Systems Cost/Performance Analysis (Study 2.3) Final Report

Volume II, Appendix A: Data Base

Prepared by
ADVANCED MISSION ANALYSIS DIRECTORATE Advanced Orbital Systems Division

27 September 1974

Prepared for
OFFICE OF MANNED SPACE FLIGHT NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

Contract No. NASW-2575

Systems Engineering Operations

THE AEROSPACE CORPORATION

$\left.\begin{array}{l}\text { (VASA-CE-143369) SYSTEMS COST/PERFORMANCE }\end{array}\right]$ N75-30920

Aerospace Report No. ATR-74(7343)-1, Vol. II, App. A

SYSTEMS COST/PERFORMANCE ANALYSIS (STUDY 2. 3)
 FINAL REPORT
 Volume II, Appendix A: Data Base

Prepared by
Advanced Mission Analysis Directorate Advanced Orbital Systems Division

27 September 1974

Systems Eingineering Operations
THE AEROSPACE CORPORATION
El Segundo, California

Prepared for
OFFICE OF MANNED SPACE FLIGHT NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C.

FAGE INTENTIONASLY BLA:…

Aerospace ${ }^{\text {Report No. }}$ ATR-74(7343)-1, Vol. II, App. A

SYSTEMS COST/PERFORMANCE ANALYSIS
(STUDY 2.3) FINAL REPORT
Volume II, Appendix A: Data Base

Prepared
B. H. Campbell

NASA Study 2. 3 Manager
Advanced Mission Analysis
Directorate

Approved

R. H. Herndon, Assoc. Group

Director
Advanced Mission Analysis
Directorate
Advanced Orbital Systems Division

PAGE INTENTIONALLY BLANK

FOREWORD

This report documents The Aerospace Corporation effort on Study 2.3, Systems Cost/Performance Analysis, performed under NASA Contract NASW-2575 during Fiscal Year 1974. The effort was directed by Mr. B. H. Campbell. Mr. R. D. Kramer, Marshall Space Flight Center and Mr. R. R. Carley, NASA Headquarters were the NASA Study Directors for this study. Their efforts in providing technical direction throughout the duration of the study are greatly appreciated.

This volume is one of three volumes of the final report for Study 2.3. The three volumes are:

Volume I Executive Summary
Volume II Systems Cost/Performance Model
Appendix Data Base
Volume III Programmer's Manual and User's Guide
Volume I summarizes the overall report. It includes the relationship of this study to other NASA efforts, significant results, study limitations, and suggested additional effort.

Volume II provides a detailed description of the Systems Cost/ Performance Model. It also includes the model checkout and the results for three payload test cases. The Data Base is provided in the Appendix to Volume II.

Volume III provides a detailed description of how the Systems Cost/Performance Computer Program is organized and operates. The program listing, detailed flow charts and user restrictions are included.
page intentionally blank

ACKNOWLEDGMENTS

The Aerospace Corporation effort on Study 2.3 was supported by Members of the Technical Staff (MTS) in various technical disciplines within the company. The contributions of the following MTS to the System Cost/Performance Analysis are gratefully acknowledged:

Auxiliary Propulsion
R. W. Mascolo

Communications
E. L. Tarca

Computer Program
R. F. Janz
R. E. Rice
D. E. Sakaguchi
J. C. Thacker

Cost
H. G. Campbell
D. W. Cochran
L. Raphae1

Data Processing
R. H. Arnold

Electrical Power
D: Rufus
H. T. Sampson

Reliability
G. H. Fuller

Schedule
R. T. Dungan

Stabilization and Control
R. M. Allman
B. E. Ayotte

Structure
E. R. Johnson

Thermal Control
H. H. Yoshikawa

Vehicle Sizing
R. T. Blake

PAGE INTENTIONALLY BLANK
FOREWORD $\dot{\mathrm{v}}$
ACKNOWLEDGMENTS vii

1. INTRODUCTION $1-0$
1.1 Performance Data 1-2
1.2 Safety Data 1-4
1.3 Cost Data 1-4
2. 4 Schedule Data 1-4
3. EQUIPMENT DATA 2-0
4. 1 Stabilization and Control 2-1
5. 2. Auxiliary Propulsion 2-55
2.3 Data Processing 2-209
2.4 Communication 2-259
2.5 Electrical Power 2-305

FGGGE INTENTIONALCY BLANK

1. INTRODUCTION

page intentionally blank

This appendix contains data on selected payload equipments (components) which have been collected for the purpose of exercising the Systems Cost/Performance Model. The reader should be aware that, although most of the data is accurate, approximations based on engineering judgment and experience are used wherever actual data was unavailable. The approximations are justified by the objective of the study which was to develop a cost/performance model. Assuming that the model is successfully developed and is accepted for use by a body of users, the data base \therefore should be expanded and the approximations replaced by actual:data. The following paragraphs are devoted to an explanation of how the data are organized and how to interpret the information contained on the data pages.

The equipments are organized according to the following subsvstems which use the specific components:
a. Stabilization and Control.
b. Auxiliary Propulsion
c. Data. Processing
d. Communication
e. Electrical Power

The data sheet for each component states which subsystem utilizes the component, which configurations require the component, which equipment type the component is categorized as, and the data base identifier or code number assigned to the component.

The data describing the component consist of the following four types:
a. Performance
b. Safety
c. Cost
d. Schedule

PERFORMANCE DATA

- The performance data are separated into eight categories:
a. Technical Characteristics
b. Power
c. Weight
d. Voḷume
e. Vibration
f. Temperature
g. Pressure
h. CDPI

The technical characteristics are peculiar to each equipment type. Generally speaking, the technical characteristics provide the data required to select or differentiate among the components and additional data for the component which, if selected, provides information for design of the remainder of the subsystem.

The power data includes three basic descriptions: the power requirements, the voltage requirements, and the conversion requirements. The average power is the average power required by the component during its active state. The maximum power is the power required either during load conditions or during any high power transient periods. The minimum voltage requirement exists during quiescent periods, powered down periods, or the turned-off condition, if allowable.

The voltage requirements are the specifications for which the equipment is rated, i.e., the nominal voltage, and the maximum and minimum voltages for which the component will continue to perform within specifications.

If the specific component is selected, the converter/inverter requirement flag identifies any need for special power conversion equipment. Since the requirement is identified as a flag, the number used should correspond to the identifier for the actual converter. or inverter required.

The component weight includes all weight which is essential to performing the functions associated with the component. Examples of additional functional weight include:
a. Telemetry instrumentation
b. Failure sensing and switching
c. Interface equipment which is not ordinarily a separate component as selected by the Systems Cost/Performance Model.

Weight which comes under different functional descriptions is not included. Examples are:.
a. Wiring harness
b. Structural mountings

Volume is the-direct counterpart of weight and is determined according to the same rules.

The vibration specification includes both random and nonrandom categories. Although vibration is not used in the FY 74 Model, the intent is to use the specification in future models:

The maximum and minimum temperature information are the temperature specifications for which the equipment is qualified.

The pressure information is the ambient pressure for which the component is qualified.

The CDPI information for each component is used for the express purpose of designing the Data Processing and Communication Subsystems. Command requirements are divided into three categories: power, time tagged, and other. The telemetry requirements are separated into two categories, i.e., low rate and high rate telemetry requirements. The telemetry information includes:
a. Number of analog telemetry points
b. Number of digital telemetry points
c. Sample rate
d. Word length

The intent in supplying the safety information is to indicate the failure mode, the numerics describing the failure mode, the redundancy type, and the maximum amount of redundancy. To this end, the failure model as stated in the data base indicates both the failure mode and the redundancy type. If the failure mode is modeled by an exponential, then the failure rate must be provided. Both the mean and standard deviation are supplied in the event of a normal (gaussian) failure mode. The dormancy factor must be provided for either failure mode. Because the Systems Cost/Performance Model can add an undesirable (from an engineering point of view) amount of redundancy, the total allowable number of redundant elements is specified. This redundancy number includes both the original number of components as well as the components added for the purpose of increasing system reliability.

1. 3 COST DATA

Component cost information must be supplied for each of the following three categories:
a. Design engineering
b. Test and evaluation
c. Unit production

An additional piece of information which must be provided is the reference quantity required to meet the performance requirements. Redundancy is not included in the reference quantity. A nondimensional factor has been provided for use in future models where the effect of standardization or use of off-the-shelf hardware is to be incorporated.
1.4 SCHEDULE DATA

Component schedule data includes both the development lead time and the qualification lead time. Each lead time is separated into a constan 1 and a variable. Normally, the constant lead times will be exactly the same
for all components of the same type. In addition, a state-of-art factor is provided based on the component being in a state of development somewhere between off-the-shelf and a new concept requiring an advance in technology.

