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TECHNICAL MEMORANDUM X-$4_)49

TWO-DIMENSIONA L CONVOLUTE INTEG}:RS FOR

OPTICAL IMAGE DATA PROCESSING AND SURFACE FITTING

INTROD UC TION

Two-dimensional convolute integers are sets of convolution coefficients

of integervalue which can be used inoptical image data processing and surface

fittingproblems. Applying these coefficientsto a set of data is equivalent to

doing t_vo-dimensionalregression calculations:i.e., fittinga surface by least

squares, without considering the time-consuming summations associated with

the usual normal equations. The only requirement for use of these coefficients

is thatthe data pointson tilesurface be eitherequidistantalong theirorthogonal

axis, or be spaced an integermultiple of n common factor.

A moving smoothing average is one of the fastestalgorithms which can

be applied for noise filteringin an opticalimage, but ittenJs to reduce reso-

lution. The coefficientsin such a filterare convolutioncoefficients. Two-

dimensional convolute integers utilizethe fastlogic of the moving smoothing

average without sacrificingresolution. From the definitionof these coefficients,

ten properties appear. These properties indicatethe existence and universal

aspect of the filternumbers. As a consequence of being derived from regres-

sion theory, the filtershave low-pass nnd high-pass filteringproperties. This

is equivalentto smoothing and generating tilepartialderivativesassociated

with surface order. The number of unique integers per filterrepresents thu

minimum number of multiplicationsper image pointand significantlyaffects

the filteringtime. A zero order or firstorder surface is identicalto nearest ]_

neighbor averaging. Double convolution,which represents band-pass filtering

and can generate surface normals, can bc accomplished by a singleset of

integers using an expanded filtermask.

The appendices contain detailedcalculationsfor a 25-point filter,

5 by 5 mask, second order surface. The normal cquations for a firstand

thirdorder are also presentod.

% , ;_ '
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MOVING SMOOTHING AVERAGE

The conceptofa moving smoothingaverage rep'cesentsone ofthe
simplestand fastestfiltersthatcan be appliedtonoise:reductionina two-

dimensional image. The filter can be considered a mask, m rows by n
columns, which when applied to the data in a two-dimensional image causes a
nearest neighbor interaction.

The interaction results from adding the intensities of all the poin*_ sur-

rounding a particular location, including the value of the intensity at this
location in the sum, and then dividing by the total number of points considered.

In this way, nearest neighbors have an opportunity to influence the new average
value, which sh_l be considered the filter (laLq point.

This m by n mask can be passed over all the data points in an image,
with the exception of a border of points left unfiltered. Requiring an odd

number of rows and columns unambiguously determines the center point of the

filter mask, which can then be shifted column by column, advancing one row at
a time when a border column is reached.

In particular,each datapointinthemask can be thoughtof as multi-
plied by a coefficient C.. [Eq. (1)], added with all other points in the mask,

1}

the sum divided by a normalizer (Norm), and the resulting new filtered data
point put in place of the raw data point. By this method, the raw data array is
transformed into a filtered data array.

For a moving smoothing average, all the C,. terms equal unity, ,_nd
11

Norm is equal to the number of points in the nrray.

m n

z' (x,y) = _ _' Cijzij(x,re _ y)/Norm , (I)
i:--m j -n

where

, z : array of raw data points,

z' = array of filter data points,

ij represents a point in the (2m 4 I) by (2n _ 1) filter, and rc

2

a

J 1 i
J
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_. represents a raw data point in an image at row r and column c and is the
center point of the filter mask.

Such a filter is nonrecursive and, therefore, requires raw data points
in the Z vector at all times. Unfortunately, this type of filtering, though simple

, and fast, tends to blur an image by decreasing the overall sharpness, or reso-
} lution.

The problem which thenarisesrequiresthedevelopmentof a setof
weightingcoefficientsC..and Norm which filterwiththespeed of Eq. (I) and

l}

yetdo notdecrease resolution.

