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ABSTRACY
GRAVITATIONAL HARMONICS FROM SHALLOW RESONANT ORBITS

C.A. Wagner
5.M. Klosko

Until very recently, there hus been no identification
of the significant gravitational constraints on the many
common orbits in shallow resonance, Without them it is
difficult to compare results derived for different sets of
harmonics from different orbits. With them it is possible
to extend these vosults to any degree without reintegration

of the orbits. Five such (strong) constraints have been derived

for the GEQS II orbit (order 13, to 30th degree) whose princi-
pal resonant period is 6 days. The constraints explain the
sinusoidal variation with argument of perigee of a lumped
harmonic found from 41 hA-day arcs of optical and luser data
in 1968-69. For example, the constant terms derived are:

107(38.1,-55.9) = -.872(C,5);5 ;5
E I

+ ((‘,,S)w,13 + .462(C,S)17’13 + e,
in terms of fully normalized srherical harmonics.

The condition equations, derived from elementary pertur-
bation theory are shown to account for almost all (>98%) of
the resonant information in the tracking data. They agree
well with recent gravitational models which include suk-
stantial amounts of GEOS II tracking data.
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INTRODUCTION

We cun calculate the amplituders and phases‘of the geo-
potential perturbations from the formulas given by Kaula, 1960,
He has expressed the potential entirely in terms o% Kepler
elements as

V=YL LIV . where
tmopq impq,
L2
v B S Fe (1) 6 C cos] (&-m) even
Lmpq H‘*ITT m T Lmp 1 pq e} sin coswnmpq s
a

(2-m) odd (1)

and

‘.’Jﬁmpq = [2-2p)w+(£~2p+q)M+m(Q-e_kim) .

In Equation (1):

a,e;i,m &2, and M are the mean Kepler elements:
semi-major axis, eccentricity, inclination,
argument of perigee, right éscension of the
ascending node and mean anomaly respectively;

a, 1is the semi-major axis of the earth;

u is the gravitational constant of the earth;
8 is the rotatiog rate of the earth; and
mig. is tan”* E&E .

'fm

[ 28]



The indexes 2,m are the degree and order of a fully nermalized
spherical harmonic term; the p,q quantities identify a par-
ticular component of that term. The function Fﬂmp(i) (fully
normalized) and Gﬁpq(e) arise when the potential is converted
from position couordinates to Kepler elements., The Gy q(e)
functions are identical to Hansen's coefficients. The Fimpcij
functions are sinusoidal with wave length about 2u/(%-m+l).

In terms of Kepler elements, the equations of satellite
motion are [Kaula, 1966, p. 29]

gf— = 2 av ’

dt na M

dt nale M nale w
1/ 2
.Clh_.\-_ cos_i ﬂ#g}i)—:—.a-l
' ’
dt na’(l-e’)‘7zsin i 8i na‘e de
4, _ cos i W _ 1 W,
dt na’(l-e‘)‘[zsin i w na‘(l-ez)‘lzsin i an
o 1 v,
dt  na?(l-e)* sin i 3i
a2
M _le?aV_2 AV .. -
dt na‘e 3e na 232
wherz n is the mean motion (ul/z a-3/2}.



The equations of motion can be approximately integrated
under certain assumptions. Because of the smallness of the effects
of tesseral harmonics, they can be treated (to first order) as
linear perturbations about the orbit produced by only the central
force and the secular second zonal harmonic term {impg = 2010)
in the potential., Under these assumptions, Kaula (1966, pp. 40, 49}
gives the solutions for the amplitudes of the perturbations of
the Kepler elements due to euch harmonic component V

Lmpy as
o meay ]
Aa cpa® 2F g mnSppg L4 2p+a)l * ,
Mpa T 5@t A (R-2p) i+ (R 2pra) ki (-6 )
241/ 2 2 1/ 200 ana 0-2
re ) Fomp® Egg(l e?) A [(1-e®) 2 (k-2p+q)-(2-2p) ] J, ’
dmpa e T RO e (g 2p) G (B 2ptq) Mbu (- 6) )
[(1-e2)1/2e 1F£mp ipq/dL)
. _ﬁzm"l/z
N cot 1(1-e®) EGR 906y gy

ua _ ; :
bmpd e RS (e 2p) @t {R-2prq) Mam (G- 8) )

F [(&-2p)cos 1 -m] J

- . xmpGﬂpq b . '
e e natTI(1-e2) 1 s in f[ (ke tp)dr (k- 2prq)iem(E-8) ] (3)




(aFﬁmE/&i)Gﬁpq Jom

ASl,  =na : !
fmpg e 0 R¥3 102y 2g4y if(e-2p)at+(8-2p+qIMem(s-6) ]

(1-a2)a" 1 - :
p [-(1-ef)e T(3G,, /ae)+n(2+1)6,  JF, 0,

AM

or

=ua v —
Ampa e a3 (g-2p) i+ (2-2p+q) Mém(2-0) ]

A
3anmF£mE§&pq(£-2p+q) Jom
2" 31 (2-2p) it (- 2p+q) Mrm (52683 ] ?

—

When examining these expressions, one can see that
under certain conditions the frequencies (¢) in their
denominators can go to zero:

wﬂmpq = (L-2p)uwt(L-2p+q)M+m(5-0) = 0

This is known as the resonunce condition. When this happens,
one has exact commensurability between satellite motion

and the earth's rotation yielding a perturbation from the
longitudinal dependent terms of the geopotential analytically
approaching infinity. This is known as deep resonance.

0f course, other forces are acting on the satellite, so

that the ovbit usually simply passes through this condition
of perfect commensurability, Typically, atmospheric drag

is the dominant other force,

(4)



However, for a4 very large number of satellites, a
situation exists where the resonance condition is only
upproximated, vielding substuntial perturbations on the
catellite nevertheless (Wagner and Douglas, 1969)., This
happens tance is called shullow resonance. These effects
start becoming a problem for orbitul operations and

precise orbit determination when the resonant period,

which is

1 1
T = T e (5)
1l (L-2p)w + (&-2p+ry)M+m(i-8)

starts to approach a few days duration. Unfortunately, in
shallow resonance, all the frequencies of a given order
satisfying Equation (4} are almost the same, 1t will be
difficult therefore to distinguish these effects over a
short time. The problem is to separate the information

in order to determine specific gravitational harmonics.



