuation~6. 

It does not seem to be unreasonable in a solid. However, in a liquid 

without appreciable periodicity, it is questionable whether the principles 

of polaron theory can be applied at all 31. Thus, Nemethy and Scherega32 

showed that in water at any instant the percentage of free water ranges 

between 2OVSO%. It is doubtful that such a liquid will produce a 

significant probability of oscillators in phase. 

Even if there is a group of some 1000 dipoles 1ibrating in 

phase and contributing their energy additively to the ion, there would 

be another (and another) group of 1000 dipoles librating together hut in 
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a different phase. The effects would cancel. 

Such a model might be modified to be applicable where there 

is a highly oriented secondary solvation sheath extending to about 20R 

from the ion. In such a case, 1ibrations of the dipoles in the 

secondary solvation sheath might be in phase, and if it extends to 

about 20R from the ion, the possibility of 1000 dipoles taking part is 

not unreasonable. However, a recent calculation by Bockris and 

Saluja26 shows that entropy and heat calculations are difficult to 

bring into consistency with the experimental values if the water 

structure is broken past two layers from the ion. Amis 33 has 

discussed a large structure broken secondary layer. The evidence for 

it, however, is ambiguous for it rests upon the values obtained for 

"solvation numbers" from various methods, which are of such ill defined 

significance. 

Coming to thermal contributions to activation from the inner 

layer, the reason for their neglect (see Section II) was that the 

vibrational levels were far apart (hw.»kT), so that there would be 
1 

discontinuity in the Tafel line. 

However, this is at variance with knowledge of the energy 

+ levels associated with, for example, aq. H30 and, by implication, other 

solvated ions. According to Fa1k and Giguere23 , and Falk 34 for liquid 

-1 H20, there is a continuum of energy states from 60 to 3444 cm • Similar 

conclusions follow from 0'Ferral1 et a122. 

Thus, classical (continuous) modes of heat transfer are 

available in water and, in particular, aq. H30+. The appreciable partial 

+ molar heat capacity (C ) at room temperature for H30 , indicates a broad .p 

I 
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range of frequencies giving classical C contributions and provides 
p 

compelling evidence for the above conclusions. 

By analogy to the gas phase, where translational energy is 

converted into vibrational energy (after collisions), it is reasonable 

to assume that the same process occurs in liquid water. The translation-

al energy of free waters obeys a Boltzman distribution of energy and is 

in equilibrium with the H30+ ion in solution. The vibration-

rotational energy levels of the H30+ ion will also have a Boltzman 

distribution (at least up to a certain energy level). There will be 

sufficient activation of O-H bonds to sustain the reaction over the 

rates observed on various metals*. 

The above arguments presuppose that H30+ ion does not upset 

the equilibrium distribution among the levels by a permeation of the 

barrier to the electrode. This might be the case where the bar.rier 

thickness for proton transfer is assumed 1S to be o.sR. It is difficult 

to accept such a thickness, if one is to accept a model of hydrated ions 

in the double layer in wh~ch the double layer capacitance is independent 

* For an electrochemical reaction: 

io = kT C e-t.H*/RT • 
nF h S 

Taking t.H* =15 Kcal/mole and i = 10-11 amp/cm2, Cs comes out to be ~ 
-3 2 0..::3 2 

10 molecules/cm. Thus, we need 10 molecules/cm in the activated 
state for the reaction to go. Assuming a Bo1tzman distribution, the 
number of particles in higher vibrational levels is given as: 

N = N e-nhV/ kT 
0
42 for n = 1, N comes out to be 10 molecules/cm, ruld for n = 2 the value 

comes out to be 10-2 molecules! cm2 . Thus, we have plenty of .molecules in 
vibrational states to sustain the above rate. 

No is taken to 10
13 

mOlecules/cm2 as usual. 
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of ionic radius. On this basis, the minimum width of the barrier 

for proton transitions is ~ 2.8~. 

A compelling piece of evidence that an oriented primary 

solvated ion solvent plays a role in the activation process for electron 

transfer reactions, comes from the study of hydrated electrons. The 

absorption spectrum of the hydrated electron shows a strong adsorption 

in the uv region, which is attributed to the ls-2p transition. 

Jortner 36 calculated hv using the Landau Hamiltonian (that used in e 

thecontinuum electrostatic model), and Fueki et a1 37 considered a 

layer of oriented water dipoles around the electron plus the Landau 

contribution. 1he results of these two calculations, as well as the 

experimental value, is summarized in Table 1. 

This calculation does show that the inner sphere changes 

between the Is and 2p states of the hydrated electron is large. 

There must, therefore, be some rearrangement of the inner sphere (thermal 

or electrostatic) before the electron transfer can occu~r. 

TABLE I 

Model (M1)sol.calc. hv calc (M1)sol.exp hv --- exp 

Continuum 0.91 ev 0.93 ev 1. 7 ev 1. 73 ev 

Semi-Continuum 1.95 ev 1.86 ev 

Moreover, if the inner spheres of the reactant and product are 

different, there must be inner sphere activation to satisfy the Franck- ) 

Condon restriction of the electron transfer process 9 • Thus, the reactant 

and product activated state, must be in resonance and identical. If the 

inner sphere is different, activation must occur in it before the right 

f 

• 
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activated state can be obtained. The explicit omission of the inner 

sphere 18 implies that the inner spheres for reactant and product are 

the same. + -Applied to H30 + e (M) + Hads + H20, such a concept is 

unreasonable, and quantum mechanical treatment based on such a model is 

so far from reality that its consideration loses interest. 

The applif;ability of employing the Born-Landau Hamiltonian 

for treatment of electrons in a polar medium is unlikely36, apart from 

considerations made above. The Born-Landau Hamiltonian arises when the 

electronic adiabatic approximation is used to treat the problem of an 

electron trapped in a polar solvent. This approximation can be applied 

if the binding energy of the trapped electron is much smaller than the 

binding energy of the medium electrons. This is a reasonable 

approximation in a polar crystal where the electron binding energy is 

low. With polar liquids, the situation is different. The binding 

energies are higher, l-2ev. This energy is comparable to the binding 

energy of the medium electrons (4-5 ev); the electronic adiabatic 

approximation is not valid. To calculate the binding energy of 

electrons in polar crystals, Jortner 36 suggests that the additional 

electron and the medium electron should be treated as an equal basis and 

uses the independent particle treatment better known as the self-consistent 

field scheme. The basic difference between these results and those obtained 

with the electronic adiabatic approximation is due to the fact that in the 

self-consistent field scheme the electronic polarisation does contribute 

to the binding energy of the electron. Thus, 

of the form - 1 - - l.nstead of the - -'- -e
2 
( 1]. e

2 
[ .1 

2r ES 2r Eop 

the potential then becomes 

1 .] involved in the 
~tat 

expression derived from the electronic adiabatic approximation. Thus, the 

'~. 

,~ 
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reorganisational energy would not be given by the Born-Landau equation. 

It would, correspondingly, not be given by the time-average Born energy, 

but by an equation for the change in the orientation energy on ejection 

of a charge in a polar dielectric. 

2. The Quantum Mechanical Transition Probability 

There are two ways whereby one can calculate the transition 

probability of electrons or protons between two states of equal 

energies 4o • (a) from Perturbation theory; (b) from Tunneling theory. 

Most authors 33 ,34 have treated the transion via tunneling theory. 

In respect to electrochemical kinetics, Christov 6 and Bockris and 

Matthews 8 , following the work of Bel1 38 and Johnston 39 , have made numerical 

calculations of the transition probability using tunneling theory and 

barriers of various shape. Levich 18 has criticized this approach, not 

only with respect to the electrochemical situation, but in all 

chemical reactions. The barrier created by solvent fluctuations 

is time-dependent. At time t = 0 the system is in its initial state 

and that part of the barrier connect ed with the presence of an adsorbed 

hydrogen does not exist. Similarly, at t = t the system is in its final 

state, and the first part of the barrier does not exist. It is only the 

finite time interval (t) that the barrier forms and disappears as the 

transition occurs. The tunneling theory assumes that the barrier is 

fixed an~ independent of time and does not change during the course of 

transition. This latter approximation puts into doubt the use of the 

WKB approximation and the Gamow equation in calculating tunneling 

probability. 
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Consider the situation in Fig. 11. When we apply time-

dependent perturbation theory, we assume initially the electron is 

in region (I) and after an interval of time, due to the action of a 

t~me-dependent perturbation (which results in the formation of the 

square barrier), the electron finds itself in region (III). There is 

no obvious way of introducing a small perturbation term in the 

Ha.miltonian. However, for treating such problems, Bardeen 41 has 

suggested a different approach. Instead of looking for exact solutions 

of an appxocimate Hamiltonian, we introduce approximate solutions of the 

exatt Hamiltonian. Therefore, we select the following wave functions 

for the electron inside the barrier (Fig. 11). 

-k x 
'¥. (x) = a e 2 

1. 2i x~x 
1 

(30) 

x~x 
2 

Here, '¥f(x) has to be matched to the correct solution for 

x ~ x
2

' and will decay in the region x < xl. On the other hand, 

'¥i(x) has to be matched to the correct solution for x ~xl,and decay 

in the region x ~ x2 . 

Initially, the electron is in the state represented by 

'¥i(x) and we have to compute the transition probability for the electron 

to go into the state '¥f(x). Let us form a time-dependent solution as 

a linear combination of '¥i (x) and '¥f(x) by the usual method. 

-iE.t 
'¥ = C(t)'¥.(x)e l. 

1. 