CONVOLUTION

The coefficients C.. in Eq. (1) are convolution coefficients for the
l}

following reason. The filter can be considered an operator which forms the
filtered data by integrating the raw data over a weighting function Q(o,_ ):

z'(x,y) = ft_(c_,_)z(x-a,y-_)dad_ . (2)

This integral is defined as the convolution of z(x-_, y-_ with fl(o,f_ ). In a
digital filter, the weighting function is of the form

m n

t2(oL,fl) = _ _ CijS(ol + i, fl + j)/Norm , (3)
i=-m j=-n

D
where 5 is the Dirac delta function representing the discrete sampling of the
data. Using this in Eq. (2) gives

[ m n 1
:< z'lx,y) = f _ E CijSla+i'_+J)/N°rm zlx-a,y-_)dadfl
': i=-m j=-n

)_"i '
£L

_ m n

= _ _ ci)_(x+i, y +j)/Norm . (4)
i=-m j=-n

i
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When z(x �i,y 4 j) is equated with z!j(x,y), Eq. (4) is seen to be identical

to Eq. (1). Thus, the Cij's and Norm are known as convolution coefficients.

TWO-DIMENSIONA L R EGRESSION

Two-dimensional regression calculations are equivalent to fitting a
polynomial surface to a s(t of data by the method of least squares [1]. A
general expression for a two-dimensional surface is

m n

_0 _0Aijxi Jk
Z'k = k y " (5)

i= j=-

Equation (5) represents the intensity z' k at the point k on the surface of

order m 4 n described by the regression coefficients A...
ij

Let z k represent the actual intensity at the kth position on an image.

Fitting the surface to the data set Zk(X , y) by the residual sum of squares
leads to Eq. (6),

np m n i

62: _ zk - _-_ _, AijXkY • (,;)
k:i i_0 j:0

Selecting the best fit regression coefficients, I_

- U V

862/aAuv = 2 zk _ Aij Y XkYk = 0 , (7)
i=O j=O

leads to the normal equation

m n np np

_' _ AijXki+uykJ+V = >_ ,, v
i=O j=O k=l k=l--ZkXkYk ' (_)

i

4

r_
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where u = 0,m and v = 0,n. Matrix representationof Eq. (8) resultsinthe

_ more familiar form of the normal equations.
V

_T. _._. A= ._T. Z , (9)

where Z is a column vector of raw data points, np by 1; A is a column vector
of coefficients representing the surface, nt by 1; _' is a matrix of cross

product terms, np by nt; and

nt = (m+n+l) • (m_n+2)/2 ,

number of rows and columns inthes_Tnmetrie_T . _, matrix.

TWO-DIMENSIONA L CONVOLUTE INTEGERS

Definition

Rewriting i_q. (1) in matrix form allows an identification of th_
regression coefficients, A, with the convolution coefficie" ts C.

z' = C • Z/Norm (I0)
rc

(Note that C is a row vector of double-subscripted elements, Z is a column
vector of double subscripted elements, and both have np elements. )

Solving the normal equations for A, which is equivalent to obtaining intensits,
values on the fitted surface, yields

(_T XT)-I x_T
A = • • • Z . (II)

Recognizingthe similarityinform between Eq. (I0)and (II)
(theA's and Z's are bothlinearcombinationsof theZ 's)permits a definition

,._ of theA's in terms of theC's,

Ai
_ = C • Z/Norm . (12)

5

¢
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Evaluation of the C's and Norm associated with each Aij is readily
accomplished by applying Cramer's Rule for obtaining the A's in Eq. (9) and
identifying the coefficients of Z as C/Norm.

Properties

The convolution coefficients have ten properties which can be seen
by solving Eq. (11) and identifying the C's and Norm. These properties,
listed in Table 1, will be discussed in detail and lead to the application of
the sets of C's a,_d Norm's in optical image data processing and surface
fitting.

TABLE 1. PROPERTIES OF TttE TWO-DIMENSIONAL
CONVO LUTION COEF FICI ENTS

1. Existence- Number of points on surface must be
greater than surface order.

2. Universal Numbers - Convolution coefficients depcnd

only on surface order and filter mask size.

