NASA TECHNICAL MEMORANDUM

N. SA TM X-64949

$$
\begin{aligned}
& \text { (VASA-TM-X-64949) TWC-DIMENSIONAL CONVOLUTE } \\
& \text { N75-30842 } \\
& \text { AVE SURFACE FITTING (MASA) DEATA PFOCESSING } \\
& \begin{array}{lll}
\text { CSCI 12A } & & \text { Unclas } \\
& \text { G } 3 / 64 & 34271
\end{array}
\end{aligned}
$$

TWO-DIMENSIONAL CONVOLUTE INTEGERS
 FOR OPTICAL IMAGE DATA PROCESSING AND SURFACE FITTING

By Thomas R. Edwards and Randall D. Knight Space Sciences Laboratory

May 27, 1975

NA: \mathbf{A}

Gerrge C. Marshall Space Flight Center

 Marshall Space Flight Center, Alabama

ACKNOWLEDGMENT

The authors wish to express their appreciation to Robert M. Brown, Computer Sciences Corporation, for a number of helpful suggestions given throughout the preparation of this work.

TABLE OF CONTENTS
Page
INTRODUCTION 1
MOVING SMOOTHING AVERAGE 2
CONVOLUTION 3
TWO-DIMENSIONAL REGRESSION 4
TWO-DIMENSIONAL CONVOLUTE INTEGERS 5
Definition 5
Properties 6
CONCLUSION 16
APPENDIX A 17
APPENDIX B 23
REFERENCES 30

LIST OF TABLES

Number Title Page
1 Properties of the Two-Dimensional Convolution Coefficients 6
2 Equivalences 11
3 Symmetry Properties 12
4 Multiplications Per Filter 14

\square

TECHNICAI, MEMORANDUM X-34.49

TWO-DIMENSIONAL CONVOLUTE INTEGERS FOR OPTICAL IMAGE DATA PROCESSING AND SUTFACE FITTING

INTRODUCTION

Two-dimensional convolute integers are sets of convolution coefficients of integer value which can be used in optical image data processing and surface fitting problems. Applying these coefficients to a set of data is equivalent to doing two-dimensional regression calculations: i.e., fitting a surface by least squares, without considering the time-consuming summations associated with the usual normal equations. The only requirement for use of these coefficients is that the data points on the surface be either equidistant along their orthogonal axis, or be spaced an integer multiple of a common factor.

A moving smoothing average is one of the fastest algorithms which can be applied for noise filtering in an optical image, but it tends to reduce resolution. The coefficients in such a filter are convolution coefficients. Twodimensional convolute integers utilize the fast logic of the moving smoothing average without sacrificing resolution. From the definition of these coefficients, ten properties appear. These properties indicate the existence and universal aspect of the filter numbers. As a consequence of being derived from regression theory, the filters have low-pass and high-pass filtering properties. This is equivalent to smoothing and generating the partial derivatives associated with surface order. The number of unique integers per filter represents the minimum number of multiplications per image point and significantly affects the filtering time. A zero order or first order surface is identical to nearest neighbor averaging. Double convolution, which represents band-pass filtering and can generate surface normals, can be accomplished by a single set of integers using an expanded filter mask.

The appendices contain detailed calculations for a 2.5-point ifiler, 5 by 5 mask, second order surface. The normal equations for a first and third order are also presented.

MOVING SMOOTHING AVERAGE

The concept of a moving smoothing average represents one of the simplest and fastest filters that can be applied to noisf: roduction in a twodimensional image. The filter can be considered a mask, m rows by n columns, which when applied to the data in a two-dimensional image causes a nearest neighbor interaction.

The interaction results from adding the intensities of all the points surrounding a particular location, including the value of the intensity at this location in the sum, and then dividing by the total number of points considered. In this way, nearest neighbors have an opportunity to influence the new average value, which shall be considered the filter data point.

This m by n mask can be passed over all the data points in an image, with the exception of a border of points left unfiltered. Requiring an odd number of rows and columns unambiguously determines the center point of the filter mask, which can then be shifted column by column, advancing one row at a time when a border column is reached.

In particular, each data point in the mask can be thought of as multiplied by a coefficient $\mathrm{C}_{\mathrm{ij}}\lfloor\mathrm{Eq}$. (1) 〕, added with all other points in the mask, the sum divided by a normalizer (Norm), and the resulting new filtered data point put in place of the raw data point. By this method, the raw data array is transformed into a filtered data array.

For a moving smoothing average, all the C_{ij} terms equal unity, and Norm is equal to the number of points in the array.

$$
\begin{equation*}
z_{r c}^{\prime}(x, y)=\sum_{i=\cdots m}^{m} \sum_{j-n}^{n} C_{i j} z_{i j}(x, y) / \text { Norm } \tag{1}
\end{equation*}
$$

where
$z=$ array of raw data points,
$z^{\prime}=$ array of filter data points,
ij represents a point in the $(2 m+1)$ by $(2 n+1)$ filter, and re

represents a raw data point in an image at row r and column c and is the center point of the filter mask.

Such a filter is nonrecursive and, therefore, requires raw data points in the Z vector at all times. Unfortunately, this type of filtering, though simple and fast, tends to blur an image by decreasing the overall sharpness, or resolution.

The problem which then arises requires the development of a set of weighting coefficients C_{ij} and Norm which filter with the speed of Eq. (1) and yet do not decrease resolution.