ANALYSIS OF SHALLOW RESONANCE

Let wqu = wm,U = wtM+m(2-6), (m = n in revolutions/
day) be the dominant rescnant longitude, and E be any of
the Kepler elements., The effect associated with this
longitude will be of order one compared to the fringe
resonances, with longitudes wm,+l = *m,oiﬁ' which are
of order 10e (Allan, 1973, »n. 2Z4). Note that in one
Qeriod of ¢m,0’ w will be essentially constant if
wm,o >> w as it usually is for shallow resonant orbits.

As long as the resonant period is less than about
100 days, Kaula's (1966) linear perturbations, (equations (3))
are valid (Gedeon, 1969):

. f. . [ .,
E=E,+ :E: )ALC Cos wimpq + AES sin wzmpq ’ (6)
Relevant
mpq
where
wimpq = (?“Zp3w+(£-2+qJM+m(ﬂ~6) )

ignoring the phase Akm as in equation (1) ,



e L-m even

for E = w,0,M

-C -5
tm * “inm L-m odd
AEC,S - AEmeq (7)
L=m even
Clm ’ Slm
for E = a,e,l
-S C
tn ? AR, n 0dd
Note that (Clm,slm) = sz (cos m Azm’ sin m Alm) and AElmpq

(given by a right-hand side of (3) without sz) is inversely
proportional to élmpq (or L for AM) which is small in

resonance.

For the five principal resonant frequencies im 0°
]

Ym,-1* Ym,+1* ¥m,-2° ¥m,2° Equation (6) becomes simply:

L RESONANT,
q=0

:E: [AEC cos (wm.oim) + AES sin (Wm,oiw)] +
% RESONANT
q=*1

[AEC cos (Wm,OZZ”J + AES sin (wm'O:Zw)] .
L RESONANT
q=*2



In Equation (8) the resonant 's for the q=+1 terms
are always even and the resonant t's for the q=0 (dominant)
and q=+2 terms are always odd,

Expanding the cos and sin terms in (8) and collecting
terms in cos wm,O' sin wm.o. cos w and sin w, cos 2w and
sin 2w:

B = E. ¢+ COSY Z AE.+cosw Z AE,. + Z AE
0 mo ), Res © L‘RES © R c
q-O -1

+ sinw Z m&s + Z aES

2 RES 2 ¢ RES
q-l q--l

+ cos 2w Z AEC* Z AIS{. + sin 2w -Z L\.ES+ Z AES

L RES L RES ; LRES L RES
q=2 qe=-2 q=2 q=-2

2 AES + cosw Z AEq + Z AES

+ siny
m,0 1o RES tRES ° % RES
q=0 q=1 q=-1
+ sinw Z AE - Z AE
t'REs © L'RES ©
q=1 q=-1
+ cosw Z AES+ Z AES + sin 2w z: AEC . E AF.C
2 RES £ RES L RES . RES
qsz q=-2 quz q=-2
il

(9)



Equation (Y) shows that the (lumped) coefficients (for each
element) of the C°S¢m,0 and sinwm,o terms (determinable in
one period of wm,O) are themselves sinusoidal functions of
4 slowly varying argument of .serigee:

C* = ¢, + CC Cosn + Gs ginw + C,. coslw + CZS sin2w + ...

0 2¢ _
(1C)
S% = S+ § vosw + 5 sinw + 8, coslw + S sin2w + ...
0 e VO by 8 ae €O bzs sin2 .

The components of the lumped covefficients (C*, S5%) depend
on the resonant geopotential coeiticients, as well as the
a, e und i of the orbit.

The relution between the iumped coefficients and the
actual trucking information is straightforward, but tedious
to write out in detail. Essentially it is the same as the
relation between the tracking information and the orbital
elements. If '0' is a tracking observation, it is clearly
a4 function of the orbital elements E. These in turn are
given (to first order) by:

€Os¥n o
L

sinwm’O

over as many lumped coefficients E* us are necessary to
describe the variation. This suggests a simple scheme for
determining all the lumped coefficients for a single tracsing
arc. Tracking residuals in '0' cun be resolved by differential
correction to E; and E* through the condition equations:

90 CObwm,U
L0 = - AEO + AE* )
dE snnpm’0

10




The cbservetion 'partials' G0/0E are laboricus to
caleulate but are readily uvailuble in existing differential
programs [Lerch et. ul., 1974], This is unalogous to the
method ¢hosen by Riegber (1973) to deteruine shullow resonant
constraints, Riegber however corrects a boundary (rather
than an initial) value solution to the orbit., He alse appears
to make no use of the known frequencies of the problem, pre-
ferring a general Fourier analvsis of the vesunant elements,
However, the principal perieds_in Reigber's solutions ure the
full arc lengths, chosen as 1/wm,0. His GEOS Il solution for
these are compatible with our results, as will be shown later.

Une of the goals of our analysis, however, is to identify
the dominant information in current fields, Where possible, we
want to us. ihe good peopotential solutions, already developed
at preat sgipense, Our central hypothesis is that the resonance
informetion is almost entirely in the along track (Sw+rdM+ilicosi)
variation, To give a concrete example, consider the orbit of
GEOS II (u = 1,209 e,r,, e = ,033, i = 105,8%), The root sum
of squares of all resonunt terms contributing to this orbital
component is indeed 95% of the total perturbation, The
information in the semi-major axis variution is almost the
same as this since 1ts integral controls the along truck change
in resonance, Table 1 give the resonant 'a' perturbations on
GEOS IIfrom J,. = /T x 107°/4% to (30,13).

Clearly, the q=0 terms dominate but the g=+1 terms are
also significant. To illustrate the development of the lumped
coefficients, the quantities &4(a) are the components SEn o7

AES {for E=a) for coefficients Cfm or ng of V2 x 10'5/32 in
equation (9), where AECgS(q=il) = éE[»SRm,Cﬁm] and QEC,S(q=U)

= AE[C Therefore, to find the partial contribution

Lm’sam]'
{or sensitivity) due to each (unknown) coefficient (AE) the

perturbations in the table must be divided by v/Z x 10'5/£2.
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In fact they can also be adjusted by a constant (as a set)
without changing the relative information content of the
terms in the lumped coefficients C* and S*., Multiplying
each term of Table 1 by 22/400 gives the partial contri-
butions presented in Table 2,

To obtain non-dimensional sensitivities, these partials
are divided by the maximum contribution (from £=15, q=0)
yielding the sensitivities presented in Table 3.