-iE t 
+ d(t)'¥f(x)e f • 

We write: 

(31) 

Substitution of equation (31) in the time-dependent Schrodinger equation 

gives us finally .. 2 the effective matrix element for tunneling as: 
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This, after manipulation, can be expressed in the form: 

4 2 
h K2 2 2 
-2-lb2fl la2·1 • m 1 

In Fig. 11 the wave function in the regions I and III can be 

represented as: 
U.,X 

'1'1 = ali e 

(32) 

(33) 

One can therefore obtain b2f in terms of a3f and a2i in terms 

of a2i by solving the standard matching problem~3 at xl and x2 of Fig. 11. 

Introducing these results in equation (33), one obtains: 

= (34) 

Using the Fermi golden rule of second-order perturbation theory, the 

transmitted current can be written as: 

(35) 

h 
dn. 

were dE 1S the density of states without spin in the transmitted wave 
f 

and is given 

"'-

1 1
2 dn m 

a3f dE
f 

= -"""2'-- , 
2'ITh k3 

(36) 

(where la3f l is the coeffi~ient of the wave function for the transmitted 

wave) • 

The incident current is: 
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Thus, the transmission coefficient is: 

jf 
Pr = j. 

1. 

where w = x2 - xl = barrier thickness, and 

. 2 1/2 
K2 = {2m (Ex - EF)/h } 

(37) 

(38) 

Equation (38) has the same form as Gamow's equation. We have, 

therefore, been able to prove that the time-dependent perturbation theory 

treatment of a square barrier penetration problem does give the same form 

of solution as the WKB approximation. (It would break down only in a 

non-adiabatic process). 

Another argument which might invalidate the use of Gamow's 

equation, apart from that involving the change of the barrier during a 

transition, involves the fact that the top of the barrier fluctuates with 

time. Only if the tunneling time is less than the fluctuation time of 

the barrier, will the usual tunneling expression be valid. Consider the 

situation in Fig. 12. Due to the permeability of the barrier, there is 

a splitting in energy levels in the two wells. Let this splitting be 

oE. Let 'I'll and 'I'IV be the wave function in the wells II and IV. Then, 

we can say that, 'I'll + 'I'IV has the energy Eo - oE and 'I'll - 'I'IV has the 

energy Eo + oE. 
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Hence, using the time-dependent Schrodinger equation, we can 

solve that find: 

~ = expI-iEot/hl{(~II + ~IV)exp[+ioEt/h] + (~II - ~IV)exp[-iEt/h]} 

or 

\II 2 [OE t/h·]{ oEt II/ 0 0 oEt \II } 
T = exp -1 0 cOST Tn + 1s1nT T IV • (39) 

We have chosen the phases such that the electron is in well (II) 

at t = o. At t - hTI/oE, the electron will be in well (IV). We define 

t = hTI/oE as the tunneling time. -14 If oE = 0.1 ev, then t = 10 sec. 

If the fluctuation time of the barrier is more than the 

tunneling time, Gamow' s equation is unaffected by this cause. For 

electron transfer reactions in aqueous solutions, the barrier is made up 

of vibrational or librational modes of the initial and final states. 

Since the vibrational and librational modes have a frequency about 

13 -1 11-1 10 sec and 10 sec respectively, the fluctuation time of the 

barrier should be greater than 10-13 . Thus, the tunneling time is smaller 

than the fluctuation time, for oE = 0.1 eVe 

We have arbitrarily chosen the value of oE to be 0.1 eVe 

Physically, the value of oE is directly proportional to the interaction 

between the electron and the medium. Froo strong interaction, oE is 

generally of the order of 0.1~.3 ev44 '45. In our situation, the 

interaction between the electron and the polar media is strong, an 

estimate of 0.1 ev for oE is reasonable. 

Thus, the solution of the barrier leakage problem, using 

perturbation theory is the same as the one obtained by WKB approximation, 

and Gamow's equation should give an accurate estimate of the electron 

tunneling probability. 



- 84 -

V.' SUMMARV. 

(1) Two models exist for activation in electrochemical 

reactions. In the first (thermal , T) there is considered to be an 

equilibrium of vibrational-rotational levels with the translational 

energy of the solvent. These levels are the main source of acceptor 

and donor states for electrons. The other model (the continuum 

electrostatic, E) discards the part played by such levels. Instead, 

the means of energy transfer from the solvent is a long-range electro-

static fluctuation which is to occur as a result of additivity of 

interaction between a large number of solvent molecules far from the 

ion. 

(2) The rate-overpotential relation is deduced in a heuristic 

way on the basis of the two models. E does not predict a Tafel-like 

law. 

(3) E neglects the electrostatic interaction between the 

librators in the inner solvent shell. However, the ground state of 

these molecules involved librations which would seem to give rise to 

electrostatically origined fluctuations in the ion's energy. 

(4) The relation of khom and khet does not diagnostically 

support E, as previously claimed. 

(5) The calculated free energy of activation at E is not 

parallel to the experimentally observed one in respect to extensive 

solution data (52 systems). 

(6) T does give a reasonable account of the current-potential 

relation~ both in treconstancy of S over 1 volt and its reduction towards 

zero at sufficiently large overpotentials. 
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(7) E does not reproduce the effect of change over solvent 

dielectric. 

(8) The transfer of energy from the far out 1ibrators to 

the ion depends upon the applicability of polaron th30ry to solutions 

in water. However, the polaron theory loses its validity in 

structures in which there is no periodicity of the lattice. 

(9) The assumption that there will be a large gap in energy 

between vibrational states in receptor ions, hence a discontinuous 

Tafel line, on model T, is not acceptable. In solution, there is a 

+ continuum of energy states in, for example, H30 over a large energy 

range. Cp for water is large at room temperatures: it shows the 

presence of classical modes. 

(10) ls-2p transitions in hydrated electrons cannot be 

rationalised unless the energy of nearest neighbour water molecules 

(i.e., not a continuum dielectric) is accounted for. 

(11) The Born-Landau equation, - the basis of E-, is applicable 

to polar crystals, but unlikely to be valid for electric charge transfer 

in liquids. 

(12) Time-dependent perturbation theory is consistent with 

the Gamow equation for time-dependent barriers concerned in cha~ge-

transfer. 

(13) Electrostatic fluctuations contribute to the energy of 

ions undergoing transitions with electrons at interfaces. However, the 

.origin of the energy of these fluctuations is in thermal equilibrium of 

the surrounding liquid into the nea.rest neighbour dipoles of the ions. 

Such an energy would add to the states in the electronic-vibrational 

and rotational levels of the ion, in addition to those which are present 
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due to equilibrium between solvent and ion. 

(14) Finally, the essential situation is a distinction 

between a kinetics in which collisional activation is the model and 

statistical mechanics gives the distribution of energy and quantum 

mechanics the probability of transfer; versus a mode in which the 

reaction is supposed to occur because fluctuations in energy. It is 

noteworthy that a considerable theory of reactions in solution exist, 

in terms of encounters and statistical mechanics. Either an 

entirely incorrect ~ of approach has been taken to solution 

kinetics, or the continuum electrostatic (fluctuation) theory is 

invalid. 
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GLOSSARY 'OF SYMBOLS 

e = Electronic charge 

Cs = Surface concentration of reacting species 

n(Ef) = Fermi distribut.ion 

p(Ef ) = Density of states 

Wif(Ef ) = Transition probability for the whole system 

~E = Difference between the energy of the activated state and ground state 

S = Transfer coefficient 

M> = Potential difference across the electrode solution interface 

1 = length of barrier 

m = mass of the electron 1 

e 

Ex~EF = barrier height 

n = overpotential 

Eact = activation energy 

K = transmission coefficient 

khom = homogeneous rate constant 

khet = heterogeneous rate constant 

Z = Collision number for homogeneous reactions hom 
Zhet = Collision number for heterogeneous reactions 

Jfn , = Energy of the final state 

J. = Energy of the initial state l.n 

r l = radius of ion 1 

r 2 = radius of ion 2 

r = distance of closest approach 

E t = optical dielectric constant op 

Estat = static dielectric constant 

DAB = diffusion coefficient 
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r AB = nearest neighbour dipole 

a = Morse constant 

x = Equilibrium separation between the two Morse curves o 

<~H~*> = activation energy for the cathodic reaction 
1. 

D1 = dissociation energy 
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ANNOTATIONS'FOR FIGURES 

Potential energy-distance profile for h.e.r.: HA is the 

ground state energy level of the reactants; curves (a) 

and (b) sbow the variation of potential energy with 

internuclear separation for M(e-) ••• H+-OH
2 

and M-H •.• 

OH2 , respectively; oAHo(e) is the standard enthalpy 

of reaction for reactants in Lleir ground state. 

Potential energy-distance profile using harmonic oscillators. 

Plot of ~F*"l (from electrostatic approach) against ~F* ca c expt 

for electron transfer reactions. 

(a) Plot of ~F* 1 (from electrostatic approach) against ca c 

~F* t for reactants with ligands other than water or ammonia. exp 

(b) Plot of ~F* 1 (from electrostatic approach) against ca c 

~F* t for reactants involving water and ammonia ligands. exp 

~F* calc Plot of ~F* against the distance of closest approach for 
expt 

the two reactions. 

Variation of transfer-coefficient with potential. 

Tafel lines from thermal and electrostatic approaches compared 

with experiment. 
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FigurEl 8. 

Figure 9. 
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Ca) Variation of the separation factor with potential-

electrostatic approach. 

(b) Variation of the !lieparatioll factor with potential-

thermal approach. 

Ca) Variaticm of 

the electrostatic 

Ci IO ) A 0 

In Ci ~w1th the heat of adsorption in 
o g 

approalch. 

(b) 
Cio) A 

Variation of In Ci )H with heat of adsorption for 
o g 

thermal approach. 

Ci )A 
Variation of In CO )H 0 with the variation of methanol 

10 2 
concentration. 

Figure 11. Tunneling through a square barrier. 