3. Antisymmetry- The cross product matrix is sparse.

4. Equal Interval- Convolution coefficients are integral
numbers.

5. Regression- Convolutior coefficients derived from

regression theory are filters,

6. Surface Fitting- Convolution coefficients rt, present

_u_face partial derivatives.
7, Equivalences - Convolution coefficients for adjacent

surface ,)rders are identical, as are the transpose

of complementary roughing filters of the same order.

_. Symmetries- Convolution coefficients have a minimum
unique set of values per filter.

'_"{ 9. Plane Surface Convolution coefficients for a firstorder surface represent a moving smoothing average.

10. Double Convolution- Convol,,tion coefficients for

band-pass filtering anti surl. 'e normals t_present
double convolution.

6

_t | J a
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Existence. For each A.. associated with a surface of order m+n, there
U

exist a set of C ts and a value for Norm so long as

• _rT:_ 0 . (13)

This nonsingularity requirement indicates that the number of points on the
surface, rip, must be greater than the order of the surface, m+n.

Universal Numbers. The values of C and the value of Norm associated

with a surface of c,rder m4 n and np points arc independent of the values of the

intensities, z k, on the surface. Thus, the convolution coefficients arc

universal numbers completely deserilxetl by two numbers, m+n and np.

Antis3av, mctry. An antisymmetric filter mask has an odd numlx_,r of
rows and cohanns, not necessarily equal, which, as previously stated,

unaml)iguously establishes ti_e center point as 0, 0. Such a mask reduces the
elements in the symmetric cross product matrix to z,,ro where

np

'-_ xl_ q 0 _14)/' Yk- '
k: 1

when either p or q is odd. Equation (14) is true since the single sum over all

the data lmints in tim filter mask can be replaced tJy "l double summation.
Eq. (1) or i':q. (15).

np r c

4.Z

k:l x--r y -c

where

np= {2rdl)" {2c:1) .

Substitution of this expression in Eq. (1.1) leads to the sparsem, ss for anti-
symmetric mask since each sum on the right-hand side of I.:q. (1_;) is 7t'! o.

y

[g}

i
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k=i x=-r y=-c

when either p or q is odd. Because of the sparseness, the regression

coefficients A.. can be partitioned into matrices of lower order (see Appendix A).
zj

Equal Interval. An equal interval filter mask has the spacing between
data points an integer multiple of a common factor. The common factor between

rows Ar need not equal the common factor between columns Ac,

_r _ Ac , (17)

and the integers need not be consecutive but must remMn fixed as the mask

moves over an image {otherwise the C's and Norm change). As a consequence,
the terms in the cross product matrix _ are integer values, exclusive of the

common factors Ar and Ac, and accordingly the C's and Norm are integer
values.

Factoring common integers from the Cts and Norm leads to a uni ,-rsal
set of i,_tegers associated with each A.. which can be descri!_d as two-dimen-

sj
sional convolute integers [2]. Note that the antisymmetry ,rod equal interval
properties are mutually independent.

Regression. As a result of being derived from regression theory, sets
of Cts and Normts satisfy two filtering principles. The A.. terms can be

tj
obtained from the normal equations (see Appendix A) by Cz amer's Rule. Now
the coefficients of z on the right-hand side of the normal equations are identical
to the first column of them • ._yT matrix Csec Appendices A and B). Solving
the normal equations for A.. and factoring the Xz terms from the i_j column of

Ij

the numerator clearly identifies the Cts and Norm (see Appendix A). Summing
the Cts over all the data points in the mask and considering the determinant of
the numerator leads to two filte,'i_g properties [ 3].

,_ :,, (1) Smoothing: The set of Cts and Norm associated with _oo satisfy

np

Ck/Norm = 1 , {1_)
, k=l

[
g

.... _ A
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low-pass filtering.

• (2) Roughing: The set of C's and Norm associated with Aij, where
i,) _ 0, satisfy

np

Ck/Norm = 0 , (19)
k=l

band-pass or high-pass filtering.