CONVOLUTION

The coefficients $C_{i j}$ in Eq. (1) are convolution coefficients for the following reason. The filter can be considered an operator which forms the filtered data by integrating the raw data over a weighting function $\Omega(\alpha, \beta)$:

$$
\begin{equation*}
z^{\prime}(x, y)=\int \Omega(\alpha, \beta) z(x-\alpha, y-\beta) d \alpha d \beta \tag{2}
\end{equation*}
$$

This integral is defined as the convolution of $\mathrm{z}(\mathrm{x}-\alpha, \mathrm{y}-\beta)$ with $\Omega(\alpha, \beta)$. In a digital filter, the weighting function is of the form

$$
\begin{equation*}
\Omega(\alpha, \beta)=\sum_{i=-m}^{m} \sum_{j=-n}^{n} C_{i j} \delta(\alpha+i, \beta+j) / \text { Norm } \tag{3}
\end{equation*}
$$

where δ is the Dirac delta function representing the discrete sampling of the data. Using this in Eq. (2) gives

$$
\begin{align*}
z^{\prime}(x, y) & =\int\left[\sum_{i=-m}^{m} \sum_{j=-n}^{n} C_{i j} \delta(\alpha+i, \beta+j) / \text { Norm }\right] z(x-\alpha, y-\beta) d \alpha d \beta \\
& =\sum_{i=-m}^{m} \sum_{j=-n}^{n} C_{i j} z(x+i, y+j) / \text { Norm } \tag{4}
\end{align*}
$$

When $z(x+i, y+j)$ is equated with $z_{i j}(x, y)$, Eq. (4) is seen to be identical to Eq. (1). Thus, the C_{ij} 's and Norm are known as convolution coefficients.

TWO-DIMENSIONAL REGRESSION

Two-dimensional regression calculations are equivalent to fitting a polynomial surface to a $s \in t$ of data by the method of least squares [1]. A general expression for a two-dimensional surface is

$$
\begin{equation*}
z_{k}^{\prime}=\sum_{i=0}^{m} \sum_{j=0}^{n} A_{i j} x_{k}^{i} y_{k}^{j} . \tag{5}
\end{equation*}
$$

Equation (5) represents the intensity z_{k}^{\prime} at the point k on the surface of order $m+n$ described by the regression coefficients $A_{i j}$.

Let z_{k} represent the actual intensity at the k th position on an image. Fitting the surface to the data set $z_{k}(x, y)$ by the residual sum of squares leads to Eq. (6),

$$
\begin{equation*}
\delta^{2}=\sum_{k=1}^{n p}\left(z_{k}-\sum_{i=0}^{m} \sum_{j=0}^{n} A_{i j} x_{k}^{i} y_{k}^{j}\right)^{2} \tag{f}
\end{equation*}
$$

Selecting the best fit regression coefficients,

$$
\begin{equation*}
\partial \delta^{2} / \partial A_{u v}=2 \sum_{k=1}^{n p}\left(z_{k}-\sum_{i=0}^{m} \sum_{j=0}^{n} A_{i j} x_{k}^{i} y_{k}^{j}\right) x_{k}^{u} y_{k}^{v}=0, \tag{7}
\end{equation*}
$$

leads to the normal equation

$$
\begin{equation*}
\sum_{i=0}^{m} \sum_{j=0}^{n} \sum_{k=1}^{n p} A_{i j} x_{k}^{i+u} y_{k}{ }^{j+v}=\sum_{k=1}^{n p} z_{k} x_{k}^{\prime \prime} y_{k}^{v}, \tag{x}
\end{equation*}
$$

where $u=0, m$ and $v=0, n$. Matrix representation of Eq. (8) results in the more familiar form of the normal equations.

$$
\begin{equation*}
X Y^{T} \cdot X Y \cdot A=X Y^{T} \cdot Z \tag{9}
\end{equation*}
$$

where Z is a column vector of raw data points, np by 1 ; A is a column vector of coefficients representing the surface, nt by $1 ; \mathbf{X Y}$ is a matrix of cross product terms, np by nt; and

$$
n t=(m+n+1) \cdot(m+n+2) / 2
$$

number of rows and columns in the symmetric $\mathbf{X Y}^{\mathrm{T}} \cdot \mathbf{X Y}$ matrix.

TWO-DIMENSIONA L CONVOLUTE INTEGERS

Definition

Rewriting is. (1) in matrix form allows an identification of the regression coefficients, A, with the convolution coefficie ${ }^{\bullet}$ ts C.

$$
\begin{equation*}
z_{r c}^{\prime}=C \cdot 7 / \text { Norm } \tag{10}
\end{equation*}
$$

(Note that C is a row vector of double-subscripted elements, Z is a column vector of double subscripted elements, and both have np elements.) Solving the normal equations for A, which is equivalent to obtaining intensity values on the fitted surface, yields

$$
\begin{equation*}
A=\left(X Y^{T} \cdot X Y\right)^{-1} \cdot X Y^{T} \cdot Z \tag{11}
\end{equation*}
$$

Recognizing the similarity in form between Eq. (10) and (11)
(the A's and Z 's are both linear combinations of the Z ' s) permits a definition of the A 's in terms of the C 's,

$$
\begin{equation*}
A_{i j}=C \cdot Z / \text { Norm } \tag{12}
\end{equation*}
$$

Evaluation of the C's and Norm associated with each $A_{i j}$ is readily accomplished by applying Cramer's Rule for obtaining the A's in Eq. (9) and identifying the coefficients of Z as $C /$ Norm.

Properties
The convolution coefficients have ten properties which can be seen by solving Eq. (11) and identifying the C's and Norm. These properties, listed in Table 1, will be discussed in detail and lead to the application of the sets of C's and Norm's in optical image data processing and surface fitting.