Thus, from this final sensitivity table the lumped
coefficients daterminable from observation of just the 'a!’
variation are (to q=+2 terms}

+

886 (C, 1.000(C,S)

(CysSgl = $)13,13 15,13
+.456(C,8) 17 13 - .020(C,8)yg 15 - .181(C,5),q ;3
--156(C,8) 53 53 - .0?6(6,5325,13 - 0.010(C,8) 57 43
#.022(C,8) g 15 * .- -
(1uy
(CeoSg) = --514(-5,C)qy 13 + .034(-S,C)yq 13
#.160(-5,C)1g 15 *+ -110(-8,C)pq ;5
+.'035t-S,C)22,13 - 011(-8,C) 9y 13
-.025(-5,C) 5 13 - -021(-5,C) g 43
- 011(-5,C) 50 75 -+
(12)
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+

CS’SS) = alSB(C’S)14’13

.188(0,8)16’13

+.041(C,S)18’13 - oOGB(C,S)ZO’ls ‘ lOQZ(C,szz,ls

-.064(C,5) 54 15 = +022(C,8) ¢ 15 *+ .009(C,8) 5 15

+.021(C,8) 59 13 * -

(CczsSgz) = =-039(C,8) 5 45
+.012(C,S)17'13
+.006(C,8) 57 13
+.002(C,8) 55 13

'.003(0,5)29,13

(C52552) = *+031(5,-Cly5 13
-+ 023(5,-C)y7 13
-+ 015(8,-Clgp 13
+.007(Ss'0325,13

+, 006(5,“(:)29,13

One can also repeat the

+

+

+

t

. - (13)
.021(C,8) 15 13

+007(C,8) g 13

+005(C,5) 55 15

L001(C,8) 57 13

. (14)

+

nOlO(S,"C)lS,lS

.027(8,-C)19,13

oOUl(S,'Cst’ls

+

o (15)

above computations using the

sum of the perturbations Aw, AM and cos i+AQ to derive
influence coefficients for observation of an effective

along track variation:
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CCO'SOJ = -.872("S’C)13,13 + 1000(-8’0)15,15 + .462(-S’C)17’13

[Err e i ——

o020('S,C)19,13 - .189(”S,C)21,13 = olGS(’S,C)zs,ls

.UBZ(~S,C)25’13 - .011(-5,@)27’13 + .025(-8,c329,13...
(16)

]
1

_516(-@,-3)14’13 + ‘Ugg(-c’-sjlﬂ,l:f) + -162C'C:'S)18,13

+

allb('C,"S)zO’ls + 0039(-(:”5322’13 - -010(-(:,'5]24,13

‘OZ?C-C’-S)EG’IS - .024('C"SJ28,13 - ‘UlSC-C’-S)EO,lSI'.

(17)

j CCS’SS) = .1?1(-5’{:]14’13 + .189(-S’C)16’13 + '03?(-8’(:)18’13

073(-8,C) 50,15 - +U98(-5,C) 55 13 - .068(-5,0)5y 13

1

(B23(-8,0) 96,13 * +020(-5,C)54 45 * L024(-5,C) 50 13-

(18)
(CC2 ,Scz) = -'040(‘-8,(:]13’13 + 0020(-8,0)15’13
+-014('S,CJ17,13 + .008("5.(:)19’13
+.OU7(‘S,C)21,13 + .006('5,(:]23’13
+0002[‘S,C)25’13 - |001('S,C]27’13
]
| ,
I 'oOOd(”S’C]?‘g’lsoc. : (19)
g (Cgq,5g2) = *.033(C,8)y35 93 * .009(0,5315’13
i
; “-024‘(C’S)17’13 - .UZQ(C,S)lg,ls
; -.OIG(C,S)Zl’ls - .001[C,S]23,13
)
| +.007(C,8)5g 15+ (20)
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TABLE
PERTURBATION AMPLITUDE IN & A (a) meters

(m = 13)
f= 9=-2 Q= -1 a=0 g=+ q=+2
13 -on ~2589 ~.103
14 -.448 ~.B47
15 034 2.196 on
16 24 -.149
17 ~.009 779 .030
18 63 .0:m
19 -.014 ~.026 023
20 126 109
N .006 ~.203 012
22 ~.029 .066
23 - 002 ~.146 .003
24 -.032 023
25 004 ~.060 -.002
26 -.017 -.001
27 ,003 -.007 -.003
28 —.004 —.009
29 001 013 -.003
30 —— 003 _— 009 S
RSS .04 0.51 3.2 0.86 n
TABLE 2
PARTIAL CONTRIBUTION Ala) m
m=13
[= q==2 q=-1 q=0 g=+ q=+2
13 -.005 -1.034 -.043
14 -.220 -.415
16 .019 1.235 .006
16 137 —.096
17 -.007 563 .022
18 123 .073
19 -.013 —.024 021
.026 109
2 ~.005 -.224 .013
22 —-.035 .079
23 002 -.193 004
24 —.046 .033
25 006 ~.094 ~.003
26 -.029 —-.002
27 005 -.013 -.007
28 —.008 -.019
29 .002 .028 —.006
30 —.006 ~.020
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TABLE 3
SENSITIVITY COEFFICIENTS
FOR GEOS—!l RESONANCE

13
14
15
16
17
18
19
20
21
22

E3JPISIY

AEla)

16

g -2 q=-1 a=0 Q= a=+z
-.004 ~.B86 —-.035
-.178 -.336
.016 1.000 .006
am ~.077
~.005 .456 .018
.100 .059
-.010 ~.020 017
021 .089
-.004 -.181 .on
-.029 .064
.002 ~.156 .003
-.037 026
.005 -.076 ~.002
-.024 -.002
.004 -.010 ~.005
~.006 -.015
.00 .022 —.005
+.005 -.016



As predicted, these sensitivities only vary slightly
from the values derived for Aa,

Similarly, the information content from the element
variations in 'e' and 'i' is almost the same or predictuble
from the 'a' variation since:

) [{1-q) cos i-m]
difha = — 77 , and

2a(1-e%) sin i

, 1/2 ,.1/2
e (1-e7) [(1-e") -(1-q)]

Aa 2ae

Note that these ratios depend on the frequency q as well as
the resonant order m, but they are independent of degree.
Therefore, the sensitivity tables for e and i information
are the same as those for 'a' with the following adjust-
ments (Table 4):

17
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TABLE 4
FACTORS OF THE Aa TABLE FOR
GEOS |1 OBSERVATIONS Ae AND Ay

q= -1 q=0 g=+1

Al --13.54 -13.27 ~13.00
Ae -1, 545 x 10™4 +t.
A= Al/-1354 1. 980 960

18



Table 4 shows that the sensitivities for Ai observations are
virtually unchanged froum those for 4a while the &4e information
appears to be significantly altered. But in fact, the de
information is almost entirely in the q=+1 terms which are
predictable from the 'a' variation, In fact:

Cc(ﬁe) = SSC&aj
SS(Ae) = Ccfﬁa)
(22)
Cs(ﬁe) = ~Sc(6a)
Sciﬁe) = -CS(Aa)

50 that no new information is added by observations of
eccentricity variation.