Surface Fitting. The two-dimensional convolution filters generate the

various partial derivatives for a surface of order m+n fitted to a data set by
regression. This can be seen by identifying all the regression coefficients in
Eq. (5), evnluated at the center point of the mask.

The constant term, A00 , is the fitted value of the intensity or a smoothed

• data point (the zero partial derivative). Thus, the C's and Norm associated

with A00 represent smoothing filters.

Expanding Eq. (5), assuming an antisymmetric equal interval
(Ar _: Ac) mask, taking partial derivatives evaluated ,nt the central point
(x,y = 0), leads to Eqs. (20) through (23).

, 8i+j Zk 1 _i+j Zk
- (2o)

0ri_c j AriAc j Oxi0y j
D

, where

r=x" Ar + _ , row spacing:
: (21)
_i c = y. Ac+ fi , column spacing;
2

_ ;;, _, and x and y nre antisymmetric integer values. At the center point in the filter

mask,

9

"
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3i_ Zoo (22)

- (i+j)_A_ .ax Iay J

The fitted partial derivatives of the surface at x,y = 0 are

• . _i+j
A..- Arl AcJ ZOO • (23)

•lj (i + j)! Or i Ocj

Thus, the C's and Norm's associated with A.. where i, j _=0 represent partial
D

derivative (roughing) filters• Note that Eq. (23) indicates that A00 terms

are independent of the row column spacing (Ar, AC).

Equivalences. As a result of the antisymmetric properties of the
filter mask, a number of equivalences exist between convolution coefficients

of adjacent surface orders and between the transpose of complementary
roughing filters of the same surface order. The effect of these equivalences
is to reduce the number of calculations required to present all the filters
associated with the various surface orders and mask sizes.

Table 2 lists the two types of equivalences in the convolution

coefficients: C f (ij), where f represents surface order and ij the appropriate
partial derivative. The proof of these properties is presented in Appendix B,

which shows the normal equations for a first order and third order surface.

Symmetries. Some general symmetry propcrties exist for the set of
C's as ciated with each A... These properties depend on ij odd or even and

11

result from the symmetry associated with the normal equations, the anti-
symmetry of the mask, and the equal interval between data points. The
symmetry properties are expressed in Table 3. An alternate expression for

the convolution coefficients leads to these properties, Appendix B.

Coefficients which lie on a zero row or column have a two-fo"

'' _ r'{ :, symmetry. All other coefficients have at least a four-fold symmetry; and
for a symmetric mask, nondiagonal, nonzero, row or column terms possess

eight-fold symmetry•

"'3 ...........................' I '" '-"..........................T ] __ T - -_ ..... "-T ......................................1-"
i
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TABLE 2, EQUIVALENCES TM

Regression
f SurfaceOrder

C oefficient

A (ij) _ odd I even

f C£+1 f f-1i+j odd C = C = C

f _-1 P C_+Ii+j even C = C C =

Complementary Identical Surface Order
Transpose

ji-_ij C(ji) = C(ij) T

a. f represents the order of the surface.

b. ijrepresentstheappropriatepartialderivative.

c. T representstranspose.

II
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TABLE 3. SYMMETRY PROPERTIES ab

n

Mask Symmetry

i = j Symmetric Filter

i ¢ j Nonsymmetric Filter

.m

Coefficient Symmetry

c =" "_(-1)i+:c
- r-c re

c =_-l)" c
-rc r c

i
C --(-i) Cr-c rc

Redundancy

iCj i =j

fold r,c ¢ 0 4 fold

2 fold r,c = 0 2 fold

4 fold r ¢ c ¢ 0 8 fold

D
Zero Terms

C = 0 i odd
ro

C = 0 j odd
OC

,p

a. r,c represent row, column location '.n the filter mask.

b. t,j represent the appropriate partial derivative.

i 1Z

b

I

t
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These properties allow the number of multiplications per filter to be

co,, :iderably reduced. Table 4 indicates the number of multiplications per
filt:.,r. In general this table gives the maximum number of multiplications.