TABLE 1. PROPERTIES OF THE TWO-DIMENSIONAL CONVOLUTION COEFFICIENTS

1. Existence - Number of points on surface must be greater than surface order.
2. Universal Numbers - Convolution coefficients depend only on surface order and filter mask size.
3. Antisymmetry - The cross product matrix is sparse.
4. Equal Interval - Convolution coefficients are integral numbers.
5. Regression - Convolutior cocfficients derived from regression theory are filters.
6. Surface Fitting - Convolution coefficients represent curface partial derivatives.
7. Equivalences - Convolution coefficients for adjacent surface orders are identical, as are the transpose of complementary roughing filters of the same order.
8. Symmetries - Convolution coefficients have a minimum unique set of values per filter.
9. Plane Surface - Convolution coefficients for a first order surface represent a moving smoothing average.
10. Double Convolution - Convolition coefficients for band-pass filtering and surt.'e normals topresent double convolution.

Existence. For each $A_{i j}$ associated with a surface of order $m+n$, there exist a set of C's and a value for Norm so long as

$$
\begin{equation*}
8 I \cdot 8 Y^{T} \neq 0 \tag{13}
\end{equation*}
$$

This nonsingularity requirement indicates that the number of points on the surface, $n p$, must le greater than the order of the surface, $m+n$.

Universal Numbers. The values of C and the value of Norm associated with a surface of order $m+n$ and $n p$ points are independent of the values of the intensities, 7_{k}, on the surface. Thus, the convolution coefficients are universal numbers completely described by two numbers, $m+n$ and $n p$.

Antisymmetry. An antisymmetric filter mask has an odd number of rows and columns, not necessarily equal, which, as previously stated, unambiguously establishes the center point as 0,0 . Such a mask reduces the elements in the symmetric cross product matrix to zaro where

$$
\begin{equation*}
\sum_{k=1}^{n p} x_{k}^{p} y_{k}^{q}-0 \tag{14}
\end{equation*}
$$

when either p or q is odd. Equation (14) is true since the single sum over all the data points in the filter mask can be replaced by a double summation. Eq. (1) or Eq. (15).

$$
\begin{equation*}
\sum_{k=1}^{n p}=\sum_{x-r}^{r} \sum_{y-c}^{c} \tag{1.5}
\end{equation*}
$$

where

$$
n p=(2 r+1) \cdot(2 c ; 1)
$$

Substitution of this expression in Eq. (14) leads to the sparseness for antisymmetric mask since each sum on the right-hand side of Eq. (16i) is \%elo.

when either p or q is odd. Because of the sparseness, the regression coefficients $A_{i j}$ can be partitioned into matrices of lower order (see Appendix A).

Equal Interval. An equal interval filter mask has the spacing between data points an integer multiple of a common factor. The common factor between rows Δr need not equal the common factor between columns Δc,

$$
\begin{equation*}
\Delta \mathrm{r} \neq \Delta \mathrm{c}, \tag{17}
\end{equation*}
$$

and the integers need not be consecutive but must remain fixed as the mask moves over an image (otherwise the C's and Norm change). As a conjequence, the terms in the cross product matrix $X I$ are integer values, exclusive of the common factors Δr and Δc, and accordingly the C 's and Norm are integer values.

Factoring common integers from the C's and Norm leads to a uni.nrsal set of integers associated with each $A_{i j}$ which can be descriled as two-dimensional convolute integers $\mid 2]$. Note that the antisymmetry and equal interval properties are mutually independent.

Regression. As a result of being derived from regression theory, sets of C 's and Norm's satisfy two filtering principles. The $A_{i j}$ terms can be obtained from the normal equations (see Appendix A) by C_{1} amer's Rule. Now the coefficients of z on the right-hand side of the normal equations are identical to the first column of the $X I \cdot X^{T}$ matrix (see Appendices A and B). Solving the normal equations for $A_{i j}$ and factoring the $2 \geqslant$. terms from the $i+j$ column of the numerator clearly identifics the C's and Norm isce Appendix A). Summing the C's over all the data points in the mask and considering the determinant of the numerator leads to two filtering properties [3].
(1) Smoothing: The set of $\mathrm{C}^{\prime} \mathrm{s}$ and Norm associated with f_{00} satisiy

$$
\begin{equation*}
\sum_{k=1}^{n p} \quad c_{k} / \text { Norm }=1 \tag{18}
\end{equation*}
$$

low-pass filtering.
(2) Roughing: The set of C's and Norm associated with $A_{i j}$, where $i, \mathbf{j} \neq 0$, satisfy
$\sum_{k=1}^{n p} C_{k} /$ Norm $=0$,
band-pass or high-pass filtering.
Surface Fitting. The two-dimensional convolution filters generate the various partial derivatives for a surface of order $m+n$ fitted to a data set by regression. This can be seen by identifying all the regression coefficients in Eq. (5), evaluated at the center point of the mask.

The constant term, A_{00}, is the fitted value of the intensity or a smoothed data point (the zero partial derivative). Thus, the C^{\prime} 's and Norm associated with A_{00} represent smoothing filters.

Expanding Eq. (5), assuming an antisymmetric equal interval $(\Delta r \neq \Delta c)$ mask, taking partial derivatives evaluated at the central point ($\mathrm{x}, \mathrm{y}=0$), leads to Eqs. (20) through (23).

$$
\begin{equation*}
\frac{\partial^{i+j} z_{k}}{\partial r^{i} \partial c^{j}}=\frac{1}{\Delta r^{i} \Delta c^{j}} \frac{\partial^{i+j} z x^{i} \partial y^{j}}{\partial x^{i}} \tag{20}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathbf{r}=\mathrm{x} \cdot \Delta \mathrm{r}+\alpha, & \text { row spacing: } \\
\mathrm{c}=\mathrm{y} \cdot \Delta \mathrm{c}+\beta, & \text { column spacing } \tag{21}
\end{array}
$$

and x and y are antisymmetric integer values. At the center point in the filter mask,

$$
\begin{equation*}
\frac{\partial^{i+j} z_{00}}{\partial x^{i} \partial y^{j}}=(i+j)!A_{i j} \tag{22}
\end{equation*}
$$

The fitted partial derivatives of the surface at $\mathrm{x}, \mathrm{y}=0$ are

$$
\begin{equation*}
A_{i j}=\frac{\Delta r^{i} \Delta c^{j}}{(i+j)!} \frac{\partial^{i+j} z_{00}}{\partial r^{i} \partial c^{j}} \tag{23}
\end{equation*}
$$

Thus, the C's and Norm's associated with $A_{i j}$ where $i, j \neq 0$ represent partial derivative (roughing) filters. Note that Eq. (23) indicates that A_{00} terms are independent of the row column spacing ($\Delta r, \Delta c$).