Race micititionalu blank
2. EQUIPMENT DATA

PAGE INTENTIONALLY BLANK
Subsystem: S\&C (0101)
Configurations: Dual Spin
Equipment Type: Despin Mechanical Assembly
Performance
Technical Characteristics
(1) Bearing and motor friction (3σ): 1.1 mrad (0.064 deg)
(2) Bearing runout (3ヶ): 0 .21 mrad (0.012 deg)
Power
Average Power (watts): 2.0
Maximum Power (watts): 88.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 21 n
Converter/InverterRequirement (flag):
Weight (kg): 9.87 (21.75 1b)
Volume (cc): $1.78 \times 10^{4}\left(0.627 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): ;
Non-Random (g):
Temperature
Maximum. $\left({ }^{\circ} \mathrm{K}\right)$: $322\left(120^{\circ} . \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : 266 ($\left..20^{\circ} \cdot \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 4
Digital Points (No.): 1
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 12
Digital Points (No.): 1
Sample'Rate (sec^{-1}): 0.0075
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 400
Standard Deviation ($\times 10^{+.9} \mathrm{hr}$):
Dormancy Factor (N. D.): 1.0
Total Redundant Elements (No.): 1
Cost
Design Enginee ring (\$1000): 1000.0
Test and Evaluation (\$1000): 300.0
Unit Production. (\$1000): 70.0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.6
Development Lead Time Variable (months): 2.8
Qualification Lead.Time Constant (months)• 0.9
Qualification Lead Time Vạriable (months) 0. 1
State-of-Art Factor (N. D.): 1. 0
Subsystem: S\&C (Included in 0101)
Configurations: Dual Spin
Equipment Type: Despin Electronics Assembly
Performance
Technical Characteristics
(1)(10)
Power
Average Power (watts): 6.24
Maximum Power (watts): 9.5
Minimum Power (watts): 3.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg): $3.9(8.5 \mathrm{lb})$
Volume (cc): $8.5 \times 10^{3}\left(0.30 \mathrm{ft}^{3}\right)$VibrationRandom (g, mms):
Non-Random (g):fTemperature
Maximum (${ }^{\circ} \mathrm{K}$):$311\left(100^{00}{ }^{\circ}\right)^{*}$Minimum (${ }^{\circ} \mathrm{K}$):
$275^{\circ}\left(35^{\circ} \cdot F\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 2.
High Rate Telemetry
Analog Points (No.):
Digital Points (No.): 3
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.): 1
Sample Rate (sec^{-1}): 0.0075
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 13,700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 320.0
Test and Evaluation (\$1000): 206.0
Unit Production (\$1000): 92.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 7. $3:$
Development Lead Time Variable (months): 3.1
Qualification Lead Time Constant (months): 1. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): I. 0
Subsystem: S\&C (0202)
Configurations: All
Equipment Type: Valve Driver Assembly
(3 assemblies for 6 valves)
Performance
Technical Characteristics
(1) Number of valves: 6
Power
Average Power (watts): 0.12
Maximum Power (watts): 27.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequi rement (flag):
Weight (kg) : $1.9(4.2 \mathrm{lb})$
Volume (cc): $1.2 \times 10^{4}\left(0.42 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms)
Non-Random (g):
Temperature
Maximum $\left.f^{\circ} \mathrm{K}\right)$: $322\left(120^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $266^{\circ}\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged. Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points. (No.): 3
Sample Rate (sec^{-1}): I
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model•(flag): I
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 966$
Standard Deviation (x $10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): . . 0.5
Total Redundant Elements (No.):
4
Cost
Design Eingineering (\$1000):
164.0

Test and Evaluation. (\$1000):
15.0

Unit Production•(\$1000): 21.0
Reference Quantity (No.): $\quad 1$
Factor (N.D.): • 1
Schedule
Development Lead Time Constant (months): 2.6
Development Lead Time Variable (months): 2.0
Qualification Lead Time Constant (months): 3.0
Qualification Lead Time Variable (months): 0.7
State-of-Art Factor (N. D.): I. 0
Subsystem: S\&C (0302)
Configurations: All
Equipment Type: Sun Sensor Assembly (with electronics)
Performance
Technical Characteristics
(1)
Power
Average Power (watts): 1.0
Maximum Power (watts): 1.0
Minimum Power (watts) : 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 0.545Volume (cc):
6.2×10^{3} (0. $22 \mathrm{ft}^{3}$)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$) :275 ($\left.35^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.): 5
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate. Telemetry
Analog Points (No.):
Digital Points (No.): 1.
Sample Rate (sec^{-1}): 0.0075
Word Length (bits): 8
Safety
Failure Model (flag): 1 .
Failure Parameters
Failure Rate or Mean ($x 10^{ \pm 9} \mathrm{hr}$): 2499
Standard Deviation ($x 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Reduridant Elements (No.): 6
Cost
Design Engineering (\$1000): 290.0
Test and Evaluation (\$1000): 173.0 .
Unit Production (\$1000): 8.0
Reference Quantity (No.): 2
Factor (N.D.): $\cdot 1$
Schedule
Development Lead Time Constant (months) 8.0
Development Lead Time Variable (months) 2.0
Qualification Lead Time Constant (months) 8.4
Qualification Lead Time Váriable (months) 0.4

1. 0
Subsystem: S\&C (0401)
Configurations: Dual Spin
Equipment Type: Nutation Damper
Performance
Technical Characteristics(1)(10)
Power
Average Power (watts): 0
Maximum Power (watts): 0
Minimum Power (watts) 0
Nominal Voltage (volts): 0
Maximum Voltage (volts) 0
Minimum Voltage (volts): 0
Converter/InverterRequirement (flag):
Weight (kg) :
$1.8(4.0 \mathrm{lb})$
Volume (cc): $2 \times 10^{4}\left(0.8 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
TemperatureMaximum (${ }^{\circ} \mathrm{K}$):Minimum (${ }^{\circ} \mathrm{K}$):
$311\left(100^{\circ} \mathrm{F}\right)$$275\left(35^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued) .
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points' (No.):
Sample Rate (sec^{-1}):
Ẃord Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 172
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N. D.): 1.0
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 155.0
Test and Evaluation (\$1000): 25.0
Unit Production (\$1000): 9.0 .
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 5.4
Development Lead Time Variable (months): 2.3
Qualification Lead Time Constant (months): 2.2
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (Usul)
Configurations: Dual Spin
Equipment Type: Gimbal Electronics Assembly
Performance
Technical Characteristics
(1) Resolver accuracy (3 σ): $0.51 \mathrm{mrad}(0.029 \mathrm{deg})$
Power
Average Power (watts): 3.5
Maximum Power (watts): 5.0
Minimum Power (watts): 2.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $2.83(6.25 \mathrm{lb})$
Volume (cc): $7.9 \times 10^{3}\left(0.28 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
TemperatureMaximum (${ }^{\circ} \mathrm{K}$): $\quad 311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):275 ($35^{\circ} \mathrm{F}$)Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 6
High Rate Telemetry
Analog. Points (No.):
Digital Points (No.): 2
Sample Rate (sec^{-1}):
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (sec^{-1}): 0.0075
Worá Length (bits): 8
Safety
F'ailure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 2430
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.):0.5
3
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
$\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right\}$.
mission equipment
7.3
Schedule
Development Lead Time Constant (months):
2. 1
Development Lead Time Variable (months):
3.8
Qualification Lead Time Constant (months):
0.4
Qualification Lead Time Variable (months):1.2

Subsystem: \quad S\&C (0601)
Configurations: Dual Spin
Equipment Type: Control Timing Assembly.
Performance
Technical Characteristics
(1) Programmer sine wave (3σ): $\quad 0.93 \mathrm{mrad}$ (0.053 deg)
(2) Drive quantization and delay (3 σ):
$0.87 \mathrm{mrad} \quad(0.050 \mathrm{deg})$
(3) Measurement compensation (3 σ):
$0.17 \mathrm{mrad}(0.010 \mathrm{deg})$
(4) Pipper drift (3 σ):
$0.31 \mathrm{mrad}(0.018 \mathrm{deg})$
(5) Quantization noise (3σ):
$0.12 \mathrm{mrad}(0.007 \mathrm{deg})$
(6)

Power

Average Power (watts):	3.5
Maximum Power (watts):	5.0
Minimum Power (watts):	2.0
Nominal Voltage (volts):	28.0
Maximum Voltage (volts):	32.0
Minimum Voltage (volts):	24.0
Converter/Inverter	
\quad Requirement (flag):	

Weight (kg):
$3.4(7.4 \mathrm{lb})$
Volume (cc):
$1.04 \times 10^{4}\left(0.367 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
275. ($\left.35^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power Switching Commands (No.): 5
Time Tagged Commands (No.):
Other Commands (No.): 30
High Rate Telemetry
Analog Points (No.):
Digital Points (No.): 8
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 1$
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 1
Sample Rate (sec^{-1}): $\quad 0.0075$
Word Length (bits): 8.
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 14,582$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.):
3
Cost
Design Engineering (\$1000)
651.0

Test and Evaluation (\$1000):
440.0

Unit Production (\$1000):
112.0

Reference Quantity (No.): 2
Factor (N.D.): 1

Schedule

Development Lead Time Constant (months):
11.0

Development Lead Time Variable (months): 3.4
Qualification Lead Time Constant (months): 5.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (0701)
Configurations: Dual SpinEquipment Type: Bi-Axial (Gimbal) Drive Assëmbly(two required per antenna)
Performance

Technical Characteristics
(1) Drive quantization (3σ):
0.28 mrad (0.016 deg)
(2) Gimbal drive error (3σ): $0.44 \mathrm{mrad}(0.025 \mathrm{deg}$)
(3) Biax droop error (3 σ): 0.31 mrad (0.018 deg)
(4)
(6)
(10)