_,tx_','.ific filters are capable of having fewer unique numbers; e. g., multipli-
ca_i(ms. These properties sufficiently affect the time required to filter an

image.

A Plane Surface. A satisfying, though possibly trivial result, is the

eqw "alence to be found between regression calculation filtering by a plane
surJ ace and nearest neighbor averaging, which was discussed under the heading

Moving Smoothing Average. Appendix B indicates the reduced form of the
normal equations for a first order surface. For smoothing, the C's are clearly

unit) and Norm := np, the number of points considered. Smoothing an image by

applying the two-dimensional convolute integers for a first order surface is
identical to a moving smoothing average.

Double Convolution. The convolute integers generated so far have

satisfied low-pass and high-pass filtering criteria. Combining these filters
w ill result in band-pass filtering, or double convolution.

P represent the filtered value of a point in an image as a result of
Let z k

cony( l_ ing the raw data with a pth order, rth row and cth column filter.

.P _ _ r c
"'k - . . _ /,V Cpmn Zmn/N°rmp (24)Ar 1Ac j m=-r n:-c

This may be a sm_0thing (i,j --:0) or high-pass filter (i,j 4=0).

Assaming the data needs additional filtering and the mask spacing

(Ar, ]'_-') remair.s fixed, let zqp represent convolving the already filtered data

with a surface of qth order.

zqp (i" + j')' r° c"• \_ Cq . zq .n./Norm (25)• "* _ _ m *n m q:'_J: k Ar l"Ac J m'--r* n* -e*
L

1,

[

• 0
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ab
I TABLE 4. MULTIPLICATIONS PER FILTER

Mask No. of Multiplications

i

Symmetric,

i=j

even, even (np+l) (np+3)/8

odd, odd (np-1) (np+l)/q

Nonsymmetric,

iCj

even, even

i,j < order [(np-1) (np+l)/4] + 1

i,j -- order (np+l)/2 or (np-1)/2

(j,i = O)

odd, odd

i,j < order (np-1)/2

i,j = order c

even, odd

i,j < order [(np-1)/2] 2 or (np-1)(np+l)/4

i,j = order (np-1)/2
(j.i= O)

a. np represents the number of data points in a row or column

of the filter mask,

b. i,j represents the appropriate partial derivative.

c. i, j combination not possible.

14

t
I
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!
r ° c* r c

Ar t+i*Acj4j* m*- r* m'n*-- n*=-c* m=-r n=-c

, • C p
mn Zm+m', n+n'/Norm Norm (26)P q

Recognizing that the factorial terms and the powers of Ar and Ac are merely
gain factors (which in no way affect the filtering), the double convolution can be

combined into a single convolution where

r+r* c+c °

zkqP = a=-_r+r')_=-_c+c*)Ca_z°_/N°rm ' (27)

where

r ° c" r c

rn r* n c ° rn*n° mn '=- =- m =-r n=-c

and where the sums are constrained o = m'+m and/3 = n'+n, and where

Norm = Norm Norm (29)
P q

The Ca_ 's and Norm show that double convolution can be accomplished

by a new single set of two-dimensional convolute integers using a[2(r+r v) + 1]
by [2(c+c') + 1] expanded mask. A considerable savings in time results from
applying the results of Eqs. (28) and (29). Indeed, double convolution
represents the means by which a single filter can be constructed for obtaining

: the normal to the surface, at points in an image, or on a two-dimensional
surface.

1975022769-020



CONC LUSION

The theory of two-dimensional convolute integers has been discussed

emphasizing the filteringaspects of the coefficientsfor opticalimage data

processing. The coefficientsgenerate the various partialderivatives

associated with the surface order. Band-pass filteringand surface normals

can be obtained from a singleset of integers with an expanded mask represen-

tingdouble convolution.

The coefficientshave the filteringspeed of a moving smoothing average

and retainresolution sincc they represent two-dimensional regression calcu-

lations. Being dcrived from regression theory, the coefficientssatisfythe

criteriafor low-pass and high-pass filtering.