Figure 12. Double well problem. 
'" .' 
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ON THE THEORY OF 'TUNNELLING IN ELECTRON AND 

PROTON "TRANSFER 'REACTIONS 

Abstract 

The concept of tunnelling in the theory of electron and 

proton transfer reactions has recently been questioned on the ground 

that the situation is a non-stationary one. It has been suggested that 

time-dependent perturbation theory should be applied to obtain the quantum 

mechanical transition probability. We have done this for a square 

barrier. The result for most reactions is the same as obtained by 

the WKB approximation. 

1. INTRODUCTION 

A large amount of work present in the literature (1) concerning 

theories of electron or proton transfer reactions in solution, either at 

an electrode or in the bulk of the solution, uses the concept of electron 

and proton tunnelling through a barrier. For electron transfer reactions 

at an electrode-solution interface, the theory has been developed 

extensively by Gurney (2), Gerischer (3), and Bockris and Matthews (4). 

These authors also consider proton tunnelling at the electrode-solution 

interface. Marcus et al (5) have used the same concepts for electron 

transfer reactions in the bulk of the solution. Bell (6), Johnston (7) 

a.nd Caldin and Kasparian (8) have considered proton tunnelling in the 

theory of proton transfer reaction in the bulk of the solution. However, 

recently (9, 10), the tunnelling approach has been criticized on the ground 

that the process of both electron and proton transfer at an interface 

is of a non-stationary nature. It is contended that the use of Gamow's 
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equation is then erroneous: time-dependent perturbation theory must be 

used. We have calculated the transmission probability of a plane wave 

going through a square barrier which is caused to change by the transition, 

using time-dependent perturbation theory. 

Another aspect of the same problem involves the fact that the 

barrier itself may fluctuate with time, independently of the act of 

transfer, which causes it locally to decompose. Then, also, Gamow's 

equation may be invalid. We have also examined this problem. 

2. CALCULATION 

2.1 The WKB method 

Consider a square barrier as shown in Fig. 1. In the three 

regions the wavefunctions may be represented as: 

(1) 

The well-known solution of the tunnelling problem (11), using the WKB 

approximation, gives the transition probability, PT, as 

exp (-2K",W) , 
£. 

(2) 

h ( ) " th b " ·h" k d = {2m(V2-E)/h2}1/2. were W = x2 - Xl 1S e arr1er t 1C ness, an K2 
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2.2 Time-dependentpettutbationtheotyapptoach 

admissible. 

Since PT is small, a perturbation theory approach seems 

However, it is not clear that one may introduce a term in 

the Hamiltonian which is small. Bardeen (12) has suggested that, for 

solving problems of this type, instead of introducing states which are 

the exact solution of an approximate Hamiltonian, we should introduce 

approximate solutions of the exact Hamiltonian. We therefore choose the 

following wavefunctions for the electron inside the barrier (fig. 1). 

and 

x>x 
2 

Hence, Wf(x) has to be matched to the correct solution for x ~ x2' and 

will decay in the region x ~xl' On the other hand, W. (x) has to be 
1 

matched to the correct solution for x ~xl' and decay in the region 

x> x2• 

Initially, the electron is in the state represented by Wi(x) 

and we have to compute the transition probability for the electron to go 

into the state Wf(x). Let us, therefore, express the total wavefunction 

as a linear combination of Wi(x) and Wf(x). We write: 

(4) 

Substitution of eq. (4) into the time-dependent Schrodinger equation 

gives us: 

C exp(-iE.t)HW· + d exp(-iE.t)HWf 1 1 1 

= iC~.exp(-iE.t) + CW.E.exp(-iE.t) 
1 1 11· 1 

(5) 

.. -----__ ~~_l 
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Now, initially, the electron is in ~. (x). Hence, we can 
l. 

set C = 1, d = 0 and C = O. (That C = 0 follows from the normalization 

condition that d(CC* + dd*)/dt = 0). Therefore, (5) gives: 

id~fexp(-iEft) = (H - E.)~. exp(-iE.t), 
l. l. l. 

or 

Let us, therefore, define the effective matrix element for tunnelling 

to be*: 

(7) 

We can express the integral in a more symmetric form by subtracting 

~i(H - Ef)~f' since this term gives no contribution for the range of 

integration x ~xl. 

Therefore, we may rewrite eq. (7) as: 
GO 

Tif = f [$f(H - Ei)$i - ~i(H - Ef)~f]dx, 
x

B 

xl.' < X ~ x 
B 2 

Integrating eq. (8) by parts gives us: 

-ihjif ' 

(8) 

(9) 

where jif is the current operator. Using eq. (3) in eq. (9) yields: 

* This can only be done if the barrier changes slowly with time, for 
example, see Schiff (13). 



- 99 -

(10) 

One now obtains b2f in terms of a3f, and a2i in terms of ali by solving 

the standard matching problem (13) at xl and x2 of fig. 1; one then 

introduces them into eq. (10), and obtains: 

(11) 

where the terms are as defined in eq. (1). Using the Fermi golden 

rule of second order perturbation theory, the transmitted current can 

now be written as: 

. -11 12 Jf = h Tif dn/dEf , (12) 

where dn/dEf is the density of states without spin in the transmitted 

wave and is given as (13): 

I 1
-2 2 

dn/dEf = a3f m/2TIh k3 • 

The incident current can be written as: 

Thus, the transmission coefficient is: 

222 
j f 16k1K2k3 

PT = r - 2 2 2 
1 k1k3(k1 + K2)(k3 

2 exp(-2K2W), 
+ ) K2 

(13) 

(14) 

(IS) 

using for jf the expression resulting from the substitution of eqs. (11) 

and (13) in eq. (12). Comparing eq. (IS) with eq. (2), one finds that 

the exponential part is the same, but there is a difference in the pre-
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exponential part. The ratio of the expressions for P
T 

given in (2) 

and (15) is k~/klk3' Since both kl and k3 have the same order of 

magnitude, the factor will in general be unity. 

Thus, the trcIDsmission probability of an electron penetrating 

a square barrier using time-dependent perturbation theory is the same as 

that obtained from ~he WKB approximation. 

3. EFFECT OF FLUCTUATIONS OF THE BARRIER ON 

LEAKAGE THROUGH THE BARRIER 

An argument which might invalidate the use of Gamow's 

equation both for electron and proton tunnelling, .apart from that involving 

the change of the barrier during a transition, involves the fact that the 

barrier may fluctuate with time. If the tunnelling time is more than the 

fluctuation time of thebarr ier, the usual tunnelling expression will 

indeed be valid. To investigate this aspect, consider the situation in 

fig. 2. Due to the permeability of the barrier, there is a splitting 

of the energy levels in the two wells. Let this splitting be oE. 

Let ~II and ~IV be the wavefunctions in the wells II and IV. Then, we 

can say that ~II + ~IV has the energy EO - oE and ~II - ~IV has the energy 

EO + oE. 

Hence, using the time-dependent Schrodinger equation, we can 

solve to find: 

~ = exp[-iEot/h](~II + ~IV) exp[+ioEt/h] + (~II - ~IV) exp[-iEt/h] , 

or 

~ = 2exp[-iEot/h]{cos(oEt/h)~II + i sin(oEt/h) IV . (16) 
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We have chosen the phases such that the particle is in 

well II at t = O. It is interesting to note that at t = h'IT/oE, the 

electron will be in well IV. 1 
We can hence define t = ~'IT/oE as the 

tunnelling time. As we have mentioned before, the tunnelling time t 

has to be small compared to the fluctuation time of the barrier for 

Gamow's equation to be applicable. For electron and proton transfer 

reactions in aqueous solutions, the barrier is made up of vibrational 

or librational modes of the initial and final states. These modes have 

a frequency of about 1013 sec- l for water. Thus the fluctuation time 

-13 of the barrier for water should be greater than or equal to 10 sec. 

Let us therefore evaluate the tunnelling time. The main problem in 

this calculation is the estimation of oE, the splitting energy. We will 

use the technique developed by Denison and Uhlenbeck (14) for this 

purpose. These authors found that for a double well potential of the 

form shown in Fig. 2, the splitting energy is given as: 

oE = h[2m(E - V)]1/2 
2'ITffil[exp{(2'ITl/h) [2m(E _ V)]1/2}]2 ' 

(17) 

where (E - V) is the barrier height, m the mas~ of the tunnelling particle 

and 1 the barrier thickness. Let us now evaluate the magnitude of oE 

and the tunnelling time for various electron and proton transfer reactions 

and see when Gamow's equation is affected by the fluctuating character 

of the barrier. 

3.1 Electron tunnelling 

The barrier parameters for electron tunnelling in the hydrogen 

evolution reaction has been estimated for electron transfer from mercury 
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to protons in solution by Matthews (15) to be 7Qkcal/mole for (E - V) 

-8 
and 1 = 2.4 x 10 cm. Thus, oE from eq. (17) comes out to be 0.15 eV 

and hence 

t = (h/2E)10-14 sec, 

which is significantly smaller than the fluctuation time of the barrier 

(~ 10-13 sec). Consequently, the use of Gamow's equation is unaffected 

by fluctuations of the barrier. 

3.2 Proton transfer 

3.2.1 Bulk proton transfer 

Several proton transfer reactions were considered and their oE 

and the tunnelling time calculated. The results are summarized in table 

1. The values of (E - V) and 1 are taken from ref. (8). In five out 

of the six cases, the equation is applicable. 