Power
Average Power (watts): 2.8
Maximum Power (watts): $\quad 5.6$
Minimum Power (watts): 1.4
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg): $\quad 6.44$ (14.2 1b)
Volume (cc):
$9.9 \times 10^{3}\left(0.35 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 322\left(120^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right): \quad 266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 2
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 4
Digital Points (No.):
Sample Rate (sec^{-1}): 0.0075
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 650
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 1
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
$0)$ 0
$0\}$, mission erminment 1 1 .
Schedule
Development Lead Time Constant (months): 7.5
Development Lead Time Variable (months): 3.2
Qualification Lead Time Constant (months): 3.9
Qualification Lead Time Variable (months): 0.4
State-of-Art Factor (N.D.): 1. 2
Subsystem: S\&C (0801)
Configurations: Dual Spin
Equipment Type: Non-Scanning Earth Sensor Assembly (with electronics)
Performance
Technical Characteristics
(1) Sensor noise (3 σ): $4.42 \mathrm{mrad}(0.253 \mathrm{deg})$
(2) Radiance irregularity (3 σ): $0.52 \mathrm{mrad}(0.030 \mathrm{deg})$
(3) Quantization error (3σ): 0.12 mrad (0.007 deg)
(4) Sun interference (3 σ): $0.35 \mathrm{mrad}(0.020 \mathrm{deg})$
(5) Moon interference (3 σ): $0.87 \mathrm{mrad}(0.050 \mathrm{deg})$
(6) Threshold aging (3 σ): $0.56 \mathrm{mrad}(0.032 \mathrm{deg})$
Power
Average Power (watts): 0.6
Maximum Power (watts): 0.9
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):
Weight (kg): $3.5(7.7 \mathrm{lb})$
Volume (cc): $790\left(0.028 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):$311\left(100^{\circ} \mathrm{F}\right)$Minimum $\left({ }^{\circ} \mathrm{K}\right)$:$275\left(35^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Hertormance (continued)

CDPI

Powier Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 4
Digital Points (No.): 1
Sample Rate (sec^{-1}): $\quad 0.0075$
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (x $10^{ \pm 9} \mathrm{hr}$): $\quad 3212$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
66.0

Test and Evaluation (\$1000):
1.05. 0

Unit Production (\$1000):
33.0

Reference Quantity (No.): 2

Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): .1.6
Development Lead Time Variable (months): 2.5
Qualification Lead Time Constant (months): $\quad 9.4$
Qualification Liead Time Variable (months):
4. 7

State-of-Art Factor (N.D.):

1. 0
Subsystem: S\&C (0201)
Configurations: All
Equipment Type: Valve Driver Assembly
Performance
Technical Characteristics
(1) Number of valves: 12
(2)
Power
Average Power (watts): 1.0
Maximum Power (watts): 36.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 22.0
Converter/InverterRequirement (flag): C 01 (1401)
Weight (kg): 0.73 (1.6 lb)
Volume (cc): $1.4 \times 10^{3}\left(0.05 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): 322 ($120^{\circ} \mathrm{F}$)Minimum (${ }^{\circ} \mathrm{K}$) :$266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 8
High Rate Telemetry
Analog Points (No.): 13
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 4
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 1910
Standard. Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): $\cdot 4$
Cost
Design Engineering (\$1000): 39.0
Test and Evaluation (\$1000): 28.0
Unit Production (\$1000): 10.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2.6
Development Lead Time Variable (months): 0.2
Qualification Lead Time Constant (months): 3. 0
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (0301)
Configurations: All
Equipment Type: Sun Sensor Assembly (with electronics)(single axis)
Performance
Technical Characteristics(1)(2)
(10)
Power
Average Power (watts): 1.0
Maximum Power (watts): 1. 0
Minimum Power (watts) 0
Nominal Voltage (volts): 28. 0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequi rement (flag):
Weight (kg): $0.39\left(0.85^{\mathrm{lb}}\right)$
Volume (cc): $280\left(0.01 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):TemperatureMaximum (${ }^{\circ} \mathrm{K}$):$311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$255\left(0^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Pcrformance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No..):
Other Commands (No.): 4
High Rate Telemetry
Analog Points (No.): 7
Digital Points (No.): Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 1500
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 230. C
Test and Evaluation (\$1000): 150. C
Unit Production (\$1000): 20. C
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.0
Development Lead Time Variable (months): 4.9
Qualification Lead Time Constant (months): 8.4
Qualification Lead Time Variable (months): 1.5
State-of-Art Factor (N.D.): 1. 0
Subsystem: S\&C (1001)
Configurations: Yaw Spin
Equipment Type: Control Electronics Assembly
Performance
Technical Characteristics
(1)(2)
(6) Controller error (3б): $1.789 \mathrm{mrad}(0.1 .025 \mathrm{deg})$(7)
Power
Average Power (watts): 4.0
Maximum Power (watts): 4.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 22.0
Converter/Inverter Requirement (flag): C 01 (1401)
Weight (kg): 4. 14 (9.12 lb)
Volume (cc): $2.5 \times 10^{4}\left(0.9 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $322\left(120^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
DPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 9
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 13
Low Rate Telemetry
Analog Points (No.): 23
Digital Points (No.):
Sample Rate (sec^{-1}): I
Word Length (bits): 14
ty
ailure Model (flag): 1
ailure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 10,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): 0.5
otal Redundant Elements (No.): 4
esign Engineering ($\$ 1000$): 750.0
est and Evaluation (\$1000): 500.0
nit Production (\$1000): 130.0
eference Quantity (No.): 2
actor (N.D.): 1
dule
evelopment Lead Time Constant (months): 11.0
evelopment Lead Time Variable (months): 9.3
ualification Lead Time Constant (months): 5.5
ualification Lead Time Váriable (months): 1. 2
:ate-of-Art Factor (N.D.): 1. 5
Subsystem: S\&C (1101)
Configurations: Yaw SpinEquipment Type: Rate Gyro Assembly
Performance
Technical Characteristics
(1)(2)(6)
Power
Average Power (watts): 12.0
Maximum Power (watts): 18.0
Minimum Power (watts): 6.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag): C 01 (1401)
Weight (kg): $1.47(3.23 \mathrm{lb})$
Volume (cc): $2.4 \times 10^{3} \cdot\left(0.086 \mathrm{ft}^{3}\right)$VibrationRandom (g, rms):Non-Random (g):Temperature

Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$):
$311\left(100^{\circ} \mathrm{F}\right)$
$278\left(40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or.Mean ($\times 10^{\perp^{7}} \mathrm{hr}$): 11,941
Standard Deviation ($\times 10^{+9} \mathrm{hr}$): 1.0
Dormancy Factor (N.D.): 3
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 285.0
Test and Evaluation (\$1000): 118.0
Unit Production (\$1000): 52.0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months) 11.9
Development Lead Time Variable (months): 3. 4
Qualification Lead Time Constant (months) 3.9
Qualification Lead Time Variable (months) 0.4
State-of-Art Factor (N.D.): 1.0

Subsystem: S\&C (1201)
Configurations: All except Dual Spin
Equipment Type: Horizon Sensor (with electronics) (Planar scan type)
Performance
Technical Characteristics
(1) Sensor noise (3σ): $\quad 4.36 \mathrm{mrad}$ (0.250 deg)
(2) Radiance irregularity (3σ): $\quad 2.62 \mathrm{mrad}(0.150 \mathrm{deg}$)
(3) Quantization error (3σ): 0.44 mrad ($0.025^{\circ} \mathrm{deg}$)
(4) Sun interference (3 σ):
(5) Moon interference (3 σ):
(6) Threshold aging (3 σ):
(7) Null or bias error (3 σ):
(8) Maximum output frequency: $1.256 \mathrm{rad} / \mathrm{sec}$
(10)

Power.
Average Power (watts): 5.5
Maximum Power (watts): 8.0
Minimum Power (watts): 2.5
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag): C 01 (1401)
Weight (kg) :
$2.87(6.33 \mathrm{lb})$
Volume (cc):
$4.2 \times 10^{3}\left(0.15 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): .. $311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $\quad 255\left(0^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.) 1
Time Tagged Commands (No:):
Other Commands (No.): 1
High Rate Telemetry
-Analog Points (No.): 18
Digital Points (No.):
Sample Rate (sec^{-1}): 25
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 5166
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 1250.0
Test and Evaluation (\$1000): 355.0
Unit Production (\$1000): 105.0
Reference-Quantity (No.): 2
Factor (N.D.): I
Schedule
Development Lead Time Constant (months): 11.6
Development Lead Time Variable (months): 9.9
Qualification Lead Time Constant (months): 9.4
Qualification Lead Time Variable (months): 4. 2
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (1301)
Configurations: Yaw Spin. and ME with Momentum. Wheel
Equipment Type: Reaction Wheel Assembly (with electronics)
Performance
Technical Characteristics
(1) Nominal momentum: $42.58 \mathrm{~m}-\mathrm{kg}-\mathrm{sec}$ ($308.0 \mathrm{ft}-\mathrm{lb}-\mathrm{sec}$)
(2) Maximum momentum: $51.10 \mathrm{~m}-\mathrm{kg}-\mathrm{sec}(369.6 \mathrm{ft}-1 \mathrm{~b}-\mathrm{sec})$
(3) Minimum momentum: $34.07 \mathrm{~m}-\mathrm{kg}-\mathrm{sec}$ ($246.4 \mathrm{ft}-\mathrm{lb}-\mathrm{sec}$)
(4) Nominal speed:
(5) Maximum speed:
(6) Minimum speed:

3000 rpm
3600 rpm
2400 rpm

Power

Average Power (watts): 19.6
Maximum Power (watts): 125.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 33.0
Minimum Voltage (volts): 21.5
Converter/InverterRequirement (flag): C 01 (1401)
Weight (kg): 35.54 (78.35 lb)
Volume (cc): $7.1 \times 10^{4} \quad\left(2.5 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\mathrm{O}} \mathrm{K}$): $316\left(110^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):$272\left(30^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 5
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 7
Digital Points (No.):
Sample Rate (sec^{-1}):1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 500
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 1
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 430. 1
Test and Evaluation (\$1000): 390. (
Unit Production (\$1000): 122. (
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 7.1
Development Lead Time Variable (months): 3.0
Qualification Lead Time Constant (months): 3.2
Qualification Lead Time Variable (months): 0.4
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (1401)
Configurations: All
Equipment Type: Power Converter
Performance
Technical Characteristics
(1) Special requirement code: C 01(2)
(10)
Power
Average Power (watts): 10.6
Maximum Power (watts): 15.0
Minimum Power (watts): 7.5
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 22.0
Converter/InverterRequirement (flag):
Weight (kg) : $2.31(5.09 \mathrm{lb})$
Volume (cc):$5.1 \times 10^{3}\left(0.18 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $266\left(20^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 7
Time Tagged Commands (No.):
Other Commands (No.): 3
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec ${ }^{-1}$):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 7
Digital Points (No.): 6
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 4033
Standard Deviation ($\mathrm{x} 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No..): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.): 1$0\}$1
Schedule
Development Lead Time Constant (months): 7. 4
Development Lead Time Variable (months): 3. 2
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0

Subsystem: S\&C (1501)
Configurations: s Mass Expulsion
Equipment Type: Attitude Reference Electronics (3 axis gyrocompassing)

Performance

Technical Characteristics

(1) Pitch horizon scanner gain:
$0.01667 \mathrm{sec}^{-1}$
(2) Roll horizon scanner gain to roll axis:
$0.00556 \mathrm{sec}^{-1}$
(3) Roll horizon scanner gain to yaw axis:
$0.01667 \mathrm{sec}^{-1}$
(4) Pitch feedback gain:
$0.01667 \mathrm{sec}^{-1}$
(5) Roll feedback gain:
$0.00556 \mathrm{sec}^{-1}$
(6) Roll to yaw coupling gain:
$0.01667 \mathrm{sec}^{-1}$

Power

Average Power (watts):	4.0
Maximum Power (watts) :	6.0
Minimum Power (watts) :	2.0
Nominal Voltage (volts):	28.0
Maximum Voltage (volts):	32.0
Minimum Voltage (volts) :	24.0
Converter/Inverter Requirement (flag):	
eight (kg) :	4.5 (10.0 1b)
olume (cc):	$2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)$
bration	
Random (g, rms) :	
Non-Random (g) :	
mperature	
Maximum (${ }^{\circ} \mathrm{K}$) :	322 (120 $\left.{ }^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) :	$266\left(20^{\circ} \mathrm{F}\right)$
essure ($\mathrm{kg} / \mathrm{m}^{2}$) :	

Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 125$
Word Length (bits): 13
Low Rate Telemetry
Analog Points (No.): 23
Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 14

Safety

Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean $\left(\times 10^{ \pm 9} \mathrm{hr}\right): \quad 10,000$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 800.0
Test and Evaluation (\$1000): 530.0
Unit Production ${ }^{-}(\$ 1000): \quad 137.0$
Reference Quantity (No.): 2
Factor (N.D.):

Schedule

Development Lead Time Constant (months):	ll. 0
Development Lead Time Variable (months):	9.5
Qualification Lead Time Constant (months):	5.5
Qualification Lead Time Variable (months):,	1.3
State-of-Art Factor (N.D.):	1.0

Subsystem: S\&C (1601)
Configurations: A11
Equipment Type: Valve Driver Assembly
Performance
Technical Characteristics
(1) Number of valves: 6
(2)
Power
Average Power (watts): 1.0
Maximum Power (watts): 12.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg) : 0.73 (1.6 Ib)
Volume (cc): 4.5×10^{3} (0. $16 \mathrm{ft}^{3}$)Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $322\left(120^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power Switching Commands (No.):
2
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):13

Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 125$
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):

Safety

Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 1900$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4

Cost

Design Engineering (\$1000):
40.0

Test and Evaluation (\$1000):
30.0

Unit Production (\$1000):
10.0

Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months): 2.6
Development Lead Time Variable (months): 1.1
Qualification Lead Time Constant (months): $\quad 3.0$
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.):
Subsystem: S\& C (1701)
Configurations All Mass Expulsion Configurations
Equipment Type: Rate Integrating Gyro Assembly (with electronics)(3 gyros per assembly)
Performance
Technical Characteristics
(1) G-insensitive gyro drift(3o):
$2.43 \times 10^{-3} \mathrm{mrad} / \mathrm{sec}(0.000139$
(2) Total misalignment relative
to vehicle (3σ):
$0.87 \times 10^{-3} \mathrm{mrad}(0.05 \mathrm{deg})$
(3) Gyro scale factor error (N.D): $0.02 \times 10^{-3} \quad(0.001)$

Power

Average Power (watts): 18.0
Maximum Power (watts): 27.0
Minimum Power (watts): 9.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight $(\mathrm{kg}): \quad 6.8$ (15.0 lb)
Volume (cc):
$8.5 \times 10^{3}\left(0.3 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$) :
Minimum (${ }^{\circ} \mathrm{K}$) :
311 ($\left.100^{-} \mathrm{F}\right)$
$278\left(40^{\circ} \mathrm{F}\right)$

Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.): I
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 15,000Standard Deviation ($\times 10^{+9} \mathrm{hr}$):Dormancy Factor (N. D.):1.0
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 742.0
Test and Evaluation (\$1000): 355.0°
Unit Production (\$1000): 151.0
Reference Quantity (No.):Factor (N.D.): .11.
Schedule
Development Lead Time Constant (months): 10.5
Development Lead Time Variable (months): 4.5
Qualification Lead Time Constant (months): 8. 3
Qualification Lead Time Variable (months): 0.9
State-of-Art Factor (N.D.): 1.0
Subsystem: S\& C (1702)
Configurations: All Mass Expulsion Configurations
Equipment Type: Rate Integrating Gyro Assembly (with electronics)
Performance
Technical Characteristics
(1) G-insensitive gyro drift (3 σ): $2.41 \times 10^{-4} \mathrm{mrad} / \mathrm{sec}(0.0000138$(2) Total misalignment relativeto vehicle (3 σ):$0.87 \mathrm{mrad}(0.05 \mathrm{deg})$
(3) Gyro scale factor error (N.D.):
(4)
Power
Average Power (watts): 27.0
Maximum Power (watts): 36.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $10.4(23.0 \mathrm{lb})$
Volume (cc):$1.2 \times 10^{4}\left(0.41 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$278\left(40^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8.
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 15;000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): l. C
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 970. C
Test and Evaluation (\$1000): $480 .{ }^{\circ}$
Unit Production (\$1000): 205: C
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 10.5
Development Lead Time Variable (months): 3.0
Qualification Lead Time Constant (months): 8.3
Qualification Lead Time Variable (months): 0: 6
State-of-Art Factor (N.D.): 1.0

Subsystem: S\&C (1801)

Configurations: All except Dual Spin

Equipment Type: Horizon Sensor (with electronics)
Performance
Technical Characteristics
(1) Sensor noise (3 σ):
(2) Radiance irregularity (3 σ):
(3) Quantization error (deg, 3σ):
(4) Sun interference (3 σ):
(5) Moon interference (3 σ):
(6) Threshold aging (3 σ):
(7) Null or bias error (deg, 3σ):
(8) Maximum output frequency: $1.256 \mathrm{rad} / \mathrm{sec}$

Power

Average Power (watts):
 15.0

Maximum Power (watts):
20.0

Minimum Power (watts):
10.0

Nominal Voltage (volts):
28.0

Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
9.1 (20.0 1b)

Volume (cc):
$5.7 \times 10^{4} \quad\left(2.0 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$255\left(0^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$) :

Performance (continued)

CDPI

Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.): 18
Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 125$
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag): l
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 10,000$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.):
0.5

Total Redundant Elements (No.):
3
Cost
Design Engineering (\$1000): 2210.0
Test and Evaluation (\$1000): 760.0