Equivalences. As a result of the antisymmetric properties of the filter mask, a number of equivalences exist between convolution coefficients of adjacent surface orders and between the transpose of complementary roughing filters of the same surface order. The effect of these equivalences is to reduce the number of calculations required to present all the filters associated with the various surface orders and mask sizes.

Table 2 lists the two types of equivalences in the convolution coefficients: $C^{\ell}(i j)$, where ℓ represents surface order and $i j$ the appropriate partial derivative. The proof of these properties is presented in Appendix B, which shows the normal equations for a first order and third order surface.

Symmetries. Some general symmetry properties exist for the set of C's as siated with each $A_{i j}$. These propertics depend on ij odd or even and result from the symmetry associated with the normal equations, the antisymmetry of the mask, and the equal interval between data points. The symmetry properties are expressed in Table 3. An alternate expression for the convolution coefficients leads to these properties, Appendix B.

Coefficients which lie on a zero row or column have a two-foi. symmetry. All other coefficients have at least a four-fold symmetry; and for a symmetric mask, nondiagonal, nonzero, row or column terms possess eight-fold symmetry.

TABLE 2. EQUIVALENCES ${ }^{\text {abc }}$

Regression Coefficient	Surface Order	
$A(i j)$	ℓ odd	ℓ even
$i+j$ odd	$c^{\ell}=c^{\ell+1}$	$c^{\ell}=C^{\ell-1}$
$i+j$ even	$C^{\ell}=C^{\ell-1}$	$c^{\ell}=C^{\ell+1}$
Complementary Transpose	Identical Surface Order	
$j i \rightarrow i j$	$C(j i)=C(i j)^{T}$	

a. ℓ represents the order of the surface.
b. ij represents the appropriate partial derivative.
c. T represents transpose.

TABLE 3. SYMMETRY PROPERTIES ${ }^{\text {ab }}$

	$\begin{aligned} & i= \\ & i \neq \end{aligned}$	k Symmetr mmetric Fi nsymmetri	
		icient Symm $\begin{aligned} & r-c=(-1)^{i+} \\ & r c=(-1)^{j} \\ & -c=(-1)^{i} \end{aligned}$	
Redundancy			
$\mathbf{i} \boldsymbol{*} \mathbf{j}$			$\mathrm{i}=\mathrm{j}$
4 fold		$\mathrm{r}, \mathrm{c} \neq 0$	4 fold
2 fold		$\mathrm{r}, \mathrm{c}=0$	2 fold
4 fold		$\mathrm{r} \neq \mathrm{c} \neq 0$	8 fold
Zero Terms			
$\mathrm{C}_{\text {ro }}=0$			i odd
$C_{o c}=0$			j odd

a. r, c represent row, column location in the filter mask.
b. i, j represent the appropriate partial derivative.

A Plane Surface. A satisfying, though possibly trivial result, is the eçu: alence to be found between regression calculation filtering by a plane surlace and nearest neighbor averaging, which was discussed under the heading Moving Smoothing Average. Appendix B indicates the reduced form of the normal equations for a first order surface. For smoothing, the C's are clearly unity and Norm $=n p$, the number of points considered. Smoothing an image by applying the two-dimensional convolute integers for a first order surface is identical to a moving smoothing average.

Double Convolution. The convolute integers generated so far have satisfied low-pass and high-pass filtering criteria. Combining these filters vill result in band-pass filtering, or double convolution.

Let z_{k}^{p} rebresent the filtered value of a point in an image as a result of conve ling the raw data with a pth order, rth row and cth column filter.

$$
\begin{equation*}
z_{k}^{p}=\frac{(i+j)!}{\Delta r^{i} \Delta c^{j}} \sum_{m=-r}^{r} \sum_{n=-c}^{c} C_{m n}^{p}{ }_{m n} / \operatorname{Norm}_{p} \tag{24}
\end{equation*}
$$

This may be a smıothing ($i, j=0$) or high-pass filter $(i, j \neq 0)$.
Assuning the data needs additional filtering and the mask spacing $\left(\Delta r, \iota^{-}\right)$remair.s fixed, let $\mathrm{z}_{\mathrm{k}}^{\mathrm{qp}}$ represent convolving the already filtered data with a surface of q th order.

$$
\begin{equation*}
z_{k}^{q p} \frac{\left(i^{\circ}+j^{-}\right):}{\Delta r^{i^{\circ}} \Delta c^{j}} \sum_{m^{-}--r^{\circ}}^{r^{\bullet}} \sum_{n^{-}}^{c^{-}} C_{m}^{q} n^{-} z_{m-n}^{q} / \operatorname{Norm}_{q} \tag{25}
\end{equation*}
$$