Based upon a few simple concepts-- (1) :mtisymmetry, (2) equal

interval,and (3) mask rows equal columns--, a number of equivalences exist

between surface orders and among filtercoefficients. All thcse properties tend

toreduce d_e number of unique coefficientsper filter;e.g., the number of

multiplicationsper filterpoint,or enhance the speed of the filter. The integer

nature of the coefficientsalso tends to speed the filteringoperation. Each

filteris completely described })ytwo numl)ers, mask size and surface order.

Detailed calculationshave shown the surface order and coefficient

equivalences between first,second, and third order surfaces and indicate

the manner by which two-dimensional convolute integers for any size mask

and any order surface can be obtaine(l.

A comp._nion report is planned which will denl with the softwnre and
hardware aspects of the filters and provide extensive tal)ulat(,cl data on filter

,,oefficients.

16
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TWO-DIMENSIONAL CONVOLUTE INTEGERS

SECOND ORDER SURFACE

. 5 BY 5 MASK

The normal equations for the quadratic surface are

m, n 00 01 02 10 11 20 uv

np 2:y 22y2 22x 22xy 22x"2 A00 22z 00

y 22y2 _.y3 22xy E xy2 E x2y A01 r_zy 01

22y2 22y4 22xy22x2yAo2 r.,.y2o2

22x 22xy :Cxy2 22x2 Z x2y _ x3 Aio P.zx i0

Exy Exy 2 22xy3 Nx2y Zx2y 2 22x3y All _zxy ii

22x2 Zx2y Zx2y 2 22x3 Ex3y _x 4 A20 P zx 2 20

For brevity, all summations are sums over all the raw data points k =

1,np; and m + n is constrained to be -< 2.

The sparse coefficient matrix for an antisymmetric mask is

np 0 22y2 0 0 _.x2 Aoo _z

_y2 0 0 0 0 Aol Ezy _Ik

Xy4 0 0 r_x2y2 AO2[ r zy2
<

I=

Symmetric Z x2 0 0 Al0 [ Z zx
I

Zx2y 2 0 AH[ Ezxy

:' _ :"' N X4 A_.o r. ZX2

19
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This leads to the following reduced matrices.

np p.y2 _.x 2 A0° P z

p_y_ _y4 r_x2y2AO_ = Ezy_

Ex 2 Ex2y2 Ex 4 A20 2:zx2

y_ .A01 = Ezy

Ex 2 .Ai0 = Ezx

_:x2y2.AI,= Zzxy

The evaluationof matrixterms leadsto thefollowingvalues.

np = (2r + 1) (2e + 1) = 25

np np 2 2 2

2 = _ Xl_ = _ _ y2 = 5 _ y2 50Yk =
k=-1 k-=1 x= -2 y= -2 3'=-2

np 2 2 2x_ = E Y_= _ _ Y4= 5 _ Y4 = 170
k=-1 k=1 x=-2 y=-2 y=-2

2 2

2 2= _ _ x__ : lOOXk Yk
k=l x=-2 y=-2

Evaluationofthe Ao0 regressioncoefficientby Cramer's Rule is

zy2 170 I00

Aoo = zx 2 I00 170

25 50 50

50 170 I00

50 I00 170

2O

l
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Factoring common terms from rows, expanding the numerator, and

evaluating the denominator results in

A00 = 27 _ z-5 _ zy2 + _ zx 2 - Norm,
k=l k=l k=l

where Norm = 175. Recalling that

np r c

2=2;
k=l x=-r y=-c

. and combining coefficients of like terms, lead to the convolute integers

/

Aoo = _-13z_2_2 + 2z_2_ l + 7Z_2o + 2z_2! - 13z_22

+ 2z_l_ 2 + 17z_l_ ! + 22Z_1o + 17z_li + 2z_12

+ 7Zo_ 2 + 22Zo_ 1 + 27Zoo = 22zOl + 7Zo2

+ 2zl_ 2 + 17zl_ l + 22zlo + 17zli + 2z12

-13z2_ 2 + 2z2_ ! + 7z2o + 2z21 - 13z22 ) - 175 . D/

Identifying and expressing the C.. coefficients and Norm results in thc
Ij

following matrix form for two-dimensional convolute integers for smooth-

ing, using a 5 by 5 filter on a second order surface.