In summary, we have hypothesized that nearly all the
information in shallow resonance is contained in observations
of either the semi-major axis or along track variation., As a
consequence, analysis of tracking data within each short period
(1/¢m’0) may be made in terms of a simple "lumped" coefficient
set., Such a set will vary sinusoidally with the long period
of the argument of perigee, A similar analysis can be made
for the higher order resonances of 2Zm, 3m, ... , on the
same orbit.

We have chosen the GEOS-II (1868 2A) satellite to test
our method of analysis, GEOS-II has a principal resonance
period which is approximately 6.5 days. This satellite was
selected for three major reasons:

1) It has been heavily tracked with very accurate
instrumentation,

19



2) This satellite afforded us the opportunity to
! calibrate our new technique for identifying
resonant constraints since it was used in
almost all recent global geopotential
solutions,

3) The satellite is largely unaffected by
atmospheric drag.

The total resonance perturbation on GEOS~-II along
track is approximately 60uUm, and is an enormous effect
when compared to the 1m laser ranging and ~1V50 camera
instrumentational accuracy which was employed to track
this satellite,



ANALYSIS oF GEOS-II DATA FOR KESONANCE DETERMINATION

Following the hypothesis developed in the previous
section, the entire laser and camera data set available on
GEOS-II (in 19u8-09) was divided into forty-uvne 0.5 day
segments, The GEM1 gruvity model (Smith, Lerch and Wagner,
1973) was then employed and the orbital stute was estimated
using this tracking data, We, however, removed all m=13
terms from the GEMI medel and recovered a lumped value of
€(13,13) and S(13,13). These recovered values are plotted
“(fully normalirzed) against w in Figure 1, The results for
the various GEODYN solutions are summarized in Table 6,

The GEQDYN orbit determination svstem (T, Martin,
1972) was used for the resonance determination., GEODYN is
a Bayesian least-squares, multiarc, multiple satellite
orbit and geodet’'c parameter estimation swvetem based upon
Cowell type numerical integration techniques. Modeled
parameters normally include luni-solur gravitational per-
turbations, solar radiation pressure, atmospheric drag,
BIH polar motion and UT1 data and the GEM1 geopotential
model. Initially drag was modeled but not adjusted in
the single arc solutions. Considerabl~s correlation was
found between the drag coefficient and the recovered reso-
nant coefficients., Later, small but significant adjustments
of drag were made in a multi-arc¢ solution, having low
correlation with the lumped coefficients,

A weighted least-squares solution was then performed
to find the values for the sinusoidal terms in equation (10)
from the lumped values for (13,13) recovered from the
GEODYN orbital analysis over each 6.5 day arc, This
solution found the following values describing the lumped
coefficients:
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TABLE 6 GEOS -1 LUMPED OEFFICIENTS FROM INDIVIDUAL ARCS

WEIGHTED
FORMAL FORMAL AMS OF
ARC C LUMPED S LUMPED ARG OF PERIGEE  C SIGMA 5 SIGMA FIT TO DATA
x1w0? xw® DEGREES x1wo M x1w0 "

1 5612 51.19 8333 0.28 044 166

2 5658 58 68 75.06 081 07 087

3 -60.95 64.34 66.76 0z 0.36 0.98

4 6116 66.82 5610 02 036 096

5 -60.87 7263 43.26 016 024 084

s -1.07 6911 un 0 048 090

7 7079 .78 2497 023 032 087

8 -69.88 73.60 15.18 043 o 1.60

9 1217 80.85 143 017 022 196
10 -67.11 73.35 351.74 014 022 101
" -85.07 7513 424 018 019 099
12 -60.24 76.50 33183 048 0.44 090
1 -57.36 76 80 32341 018 0.22 1.00
" 5297 74.00 n242 027 031 0.96
% -49.07 71.38 299,93 034 0.34 1.26
% 3973 7260 290.07 0.23 022 on
1] 3356 69.76 276.73 021 0.14 097
18 -2146 65.80 266 56 0.23 017 1.00
19 ~19.84 6092 766,41 026 018 "
20 -17.92 431 143 66 0.36 0.26 o
27 ~2361 46.01 134.27 1.26 084 088
2 -26.80 4445 126.13 0.22 0.23 090
73 34,69 49.96 1270 065 048 0.9
24 4162 49.78 10087 0.26 0.29 094
» -49.2. 53.42 91.49 024 033 106
» 5104 61.26 81.96 0.27 037 088
27 58 78 5033 7214 0852 100 096
) 6025 6444 6166 040 0.46 098
2 -70.10 73.51 52.40 0.40 0385 114
30 -16.19 52.44 246.74 0.28 015 114
n ~13.18 4880 234 92 013 on 164
32 ~10.40 47.02 226 58 0.36 018 139
1 1704 4897 159.35 018 031 090
34 ~23n 48.42 149.70 0.16 022 1.01
3 -28.20 54 89 137.01 018 022 134
" ~33.06 53.32 126 92 0.16 024 0.86
37 00 5279 178.18 0.30 025 118
8 -45.00 56.17 11152 018 013 1.01
39 4170 51.93 101.09 033 023 126
40 -58.17 56.28 9174 062 037 077
4 -66.80 66.61 81.98 0.65 058 077
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-40,0086 x 10°Y

[
o
n

61.2619 x 1077

15,6332 x 1077

]
1]

]
]

-29.0172 x 10

-11.3765 x 10

| 9]
n

' S
S. = - 2.8247 x 10

Since no other resonuant term is modeled the (C’S)13,13
values themselves can be considered the lumped coefficients in
in equation (10), We have lubeled these C',S'. In equations
(11- 20}, the full model for these coefficients are (arbitrarily}
normalized with respect to the (15,13) term which has the
greatest influence.

The assumption here is that the resonant information
is entirely along track (equutions 16-20), Therefore,
according to the convention in these equations (0% .