TABLE 4. MULTIPLICATIONS PER FILTER ${ }^{\mathbf{a b}}$

Mask	No. of Multiplications
Symmetric, $\mathbf{i}=\mathbf{j}$ even, even odd, udd	$\begin{aligned} & (n p+1)(n p+3) / 8 \\ & (n p-1)(n p+1) / 8 \end{aligned}$
Nonsymmetric, $i \neq j$ even, even $\mathrm{i}, \mathrm{j}<\text { order }$ $\mathbf{i}, \mathbf{j}=$ order $(j, i=0)$ odd, odd $\mathrm{i}, \mathrm{j}<\text { order }$ $i, j=\text { order }^{\mathbf{c}}$ even, odd $\begin{aligned} & i, j<\text { order } \\ & i, j=\begin{array}{l} \text { order } \\ \\ \quad(j . i=0) \end{array} \end{aligned}$	$\begin{aligned} & {[(n p-1)(n p+1) / 4]+1} \\ & (n p+1) / 2 \text { or }(n p-1) / 2 \\ & (n p-1) / 2 \\ & {[(n p-1) / 2]^{2} \text { or }(n p-1)(n p+1) / 4} \\ & (n p-1) / 2 \end{aligned}$

a. np represents the number of data points in a row or column of the filter mask.
b. i, j represents the appropriate partial derivative.
c. i, j combination not possible.

$$
\begin{align*}
& z_{k}^{q p}=\frac{\left(i^{\circ}+j^{\circ}\right)!(i+j)!}{\Delta r^{i+i^{\circ}} \Delta c^{j+j^{\circ}}} \sum_{m^{-}=-r^{\circ}}^{r^{\bullet}} \sum_{n^{-}=-c^{-}}^{c^{\bullet}} \sum_{m=-r}^{r} \sum_{n=-c}^{c} c_{m^{-} n^{\circ}}^{q} \\
& \text { - } C_{m n}^{p}{ }^{\mathrm{p}}{ }_{m+m^{\prime}, n+n^{\prime}} / \text { Norm }_{p} \text { Norm }_{q} \tag{26}
\end{align*}
$$

Recognizing that the factorial terms and the powers of Δr and Δc are merely gain factors (which in no way affect the filtering), the double convolution can be combined into a single convolution where

$$
\begin{equation*}
\mathrm{z}_{\mathrm{k}}^{\mathrm{qp}}=\sum_{\alpha=-\left(\mathrm{r}^{+} \mathrm{r}^{-}\right)}^{\mathrm{r}+\mathrm{r}^{\bullet}} \sum_{\beta=-\left(\mathrm{c}^{+} \mathrm{c}^{\rho}\right)}^{\mathrm{c}+\mathrm{c}^{\bullet}} \mathrm{c}_{\alpha \beta} \mathrm{z}_{\alpha \beta} / \text { Norm } \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\alpha \beta}=\sum_{m^{\bullet}=-r^{\bullet}}^{r^{\bullet}} \sum_{n^{\circ}=-c^{\circ}}^{c^{\bullet}} \sum_{m=\cdot r}^{r} \sum_{n=-c}^{c} c_{m^{\circ} n^{-}} C_{m n} \tag{28}
\end{equation*}
$$

and where the sums are constrained $\alpha=m^{\prime}+\mathrm{m}$ and $\beta=\mathrm{n}^{\prime}+\mathrm{n}$, and where

$$
\begin{equation*}
\text { Norm }=\operatorname{Norm}_{p} \operatorname{Norm}_{q} . \tag{29}
\end{equation*}
$$

The $C_{\alpha \beta}$'s and Norm show that double convolution can be accomplished by a new single set of two-dimensional convolute integers using a $\left[2\left(r+r^{\prime}\right)+1\right]$ by $\left[2\left(c+c^{\prime}\right)+1\right]$ expanded mask. A considerable savings in time results from applying the results of Eqs. (28) and (29). Indeed, double convolution represents the means by which a single filter can be constructed for obtaining the normal to the surface, at points in an image, or on a two-dimensional surface.

CONCLUSION

The theory of two-dimensional convolute integers has been discussed emphasizing the filtering aspects of the coefficients for optical image data processing. The coefficients generate the various partial derivatives associated with the surface order. Band-pass filtering and surface normals can be obtained from a single set of integers with an expanded mask representing double convolution.

The coefficients have the filtering speed of a moving smoothing average and retain resolution since they represent two-dimensional regression calculations. Being derived from regression theory, the coefficients satisfy the criteria for low-pass and high-pass filtering.

Based upon a few simple concepts - (1) antisymmetry, (2) equal interval, and (3) mask rows equal columns -, a number of equivalences exist between surface orders and among filter coefficients. All these properties tend to reduce the number of unique coefficients per filter; e.g., the number of multiplications per filter point, or enhance the speed of the filter. The integer nature of the coefficients also tends to speed the filtering operation. Each filter is completely described hy two numbers, mask size and surface order.

Detailed calculations have shown the surface order and soefficient equivalences between first, second, and third order surfaces and indicate the manner by which two-dimensional convolute integers for any size mask and any order surface can be obtained.

A companion report is planned which will deal with the software and hardware aspects of the filters and provide extensive tabulated data on filter - oefficients.

APPENDLX A

TWO-DIMENSIONAL CONVOLUTE INTEGERS
SECOND ORDER SURFACE
5 BY 5 MASK
The normal equations for the quadratic surface are

For brevity, all summations are sums over all the raw data points $\mathrm{k}=$ $1, \mathrm{np}$; and $\mathrm{m}+\mathrm{n}$ is constrained to be ≤ 2.