3.2.2 Electrochemical proton transfer 

From the ground vibrational level of H30+ ion, the height of the 

barrier for proton transfer in the electrochemical hydrogen evolution 

reaction has been estimated by Matthews (15) to be 20 kcal/mole and the 

width to be 2.42 R. However, tunnelling does not occur from the ground 

+ state of H30 

width is 2 R. 
The first vibrational level of H30+ is 10kcal/mole and the 

The splitting energy for that case using eq. (17) is 0.07 

-14 eV, and hence the tunnelling time is approximately 1.3 x 10 sec, smaller 

than the fluctuation time for the barrier. Consequently, Gamow's equa.tion 

is applicable • 
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4. CONCLUSIONS 

In this article we have shown that: 

(i) in respect to the fundamental time-dependence of a barrier 

in a chemical process, the solution for the transmission probability 

according to time-dependent perturbation theory is the same as that 

from the WKB approximation; 

(ii) in respect to the fluctuating effects of the surrounding 

solvent on the barrier, the WKB approximation is applicable in nearly 

aU the examined proton and electron tunnelling cases. 
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TABLE I 

DATA RELEVANT TO CALCULATION OF THE SPLITTING ENERGY IN 

PROTON TRANSFER 

Reaction (ref.) (E-V) I oE tunnelling Comments about 
(kcal/mo1e) (A) (eV) time (sec) WKB approximation 

1. CH2BrC·MePh·H+OEt 22.1 1.59 0.06 1.6 x 10-14 valid 

2. RH + D20 a) 13.1 1.26 0.08 1.3 x 10-14 valid 

3. RH + F a) 18.0 1.17 0.09 1.2 x 10-14 valid 

4. RH + F - a) 24.2 1.46 0.01 1.1 x 10-13 doubtful 

(H20 + NaBr (5M)) 

5. C6H2(N02)3CH; + HOA 10.1 c 1.66 0.06 1.6 x 10-14 valid 

6. H30 
+ + H2O 0.12b) 8.47 x 10-15 valid 

a) RH = 2 carbethoxycyc1o-pentanone. 

b) Estimated by Baker (16) and Somarjai and Hornig (17). 
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ANNOTATIONS FOR FIGURES 

Figure 1. Tunnelling through a square barrier. 

Figure 2. Double well problem. 
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THEORY OF THE PROTON DISCHARGE PROCESS: 

A BEBO CALCULATION 

I. INTRODUCTION 

The theory of proton discharge reaction formulated by Bockris 

and Matthews 1
•

2 and Bockris. Srinivasan and Matthews 3 considers the 

activated state to be formed from the excited vibration-rotation levels 
+ 

of the H20-H bond. The LEP semi-empirical potential energy surface 

had been used to estimate the activation energy. separation factor. Tafel 

line and properties of the activated complex. However. newer criticisms 

of the LEP method by Johnston~ (difficulty of separating co-ordinates; 

observation of a minimum in the saddle point for H + H2 + H2 + H). as 

well as the observation by Christov5 that the imaginary frequencies depend 

on the coulomb-exchange energy ratio. make an alternative approach to 

proton transfer calculations desirable. 

The BEBO method 6
• on the other hand. is a fully empirical method 

(its empiricism depends on spectroscopic and thermodynamic parameters). 

not open to the criticisms made of the semi-empirical LEP method. This 

method has been developed in detail both for proton and hydrogen atom 

transfer processes in the gas phase with good success? Some attempts 

have been made to use such a method for proton transfer in solutionS. 

II. THE BEBOMETHOD 

The BEBO method assumes that along the reaction co-ordinate the 

sum of the bond orders of the bond being broken and the bond being formed 

is always unit. Thus. for the rate-determining proton discharge step 

of the hydrogen evolution reaction on Hg. which may be written as: 
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the energy along the reaction co-ordinate may be written as 11 *: 

(1) 

where E? , Ef
o . ,Eo are the energies of ln ln rep 

+ 
the initial (H30so1n + 

e ~ 1)' final (H d + H20) and repulsive 
me~a a s (Hg 0) state**; n 

is the bond order of the final state of index q. The parameters 

p and q are defined as 9 : 

0 
0.26~n(E. IE ) ln x 

p = 
(R - RO 

) xy in 

0.26~n(E~. IE') 
and q ln x = 

0 (R' - Rf · ) xy ln 

where R ,R' and E and E' are the internuclear separation xy xy xy xy 

and bond energy respectively in the corresponding noble gas 

diatomic cluster where n = O. Rxy and Exy are for the initial state 

and R' and E' are for the final state. xy xy 

y and B are defined as: 

y = 0.26a 

and B = exp[-a~R] 
o 0 where a is the anharmonicity constant of the bond Hg-O and ~R = [Rin + Rfin 

- RO 
], where R? ,Rf

o . and RO are the equilibrium internuclear separa-rep ln ln rep 
. + tlon of the bonds H20-H , M-H and Hg-O respectively • 

* The initial state energy is submitted from the total energy in eqn. (1). 

** By the repulsive state we mean the energy of interaction between Hg 
and the .oxygen of the water molecule. 
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(a) Estimation of the various parameters ofequat~on (1) 

~) EstimationofE? , Efo.and EO 1n 1n rep 

E? and EO
f . were taken from the estimation of Parsons and 1n 1n 

Bockrislo, and Bockris and Matthews l . They were -69kca1s/mole 

for E? and -75kcals/mole for EO
f . at the reversible potential. EO 

rn rn r~ 

is the dissociation of the Hg 0 bond, and was taken as 80kcals/mole 

from the thermodynamic estimation of Solomon, Enke and Conwayll. 

(ii) Estimation of yand B: 

The anharmonicity constant a is estimated from the equation: 

a = 

EO is obtained from Badgers Rule. rep 
1.49~ -1 Thus, 

The value of a arrived at is 

B = exp[-a~R ] = 0.7335 s 

where R~ ,Ro
f . is estimated from Bockris and Matthews l , and RO 

rn rn np 

is taken from Cotton and Wilkinson l2 • 

Moreover, y = 0.26a = 0.3891. 

(iii) Estimation of p and q: 

These are estimated from the equation given in the previous sec-

tion and the values obtained are p = 1.3and q = 0.8. 

(b) Calculation of the activation energy at the reversible potential and 

the variation of the transfer coefficient with potential 

Since p and q are both very near to unity, we can expand the first 

and second term of equation (1) in a Taylor series expansion, as suggested 

by Marcus 8 • Thus, we get: 

• 

. . 
i 
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E= (l-n) (E? -Eofo )'-'{p-l)nE? R.n n - EOfo (q-l) l-n(llil(l-n)+Beo n y (l-n) y. (2) l.n l.n· l.n l.n . rep 

The activated state corresponds to the maximum of the E vs n curve given in 

equation (2). Thus, we differentiate E w.r.t. n and set it equal to zero. 

Hence: 

dE = -Q-(p-l)E~ (l+R.n n)+(q-l)Eofo [l+R.n(l-n)]+yBEO ny- l (l_n)y-l(l_2n)=0, (3) dn l.n l.n rep 

where Q = (E~ EO) l.n - fin' 

Solving the above equation numerically gives us the value of n 

at the activated state. Let us denote this value of n as n*. Thus, 

the activation energy now becomes: 

E* = Q(l-n*)-(p-l)n*EinR.n n*-(l-n*)E~in(q-l)R,n(l-n*)+BE~ep(n*)Y(l-n*)Y. (4) 

The transfer coefficient S is defined as the variation of the activation 

energy with respect to the reaction heat, Q, where Q = Qo + en, and n is 

the overpotential. Thus: 

d~E* dn* 0 0 
~ = (l-n*)-(p-l)n*R.n n*+ dQ[-Q-(p-l)Ein(l+R.n n*)+(q-l)Efin[l+R.n(l-n*)] 

From (3) in (5): 

+ yBEO (n*)y-l(1-n*)y-l(l-2n*)] • 
rep 

d~* P = -- = (l-n*) - (p-l)n*R.n n* = (l+n* ). dQ 

Since, as the overpotential changes, E~ changes*, the value of n*, ~E* and l.n 

S also change. Thus, using equations (3). (4) and (6), we are able to 

get the activation energy at the reversible potential, and the value of the 

* E? comprises the energy of the H30+ ion in the double layer and the l.n 
energy of an electron in the metal, and is therefore potential dependerrt. 

(5) 

(6) 
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transfer coefficients for various overpotential. T11(;~se results are 

summarized in Table (1) and the variation of S with'overpotential is 

shown in Fig. 1. 

(c) Calculation of the Quantum 'Mechanical Rate of the Reaction 

Following Bockris and Matthews 2 , we can write the quantum mechan-

ical rate of the proton discharge reaction as: 

0Cl 

i = q 
f W(E)e-(E-Eo)/kt dE 

EO 

where kl is a constant (not a rate constant), C is the surface 
H 0+ 

(7) 

3 
concentration of H30+ ion per cm2, WeE) is the proton tunneling probability, 

and EO is the zero point energy of the H20-H+ bond. 

classical current may be written as: 

The corresponding 

Thus, we can define: 

T =[~l 
0Cl 

= ~ eXP((E* - EO)/kT) f exp[-(E-Eo)/kT]W(E)dE. 

EO 

Let us define: 
«l 

J
q 

= J WeE) exp[-(E - EO)/kT]dE • (10) 

Eo 

Thus, equation (9) becomes: 

T = [~~il = !"f exp[ (E* • EO)/kTh· (11) 

or 

(9) 
I , 
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To evaluate the current one must know the shape of the barrier 

along the one dimensional normal mode. The Eckart barrier appears to 

have the closest fit to the real barrier2. 

Vex) - A exp[2rtx/d~ . 
- 1 + exp[2~x d] 

where A = Qo + en , 

Qo = E(+~) - E(_~) , 

B = 2E* - A + 2{E*(E* _ A)}1/2 , 

and E* = E* - Se n o 0 ' 

It has the form: 

B'exp[2~x/dJ 
+. {I + exp(2~x/d 2, 

(14) 

(15) 

(16) 

(17) 

(13) 

where 2d is the barrier width and E* is the barrier height at n = o. 