872 CS',-C'). The terms of these lumped resonant co-
efficients are thus:

i

S, = 34.922 x 10”9
e .9
7 -9
S = 25.328 x 10 ;
~ (24)
o -9
-C. = 15,646 x 10
. .y
5, = 9,930 x 10

-C. = -2.,466 x 10




These coefficients c¢an then be used in equations (16-18)
to produce uny three resonant coefficient sets modeling the
thres distinct frequencies for the y=-1,0 and +1 terms. Such
a set is presented in Table 7, The q=+2 {frequencies were
barely detectable in the lumped coefficients and were not
successfully recovered from this data,

This same analysis can be performed using the &a
constraints found in equations (11), (12) and (13), The
same résonant coefficient set for Aa are also presented
in Table 7. Since the two sets of constraint equations
are nearly the same, these sets are also,

25




(15,13}
$(15,13)
C(14,13)
$(14,13)
C(18,13)
5(16,13)

TABLE 7
RESONANT COEFFICIENTS
FROM GLCBAL * GEOS~Il TRACKING [LATA
{SINGLE ARC ANALYSIS)

from fram

(A Along Track) ' (Aa)

34,922 x 10™9 35.438 x 102
-53.473 x 1072 ~54,263 x 102
27.976 x 109 28.880 x 109
47.408 x 102 48.204 x 10~9
27.228 x 102 25,330 x 102
-29.845 x 10~9 -27.208 x i0~%

*Data over a full rotation of perigee.
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ERROR ANALYSIS

The ORAN program (C.F., Martin, 1970) was used to
perform a comprehensive error analysis of our resonant
harmonic determination. In particular we wanted to know
why the single arc lumped harmonics in 1969 were sys-
tematically displaced from those in 1968 (see Figure 1).
The ORAN program calculates the effect of unsolved-for
(and poorly determined) parameters on the resonent
determination. ORAN does this (without lengthy simula-
tions} by computing numerical measurement partials with
respect to a large number of unrecovered effects. Three
kinds of problems were investigated:

1, ORAN was used to perform a classical error analysis
and gave both accuracy assessments and located the
dominant error sources affecting the recovered
resonance terms. The modeled errors included:

° atmospheric drag at 40% error in a ballistic
coefficient, Cpe

° tesseral and zonal harmonic errors at 25% of
the difference between two independent gravity
models (Martin and Roy, 1970):

. tracking station coordinate uncertainties in
the adopted set of positions employed fcr

these solutions (Marsh et, al,, 1973):

. an error in u of 1 ppm,
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The results of this error analysis are summarized

in Table 8., This analysis indicated that atmos-

pheric drag was a large error source and could
substantiully bias the resonance recovery from

each arce. This wus surprising since the overull

effect of drag on the rather high GEOS II orbit

is smull, Greater effects were seen, however,

in the high solar cyele yveurs of 1968-69., In

fact, a large part of the discrepancy between

the 1968-1969 data in Figure 1 could be due to

drag error. The non-resonant geopotential error

is probably overestimuated in Table 8 since the

tfield used for the GEOS arcs (GEM~1) was deter-

mined with much of the same optical data., Also, the
gravity model ervor magnitude was scaled vo the SAO
Standard Earth 1I Gravity Model (Gaposchkin and Lambeck,
1970) which has been shown by Klosko and Krabill (1974)
to vield approximately twice the orbital errors

as that ot GEM-1 on GEOS I1 orbits., Attempts

were made to determine a drag coefficient, CD,

in each of the 6.5 dav orbital solutions, but :
excessively high correlations between CD and |
the resonance terms (at times exceeding .90)

prevented our having much confidence in the results,

The ORAN program wus also used - verify the ;
analytical development and po:  .tion of the :

previous sections of this rveport., Values for
all of the ISth

ance terms were modeled as error sources at the |

(through degree 21) order reson- :

magnitudes listed in Table 9 as o and theveby
had their perturbations propagate into the re-

covered values for (13,13)C at the magnitude

S
Xl ™ - * a - »
listed as . By comparing quantities « and 3§ we

were able to numerically determine values for
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ARC
EPOCH

680307

690207

C(13,13)
$(13,13)

C(13,13)
§(13,13)

TABLE 8. EST.ATED ERROR IN RECOVERED (13,13) g
VALUES FROM ERROR ANALYSIS FOR TWO SAMPLE GEOS—I1 ARCS
(NORMALIZED VALUE X 12 9

ERROR SOURCES

(Magnitude)
GRAVITY STATION
MODEL COORDINATES
P DRAG ERROR (AT MARSH
(40% OF (.25 APL— ESTIMATED
{1 ppm) CDi SAD M-1) UNCERTAINTY)
.015 3.068 0N 0.334
-.on 0.464 1.238 0.929
027 -1.660 3.073 0.747
.029 2579 -0.415 0.265

RSS
TOTAL

3.181
1.616

3572
2625



TABLE 9
ORAN CALIBRATION OF GEOS-11 SHALLOW RESONANCE STUDY

(8) VALUE ORAN

R UONMOY  ORAN SENSITIVITY VALUE PREDICTED FROM THEORY
PROPAGATED ABSORBED  SENSITIVITY SEMI— FOR q=--1,0,+1 TERMS
(NORMALIZED)  BY (13,13) o (B) MAJOR ASCEND. ALONG

Co, SO X 109 ¥ 10~ o AXIS NODE ECC. TRACK
C(15.13) 4448 —5.174 1164 “1.129 1564 “1129 1146
$(15,13) 4444 —5.144 1158
€(17.13) 3.460 ~1.840 ~ 532
$(17.13) 3.460 ~1.842 - 532 - 815 -1.182 - 518 - 5%
€(19,13) 2770 + 087 031
$(19.13) 2.770 + 076 027 022 -1.72% oz o
€(21,13) 2628 + 514 227
$(21.13) 2628 + 507 223 -204 -0.954 -205 217
ICC, SC| - cos w

~s(14,13) 51.020 4160 292

Cl14.13) 51.020 4106 288 162 ~ 009 -102.83 Y8
~8(16,13) 39.063 +0.292 - 027

c(16.13) 39.063 ~0.195 ~ 018 - .o -266 -125% - %
~s(18,13) 3.086 +0.086 - 099

Cl18.13) 3.086 —0.081 ~ 094 - 050 133 -#n - .
-$(20,13) 2500 +0.046 ~ 065 -

C(20,13) 2.500 -0.047 - 063 = L8 - 432 e -
ICS, SS] - sin w
c(14.13) 51.020 ~7636 ~ 156
s(14.13) 51.020 —6.454 - 132 - 134 33 el - -8
c(16,13) ¥ 083 ~7.539 ~ 201 - 204 ~ 162 - 7532 - 208
$(16,13) 39.063 ~7530 ~ 201
€(18,13) 3.086 ~1373 0463
$(18,13) 3.086 1597 0539 - 0% - 808 ~367.2 =92
€(20,13) 2500 +.1756 +.0731

$(20,13) 2500 +.1600 + 0667 073 - 542 -24.9 080



the sensitivity coctficients, checking the unalvtic
results. Table @ presents these results, As antici-
pated, the along truck constraint best represents

the relutive sensitivity of the 13th order terms for

the q=0, and vomposite g=+1 frequencies for GEOS-11.