1975022769-025



r'_ -2 -1 0 1 2

-2 -13 2 7 2 -13

-1 2 17 22 17 2

0 7 22 27 22 7

1 2 17 22 17 2

2 -13 2 '7 2 -13

Normalizer 175

Ib

22
¢

i
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' NORMAL EQUATIONS

FIRST AND THIBD ORDER SURFACES

The normal equations for a plane surface constrain m + n <- 1
' and are

mn O0 Ol 10 uv

_= np 2_y 2;x Aoo _z 00

_y _.y2 _.xy Alo = Ezy 01

_x _xy _x2 Aol _zx I0 .

For an antisyml etric mask, the normal equations lead to the
sepa .ble form

np 0 0 Aoo Z z ]

I0 _y2 0 Alo = I _'zy
l

0 0 _x 2 Aol _.zx ] ,

where

-_ AOO= _. z/np ,

and

,.-_;_ Alo = _. zy/_. y2 ,
•

., A01 = :_ zx/E x 2 _ •?

PRECFDI,"_G7,"_....... ,
...... r:3T r..o,-,_

] 975022769-028



The following normal equations for a cubic surface constrain m + n < 3.
Note that the arrangement of these equations is different from that previously
considered.

t_m+_n' 0 ! 2 3 Surface Order

even odd even odd

00 0! 10 02 ] ! 20 03 12 21 30 uv

np___ ,_y '_x ,r y2 _xy _ x' __y_ _ xy2 _x'y _c_ IAool _ 00

•_y _yl _xy Z y_ _x_ Z;x'y Zy a y xy_ _x'y2 _x'y ]Ao,[ _ 0%

i_x _xy, Xx a 2;xy z _x:y _x J Yx_ 2:x_),t Zx_y 2;# IAtoI t,l
I I

I !

_r _ Z _y 2; x" _" X'y2 Y__y Z X4 ZX'/ Z x_ 2: xty 'r X_ ] A'0[ ' 20
I

Z; F1 2; y_ Z: xy1 Z y_ _"x_ Z: x:_ Zy* Z xy_ 2; x'_ 2; xS/ [A0$ 03

2; X_ Z: x_y 2; x_ _ X_y_ _ xty 2; x_ _ _y_ 2; x4y_ _ xSy 2; x_ I A_o 30

The antisymmetric property leads to the following sparseness:

0 0 ]Ey2 0 r.x2 0 0 0 0 Aoo _ z
Z y2 0 0 0 0 :Ey4 0 E_y 2 0 Ao_ E zy

0 0 E x _ o 0 0 0 X x2y _ 0 Z x 4 Axc E zx

y_,y2 0 0 Xy 4 0 r.x2_ 0 0 0 0 Ao_ X zy'

0 0 0 0 Xx_, ,2 0 0 0 0 0 At; 2:zxy

ZX 2 0 0 X x2y 2 0 Xx 4 0 0 n 0 A_o X zx 2

0 _ },4 0 0 0 0 _y_ 0 _.Lx2y4 0 A03 _ z_'_

'_ (:, 0 0 _x_y_ 0 0 0 0 Ex_yt o Xx4y2 A_ 2;zxy2

0 2; x2y t 0 0 0 0 ICxZy4 0 X x_y _ 0 A_ t E zx'y

0 0 Y:x 4 0 0 0 0 Z x_y _ 0 Xx _ A_ 1 E zx _

26
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The surface order equivalences can now be obtained by considering

the orthogonal nature of various groups of columns, which leads to the
! following separable forms:

!_ np r.y2 r. x2 Aoo _ z

Zy2 z _ Zx2y_ Ao_ = z z_
zx2 xx2y2 zx4 A20 Zzx2 ,

_y4 r.y_ Xx2y4 [! A°3 = P"zy3x x2y2 Z x2y4 P.x4y2 A21 Z zx2y ,

||

Zx2y_ Zx2y4 Zx_y2IIAJ_= Zzxy_Z x4 _ x4y2 Z x6 A30 E zx 6 ,

XxZy2 . At! = Zzxy .