Unit Production (\$1000):
250.0

Reference Quantity (No.):
2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.6
Development Lead Time Variable (months): 14.7
Qualification Lead Time Constant (months): 9.4
Qualification Lead Time Variable (months): 7.6
State-of-Art Factor (N.D.): 1.0
Subsystem: S\&C (1901)
Configurations: Mass Expulsion with Control Moment Gyros
Equipment Type: Electronic Processor Assembly
Performance
Technical Characteristics
(I)
Power
Average Power (watts): 26.5
Maximum Power (watts): 30.0
Minimum Power (watts): 15. 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 4.67 (10.3 1b)
Volume (cc):
2. 92×10^{4} (1. $03 \mathrm{ft}^{3}$)
Vibration
Random (g, rms):
Non-Random (g):
TemperatureMaximum (${ }^{\circ} \mathrm{K}$): $\quad 322\left(120^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):$266\left(20^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 40
High Rate Telemetry
Analog Points (No.): $18:$
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 13
Low Rate Telemetry
Analog Points (No.): 46Digital Points (No.):Sample Rate (sec^{-1}):1
Word Length (bits): 14
Safety
Failure Model (flag): 1
Failure Parameters 6000Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$):Standard Deviation. ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 810.0
Test and Evaluation (\$1000): 520.0
Unit Production (\$1000): 140.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.0 .
Development Lead Time Variable (months): 4. 7
Qualification Lead Time Constant (months): 5.5
Qualification Lead Time Variable (months): 0.6State-of-Art Factor (N.D.):
Subsystem: S\&C (2001)
Configurations: Mass Expulsion with Control Moment Gyros
Equipment Type: Single Gimbaled Control Moment Gyro
Performance
Technical Characteristics
(1) CMG momentum:
(2) Peak gimbal rate:
(3) Peak torquer torque:

Power
Average Power (watts): 30.8

Average Power (watts):
Maximum Power (watts): 100.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/Inverter

Converter/InverterRequirement (flag):
Weight (kg): 77.1 (170.0 1b)

Weight (kg):
Volume (cc): $1.7 \times 10^{5}\left(6.0 \mathrm{ft}^{3}\right)$

1.7×10 (6.0 $\left.\mathrm{ft}^{3}\right)$Vibration
Random (g, rms):

Random (g, rms):
Non-Random (g):

Non-Random (g):
Temperature

Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $278\left(40^{\circ} \mathrm{F}\right)$

Minimum (K):
) . Requirement (flag):

Vibration

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):69. $1 \mathrm{~m}-\mathrm{kg}-\mathrm{sec}(500 \mathrm{ft}-\mathrm{lb}-\mathrm{sec})$$1 \mathrm{rad} / \mathrm{sec}$$85.4 \mathrm{~N}-\mathrm{m}$ ($63 \mathrm{ft}-\mathrm{lb}$)
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 2
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 12
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 870
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 2000. 0
Test and Evaluation (\$1000): 1500. 0
Unit Production (\$1000): 1000. 0
Reference Quantity (No.): 4
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.0
Development Lead Time Variable (months): 10.0
Qualification Lead Time Constant (months): 8.0
Qualification. Lead Time Variable (months): 4.8
State-of-Art Factor (N.D.): 2. 0
Subsystem: S\&C (2101)
Configurations: Mass Expulsion with Control Moment Gyros
Equipment Type: Star Sensor Assembly (with electronics)
Performance
Technical Characteristics
(1) Type 1
(2) Sensor accuracy (3 σ):
(3) Mapper field of view:$1.7 \mathrm{mrad}(0.1 \mathrm{deg})$
(4) Mapper sensitivity (visual magnitude):$30.5 \mathrm{mrad}^{2}\left(100 \mathrm{deg}^{2}\right)$
Power
Average Power (watts): 5.5
Maximum Power (watts): 7. 0
Minimum Power (watts): 3.0
Nominal Voltage (volts): 28. 0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg) :
3.2 (7.0 lk
Volume (cc):
$1.5 \times 10^{4}\left(0.53 \mathrm{ft}^{3}\right)$
Vibration
Randorn (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $322\left(120^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$266\left(20^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry \because
Analog Points (No.): 18
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 3000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 420.0
Test and Evaluation (\$1000): 625.0
Unit Production (\$1000): 115.0
Reference Quantity (No.): 1^{-}
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 10.0
Development Lead Time Variable (months): 8.0
Qualification Lead Time Constant (months): 7.0
Qualification Lead Time Variable (months): 1.6
State-of-Art Factor (N.D.): 1. 5

```
Subsystem: S&C (2102)
Configurations: Mass Expulsion with Control Moment Gyros
Equipment Type: Star Sensor Assembly (with electronics)
Performance
Technical Characteristics
(1) Type: . 2
(2) Sensor accuracy (3\sigma): 0.87 mrad (0.05 deg)
(3) Mapper field of view:
122 rad}\mp@subsup{}{}{2}(400\mp@subsup{\textrm{deg}}{}{2}
(4) Mapper sensitivity (visual magnitude): 4
(5)
(6)
Power
Average Power (watts): 5.0
Maximum Power (watts): 10.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): \(\quad 7.03\) ( 15.5 lb )
Volume (cc):
\(4.39 \times 10^{4}\left(1.55 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum \(\left({ }^{\circ} \mathrm{K}\right): \quad 266\) ( \(20^{\circ} \mathrm{F}\) )
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
```

> Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):I

High Rate Telemetry
Analog Points (No.):18

Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 125$
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 3000$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): - 0.5
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
600.0

Test and Evaluation ($\$ 1000$): 800.0
Unit Production (\$1000):
175.0

Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months):
10.0
8.0

Development Lead Time Variable (months):
7.0

Qualification Lead Time Constant (months):
1.6

State-of-Art Factor (N.D.):

1. 5
Subsystem: S\& C (2103)
Configurations: Mass Expulsion with Control Moment Gyros
Equipment Type: Star Sensor Assembly (with electronics)
Performance
Technical Characteristics
(1) Type: 3
(2) Sensor accuracy (3 σ):
$0.05 \mathrm{mrad}(0.003 \mathrm{deg})$
(3) Mapper field of view:$8.54 \mathrm{rad}^{2}\left(28 \mathrm{deg}^{2}\right)$
(4) Mapper sensitivity (visual magnitude): 6
(10)
Power
Average Power (watts): 8. 0
Maximum Power (watts): 12.0
Minimum Power (watts): 4.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg): 10.4 (23.0 1b)
Volume (cc): $1.4 \times 10^{4}\left(0.49 \mathrm{ft}^{3}\right)$
Vibration :Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\mathrm{O}} \mathrm{K}$):$322\left(120^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$) :$266\left(20^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)
CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 10,000$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Fàctor (N.D.): 1.0
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000):
750.0

Test and Evaluation (\$1000):
1000.0
225.0

Reference Quantity (No.): 1
Factor (N.D.):
Schedule
Development Lead Time Constant (months): $\quad 10.0$
Development Lead Time Variable (months): 8.0
Qualification Lead Time Constant (months): . 7. 0
Qualification Lead Time Variable (months):

1. 6

State-of-Art Factor (N.D.):
1.5
Subsystem:- S\&C (2201)
Configurations: Mass Expulsion with Momentum Wheel
Equipment Type: Electronic Error Processor
Performance
Technical Characteristics(1)
Power
Average Power (watts): 4. 0
Maximum Power (watts): 6.0
Minimum Power (watts): 2. 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg): $4.5(10.0 \mathrm{lb})$Volume (cc):2. $8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $322\left(120^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):
$266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 9
Digital Points (No.):
Sample Rate (sec^{-1}): 125
Word Length (bits): $8^{\prime \prime}$
Low Rate Telemetry
Analog Points (No.): 23
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 23,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$): 0.5
Dormancy Factor (N.D.): 4
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 800.0
Test and Evaluation (\$1000): 530.0
Unit Production (\$1000): 138.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.0
Development Lead Time Variable (months): 9.0
Qualification Lead Time Constant (months): 5. 5
Qualification Lead Time Variable (months): 1. 2
State-ofmArt Factor (N.D.): 1.5

```
Subsystem: APS (0101)
Configurations: Cold Gas
Equipment Type: Thruster (Fairchild 683000)
Performance
```

 Technical Characteristics
 (I) \(\cdot\) Thrust level: \(\quad 0.22 \mathrm{~N}(0.05 \mathrm{Ib})\)
 (2) Pulse life:
 (3) Inlet pressure:
 150,000 cycles
 2. \(9 \times 10^{5} \cdot \mathrm{~N} / \mathrm{m}^{2}\) (42 psia)
 (4) Total impulse (lb-sec)*:
 (5) - ISP (sec) \%:
 (6) Mixture ratio (N. D.) \(* *:\)
 (7)
 Power

Average Power (watts): $\quad 1.0$
Maximum Power (watts): 25.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Reqùirement (flag):

Weight (kg): $\quad 0.34$ (0.75 lb)
Volume. (cc): $\quad 2.1 \times 10^{3}\left(0.075 \mathrm{ft}^{3}\right)$
Vibration.
Random (g, rms): 22.3
Non-Random (g):
Temperature
Maximum $\left({ }^{\circ} \mathrm{K}\right): \quad 339\left(150^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$211\left(-80^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^0]Performance (continued)
CDPI
Power Switching Commañds (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300
Standard Deviation ($\mathrm{x} 10^{+9} \mathrm{hr}$).
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 121.0
Test and Evaluation (\$1000): 30.0
Unit Production (\$1000): 9.0
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2.5
Development Lead Time Variable (months): 1. 0
Qualification Lead Time Constant (months): 1.0
Qualification Lead Time. Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0