The fringe terms are less well modeled than the dominant
constuant C0 and SO terms, especially the small cosw
terms for this suaple w &= 75° orbit,

3, ORAN simulations were alsc performed in 4 muanner
similar to the preceding, but simulating the ad-

th order terms,

justment of more than one pair of 13
This analvsis wus done to assess how much resonunce
informution was contained within euch 0.5 day data

set, By propagating the effects of the unsolved for
and therefoure negleécted resonance terms into the

orbit, and getting an estimated satellite positivnul
error, we found that when two even and two odd degree
pairs of coeificients were recovered, the remuining
orbital error from all other resonance terms was
estimated to be les- than =Y cm. When two even and

a single odd pair of coefficients are recuvered,

the estimated orbital errors were at tim#s, 2 meters,
With a single odd pair recovered, the estimated orbitul
errors due to neglected resonance, at times were 1U0's
of meters, We therefore deduced that two even und

two odd pairs of coefficients could recover the total
resonance information for GEOS-1T,

The problem of atmospheric drag errors wias still present and
we therefore decided to recover a single set of two odd and
two even pairs of resonance coefficients in a multiple-arc
solution using 14 6.5 day orbits well distributed over the
apsidal period. Two pairs of Zﬁth order (~3%-day period)

terms were also estimated. In each of these arcs, a CD wds
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independently estimated., However, since a1l 14 arcs contributed
information to the resonunce recovery, the correlation between
the recovered CD'S and the resonunce terms was satisfactorily
reduced to no more than 0.6, and seldom exceeded 0.3,

It is these results which we have adopted as best for
this report. These lsth order coefficients are presented in
Table 10 and are used for the theoretical resonance values

plotted in Figure 1.

Comparisons with Comprehensive Sruavity Model
Soiutions

There are many comprehensive pravity models which
have been produced using sutellite tracking data. Some
used data from GEOVS-11, while others did not, One can
pet some estimate of the consistency between various models
and also compare the results inferred from these models
for GEOS-II with the results we have obtained using our
nuperical analytical technique.

By tuking equations (16) through (20) derived from
L4 + &M + cos 1+40) and substituting ceoefficient values frowu
a given gravity model, one can compute a value of the lumped
coeftficients for each of the gravity models, Table 11

presents these results.

Table 11 indicates very good agreement between our
GEOS-L1 multi-arc analysis and the results obtained from
comprehensive geopotentiul solutions which had a strong
presence of GE0S-II data., The lumped coefficients for
the comprehensive models are remarkedly consistent (on
the whole) in spite of a fairly wide divergence of actual
coefficients (see Figure 2 and Table 12), 1In Table 12 we

huve listed 6 satellite only soiutions (and their GEOS-

93]
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TABLE 10. GEOS—Il RESONANCE HARMONIC RECOVERY
USING A MULTI-ARC SOLUTION

ALONG TRACK

COEFFICIENT NORMALIZED CONSTRAINT LUMPED
VALUE x 1079 VALUES

C(13,13) —65.166

$(13,13) 70.009 So = 8.1376
c(14,13) 27.054 Co = +65.9037
5(14,13) 53.582 Ce = +13.3607
C(15,13) -18.744 Sc = +27.9889
$(15,13) 5.205 Sg = 8.5028
€(16,13) 20516 Cg = —6.8818
$(16,13) ~11.993 Cpc™ 27169
C(26,26) ~63.160 Spc*  2.2488
$(26,26) 23.682 Cpg~ - 2.3204
C(27,26) -~ 3.035 Sps” 23611
$(27,26) 30.581
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TABLE 11. GRAVITY MODEL ( OMPARISON FOR RECOVERED
LUMPED GEOS—11 RE: ONANCE COEFFICIENTS
(NORMAL ZED X 10%)

MODELS NOT USING GEOS-1I MODELS USING GEOS-lI

LUMPED  GEOS-II  GEOS-II . i
COEE pesipssctoes s ] RAPP AFL - viONOULIS || DOUGLAS SAO SAQO GEM1 GEM4 GEMS GEMG PGS DOPPLER
(x 109 KLOSKO KLOSKO 50 n " 62

ANALYSIS INDIVIDUAL
(MULTI-ARC) ARCS

(1967)  (1973) (1968) (1969) (19701 (1974) (1971) (19721 (1978) (1974)  (1974)
(=]
=3
gg So 38.138 3492 17.41 2167 18.10 18.10 @ 3778 2996 3752 40.06 3993 40.03 3271 3I°83
"'F Co 55 904 5347 21.41 62.87 68.04 68.04 @ 5657 6248 55.10 55.73 55 02 55.02 5532 5454
o
| &'
g S¢ 27.989 2533 14.82 232 48.18 477 2754 2987 2748 28.33 28.16 2722 7
u Cosw
I
| B Ce 13.360 1365 10.37 402 ez 1806 1629 1132 1359 1297 1294 1522 1684
‘ Sg 8503 993 3139 9.35 1.38 1143 701 964 5.59 5.98 6.06 777 824
Sinw
6882 -247 - 485 - 295 -15.77 789 -541 - 52 -243 - 153 -350 -374 -3%2
| %, * IV - — 157 343 305 281 274 280 249 308
! Cos 2w
scz £ ; . 284 237 165 1.28 170 166 179 200
2329
cst ------ — 447 -335 -1.20 -118 13 -1.3% -1.72 -30
Sin 2W
s‘z = — 456 397 3134 1.80 249 255 213 22

SUSED YIONOULIS (1968) ODD DEGREE TERMS

Ve

*FROM ALONG TRACK CONSTRAINTS



13C
138
14C
145
16C
168
16C
168
17C
178
18C
188

19C
195

21C
ns

EEUBEY
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7
278

ERERUY
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nOOD

GEM 1

~63.3
104
174
%64
-26.4
- 068
163
- 34
56
m
- 8.7
~-380

~28.6
-45.4
21
15
~20.0
10
-413
5.0

65.10
371.62
11.32
2087
~ 5.26
9.64
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TABLE 12 137" YADER SATELLITE SOLUTIONS: uniTs, 10~?