The sparse cocfficient matrix for an antisymmetric mask is

$\begin{array}{ll}\mathrm{np} & 0 \\ & \Sigma \mathrm{y}^{2}\end{array}$	$\Sigma \mathrm{y}^{2}$	0	0	$\Sigma \mathrm{x}^{2}$	A_{00}	$\Sigma \mathrm{z}$
	0	0	0	0	A_{01}	$\Sigma \mathrm{zy}$
	Σy^{4}	0	0	$\Sigma \mathrm{x}^{2} \mathrm{y}^{2}$	A_{02}	$\Sigma \mathrm{zy}^{2}$
Symmetric		Σx^{2}	0	0	A_{10}	$\Sigma \mathrm{zx}$
			$\Sigma x^{2} y^{2}$	0	A_{11}	5 zxy
				Σx^{4}	A_{20}	$\Sigma \mathrm{zx}^{2}$

This leads to the following reduced matrices.

$$
\begin{aligned}
& \left|\begin{array}{lll|l}
n p & \Sigma y^{2} & \Sigma x^{2} & A_{00} \\
\Sigma y^{2} & \Sigma y^{4} & \Sigma x^{2} y^{2} & A_{02} \\
\Sigma x^{2} & \Sigma x^{2} y^{2} & \Sigma x^{4} & A_{20}
\end{array}\right|=\left|\begin{array}{l}
\Sigma z \\
\Sigma z y^{2} \\
\Sigma z x^{2}
\end{array}\right| \\
& \Sigma y^{2} \cdot A_{01}=\Sigma z y \\
& \Sigma x^{2} \cdot A_{10}=\Sigma \Sigma x \\
& \Sigma x^{2} y^{2} \cdot A_{11}=\Sigma z x y
\end{aligned}
$$

The evaluation of matrix terms leads to the following values.

$$
\begin{aligned}
& n p=(2 r+1)(2 c+1)=25 \\
& \sum_{k=1}^{n p} y_{k}^{2}=\sum_{k=1}^{n p} x_{k}^{2}=\sum_{x=-2}^{2} \sum_{y=-2}^{2} y^{2}=5 \sum_{y=-2}^{2} y^{2}=50 \\
& \sum_{k=1}^{n p} x_{k}^{4}=\sum_{k=1}^{n p} y_{k}^{4}=\sum_{x=-2}^{2} \sum_{y=-2}^{2} y^{4}=5 \sum_{y=-2}^{2} y^{4}=170 \\
& \sum_{k=1}^{n p} x_{k}^{2} y_{k}^{2}=\sum_{x=-2}^{2} \sum_{y=-2}^{2} x^{2} y^{2}=100
\end{aligned}
$$

Evaluation of the A_{00} regression coefficient by Cramer's Rule is
$A_{00}=\frac{\left|\begin{array}{llr}\Sigma z & 50 & 50 \\ \Sigma z^{2} & 170 & 100 \\ \Sigma z^{2} & 100 & 170\end{array}\right|}{\left|\begin{array}{lrr}25 & 50 & 50 \\ 50 & 170 & 100 \\ 50 & 100 & 170\end{array}\right|}$

Factoring common terms from rows, expanding the numerator, and evaluating the denominator results in

$$
A_{00}=\left[27 \sum_{k=1}^{n p} z-5\left(\sum_{k=1}^{n p} z y^{2}+\sum_{k=1}^{n p} z x^{2}\right)\right] \div \text { Norm, }
$$

where Norm $=175$. Recalling that

$$
\sum_{\mathbf{k}=1}^{\mathrm{np}}=\sum_{\mathbf{x}=-\mathbf{r}}^{\mathbf{r}} \sum_{\mathrm{y}=-\mathrm{c}}^{\mathbf{c}},
$$

and combining coefficients of like terms, lead to the convolute integers

$$
\begin{aligned}
A_{00}= & -13 z_{-2-2}+2 z_{-2-1}+7 z_{-20}+2 z_{-21}-13 z_{-22} \\
& +2 z_{-1-2}+17 z_{-1-1}+22 z_{-10}+17 z_{-11}+2 z_{-12} \\
& +7 z_{0-2}+22 z_{0-1}+27 z_{00}=22 z_{01}+7 z_{02} \\
& +2 z_{1-2}+17 z_{1-1}+22 z_{10}+17 z_{11}+2 z_{12} \\
& \left.-13 z_{2-2}+2 z_{2-1}+7 z_{20}+2 z_{21}-13 z_{22}\right) \div 175 .
\end{aligned}
$$

Identifying and expressing the C_{ij} coefficients and Norm results in the following matrix form for two-dimensional convolute integers for smoothing, using a 5 by 5 filter on a second order surface.

	-2	-1	0	1	2
-2	-13	2	7	2	-13
-1	2	17	22	17	2
0	7	22	27	22	7
1	2	17	22	17	2
2	-13	2	7	2	-13

Normalizer 175

APPENDIX B

NORMAL. EQUATIONS

FIRST AND THIRD ORDER SURFACES

The normal equations for a plane surface constrain $m+n \leq 1$ and are

mn	00	01	10				uv
	np	$\Sigma \mathrm{y}$	$\Sigma \mathrm{x}$	A_{00}		$\Sigma \mathrm{z}$	00
	Σy	Σy^{2}	$\Sigma x y$	A_{10}	$=$	$\Sigma z y$	01
	$\Sigma \mathrm{x}$	$\Sigma \mathrm{xy}$	Σx^{2}	A_{01}		$\Sigma \mathrm{zx}$	10

For an antisyml etric mask, the normal equations lead to the sepa .ble form

$$
\left|\begin{array}{lll}
\mathrm{np} & 0 & 0 \\
0 & \Sigma \mathrm{y}^{2} & 0 \\
0 & 0 & \Sigma \mathrm{x}^{2}
\end{array}\right|\left|\begin{array}{c}
\mathrm{A}_{00} \\
\mathrm{~A}_{10} \\
\mathrm{~A}_{01}
\end{array}\right|=\left|\begin{array}{l}
\Sigma \mathrm{z} \\
\Sigma \mathrm{zy} \\
\Sigma \mathrm{zx}
\end{array}\right|
$$

where

$$
\mathbf{A}_{00}=\Sigma \mathrm{z} / \mathrm{np}
$$

and

$$
\mathbf{A}_{10}=\Sigma \mathrm{zy} / \Sigma \mathrm{y}^{2}
$$

and

$$
A_{01}=\Sigma \mathrm{zx} / \Sigma \mathrm{x}^{2}
$$

The following normal equations for a cubic surface constrain $m+n \leq 3$.
Note that the arrangement of these equations is different from that previously considered.