Using equation (6) in equation (17): 

For this barrier: 

WeE) 

where 

and 

E* = E* - (l-n*P)e n • o 0 

= Cosh2~(A+~) - Cosh 2~(A-~) 
Cosh 2~(A+~) + Cosh '2TIa 

1/2 
A = Cd/h) (2meff"E) 

~ = (d/h) , {2m
eff

(E - A)}1/2, 

1 ( 2 B ) 1/2 a = "2 (8meffd. h2) - 1 , 

(18) 

(19) 

(20) 

(21) 

(22) 

where meff is the effective mass of the tunneling particle along the 

reaction co-ordinate. 

For barrier widths greater than sR and E* ~ 1.0 x 10-12 ergs 
o 

we use the approximate formula: 
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WeE) (23) 

(d) Effective Mass of the Tunneling Particle: 

For a particle tunneling along the reaction co-ordinate, the 

system having a fixed centre of mass and constant angular variables, it 

was sho\ffi by Johnston that the effective mass of the particle along the 

reaction co-ordinate is different from the actual mass of the particle. 

Thus, Johnson 9 shows that the tunneling particle has an effective mass, 

given as: 

where 
dr

A
_
H C = drH_B ' 

for a system of the form [A ••• H ••• B]. 

Christov and Georgiev 13 have shown that under the limiting 

conditions, mH«mA and mH«mB are obtained from equation (24). 

(24) 

(25) 

(26) 

In the system we are considering A is H20 and B is Hg and the inequality 
-,-

mH«mA and mH«mB is evidently satisfied. Thus, in evaluating WeE) in 

equation (23), we use equation (26) to define the effective mass of the 

tunneling particle. 

(e) The SeparatidrtFactor and its Variation with Potential 

The hydrogen tritium separation factor is defined by the equation: 
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hydrogen of tritium in the gas phase and in solution. The ratio 

(CHJCT)g is equal to twice the ratio of the velocities of H2 and HT 

evolution since CH »CHT • Using the relation ST may be expressed 
2 

as: 

where cr is a ratio of symmetry numbers 

= S T.c1ass TT (28) 

Bockris. Srinivasan and Matthews 3 showed that: 

316.46. 

It is assumed that the activated complex H20 •••• H •••• Hg (or its isotopic 

analogue) is similar to a linear triatomic molecule (cf. Parsons and 

Bockris 10 ). Thus, f~/ft is given by: 

f+ 
vib.H 

. + 
fvib • T 

(29) 

Since the activated complex is regarded as immobile, the translational 

partition function ratio is unity. Bockris, Srinivasan and Matthews 3 

i 
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estimated the ratio of the rotational (around the axis) partition 

function ratio is: 

0.962 , 

where the I' s are the amounts of inertia of the activated complex. 

Moreover, they wrote the vibrational partition functions as: 

ff 
vib,H 
+ = 

fvib , T 

Sin h (HVT/2kT)s Sin n2(hvTt2kT)b 

Sin h (hVH/2kT)s • Sin h 2 (hVH/2kT)b • 

The suffixes sand b stand for stretching and bending frequencies. 

It was further shown that: 

Sin h2 (hVT/2kT)b 

Sin h2(hVH/2kT)b 

1 
3· 

For calculating of the stretching vibrational frequencies, it is 

necessary to solve the secular equation: 

(30) 

(31) 

where FII is the force constant of the bond between ml and m2, F22 is 

the force constant of the bond between m2 and m3, and Fl2 is the coupling 

force constant. A is given by the expression: 

(33) 

Bockris, Srinivasan and Matthews 3 used an LEP surface to estimate 

the force constant. We will estimate it from the BEBO calculations. 
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In the BEBO method, if we define the force constant along the 

reaction co-ordinate to be Fp and that perpendicular to it to be Fa' 

then Fp and Fa are given as 9
: 

F = 
P 

and 

10.7 [E~nP(P-l) 
1 + 1 ( *) 2-p -:-2"" 2 n 

n* (l-n*) 

o 0 
Ef . q(q-l) E 2B ( 

+ 1n + rep 1 + 
(1_n*)2-q (n*)Y(l-n*)Y 

F~ n3 + F~. (1_n*)3 + (Fo /2)(n*)Y(n-n*)YB 
F~ = __ 1n ____________ 1_n ___ ~---. ____ ~r~ep~-------------------

v '2 2 
(n'·~· + (n-n*) ) 

(l-y) (1-2n*)2J] 
2n*(1-n*) 

(34) 

(35) 

o 0 0 where F. ,Ff . and F are the force constants of the initial, final 1n 1n rep 

and the repulsive states. 

To solve equation (32) we have to have the force constants in 

valence bond co-ordinates, with the force constants Fl1 , F22 and F12 . 

The following realtion holds 9 between Fll , F22 and F12 , and Fp and Fa. 

F (1_n*)2 + F *2 
FU 

P an 
= 

(n*) 2 + (l-n*) 2 
(36) 

F (n*)2 2 
+ Fa (l-n*) 

F22 = P 
(n*) 2 + (1_n*)2 

(37) 

(-F + F )n*(l-n*) 
F12 = P a 

2 2 (n*) + (l-n*) 
(38) 

Thus, knowing n*, Fp and Fa we obtain Fll , F22 and F12 • Thus, we solve 

equation (32) to obtain the vibrational frequencies of the activated state 

and the ratio of the vibrational partition function given by equation (3). 

The results are tabulated in Table (2). 
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(f) Estimation of TH/'t;r and the Tafel lines: 

Equation (10) was solved by doing a numerical integration, taking 

the expression given by equation (23) for WeE) on an IBM 1130 digital 

computer for various values of the width of the barrier. The dependence 

of the results upon the width of the barrier is shown in Fig. (2). 

The most probable parameters were selected on the basis that they give 

good agreement with (a) Tafel slope, (b) Activation energy, and (c) 

The variation of the separation factor with potential. Thus, the Tafel 

lines obtained for the most probable barrier parameters are shown in 

Fig. 3a and b and the data are summarized in Table 3. The variation 

of the separation factor with potential is shown in Fig. (4). The 

theoretical calculation was not pursued at higher overpotentials due 

to limitations of the programme. However, the calculations are bound 

to show a constancy of s with n at sufficiently high n's,because when the 

barrier has been made sufficiently low by increasing n the quantal con

tribution becomes negligible. 

III. CONCLUSIONS 

Thus, in this article, we have shown that the BEBO method applied 

to the electrolytic hydrogen evolution, gives: 

(a) Excellent agreement on the variation of the transfer 

coefficient with potential. 

(b) Good agreement with the experimental Tafel slopes. 

(c) Tafel lines which show the occurrence of barrierless 

discharge at high overpotentials. 

(d)~Good agreement between the theoretical and experimental 

separation factor values and their variation with potential. 
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TABLE I 

VARIATION OF THE TRANSFER COEFFICIENT WITH POTENTIAL 

n (llH*) calc (llH*) 2 expt 

(kca1s/mo1e) (kca1s/mo1e) 

0.0 15.54 20 0.561 

0.25 0.558 

0.5 0.554 

0.8 0.551 

0.9 0.547 

1.0 0.591 

1.25 0.531 

1.5 0.52 

1.63 0.48 
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TABLE 2 

f ff =1= Kr ·;.HTO,g r,H F Fp WH WT 
(fvib,H)b 

(S ) ·f T (J f Hr class H
2
O,g r,T dyns/cm dyns/cm XlO~f XlO~f (fvib , T)b 

sec sec 

316.46 0.962 3. 65xlO 
5 -2.6x10 

5 
6:~'35 1.53 0.021 3.6 
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TABLE 3 

TAFEL LINE AND THE VARIATION OF SEPARATION FACTOR WITH POTENTIAL 

* -12 -12 ergs, and 2d = 4.5R . E = 1.6 x 10 ergs, A = 0.6 x 10 
0 0-

n (in ergs) n (in volts) Jq(H+) Jq(T+) TH/T SH/T 

0.00 

0.4 x 10- l2 0.25 0.5857x10-12 0.1386x10-13 

0.8 x 10-12 0.5 0.1080xlO -9 0.3251xlO- 11 29 10.15 

1. 2 x 10-12 0.8 o . 1843xlO -7 0.5442x10-9 2.4 8.40 

1.4 x 1O- l2 0.9 0.2150xlO -6 0.6769xlO -8 2.25 7.85 
.. 

1.6 x 10-12 -5 -7 1.0 0.2228xlO 0.7483xlO 2.07 7.24 

1. 8 x 10-12 1.13 0.2455xlO-4 0.8866x10 -6 

2.0 x 10-12 1.25 0.2166x10-3 0.8399xlO -5 1.55 5.4 

2.4 x 10-12 1.5 0.1998xlO -1 0.1l48x10 -2 1.2 4.20 

2.6 x 10-12 o .4091xlO -1 0.4980x10 -2 

2.8 x 1O- l2 -1 -1 0.4300x10 0.2769xlO , 
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~ Tritium discharge. 

~ Proton discharge. 

Slopes, 

(a) Proton discharge = 118 mV. 

(b) Tritium discharge = 117mV. 

Experimental slope ~ 120 m V. 
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ANNOTATIONS FOR FIGURES 

Variation of ~ with overpotential n. 

Ca) Tafel lines for various barrier parameters. 

(b) Variation of the separation factor with potential. 

Variation of Jq (the quantum mechanical correction to 

Tafel line), for most probable barrier parameter. 

Variation of separation factor with overpotential for 

most probable barrier parameters. 

• 
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ON ALTERNATIVE ACTIVATION MECHANISMS IN ELECTRON TRANSFER 

REACTIONS IN SOLUTION 

Sununary 

The model for electron-transfer kinetics in solution is 

considered. In one model, the appropriate energetic condition 

for charge transfer is met by a small number of vibratiol1-rotation 

states, in thermal equilibrium with the solution. Collisional 

activation (CA) between ion in the solution and the solvent is the 

origin of such states. In another model (EF), CA is neglected, and 

the appropriate energy states are regarded as being reached by the 

fluctuations in the energy of the ion, as a result of its inter-

action with many surrounding solvent molecules. The methodology 

of deduction of the dependence o~ the charge-transfer rate upon the 

interfacial potential difference for the two models is outlined. CA 

suggests a linearity of log R with n (R = rate; n = overpotential). 