GEM 3

-26.2
961
302

45
14
120
44

-21.9
324
436

- 39

~-89.7

- 6.2
- 0.3
21.7
~-72.6
-188
26.3
180
~308

56.76
40.09
1267
27.45
- 2.50
5.59

-59.6
683
248
420

-26.1

- 25

6.5
- 26
131
238

-20.3

~398

-16.3
~233
59
"
~26.3
162
-225
16.7
-11.4
24
-228
- 4.2
156
78
85
- 0%
- 36
128
~66.1
- 87
-15.4
-16.9
29.0
26
556.32
38N
16.22
27.22
- 374
7.70

62
70
a2
48

-3

-1
18
~ 4
19
27
-10
-29
6

19
14
-9
= 1
7
20
19
17
10
=
13
-19
n
-4
-16

54 54
3788
16.64
27.07
- 3.62
8.24

PGS 62 DOPF' ER RIEGBER

444
681
%3
466
131

- 84
374

~-17.8
104
19.0

64
~-201

-62.6

~20.0
366

21

~46 6

19.2

5361
40 48

11.85
2157
- 3N
10.67
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GEM &

-69.8
68 9
145
%4

~-226

- 2.2

09

-13.2
104
188

~2256

619

~-24.4

-30.0

-~ 20

~3.7

-270
108

-41.2

-16.9

56.02
39.93

12.97
28.33
- 3863
598

w%?

59.2
9.2
61.0
610
444
4.4
mn
kLR
340
346
309
Joe

217
217
250
%0
227
22.7
189
189

102
r0.2

270
210
ne
ne

AVG.

-62.6

ne
%7
%6
199

19
138
10686
151
219

549
39

136
27.9
- 37
8.0

133
LA
176
16.7
99
74
123
16
87
10

n
113

185

i
1.82

%)
0 En”
25
190
149
308
223
166
na
196
2.1
292

10
16

6.9
36
6.8
153
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lumped coetfficients) with strong GEOS-II tracking, GEML [Swmith
et,al, 1973] contuins optical datu only, GEM3 [Lerch et.ul,,
1972] has electronic {Trauet Doppler, € and S-band radar and
laser) and additional optical data added to the GEM1 tracking.
The data is emploved ut full weight (according to the accuracies
of the systems as judged by the arc residuals)., Thus, GEOS-I1
tracking Jdominates the GEM3 geopotential, but this heavy track-
ing had some deficiencies which were remedied in GEMS and

later solutions. The clilef deficiencv was the poorly kinown
Doppler stations. 1In GEMS [Lerch et.ul,, 1974] the electrunic
and optical data for the GEOS (I und II) orbits were down-
weighted to reduce the effect of these processing errors.

wWith PeS62 (F.J. Lerch, Private communication, 197431, the
station positions and duta biases were resolved and the

GEOS-IT data (with additional Doppler and luser tracking)

had full weight again,

In Table 12 the Doppler solution uses only Doppler
data on 9 distinct satellite orbits with heavy GEOS-II
coverage, The Riegber und Ilk (1975, Table 2, Col., 3)
solution uses optical and laser data reduced to 30 (resonunce)
condition equations on 6 orbits including GEOS-TY,

In spite of these differences in observation and
data reduction, tne GEOS-11 lumped hurmonics are relatively
stable compared to the ygeopotential itself. [In Table 12,
we compare the RMS of coefficient variation with Kaula's
rule (luﬁs/kz). This is a uniform measure of precision
over all degrees. For the lumped coefficients the estimate
(lﬂﬁs/iz) is actually the root sum of scuares of 2ll terms
in each lumped component.] Except tor Sg,
have 4 precision about @n order of magnitude greater than the

geopotential harmonics. The greater scatter of 5, values may
be due (subtlev} to the scarcity of GEOS-11 obseérvations

around w=190°, This comparisen is presented graphically

in Figure 2. In general the lumped coefficients appear to
represent excellent constraints for the GEOS-IT try 2 ing record,
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Compurison with Douplus, Marsh und Williamson (196Y9j)

Douglas, Mursh and Williamson {1969) performed an
analysis to recover resonance terms from timing errors
(along track errovs) in the Rosmuan GRARR data over a 5 «duy
arc of GEUS-I1I, ‘They modeled the odd degree, 13t]'l order
terms with the values of Yivnoulis (1908) und attempted to
enhunce this set of coetfficients by solving tor a value of
{14,13) waich would combine to properly model the Ge£0S-11
resonance perturbations,  They assuimed all the timing error
was taken up in the resoruance perturbation of the mean
anomuly, This is the second term vf the expression for
Moin equation (3)., A more complete expression for the
along truck error [Aw+timtcosi-ial] which we use, differs
from theirs by about 1uU%., Tn addition the Douylas-Yionoulis
values apply only to the 1isited urygument of perigee during
their 5-day are (~350%), Nevertheless a comparison of our
lumped coefficient with theirs at this perigee for GEOS-II
Ly reasonably ¢logea,

Using the constraint for along track information only
{Table 11 in (101 for our tmulti-drc) solution; eguations

(lo=18) in (1u) for the Douglas-Yionoulis set]; this comparison

is presented in Table 13, The o 'global' constraints them-
selves, computed from the Douglas-Yienoulis field are much
poorer, But GEOS-11 duta is unly represented in that field
by a4 single satellite arc (see Table 1).