Comparing the same partial derivative regression coefficients for
'. adjacentsurfaceorders indicatestheequivalenceto be foundinth.3convolution

coefficients. The A00, A02, nnd A20 values are equivalent for second and third
order surfaces; the A01 and Al0 terms are equivalent for first and second

order surfaces. Table 2 represents a general expression for the equivalences
_ to be found in the convolution coefficients of adjacent surface orders.

_ An alternate definition of the filter coefficients can be expressed as

o,,8 t

Z Z x y Be/3,ij=0 /3=0
C_.. --

Ij det(D _)

27
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where det(D £) represents the determinant of the cross product matrix of

order _,

Dr= X_ T . _ ,

and B_ ..representsthecofactorofthe elcment intheo/3row, ijcolumn
op ,tj

of D , as expressed for the second order surface in Appendix A. :

The complementary transpose of an element of a roughing filter can
be expressed as

Cji (x,y) = Cij (y,x) = [Ci_. (x,y)] w

From the preceding definition of the convolution coefficients, the above iJ
so when

B_ = B_
¢_ ji a_, ij '

equality between the cofactors of elements in complementary columns.
Since the filter masks are symmetric, y is identical with x. Eithe,- ignore
the numerical factors associated with the partial derivatives, Eq. (23),
or assume equal row column mask spacing, Ar- Ac. Now the normal
equations indicate that for such masks, the cofactors of elements in comple-
mentary columns are identical. This leads to the equivalences expressed

in the lower section of Table 2.

Furthermore, for these masks

Ba_ ij= 0

where either a + i or 1_4 j is odd. The convolution coefficients are thus

_ concerned with those cofactors where _ + i and I_ `even. This requires
the parity of a and i, /_ and j to be the same. Now

28
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1 l-a. .a aB

_0 13Z=O(-1) x y'-B_ ij
• Ctj (-x,y) = ' r

-I det (D)

_ ' Since only parity affects (-1) °, this can be .', placed by (-1)i; o and i

_ equalp_rity.This leadsto

_, cij(-x,Y) _- (-1)icij(x,y) .
It

ii Table 3 represents a general expression for the symmetries to be
' _ found in symmetric filter masks.

29 _"

1975022769-032



! t

I I

REFERENCES

1. Semtner, A. J.: JPL Technical Report 32-1312. Jet Propulsion

Laboratory, Pasadena, California, 1968.

2. Savitzky, A. and Golay, M. J. E.: Anal. Chem. 36, 1964, p. 1627.

3. Blaekman, R. B. and Tokey, J. W.: Th_ Measurement of Power
Spectra. Dover Publications, New York, 1958.

"f _,( ;,

l 30 i

1975022769-033



i

A PPROVA L
Q

TWO-DIMENSIONA L CONVOLUTE INTEGERS FOR
OPTICAL IMAGE DATA PROCESSING AND SURFACE FITTING

By Thomas R. Edwards and Randall D. Knight

The information in this report has been reviewed for security classifi-
cation. Review of any information concerning Department of Defense or Atomic
Energy Commission programs has been made by the MSFC Security Classifica-

tion Officer. This report, in its entirety, has been determined to be unclassi-
fied.

This document has also been reviewed and approved for technical

accuracy.

RO]3ERT L. KURTZ

Chief, Optics and Electro-Optics Branch

ROBERT J. NA

Chief, Physics and Instrumentation
Division il_

CHARLES A. L DQ LTaboratoryDirector,Space Sciences

+,

I:_U.S. GOVERNMENT PRINTING OFFICE 1975-641-255/_0 REGION NO, 4

1975022769-034