1	0	1		2			3				Surface Order			
$1+1$	even	odei		even			odd							
mn	00	01	10	02	11	20	03	12	21	30				uv
	np	$\Sigma \mathbf{y}$	$\Sigma \mathrm{x}$	Σy^{2}	$\boldsymbol{\Sigma x y}$	Σx^{2}	Σy^{3}	$\Sigma x y^{2}$	$\Sigma x^{\prime} y$	Σx^{3}	A_{06}		צ 2	00
	$\pm \mathbf{y}$	Σy^{2}	$\boldsymbol{\Sigma} \mathbf{x y}$	Σy^{3}	$\Sigma \mathrm{xy}{ }^{2}$	$\Sigma x^{2} y$	Σy^{4}	$\Sigma \mathbf{x y ~}^{\mathbf{3}}$	$\Sigma x^{2} y^{2}$	$\Sigma x^{3} \mathbf{y}$	A_{01}		ェ 2 y	01
	$\boldsymbol{\Sigma x}$	$\Sigma \mathrm{xy}$	Σx^{2}	$\Sigma x y^{2}$	$\boldsymbol{\Sigma} \mathrm{x}^{2} \mathrm{y}$	Σx^{3}	$\Sigma x y^{3}$	$\Sigma \mathrm{x}^{2} \mathrm{y}^{2}$	$\boldsymbol{\Sigma} \boldsymbol{x}^{\mathbf{y}} \mathbf{y}$	Σx^{4}	A_{10}		5 zx	10
	Σy^{2}	Σy^{3}	Σx^{2}	Σy^{4}	$\Sigma \mathrm{xy}{ }^{\mathbf{3}}$	$\Sigma x^{2} y^{2}$	Σy^{5}	$\Sigma \mathrm{xy}{ }^{\text {d }}$	$\Sigma x^{2} y^{3}$	$\Sigma x^{3} y^{2}$	A_{02}		$\Sigma z y^{2}$	02
	Exy	$\Sigma x y^{2}$	$\Sigma x^{2} y$	$\Sigma \mathrm{Ey}^{3}$	$\Sigma x^{2} y^{2}$	$\Sigma x^{3} y$	$\Sigma x y^{4}$	$\Sigma \mathrm{x}^{\prime} \mathrm{y}^{3}$	$\Sigma x^{3} y^{2}$	$\Sigma x^{4} y$	A_{11}		5zxy	11
	Σx^{2}	$\Sigma x^{2} y$	Σx^{3}	$\Sigma x^{2} y^{2}$	$\Sigma x^{3} y$	$\Sigma \mathrm{x}^{4}$	$\pm x^{\prime} y^{3}$	$\Sigma x^{3} y^{2}$	$\Sigma x^{4} y$	Σx^{5}	A_{20}		$\Sigma \mathrm{zx}$,	20
	Σy^{3}	Σy^{4}	$\Sigma x y^{3}$	Σy^{s}	$\Sigma \mathrm{xy}{ }^{\text {d }}$	$\Sigma x^{2} y^{3}$	Σy^{6}	$\Sigma \mathrm{xy}^{3}$	$\Sigma x^{\prime} y^{4}$	$\Sigma x^{3} y^{3}$	$\mathrm{A}_{\text {is }}$		$\Sigma \mathrm{zy}{ }^{3}$	03
	$\Sigma \mathrm{xy}{ }^{2}$	$\Sigma x y^{3}$	$\Sigma x^{2} y^{2}$	$\Sigma \mathrm{xy}{ }^{4}$	$\Sigma x^{2} y^{3}$	$\Sigma x^{3} y^{2}$	Exy	$\Sigma x^{\prime} y^{\text {d }}$	$\Sigma x^{3} y^{3}$	$\Sigma x^{4} y^{2}$	A_{18}		$\pm z x y^{2}$	12
	$\Sigma x^{\prime} y$	$\Sigma x^{2} y^{2}$	$\Sigma x^{3} y$	$\sum x^{2} y^{3}$	$\Sigma x^{3} y^{2}$	I $\mathbf{x}^{4} y$	$\Sigma x^{\prime} y^{4}$	$\sum x^{3} y^{2}$	$\Sigma x^{4} y^{2}$	$\Sigma x^{5} y$	A_{21}		$\Sigma z x^{2} y$	21
	Σx^{2}	$\Sigma x^{3} y$	$\boldsymbol{\Sigma} \mathrm{x}^{4}$	$\Sigma x^{3} y^{2}$	$\Sigma x^{4} y$	Σx^{5}	$\Sigma x^{3} y^{3}$	$\Sigma x^{4} y^{2}$	$\Sigma x^{5} y$	Σx^{6}			E $2 x^{3}$	30

The antisymmetric property leads to the following sparseness:

The surface order equivalences can now be obtained by considering the orthogonal nature of various groups of columns, which leads to the following separable forms:

$$
\begin{aligned}
& \left|\begin{array}{lll}
n p & \Sigma y^{2} & \Sigma x^{2} \\
\Sigma y^{2} & \Sigma y^{4} & \Sigma x^{2} y^{2} \\
\Sigma x^{2} & \Sigma x^{2} y^{2} & \Sigma x^{4}
\end{array} \|\left|\begin{array}{l}
A_{00} \\
A_{02} \\
A_{20}
\end{array}\right|=\left|\begin{array}{l}
\Sigma z \\
\Sigma z y^{2} \\
\Sigma z x^{2}
\end{array}\right|,\right. \\
& \left|\begin{array}{lll}
\Sigma y^{2} & \Sigma y^{4} & \Sigma x^{2} y^{2} \\
\Sigma y^{4} & \Sigma y^{6} & \Sigma x^{2} y^{4} \\
\Sigma x^{2} y^{2} & \Sigma x^{2} y^{4} & \Sigma x^{4} y^{2}
\end{array}\right|\left|\begin{array}{l}
A_{01} \\
A_{03} \\
A_{21}
\end{array}\right|=\left|\begin{array}{l}
\Sigma z y \\
\Sigma z y^{3} \\
\Sigma z x^{2} y
\end{array}\right|, \\
& \left|\begin{array}{lll}
\Sigma x^{2} & \Sigma x^{2} y^{2} & \Sigma x^{4} \\
\Sigma x^{2} y^{2} & \Sigma x^{2} y^{4} & \Sigma x^{4} y^{2} \\
\Sigma x^{4} & \Sigma x^{4} y^{2} & \Sigma x^{6}
\end{array}\right|\left|\begin{array}{l}
A_{10} \\
A_{12} \\
A_{30}
\end{array}\right|=\left|\begin{array}{l}
\Sigma \mathrm{zx} \\
\Sigma z x^{2} \\
\Sigma z x^{6}
\end{array}\right|, \\
& \Sigma \mathrm{x}^{2} \mathrm{y}^{2} \cdot \mathrm{~A}_{11}=\Sigma \mathrm{zxy} \quad .
\end{aligned}
$$

Comparing the same partial derivative regression coefficients for adjacent surface orders indicates the equivalence to be found in the convolution coefficients. The A_{00}, A_{02}, and A_{20} values are equivalent for second and third order surfaces; the A_{01} and A_{10} terms are equivalent for first and second order surfaces. Table 2 represents a general expression for the equivalences to be found in the convolution coefficients of adjacent surface orders.

An alternate definition of the filter coefficients can be expressed as

$$
C_{i j}^{\ell}=\frac{\sum_{\alpha=0}^{\ell} \sum_{\beta=0}^{\ell-\alpha} x^{\alpha} y^{\beta}{ }_{B}^{l}{ }_{\alpha \beta, i j}^{l}}{\operatorname{det}\left(D^{l}\right)}
$$

where $\operatorname{det}\left(D^{\ell}\right)$ represents the determinant of the cross product matrix of order ℓ,

$$
D^{l}=X^{T} \cdot \bar{X}
$$

and $\mathrm{B}_{\alpha \beta, \mathrm{ij}}^{\ell}$ represents the cofactor of the elcment in the $\alpha \beta$ row, ij column of D^{ℓ}, as expressed for the second order surface in Appendix A.

The complementary transpose of an element of a roughing filter can be expressed as

$$
C_{j i}^{\ell}(x, y)=C_{i j}^{\ell}(y, x)=\left[C_{i j}^{\ell}(x, y)\right]^{T}
$$

From the preceding definition of the convolution coefficients, the above $i: ;$ so when

$$
\mathbf{B}_{\alpha \beta, \mathrm{ji}}^{\ell}=\mathrm{B}_{\alpha \beta, \mathrm{ij}}^{\ell}
$$

equality between the cofactors of elements in complementary columns. Since the filter masks are symmetric, y is identical with x. Either ignore the numerical factors associated with the partial derivatives, Eq. (23), or assume equal row column mask spacing, $\Delta r=\Delta c$. Now the normal equations indicate that for such masks, the cofactors of elements in complementary columns are identical. This leads to the equivalences expressed in the lower section of Table 2.

Furthermore, for these masks

$$
\mathrm{B}_{\alpha \beta, \mathrm{ij}}=0
$$

where either $\alpha+\mathrm{i}$ or $\beta+\mathrm{j}$ is odd. The convolution coefficients are thus concerned with those cofactors where $\alpha+i$ and $\beta+j$ are even. This requires the parity of α and $\mathrm{i}, \dot{\beta}$ and j to be the same. Now

$$
C_{i j}(-x, y)=\frac{\sum_{=0}^{l}{ }_{\beta=0}^{l-\alpha}(-1)^{\alpha} x^{\alpha} y^{\beta}{ }_{B_{\alpha \beta, i j}}}{\operatorname{det}(D)}
$$

Since only parity affects $(-1)^{\alpha}$, this can ibe \therefore placed by $(-1)^{i} ; \alpha$ and i equal parity. This leads to

$$
C_{i j}(-x, y)=(-1)^{i} C_{i j}(x, y)
$$

Table 3 represents a general expression for the symmetries to be found in symmetric filter masks.

REFERENCES

1. Semtner, A. J.: JPL Technical Report 32-1312. Jet Propulsion Laboratory, Pasadena, California, 1968.
2. Savitzky, A. and Golay, M. J. E.: Anal. Chem. 36, 1964, p. 1627.
3. Blackman, R. B. and Tokey, J. W.: The Measurement of Power Spectra. Dover Publications, New York, 1958.

APPROVAL

TWO-DIMENSIONA L CONVOLUTE INTEGERS FOR OPTICAL IMAGE DATA PROC ESSING AND SURFACE FITTING

By Thomas R. Edwards and Randall D. Knight

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classificaion Officer. This report, in its entirety, has been determined to be unclassitied.

This document has also been reviewed and approved for technical accuracy.

Chief, Optics and Electro-Optics Branch

ROBERT J. NAUMANN
Chief, Physics and Instrumentation
Division

Director, Space Sciences Laboratory