Subsystem: APS (0102)
Configurations: Cold Gas
Equipment Type: Thruster (Hydraulic Research 48001770)
Performance
Technical Characteristics
(I) Thrust level: $0.22 \mathrm{~N}(0.05 \mathrm{lb})$
(2) Pulse life:

250,000 cycles
(3) Inlet pressure:
$6.89 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (100 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N.D.)**:
(9)
(10)

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): 25.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
0.14 (0.3 1D)

Volume (cc):
$850\left(0.03 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 339\left(150^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) :
$233\left(-40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^1]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 61.0
Test and Evaluation (\$1000): 15.0
Unit Production (\$1000): 4. 2
Reference Quantity (No..): 3.
Factor (N.D.): I
Schedule
Development Lead Time Constant (months): 2. 5
Development Lead Time Variable (months): 0.7
Qualification Lead Time Constant (months): 1.0
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0103)
Configurations: Cold Gas
Equipment Type: Thruster (Sterer 51350)
Performance
Technical Characteristics
(1) Thrust level: $0.22 \mathrm{~N}(0.05 \mathrm{lb})$(2) Pulse life:500,000 cycles
(3) Inlet pressure: 2. $9 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (42 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N.D.)**:
(10)
Power
Average Power (watts): 1. 0
Maximum Power (watts): 11. 0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg): $0.2(0.4 \mathrm{Ib})$Volume (cc):$1.1 \times 10^{3}\left(0.04 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 7. 28
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):$344\left(160^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$233\left(-40^{\circ} \mathrm{F}\right)$

[^2]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300
Standard Deviation ($\times 10^{+9} \mathrm{hr}$): .
Dormancy Factor (N. D.): 1: 0
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 75.0
Test and Evaluation ($\$ 1000$): 19.0
Unit Production (\$1000): 5.5
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2.5
Development Lead Time Variable (months): 0.7
Qualification Lead Time Constant (months): 1. 0 .
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0104)
Configurations: Cold Gas
Equipment Type: Thruster (Sterer 51340)
Performance
Technical Characteristics
(1) Thrust level: 13 N (3.0 lb)(2) Pulse life:10,000 cycles(3) Inlet pressure:$1.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (200 psia(4) Total impulse (lb-sec)*:
(5) ISP $(\mathrm{sec}) *:$
(6) Mixture ratio (N. D.)**:(7)(10)Power
Averáge Power (watts): 1.0
Maximum Power (watts): 40.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg) : $0.3(0.7 \mathrm{lb})$
Volume (cc): $2.0 \times 10^{3}\left(0.07 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 7.5Non-Random (g):

Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 353\left(176^{\circ} \mathrm{F}\right)$.
$255\left(0^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^3]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}).
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate. (sec^{-1})
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm Y} \mathrm{hr}$): 300
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 115.0
Test and Evaluation (\$1000): 115.0
Unit Production (\$1000): 8.7
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2. 5
Development Lead Time Variable (months): 1.0
Qualification Lead Time Constant (months): 1.0
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): l. 0
Subsystem: APS (0105)
Configurations: Cold Gas
Equipment Type: Thruster (Valcor 27200-511)
PerformanceTechnical Characteristics
(1) Thrust level: 13 N (3.0 1b)(2) Pulse life:5,000 cycles
(3) Inlet pressure:
$3.1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (45 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N. D.) $* *:$(7)
(10)Power
Average Power (watts): 1.0
Maximum Power (watts): 32.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg): 0.45 (1.0 lb)
Volume (cc): $2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 18.5
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
$$
2-63
$$
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
"Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Dígital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5°
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 150.0
Test and Evaluation (\$1000): 150.0
Unit Production (\$1000): 11.5
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2.5
Development Lead Time Variable (months): 1:1
Qualification Lead Time Constant (months): 1. 0
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: . APS (0106)
Configurations: Cold Gas
Equipment Type: Thruster (Sterer 51330)
Performance
Technical Characteristics
(1) Thrust level: $66.7 \mathrm{~N} \cdot(15.0 \mathrm{lb})$
(2) . Pulse life: 10,000 cycles
(3) Inlet pressure: $1.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (200 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N. D.)**:(7)
(10)
Power
Average Power (watts): 1. 0.
Maximum Power (watts): 32.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $0.64(1.4 \mathrm{lb})$
Volume (cc):$4.0 \times 10^{3}\left(0.14 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 6. 1
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $366\left(200^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $233\left(-40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^4]Performance (continued)
CDPI
Power Switchịng Commands (No.): "
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Ánalog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag):

$$
: b
$$

Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 300^{\circ}$

Dörmancy Factor (N. D.): $\because \quad 16$
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
193.0

Reference Quantity (No.): 193.0 15.0

Factor (N.D.):
Schedule
Development Lead Time Constant (months):
2. 5

Development Lead Time Variable (months):

1. 2

Qualification Lead Time Constant (months):
1.0

Qualification Lead Time Variable (months):
$: 0.1$
State-of-Art Factor (N.D.): 1.0 .

Subsystem: APS (0107)
Configurations: Cold Gas
Equipment Type: Thruster (Kidde 872458)

Performance

Technical Characteristics
(1). Thrust level: $\quad 133 \mathrm{~N}(30.0 \mathrm{Ib})$
(2) Pulse life: . 20,000 cycles
(3) Inlet pressure: $2: 24 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3250 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N. D.)**:
(7)
(8)
(9)
(10)

Power
Average Power (watts): 1.0
Maximum Power (watts): $\quad 34.0$
Minimum Power (watts): 0
Nominal Voltage (volts): $\quad 28.0$
Maximum Voltage (volts): 32.0 .
Minimum Voltage (volts): 24.0°
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 1.3(2.8 \mathrm{lb})$
Volume (cc) :
$8.5 \times 10^{3}\left(0.3 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) :
$21.9\left(-65^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^5]$$
2-67
$$
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300
Standard Deviation ($\times 10^{+9} \mathrm{hr}$): 1.0
Dormancy Factor (N.D.): 16
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 324. 0
Test and Evaluation (\$1000): 324.0
Unit Production (\$1000): 26. 0
Reference Quantity (No.): 3 :
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2. 5
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 1. 0
Qualification Lead Time Variable (months): 0.2.
State-of-Art Factor (N.D.): 1.0

Subsystem: APS (0108)
Configurations: Cold Gas
Equipment Type: . Thruster (Sterer 31980)
Performance
Technical Characteristics
(1) Thrust level:
(2) Puils e life:
(3) Inlet pressure:
(4) Total impulse (lb-sec)*:
(5) $\operatorname{ISP}(\mathrm{sec}) *$:
(6) Mixture ratio (N. D.) $* *$:
(9)
(10)

Power .

$$
\text { Average Power (watts): } \quad 1.0
$$

Maximum Power (watts): 37.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg):
0.95 (2.111b)

Volume (cc):
$5.9 \times 10^{3}\left(0.21 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$233\left(-40^{\circ} \mathrm{F}\right)$

Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

[^6]Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog'Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 300°
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 16
Cost
Design Engineering (\$1000): 261.0
Test and Evaluation (\$1000): 261.0
Unit Production (\$1000): -20. 8
Refërence Quantity (No.): 3:
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2. 5
Development Lead Time Variable (months): 1.6
Qualification Lead Time Constant (months): 1.0
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: A.PS (0109)
Configurations: Cold Gas
Equipment Type: Thruster (Valcor 27200)
Performance
Technical Characteristics
(1) Thrust level: $133 \mathrm{~N}(30.0 \mathrm{lb})$
(2) Pulse life: 5000 cycles(3) Inlet pressure:2. $068 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3000 psia)
(4) Total impulse (lb-sec)*:
(5) ISP. $(\mathrm{sec}) *$:
(6) Mixture ratio (N. D.)**:(7)(10)
Power
Average Power (watts): 1.0
Maximum Power (watts): 45. 0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg): $0.23(0.51 \mathrm{lb})$Volume (cc):$5.7 \times 10^{3}\left(0.2 \mathrm{ft}^{3}\right)$VibrationRandom (g, rms):18.5Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^7]$$
2-71
$$

Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry.
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 300$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 16.
Cost
Design Engineering (\$1000):
91.0

Test and Evaluation ($\$ 1000$): 91.0
Unit Production (\$1000): 6.8
Reference Quantity (No.): 3
Factor (N.D.):
Schedule
Development Lead Time Constant (months): 2.5
Development Lead Time Variable (months): 1.6
Qualification Lead Time Constant (months): 1.0
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.):

1. 0
Subsy.stem: APS (0201)
Configurations: Cold Gas
Equipment Type: Isolation Valve (latching solenoid) (Va.1rnr 2.72.0nn_-454
Performance
Technical Characteristics
(1) Maximum pressure: 2: $413 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad(3500 \mathrm{psia})$
(2) Flow area: $1.6 \times 10^{-2} \mathrm{~cm}^{2}\left(0.0025 \mathrm{in}^{2}\right)$(4)(5)
Power.
Average Power (watts): 0