There is no linear region suggested on the EF model, although such 

relations are regularly observed. This lack of consistence arises 

because the perturbations which are regarded as the origin of activation II 
in EF are simple harmonic. This is an intrinsic part of the model of 

EF, not as an approximation within it. Correspondingly, a comparison 

of (~F~:lC)EF with experiment shows inconsistencies. 

Comparison with spectroscopic data for H20"'" in solution suggests 

that the energy distribution in the vibration-rotation levels in this 

ion is continuous and that classical modes of vibration exist in water. 

A supposed discontinuity, - which. would have annulled the deduction 

of Tafel's law, - was an origin of the EF model. 

I 
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In the EF model, the applicability of the Born-Landau equation, 

2 e /2r(1/eopt - l/Estat) is assumed. However, the applicability 

depends on a sufficiently large difference of the energy of an electron, 

trapped in the medium and bound to atoms in :;'t. This difference is 

great if the medium is a solid, but not if it is a liquid. 

States suitable for acceptance or donation of electrons from 

ions to metals arise (at the equilibrium potential) much more frequently 

as a result of the equilibrium of the H20+ ion with the solvent heat 

sink than those by electrostatic fluctuation. 

I. . INTRODUCTION 

A quantum mechanical formulation of the rate of electron transfer 

reactions in solution was first given by Gurneyl (1931). This model 

(termed here the collisional activation model (CA)) was further developed 

by Butler 2
, Christov 4

, Gerischer 3
, and by Bockris and Matthews 5. 

The essence of this approach is that a thermal equilibrium between the 

vibration-rotation levels of the solvated ions and the thermal energy 

of the solvent is assumed. 

Weiss 6 , and Platzman and Franck7~ founded another model which they 

assumed that the energy of activation arises from some undefined movements 

in the continuum solvent. It was elaborately developed by Marcus B
, 

considering non-equilibrium dielectric polarization changes in a continuum 

solvent. A molecular model for this type of activation process was 

described in detail by Levich9 , and by Dogonadze 10 , where it was stated 

that the fluctuations in the electrostatic energy arising from the 

libratory movement of the solvent dipoles cause the activation of the 
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reactant ion. This model will be referred to as the Energy 

Fluctuation (EF) model. 

In this article, we attempt to distinguish between these two 

models. The collisional-activation model is an application to electron 

transfer kinetics of the concepts of thermal distribution of vibrational 

states, as discussed in the reaction rate theory of gas phase reactions. 

The electrostatic fluctuation approach diff~rs fundamentally fTem 

previous models of reactions in solution. 

II. THE TWO MODELS 

In both approaches a radiationless electron transfer is assumed 

and the Born-Oppenheimer approximation is invoked to separate the co

ordinates of the fast moving electron and the slow moving heavy 

particles, e.g., thliJ solvent molecules. The continuum electrostatic 

approach uses a do~ble adiabatic approximation by which it separates 

the co-ordinates of the electron, the proton, and the solvent molecules. 

In considering the hydrogen evolution reaction, both models 

calculate the quantum mechanical probability of protons leaking through 

the barrier. However, they differ in the methodology of evaluating the 

transition probability. In the thermal approach, the WKB tunneling 

theory is used 5 , whereas in the electrostatic continuum approach, the 

use of time-dependent perturbation theory is advocated 9 , although the 

barrier has usually been considered transparent to protons. 

In the CA model it is assumed that there is a classical distribution 

of vibFation-rotation levels in the ion-solvent complex (because of the 

increase in the number of such levels in solution, compared to that in the 
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gas phase). Furthermore, for a reaction like the hydrogen evolution 

reaction, the CA models assumes that the H30+ ion in the excited 

vibration-rotation levels produces the "activated state" for the 

reaction. In the "activated state", quantum levels for electrons 

exist in the H30+ ion which are equal in energy to the energy of 

mobile electrons in the metal, and consequently a radiation1ess 

electron transfer occurs. 

+ The quantum properties of the proton (in reactions such as H30 + 

e -+- H d ) are accounted for by assuming that protons have a probability a s 

of permeating the energy barrier between it md the metal. A Gamow 

type: i,unneling equation is used for the probability of penetration*. 

At present, theories of chemical reaction in the gas phase 

assume that the sli'tall number of excited bonds are the medium of the 

reaction. (The type of model is assumed in the CA approach). 

Exactly analogous concepts are used to explain the mechanism of reac-

tions in solution. However, the EF model differs from these available 

theories. Here, it is assumed without argument that the number of 

excited levels is too small (at room temperature) to be kinetically 

significant. For a radiationless electron transition, however, there 

* An objection lO has been made to the use of a one-dimensional WKB 
approximation in calculating a transition probability. Thus, it is 
claimed that the WKB method calculates transition through a stationary 
barrier. However, the transitions involved in the proton discharge 
process are non-stationary in nature. Time-dependent perturbation 
theory should clearly be used. However, it can be shown l7 that, when 
it is applied, then, for the time domain concerned in chemical kinetics, 
it gives approximately the WKB approximation. 
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must be an excitation of the electronic energy level in the acceptor 

so that it becomes equal to the energy of the Fermi level in the metal. 

To achieve this, the electronic energy of the reacting ion is pictured 

as experiencing a fluctuation in its energy with respect to the 

solvent dipoles in the bulk of the solution. 

III. A DEDUCTION OF THE RATE.:.OVERPOTENTIAL RELATION ACCORDING 

TO BOTH MODELS 

1. The Collisiona1':'Activation Model 

Considering the discharge reaction, 

H
3
0+ + e-(m) + MH + H

2
0, 

the quantum mechanical rate may be written as: 

i = eCH+ f f n(E.)p(E.)W·f(E.,x)dE.dx 
1 1 1 1 1 

(1) 

X E 

where C
H

+ is the surface concentration of the proton, n(Ei ) is the 

Fermi distribution of electrons in the metal, p(E.) is the density of 
1 

states and W.f(E.) is the transition probability for the whole reac-
1 1 

tion. Now, W. (Ef) using the adiabatic approximation, may be split 1a 

into two parts: (a) the probability of electron tunneling, P(Ei,x); 

and (b) the probability of proton transfer across or over the 

barrier, W(E.,X). 
1 

Thus, we can rewrite equation (1) as: 

i = eC + 
H J f 

X E 

n(E.)p(E.)P(E.,X)W(E.,x)dE .. dx. 
11111 

(2) 
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If we make the assumption that the transition occurs from a fixed 

distance essentially (i.e., the OHP), we can get rid of the integration 

over x. Hence: 

00 

i = ec
H

+ f p(Ei)n(Ei)p(Ei)W(Ei)exPl-(Ei - Eo)/kT)dEf' (3) 

Eo 

where W(E.) is the probability of proton tunneling at an energy level E., 
1 1 

Eo is the zero point energy level for the H30+ ion. 

In the adiabatic case, where the electron transfer probability is 

unity, the equation re-duces to: 

()() 

Using the free electron approximation, for metals, we can write: 

mV 
e { 2 3 2m(E. 

27f h 1 

(5) 

where V is the average volume occupied by one electron, and n(E.) we 
e 1 

substitute the Fermi distribution: 

(6) 

Using (5) and (6) in (4) we get: 

i = C OOf [exP(Ei - EF:\+lj-l.mve. {2 ( _ )~}W(E )exP(-(E.-E )/kT)dEf · 
e H+ kT J • 27f2h3 m Ei EO 1 1 0 

E 

(7) 
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A problem is to evaluate W(E.), the proton transfer probability. It 
1 

depends on approximating the actual potential energy barrier by a 

barrier of similar shape for which W(Ef) has a known solution. 

The Eckart barriers resembles such a barrier. The unsymmetrical 

Eckart barrier is given by: 

Vex) = A exp(2 x/d) + B exp (2 x/d) 
1 + exp(2 x/d) 1 + e~p(2 x/d)2 ' 

(8) 

where 2d is the barrier width, A is the energy difference between the 

potential energy minimum, and B is defined by: 

For the hydrogen evolution reaction (HER) we may write: 

A = A = E o 0 

For the barrier represented by (8), the tunneling probability is: 

where 

= Cosh 2rr(A + ~) - Cosh 2rr(A - ~) 
W(Ej,) Cosh 2rr(A + ~) + Cosh 2rrct 

1: 
A = (d/h) (2mEi ) 2 

~ = (d/h) (2m(Ei - A))~ 
(J = (1;) [ (8md

2BI h2) - 1 j" 
Introducing W(Ei ) in (7) yields: 

(8a) 

(9) 
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The activation overpotentia1, n, is included in E .. 
1 

In a numerical 

solution, made by Bockris and MatthewsS,the barrier parameters were 

taken as those which produced a consistent Tafel line and was also 

consistent with the variation of the HIT separation factor with 

potentials. 

2. The Electrostatic Fluctuation Approach 10 

Using the Fermi Golden Rule of second-order perturbation theory, 

a general expression for the transition probability lnay be written as: 

where ~i and ~f are the init~a1 and final state wave functions, v is 

the perturbation operator, and O(Ei - Ef ) is the dirac-delta function. 

For any electron transfer reactions, in the adiabatic approximation, 

the initial and final state wave functions can be written as the product 

of the electronic and the solvent wave function in each of these states 

respectively. Thus: 

(12) 

where ¢ is the wave function of the fast sub-system, i.e., the electron, 

and X is the wave function of the slow sub-system, i.e., the solvent 

molecules, r and R are the electronic and solvent co-ordinates, respec-

tive1y. 