Comparison with Riegber's (1973) Constraint

In his 1973 puper liegber has shown how it is possible
to derive resonance {or other periodic) variations from a
'Fourier' solutien of the satellite's wotion as a boungary
viilue problem, Instead of the 'natural' frequencies (¢) of

[¥3]
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TABLE 13
COMPARISON OF DOUGLAS—-YIONOULIS AND GECS~Ii
GLOBAL RESONANCE ANALYSIS FOR
LUMPED COEFFICIENTS AT
W = 349°.66

c x 10° g.x 109

Ddugias, et al, 1969 76.02 65.26

GEOS-!| Rescnanse
Analysis (this report) 67.81 64,14
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the orbital perturbations, Riepber uses twice :the period of

the (onulyzed) arc as fundamental, and all necessary subharmonics
of tliis to describe the variations of 'Kepler' element combin-
ations, Using these (arbitraryv) frequencies, he calculates

(bv gquadrature) theoretical amplitudes for the element combina-
tions in the style of a Fourier analysis, The advantage of

the method is thut it (uppurently) separates effects perfectly;
only orthogonal functions are determined. The disadvantage

is that the natural frequencies are not all simply related to
(feven) o well chosen arc length, Therefore, a large number of
terms may have to be evaluated to resolve a variution of 4

few close frequencies, More serivus may be the restriction that
only the amplitudes are determined by the method. Geopotential
phase information is lost in defining two boundary values for
each element from the orbit data, Nevertheless, impressive
results have been achieved with this method (Riegber, 1974,1975)
and an agreement with our analysis can be demonstrated,

Riegber (1973) analvced optical data in a GEOS-TI —
arc (5.8 davs long) for the amplitude of the vesonant
variation ot w+M+it, The measured amplitude is related to a
condition equation (a calculated quantity) invelving all
13th order harmonics., Unfortunately, no direct check can be
made with our influence coefficients since »urs are for
sine and cosine terms independently. They contain phase as
well as amplitude information. However, the amplitudes of
our lumped coeftficients [[C*)2+(S*)2]1/2 can be compared to
Riegber's.

In Table 14 we make this comparison for 3 fields:

1, Our CE0S-11 tfield from individual arcs (Table 7,
along track)

o The SAQ SE2

30



TABLE 14. COMPARISON OF .. uS-2 RESULTS WITH
A RIEGBER CONSTHAINT

DATA ARC IS 5.8 DAYS LONG
CALCULATED AMPLITUDE (10”7 RADIANS)

"FOURIER’ oeorphi RIEGBER

PERIOD 7 OUR INDIVIDUAL  ADJUSTED

(DAYS) w? (10~ ' RADIANS) SAOSE2  ARCSOLUTION SOLUTION
5.8 261.2 300 + 16 303 303 327

CALCULATED AMPLITUDES |C*,5*|
AND (RAT:0) IC* 8*| /CALCULATED
RIEGBER AMPLITUDE

656.95 56.91 62.32
(5.4) (5.4) (6.3)
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3. Riegﬁér‘s (1973) corrected with EDQ [17,13)C S =
) »
(60,"4.5)

It is noted that our field ugrees with Riegber's observation
as well us his which was '£fit' to this data.

The computed lumped coefficients for w+M+2 by our
anulysis are very close to those for the along track since it
is dominated by w+M which is the same for both, But tie
correspondence of the amplitudes of our lumped values (using
the various fields) with those computed from Riegber's
condition equations is close but not exact, It is gratifying
that the comparison is good.




Verification of Results Using GEOS-II Data

Another obvious means for assessing the accuracy of the
derived values Yor the m=13 resonuance coefficients found in
this analysis is vo use these coefficients und compare orbit
determinations with them and other sets of coefficients,

Five epochs were selected huaving a wide range of argument of
perigee., The datu reductions were repeated three different
ways:

™ a solution was performed using the GEMO (Lerch,
1974) Gravity Model without uny m=13 terms. This
was used as a basis for assessing the total
resonance information in the arcs,

L a solution was performed using the GEMo Gravity
Model cemplete to (22,14). Three pairs of reso-
nance coefficients were adjusted - (14’13)C,8’
(15, la)c ~ and (160, 13)ﬂ g These solucions were
used W1th those above to gauge the total resonunce
information in the arcs

. and lastly, the same arc was reduced using GEMo
without its m=13 coetfficients, but added to
GEMo were the réesonance coefficients recovered from
the multi-arc analvsis (presented in Table 10).
When this solutivn is compured to the one immediately
gbove, one can pet a fairly accurate measure of
resonance modeling obtained using the constraints
derived in this analysis,

Table 15 summarizes these results.
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It is reulized that this form of verificution has cer-
tuin limitations, When one introduces six uadditional degrees
of freedom to any Jdata reduction, other errors (i.e.,, drag,
solaur radiation pressure, low degree and order geopotential)
will bLe purtiali - accommoduted, Theretfore, the solution using
the complete GEM6 with three pairs of coefficients adjusting
may vield results which include accommodution to these other
error sources, Nevertheless, the level of resonance modeling
obtuined from our analvsis can be inferred (pessimistically)
from the results presented in Table 15, Our global solution
models all but about 1.7% of the 13th order resonance informa-
tion in the GEOS-I1 orbit.

Table 15 uses weighted RMS as its measure of the gquality
of fit to the data. The actual data weights emploved were:

camera observations: an
range (laser) observations: 5m

The laser range data was ulso sampled sc that only 50 pts/pass

was used in this analysis,
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RESONANCE VALIDATION USING GEOS-11 DATA

TABLE 15.

RMS OF FIT TO THE DATA ®
GEM 6 GEM 6 GEM 6 @ ESTIMATED PERCENT
ARG w/ouT ADJ. USING DEGRADATION PERFORMANCE
EPOCH OF ANY D) (14, 13) DERIVED (3) TOTAL USING OF
OF PERIGEE  (m=13) (15, 13) (m=13) RESONANCE DERIVED DERIVED
ARC (EPOCH) RES TERMS (16, 13) RES TERMS CONTRIBUTION VALUES MODEL
® - @ - ® + ®

680509 337° 10.616 0.840 0.876 9.776 036 0.0%
680407 30° 9.224 0.776 0.823 8.448 047 0.6%
680907 140° 3.348 0.857 0.885 2.491 028 1.1%
690207 252° 14.739 0.930 1.360 13.809 430 3%
680611 282° 9.666 0.871 1.026 8.795 156 1.8%

RMS

PERFORMANCE 1L.7%



CONCLUSTONS

Gravitationul construint egquations have been derived
from GEOS-TT daty and a detuiled analvsis of the shallow
resonaiace problem. These equations follow from elementary
perturbution theory and the along-track constraint Jderived
from them accounts for all but about 2% of the 13th order
resonant information in the tracking Jdata, The equations
are also in good agreemnent with recent comprehensive gravity
models of SA0, GS¥EC und from Doppler datae only, which use
substantial amounts of GEOS-1] Jdata.

The goal of the anulyvsis has been met; to derive
simple constraints which account tfor nearly all of the shallow
resonant information in suatellite orbits. The method makes
it feasible to reduce comprehensive field models to the lumped
coefficients for orbits or orbital arcs used in their solutions,
The proper combination and extension of this constraint data
should be straightforward, but is & task left for the future.
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