- Maximum Power (watts): 30.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28. 0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/Inverter
Requirement (flag):
Weight (kg): $0.23(0.50 \mathrm{lb})$Volumè (cc):$1.4 \times 10^{3}\left(0.05 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms): 18.5
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $333\left(140^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$) :$233\left(-40^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{k} / \mathrm{m}^{2}$).
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): , 1
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Faịlure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{hr}$): 70
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): I
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000):0 - CER
Reference Quantity (No.): 1.
Factor (N.D.): 1
Schedule
0
Development Lead Time Constant.(months):
Development Lead Time. Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1. 0

Subsystem: . APS (0202)
Configurations: Cold Gas
Equipment Type: Isolation Valve (latching solenoid) (Sterer 5 1570)
Performance
Technical Characteristics.
(1) Maximum pressure:
(2) Flow area:
3. $172 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (4600 psia)
(3)
(9)
(10)

Power

Average Power (watts): 0
Maximum Power (watts): 51.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg) :

1. 1 (2.5 Ib)

Volume (cc):
$7.1 \times 10^{3} \quad\left(0.25 \mathrm{ft}^{3}\right.$
Vibration
Random (g, rms): $\quad 7.3$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 339\left(150^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$233\left(-40^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital. Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):

Safety

Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 70$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule

Development Lead Time Constant (months)0

Development Lead Time Variable (months) 0
Qualification Lead Time Constant (months) 0
Qualification Lead Time Variable (months) 0 .
State-of-Art Factor (N.D.):

Subsystem:
Configurations: Cold Gas
Equipment Type: Isolation Valve (pyrotechnic) (Pyrotechnics 1436-7)

Performance

Technical Characteristics

(1) Maximum pressure:
2. $413 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad$ (3500 psia)
(2) Flow area:
$0.14 \mathrm{~cm}^{2}\left(0.022 \mathrm{in}^{2}\right)$
(3)
(4)
(6)
(10)

Power
Average Power (watts): $\quad 0$
Maximum Power (watts): 12.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
$0.16(0.35 \mathrm{lb})$
Volume (cc):
$1.1 \times 10^{3} \quad(0.04 \mathrm{ft}$
Vibration
Random (g, rms): $\quad 16.9$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $\quad 219\left(-65^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):

Other Commands (No.):
I
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag):
I
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm \dot{9}} \mathrm{hr}$): $\quad 100$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): I
Cost
Design Engineering (\$1000):
0
Test and Evaluation. (\$1000):
Unit Production. (\$1000):
Reference Quantity (No.): 1
Factor (N.D.):

Schedule
Development Lead Time Constant (months):- 0 .
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): . 1.0
Subsystem: APS (0204)
Configurations: Cold Gas
Equipment Type: Isolation Valve (latching solenoid) (Valčor V27700) Performance
Technical Characteristics
(1) Maximu̇m pressure:
2. $069 \mathrm{x}: 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3000 psia)
(2) Flow area:
$23.6 \mathrm{~cm}^{2}\left(3.66 \mathrm{in}^{2}\right)$
(3)
(4)
(5)
(6)
(7)
(8)
(10)
Power
Average Power (watts): 0
Maximum Powe $\dot{\text { r }}$ (watts): 110.0
Minimum Power (watts): 0 .
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):
Weight (kg): $\quad 2.7$ (6.0 lb)
Volume (cc): $1.7 \times 10^{4}\left(0.6 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 344$ ($160^{\circ} \mathrm{F}$)
Minimum (${ }^{\circ} \mathrm{K}$):
$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): l
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 70
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): - 1
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): $1)$
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months):- 0
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0301)
Configurations: Cold Gas
Equipment Type: Filter (APM AC-A370-6)
Performance
Technical Characteristics
(1) Maximum pressure:
(2) Flow resistance:

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 0.41 (0.91 lb)
Volume (cc):
$2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): $\quad 18.5$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
2. $758 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad$ (4000 psia)
$1.0 \times 10^{11} \mathrm{~N} /(\mathrm{kg-m})^{2}\left(3.0 \times 10^{6} \mathrm{psi}\right.$ $\mathrm{sec}^{2} / 1 \mathrm{~b}^{2}$)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog. Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 10
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 1
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000):
Reference Quantịty (No.):
Factor (N.D.):
$0\}$ CER
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0 .
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N:D.): 1. 0

Subsystem: APS (0302)

Configurations: Cold Gas
Equipment Type: Filter (Vacco FIDI0178)
Performance
Technical Characteristics
(1) Maximum pressure:
2. $758 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (4000 psia) $3.4 \times 10^{8} \mathrm{~N} /(\mathrm{kg}-\mathrm{m})^{2} \quad\left(1.0 \times 10^{4} \mathrm{psi}\right.$
(2) Flow resistance:

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):

Weight (kg):
Volume (cc):
Vibration
Random (g, rms): $\quad 21.0$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$) :
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
$0.43(0.95 \mathrm{lb})$
2. $8 \times 10^{3} \quad\left(0.1 \mathrm{ft}^{3}\right)$
$366\left(200^{\circ} \mathrm{F}\right)$
$219\left(-65^{\circ} \mathrm{F}\right)$
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 10
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): ${ }^{\text {© }}$ I
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0 ,
State-of-Art Factor (N.D.): 1.0

Subsystem: APS (0401)

Configurations: Cold Gas

Equipment Type: Pressure Regulator (Sterer 51320)

Performance

Technical Characteristics
(1) Maximum pressure: $3.448 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad(5000 \mathrm{psi}$ i
(2) Flow area:
(3) Minimum set point: $0.0090 \mathrm{~cm}^{2}\left(0.0014 \mathrm{in}^{2}\right)$
(4) Maximum set point: 1. $0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (15 psia)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight (kg): 0.522 (1. 15 lb)
Volume (cc):
$2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 7.3
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
344 ($160^{\circ} \mathrm{F}$)
Minimum (${ }^{\circ} \mathrm{K}$):
$233\left(-40^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

Performance (continued)

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry

- Analog Points (No.):

Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$) $\quad 00$
Standard Deviation ($\mathrm{x}_{\boldsymbol{j}}{ }^{+9} \mathrm{hr}$):
Dormáncy Factor (N.D.):

1. 0

Total Redundant Elements (No.):' 2
Cost
Design Engineering (\$1000):
178.0

Test and Evaluation (\$1000):
Unit Production (\$1000):
48.0
22. 5

- Reference Quantity (No.): Factor (N.D.):

Schedule
Development Lead Time Constant (months):
2. 8

Development Lead Time Variable (months): 1.0
Qualification Lead Timé Constant (months): 1.3
Qualification Lead Time Variable (months): $0 . .1$
State-of-Art Factor (N.D.): \quad 1:0

Subsystem: APS (0402)
Configurations: Cold Gas
Equipment Type: Pressure Regulator (Fairchild 617000)
Performance
Technical Characteristics
(1) Maximum pressure:
2. $690 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3.900 psia)
(2) Flow area:
$0.006 \mathrm{~cm}^{2}\left(0.001 \mathrm{in}^{2}\right)$
(3) Minimum set point:
2. $4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (35 psia)
(4) Maximum set point: $2.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ (41 psia)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): "NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg):
$0.54(1.2 \mathrm{Ib})$
Volume (cc):
2. $8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)$

Vibration
Random (g, rms): $\quad 12.7$
Non-Random (g) :
Temperature
Maximum $\left({ }^{\circ} \mathrm{K}\right): \quad 339\left(150^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) :
$239\left(-30^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

Performance (continued)
CDPI
Powèr Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry

- Analog Points (No.): 1

Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean (x $10^{ \pm 9} \mathrm{hr}$): $\quad 5000$
Standard Deviation ($\mathrm{x} 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D:): :

1. $0^{\text {: }}$

Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
181.0 .

Test and Evaluation (\$1000):
50.0

Unit Production (\$1000):
23.0

Reference Quantity (No.):
1
Factor (N.D.):
F
Schedule
Development Lead Time Constant (months): 2.8
Development Lead Time Variable (months): 1.0
Qualification Lead Time Constant (months): 1.3
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): $\quad: \quad 1.0$

Subsystem: APS (0403)
Configurations: Cold Gas
Equipment Type: Pressure Regulator (Sterer 51310)
Performance
Technical Characteristics
\because (1) Maximum pressure: $\quad 3.172 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (4600 psia)
(2) Flow area: $\quad 0.13 \mathrm{~cm}^{2}\left(0.02 \mathrm{in}^{2}\right)$
(3) Minimum set point: $\quad 1.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.(200 psia)
(4) Maximum set point: $1.72 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (250 psia)
(5)
(6)
(7)
(8)
(9)
(10)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter.
Requirement (flag):
Weight (kg): 1. 9 (4.1 lb)
Volume (cc): $\quad 1.1 \times 10^{4}\left(0.4 . \mathrm{ft}^{3}\right)$
Vibration ,
Random (g, rms): $\quad 7.3$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
344. ($160^{\circ} \mathrm{F}$).
Minimum (${ }^{\circ} \mathrm{K}$) :
$233\left(-40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Cemmands.(No..):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): l
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \cdot \mathrm{hr}$): 5000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy. Factor (N.D.): 1.0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 460.0
Test and Evaluation (\$1000): 125.0
Unit Production (\$1000): 47. 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 2. 8
Development Lead Time Variable (months): 1. 5
Qualification Lead Time Constant (months): 1.3
Qualification Lead Time Variable (months): 0.2^{\prime}
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0501)
Configurations: Cold Gas
Equipment Type:- Tank (PSI 80082)
PerformanceTechnical Characteristics
(1) Volume:(2) Maximum pressure:
2. $496 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3620 psia).