Thus, equation (11) can be written as: 
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Since the wave function of the heavy particles is localized in space, 

whereas the wave function ¢(r,R) and the perturbation energy 

v(r,R) are distributed over the whole volume, we can write equation 

(13) as: 

Wif (Ei ) = ~TI Av ~II¢fv¢idrI2 IIXfXidRI20(Ef - Ei ). (14) 

Defining L = II¢fv¢idrl, we get: 

Wif(Ei ) = ~TI L
2

Av ~lfXfXidRI20(Ef - Ei ) . (15) 

Taking the Fourier expansion of the delta function, equation (15) may be 

rewritten as': +00 

W·f(E.) 
~ ~ = ~2IL2IA:I[xf,exp[~(Hf - Hilt)Xi]dt. (16) 

To solve this matrix element, we have to define Hi and Hf , which are 

Hamiltonians of the initial and final states. Thus, we need a Hamil-

tonian for the initial and final states. The Hamiltonian may be 

written as: 

H=H+H+V a ese,s 

where a = i,f, H is the Hamiltonian for the kinetic energy of the e 

electron, Hs is the Hamiltonian for the polar solvent and Ve,s is the 

interaction between the electron and the solvent. 

Levich9 has suggested the Hamiltonian for the solvent H may be s 

written as: 
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The next problem is then to evaluate V e,s 

(17) 

The electrostatic 

approach10 considers the hydrated ion to be surrounded bY' dipoles. 

We may divide the dipoles of the solvent into two groups: (1) molecules 

which are arranged closely around the ion and form the so-called inner 

hydration sphere; and (2) all the remaining solvent continuum. However, 

the electrostatic fluctuation approach neglects the interaction between 

the ion and the inner solvation sheath, because the energy of inter-

action for the ion and the inner layer is such that for these bonds 

hw. » kT. 
l. Thus, this approach, instead of looking for a Hamiltonian 

comprising of specific interactions, with the ion and the inner sphere, 

considers only the long range interaction between the electron in 

the ion and the continuum solvent. This interaction between the 

electron and the far off dipoles in the solvent is small. However, 

from time to time, a fluctuation from the normal distribution will occur 

(see Section IV). It has been assumed that such fluctuations occur 

with a frequency sufficient to rationalize observed rates. Using 

macroscopic dielectric theory, we can therefore write: 

V = fD (P. + p ')1 dV es e l.n non-l.n ong (18) 

where D is the induction of the electron field, P. end P . represents e l.n non-l.n 

the inertial and non-inertial part of the polarization, the subscript 

"long" indicates that the interaction is only with the longitudinal 

component of the wave. 
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Now, solving (16) using a harmonic oscillator wave function 11 and 

averaging the matrix element using Feynman's method, one obtains: 

(19) 

where J f and J i are the ground state energies of the initial and final 

states and Es the repo1arization energy is defined as: 

E = (hw /2)~(qk(~) 
s 0 1 

(0)) 2 
qkf (20) 

where w is the 1ibrationa1 frequency of the solvent dipoles. The 
o 

quantity Es is a crucial quantity of the electrostatic continuum theory. 

However, it cannot be evaluated from equation (20) which is the quantum 

mechanical solution. Thus, in EF model, the basic quantity E is evaluated s 

from classical macroscopic dielectric theory. Thus: 

where a l and a2 are the radius of the ions between which electron transfer 

is occurring and R is the distance of closest approach. 

therefore be written as: 

i = 2eC +JWof(so)n(Eo)p(Eo)dEo , H 1 1 1 1 1 

The current can 

(22) 

where C + is the surface concentration of reactants, n(Ei ) is the Fermi 
H 

distribution and p(Eo) is the density of states. 
1 

expression for Wof(Eo) in (22), we get: 
1 1 

Introducing the 

(23) 

, 
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where: 

o 0 
£ = £p + E + (Jf - Jl.') - en, nn' s 

where £F is the Fermi energy, and n is the overpotential; K is the 

transmission coefficient. 

Under the special condition len - (J - J~ )I«E , when equation fn' l.n s 

(23) is solved by Laplace's method (i.e., by the steepest descent method 

for the function of a real variable). it yields 9 the equation: 

en ] 
+ 2kT ' (24) 

which is of the same form as Tafel's equation. 

Thus, the important point is that the well known Tafel relation 

so widely found to be applicable is obtained from the EF model only when: 

TIlis is a very restrictive condition. In fact, the region of over-

potential where the above condition holds is about O.4v., whereas, 

experimentally, the linearity continues over a range of >lv. 

IV. COMPARISON WITH EXPERIMENT 

1. Relation between khet and khom 

An argument which has been used to support the continuum electro

static theory12 is that the rate constant for the heterogeneous reaction 

can be predicted from the rate constant for the homogeneous reaction. 

The prediction is: 
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. zhom l'k ] 

hom 

where khom and ~et are the rate constants for the exchange reaction 

in solution (e.g., Fe3+ + Fe2+ -+ Fe2+ + Fe3+) and at an electrode 

3+ 2+ 
(e.g., Fe + e(M) -+ Fe ). However, it is simple to demonstrate 13 

that such a relation is expected independently of model, so long as 

the mechanism of both homogeneous and heterogeneous reactions is the 

same. 

2. Predictions of the Free Energies of Activation from a Continuum 

Electrostatic Theory 

From (23), the free energy of activation is: 

ilF* calc 
= ((Jf 

ES being defined as in equation (21). 

ilF* 1 values were computed for 52 reactions, including both the ca c 
2+ 3+ *3+ 2+ electron exchange (e.g. ,I Fe* + Fe -+ Fe + Fe ) and usual eleetron 

f ( 2+ + C 4+ -+ Fe3+ + C 3+) . trans er e.g., Fe react10ns. e e They were made 

for various ligands, as well. 

The ilF* 1 is plotted against the experimental ilF* value in Fig. 1. ca c 

There is no co-relation between the prediction of the electrostatic 

fluctuation approach with experiment. 
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For ions of radius about 3R, water molecules no longer orient 

around the ion, or remain attached to it for significant times. The 

continuum viewpoint (which discounts the effects of such an oriented 
llF

o* 
layer) might then be more applicable. 

/ 

calc Hence, a plot of would 
llFo* 

expt 
be expected to tend to unity with increasing radius. The test (Fig. 

II) does not support the applicability of EF. 

3. Variation of S withoverp~terttial and the Tafel relationship from 

both approaches 

In Figure III the transfer coefficient, calculated according to 

the electrostatic fluctuation theory, is seen to vary linearly with 

overpotential. Using these values of the transfer coefficients for 

Es = 2ev, the predicted Tafel line is shown in Fig. III. There is no 

linear region, in marked variance with the predictions of the models in 

electrode kinetics. 

In the collisional activation model 24 Sis: 

. { 0* 
1 1 - «llHl > -

2ax 0* 
o 1 - {«llHl > 

(26) 

Here, S is at first constant, but varies at high overpotential. The 

variation is shown in Fig. III. The agreement with experiment is 

reasonable. 
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V. DISCUSSION 

The fact that the current-potential relation obtained from the 

EF model arises from the parabolic nature of the potential-energy 

profile assumed in that model. Sufficiently small perturbations in 

libratory oscillations of the solvent molecules, far away from the ion, 

must be harmonic, so that introduction of anharrnonicity to the present 

model is not acceptable. 

Polaron theory in solids, where a system of interacting oscillators 

are coupled to one another, has postulated fluctuations of the type 

discussed. In a liquid without appreciable periodicity, the applicability 

of the polaron theory is more difficult to accept14. Damping of the 

wave would have to be introduced and there is no way at present of 

discovering these factors. 

+ The rotation-vibrational energy leveh~ in H30 iOll aTe not far 

apart compared with the observational significance in electrode kinetics 

(lmev) . As a consequence of the frequent collisions between th.e solva-

tion ion and the surrounding water molecules, they are smoothed out. 

The continuous relation observed in electrochemical kinetics between 

rate and overpotential could not be obtained if they were. The opinion 

that thermal activation would produce a structured Tafel line was a 

principal reason for suggesting a model basically different from collision-

al activation. According to Falk and Giguere 1S , for liquid H20 there is 

a continuum of energy states from 60 to 3444 cm- l (cf. O'Ferrall et aI 16 ). 

Thus, classical (continuous) modes of heat transfer are available in 

water and. in particular, aq. H30+ The appreciable partial molar heat 

capacity (C
p

) at room temperature for H30+, indicates a range of fT.Gquencies 

giving classical Cp contributions in this molecule (and hence in H30+), and 
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provides compelling evidence for the above conclusions. In the gas 

phase, translational energy is converted into vibrational energy 

(after collision), and it is reasonable to assume that the same 

process occurs in liquid water. The translational energy of free 

waters obeys a Boltzman distribution of energy and is in equilibrium 

with the H30+ ion in 

of the H30+ ion will 

solution. The vibration-rotational energy levels 

also have a Boltzman distribution (at least up 

to a certain energy level. There are 17 sufficient O-H bonds in an 

activated state to sustain the reaction over the range of rates observed 

for electrode reactions on various metals. 

If the linear spheres of the reactant and product are different, 

there must be inner sphere activation to satisfy the Franck-Condon 

restriction of the electron transfer process lB • Thus, the reactant 

and product activated state must be in resonance and identical. 

If the inner sphere is different, activation must occur in it before 

the right activated state can be obtained. The explicit omission of 

considerations of the inner sphere9 in EF implies ~hat the inner sphere 

for reactant and product have the same energy, without activation. 

Applied to H30+ + 1M + Hads ' such a concept is unreasonable and a model 

based on it 9 unacceptable for such reactions. 

The Born-Landau Hamiltonian arises when the electronic adiabatic 

approximation is used to treat the problem of an electron trapped in a 

polar solvent. This approximation can be applied if the binding energy 

of the trapped electron is smaller than the binding energy of the medium 

electrons. It is a satisfactory approximation in a polar crystal where 

the binding energy of the trapped electron has been shown (Markham and 
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Seitz 19 and Frohlich2o
) to be of the order of 0.1 ev, much less than 

the binding energy of the medium electrons. With polar liquids, 

however, the situation is different. The binding energy of the 

medium electrons (4-5 ev) is of the same order of magnitude as the 

binding energy of the trapped electrons (1-2 ev); the electronic 

adiabatic approximation thus becomes invalid. To calculate the 

binding energy of ele~trons in polar liquids, Jortner21 suggests that 

the trapped electron and the medium electron should be treated on an 

equal basis and uses the independent particle treatment, tTeated in 

terms of self-consistent field theory. The difference between the 

results of this approach and those obtained with the electronic 

adiabatic approximation, is due to the fad that in the self-consistent 

field scheme, the electronic pola:':'isation does contribute to the binding 

energy of the electrons. Thus, the potential becomes of the form 

;;[1 - !sJ instead of the 2 [ J 
ell. . 
2r E - £ 1nvolved 1n 

op stat 
the expression 

derived from the electronic adiabatic approximation. The reorganisa-

tional energy would no longer be given in terms of the Born-Landau 

equation. It would correspondingly, not be given by the time-average 

Born energy, but by an equation for the change in the orientation 

energy on ejection of a charge into a polar dielectric. 

Hitherto, we have discussed the different degree of agreement with 

experiment achieved.between the two models, and also some fundamental 

difficulties both in the origin of the fluctuational rnodelmd its use 

of the Born-Landau equation. However, we have not discussed the most 

important difference between the two approaches. This is the nature of 

the activation process. The thermal view considers that vibrational 
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excitation, due to collis.ions between the ion and solvent very near 

to the electrode creates the activated state necessary for electron 

transfer. It does not, thus, differ from well-known concepts in 

reaction kinetics. The electrostatic fluctuation assumes that an 

electrostatic fluctuation in the ion-solvent interaction is the 

origin of the activation. Let us calculate which mode of activation 

gives the higher probability of obtaining activated states of certain 

values. 

Consider a situation where an ion (including the diameter of a 

water molecule in the inner solvation sheath) is r. and a charge of 
1. 

+e is surrounded by N water dipoles. For non-interacting dipoles, 

the probability of the dipole having an angle between 8 and 8 + d8 at 

a distance between Rand R + dR from the ion, is: 

P = dN(8,R) = 
i N 

3 e).lcos8 2 --- exp R dR.sin8d8 
2r3 e: R2kT w s (27) 

Equation (27) is obtained for non-interacting dipoles. There are of 

course very strong interactions in a polar liquid such as water. 

Following Kirkwood 22 , let us represent the case in water also as a 

system of non-interacting dipoles having the effective dipole mement 

).leff given as: 

).leff = ).l + g().lcosy) 

= ).l(l + g cosy) 
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where g is the number of neighbour water molecules around any water 

molecule, and cosy is the average cosines of the ~ngles between dipole 

moments of the central molecule and those of its neighbours. In 

evaluating gcosy, Kirkwood22 considered the nearest neighbours and 

Pople23 extended Kirkwo0d's22 treatment and considered the contribution 

of both first and second layers of water molecules and obta.ined 

lleff = 1. 53 as the effective dipole moment of water in water. 

Therefore, in liquid water we consider a system of N-non interacting 

dipoles, however with an effective moment different from that in the 

vapour phase. 

On this basis, eqn. (27) becomes: 

3 elleffcos 8 
R2dRsin8d8 -- exp 

£ R2kT 2r3 

P. = 
1 

w 
'IT r 3 

s 
elleffcos8 (28) 

J f 002r! exp 

o r. 
1 

R2dRsin6d6 
£ R2kT 

s 

The average value of the interaction energy betwe1an the ion and 

the dipole can then be written as: 

'lTf rr 3 [elleffcOS8] 2 [elleffcos81· 
-3 - 2 R dRexp 2 sln6d6 
2r £ R £ R kT J o r. w s s 

1 (29') [E] = 

'IT r [ ] 
3 e cos8 

f r -3 exp ~ff 2 R2dRsin6d6 
2r £ R kT o r i W s 

It has been shown that 17 the integrals can be evaluated to give: 

[E] 
2 2 

e lleff 
2 3 • 

£ r r.kT 
(30) 

s W 1 

" . 
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The total interaction energy is then: 

[u] = N[E] 
2 2 

e lleff 
= - -'::'2 """:3;:;----· 

e: r r.kT s w]. 

(31) 

Following a similar procedure, we can evaluate the average square of 

the energy. This is:* 

2 2 
e.lleff 

2 3 e: r r. s w ]. 

The mean square deviation then is given as: 

(32) 

(33) 

Numerical evaluation of cr2 Shows 17 that it is very much smaller than 

2 [u] . Thus, we can use the Gaussian distribution to evaluate the 

possibility of fluctuation, i.e., 

1 
[ 

(u - [U])2] 
exp 2 

2cr 
(34) 

For the proton-discharge reaction, a typical measured activation energy 

at the reversible potential is 20kcals/mole. Thus, we need a fluctuation 

-I? 
of (u - [u]) = 20kcals/mole = 1.39 x 10 - ergs/molecule. Thus, using 

equation (34), P + comes out to be ~ 10-41 • 
H30 

The corresponding probability of the thermal activation can be 

obtained from.the.Boltzman distribution and for the O-H* bond and the 

* The value of the dielectric constant to be used in these expressions 
is that for a time average evaluation, i.e., 80. 

II 

I 



- 143 -

activation energy of 20kca1s/mo1e. It is 10-15 17. Hence, the CA 

approach gives a far higher probability of creating an electric state 

suitable for electron transfer at an electrode than does the 

continuum electrostatic approach. 

So far, we have estimated the probabilities at the reversible 

potential. However, it is important to estimate how these probabilities 

vary as the potential changes. For the hydrogen evolution reaction, 

the activation energy at any overpotentia1 is given as: 

-SnF. 
n = ° 

Thus, the variation of the activation energy with overpotential 

is known. We can estimate the change of probability with potential 

using a Boltzman distribution and the fluctuational probability using 

a Gaussian distribution. The results are tabulated in Table I. 

The ratio of the two probabilities are plotted in Fig. V. The conclusion 

is very clear that in most of the experimentally accessible overpotentia1, 

the therma.l probabi Ii ty is much larger than the fluctuational one. 

Tl}us, the approach arose as a reaction to some misunderstanding 

+ 
of the distance between levels in the vibration-rotation spectra of H30 

in solution. + The acceptor states in H30 arising from the normal Boltz-

man distribution outweighs the fluctuational probability over much of the 

range of experimentally obtainable overpotentials, at least for hydrogen 

evolution. 

1 

I 
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TABLE I 

n in ~* Probability Probability Probability log 
volts in kcals/mole Thermal Pluctuational ratio (T/P) (T/P) 

0 20 10-14 10-42 10
28 

28 

0.2 17.7 10-12 . 4 10-32 •8 10
20 20 

0.4 15,.4 10-11 10-25 1014 14 

0.6 13.1 10-9 •5 10-17 . 8 108•3 8.3 

0.8 10.8 10-8•1 10-12 . 1 104. 3 4.3 

1.0 8:.5 10.;.6.7 10- 7•6 101.4 1.4 

1.2 6.2 10-4 •5 10-4•2 10°·2 0.2 

1.4 3.9 10-3•0 101.68 10-0 •9 
-0.9 

1.6 1.4 10-0 •9 10-0•4 10-0 •5 
-0.5 

.' 
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ANNOTATIONS FOR FIGURES 

The free energy of activation for redox reaction.s in 

solution. ~Fo* represents 
exptl the value obtained by 

( 
~Fo* I 

equating the experimental rate of Z exp - -wr-)' where Z 

is the calculated bimolecular collision number; ~FOth* t·. 1 eore 1ca 
is the value obtained from the electrostatic solvent 

fluctuation viewpoint. There is no correlation. 

~Fo* 
theoret 

~Fo* 
exptl 

as a function of the sum of the radii of the 

ions. The value does not tend to unity at high radii. 

S as a function of potential, electrostatic and thermal. 

That calcula.ted on the electrostatic model with a reorganisa-

tion energy of 2ev varies much more over the range O-lv 

overpotential than does that calculated from the electro-

static view. Experimentally, the coefficient is nearly 

constant with potential at over at least 0.5 volts. 

Figure IV. The experimental Tafel line for overpotential as a function 

of log i in the system: H30+ + e + ; H2 (Points). Broken 

lines: thermal model. Continuous line: electrostatic 

fluctuation theory. 
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Figure V. The relative probability of the activation of protons into 

states above the ground state by amounts varying from lev 

to O. Pr is the probability arising from the theory in which 

there is equilibrium between the heat sink and the surrounding 

solvent. PF is the probability calculated on a fluctuation 

of the electrostatic energy of the ion. 

, ! 
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J 
'I 
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MAJOR POINTS FROM SEN'S WORK 

1. The relation of fric.tion to potential when the two interfaces 

are metal-solution, can be interpreted in terms of the 

repulsion of two Gouy layers. 

2. The BDM isotherm allows predictions of a capacitance minimum. It 

is not inconsistent with thermodynamic reasoning. 

The po1arizabi1ity term in the double layer equations may 

become important at high enough fields. 

3. The polaron theory of electrode processes is inconsistent with 

line broadening in solution . 

4. The polaron theory of electrode processes is not consistent with 

the trend of electrochemical facts about proton transfer. 

5. The polaron theory is not able to give the Tafel line. 

6. The limits of the Gamow' aRproximation for the probability of trans

fer are given. 

7. The Gurnean and Weissian approaches to electrode kinetic 

formulations are given. 

8. BEBO gives good res.u1ts for proton transfer. 
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