(3)
Power
Ave rage Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg) :2.:8 (6. 1 lb)Volume (cc):6. $5 \times 10^{3}\left(0.23 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms)
Non-Random (g):
Temperature
Maximum (${ }^{\circ}{ }^{\prime} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$Minimum $\left({ }^{\circ} \mathrm{K}\right)$:$219\left(-65^{\circ} F\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)
CDPI
Power Switching Commands' (No:):
Time Tagged Commands (No.):
Other Commands (No.):
High Rațe Teflemetry
Analog Points (No.):

- Digital Points (No.):

Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag): $\quad 1$
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 4} \mathrm{hr}$): $\quad 360$
Standard Deviation ($\mathrm{x}_{10} 10^{+9} \mathrm{hr}$): .
Dormancy Factor (N.D.): : $\therefore \quad 1.0$
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months): $\quad{ }_{0}^{\prime}{ }_{0}$:
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): - 0 .
Qualification Lead Time Variable (months):' : 0
State-of-Art Factor (N.D.): \quad. 0
Subsystem: APS (0502)
Configurations: Cold Gas
Equipment Type: Tank (Fansteel .9490304)
Performance
Technical Characteristics
(1) Volume: . 1. $57 \times 10^{4} \mathrm{~cm}^{3}\left(960 \mathrm{in}^{3}\right)$
(2) Maximum pressure: 2. $240 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3250 psia)
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA.
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):

- Weight (kg): $5.4(12.0 \mathrm{lb})$Volume (cc):$1.6 \times 10^{4}\left(0.56 \mathrm{ft}^{3}\right)$VibrationRandom (g, rms):Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $219\left(-65^{\circ} F\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$) :

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged.Commands (No.)
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
: Digital Points (No.):
Sample Rate (sec^{-1}) :
Word Length (bits):
Low Rate Telemetry.
Analog Points (No.):
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 1$
Word Length (bits): : 8
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 360$.
Standard Deviation ($\mathrm{x} \cdot 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): - 1.0
_otal Redundant Elements (No.): 4
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No..):
Factor (N.D.):
CER

Schedule
Development Lead Time Constant (months): 0 .
Development Lead Time Variable (months): . 0
Qualification Lead Time Constant (months): "0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N. D.): $\quad \because \quad 1.0$
Subsystem: APS (0503)
Configurations: Cold Gas
Equipment. Type: Tank (Fansteel)
Performance
Technical Characteristics
(1) • Volume:(2) Maximum pressure:$3.568 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad(5175 \mathrm{psia})$
(3)(4)
Power
Average Power (watts): NA
Maximum. Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): 12.6 (27.8 1b)
Volume (cc): 2. $1 \times 10^{4 .}\left(0.75 \mathrm{ft}^{3}\right)$VibrationRandom (g, rms):Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right)$: $219\left(-65^{\circ} \mathrm{F}\right)$
Pressure $\cdot\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands.:(No.):...
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
. Analog Points (No.):

- Digital'Points (No.):
Sample Rate (sec^{-1}):
Word Jength (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital. Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1.
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 60
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy. Factor (N.D.): 1. 0
Total Redundant Elements (No.): 4.
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): \circ
Reference Quantitý (No.): 1
Factor (N. D.): 1
Schedule
Development Lead Time Constant (months): " 0
Developmient Lead Time Variable (months): 0 :
Qualification Lead Time Constant (months): ." 0
Qualification Lead Time Variable (months): 0.
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0504)
Configurations: Cold Gas
Equipment Type:• Tank (Arde E3749)
Performance
Technical Characteristics
(1) Volume: $3.212 \times 10^{4} \mathrm{~cm}^{3} .\left(1960 \mathrm{in}^{3}\right)$(2) Maximum pressure: $2: 240 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3250 psia)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): $10.0(22.0 \mathrm{lb})$
Volume ($c c$): $3.2 \times 10^{4}\left(1.13 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 8.3
Non-Random (g):Temperature

Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$):$344\left(160^{\circ} \mathrm{F}\right)$$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
: . Analog Points (No.):
Digital Points. (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$. 360
Standard Deviation ($\mathrm{x}-10^{+9} \mathrm{hr}$) :
Dormancy. Factor (N.D.): 1. 0
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0)
Test and Evaluation (\$1000): 0
r Unit Production (\$1000): 0
Reference Quantity: (No.): 1
Factor.(N.D.): 15
Schedule
Development Lead Time Constant (months): 0.
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Timé Variable (months): 0
State-of-Art Factor (N.D.): 1. 0

Sụbsystem: APS (0506)

Configurations:
Equipment Type: Tank (Airite 6396)

Technical Characteristics
(I) Volume:
$4.441 \times 10^{4} \mathrm{~cm}^{3}\left(2710 \mathrm{in}^{3}\right)$
(2) Maximum pressure: 2. $240 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3.250 psia)
(4)
(5)
(6)
(10)

Power
Average Power (wạtts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 13.6^{\circ}(30.0 \mathrm{lb})$
Volume (cc): $\quad 4.4 \times 10^{4}\left(1.57 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$344\left(160^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right)$:
$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

> Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
-Analog Points (No.):
-Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
... Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): - 1. 0
Total Redundant Elements (No.): 4.
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000):01
Reference Quantity (No.):
1
Factor (N.D.):Schedule
Development Lead Time Constant (months): ${ }^{\circ}$
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0 : .
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1. 0

Subsystem: APS (0507).
Configurations: Cold Gas
Equipment Type: Tank (Airite 6485-3)
Performance
Technical Characteristics
(1) Volume: $5.709 \times 10^{4} \mathrm{~cm}^{3}\left(3484 \mathrm{in}^{3}\right)$
(2) Maximum pressure: $3.310 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad$ (4800 psia)
(3)
(4)

Power
Average Power (watts): N
Maximum Power (watts): NA
Minimum Power (watts): N\&
Nominal Voltage (volts): NF
Maximum Voltage (volts): NA
Minimum Voltage (volts): N」
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 22.7$ (50.0 1b)
Volume (cc):
$2.72 \times 10^{4}\left(2.02 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 366\left(200^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right): \quad 200\left(-100^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry

- Analog Points (No.):
- Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (fiag): 1.
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm y} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0.
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference. Quantity (No.): $\cdot 1$
Factor (N.D.): 1 I
Schedule
Development Lead Time Constant (montns): 0
Development Lead Time Variable (months): 0.
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
Subsystem: APS (0508)
Configurations: Cold Gas
Equipment Type: Tank (Airite 6529-1)
Performance
Technical Characteristics
(1) Volume:
(2) Maximum pressure:$9.504 \times 10^{4} \mathrm{~cm}^{3}\left(5800 \mathrm{in}^{3}\right)$

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg):$25.1 \quad(55.5 \mathrm{lb})$
Volume (cc): $9.51 \times 10^{4}\left(3.36 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 13.1Non-Random (g):Temperature
Maximum (${ }^{\circ}{ }^{\circ} \mathrm{K}$):$394\left(160^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$219\left(-65^{\circ} \mathrm{F}\right)$
Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog. Poințs.(No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
\therefore Failure Model (flag): 1
Failure Parameters
Failure Rate or Meàn ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production. (\$1000):0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0.
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0.
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N. D.) : 1:. 0
Subsystem: APS (0509)
Configurations: Cold Gas
Equipment Type: Tank (Fansteel 4425003)
Performance
Technical Characteristics
(1). Volume:
(2) Maximum pressure: 1. $274 \times 10^{-5} \mathrm{~cm}^{3}\left(7775 \mathrm{in}^{3}\right)$
$2.206 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3200 psia)(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):

Weight (kg):
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 344$ ($160^{\circ} \mathrm{F}$)
Minimum (${ }^{\circ} \mathrm{K}$):
$219\left(-65^{\circ} \mathrm{F}\right)$
Prešsure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
~Analog Points (No.):
Digital Points (No..):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\mathrm{x} .10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
CER
Reference Quantity (No.):1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1. 0°
Subsystem: APS (0601)
Configurations: Cold Gas
Equipment Type: Fill and Drain Valve (Sterer 34650-1)
Performance
Technical Characteristics
(1) ${ }^{\prime}$ Maximum pressure: $3.172 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (4600 psia)(2)(3)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): $0.073(0.164 b)$
Volume (cc): $560\left(0.02 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms): 7.3
Non-Random (g):Temperature

Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$):
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analóg Points (Nंo.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
. Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm!}$? 70
Standard Deviation ($\times 10^{+9} \mathrm{hr}$).
Dormancy Factor (N.D.): 1: 0
Total Redundant Elements (No.) I
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): $\therefore 1$
Factor (N.D.): 1.
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0 :
Qualification Lead Time Constant (months): 0 .
Qualification Lead Time Variable (months):- 0
State-of-Art Factor (N.D.): 1.0
Subsystem: APS (0701)
Configurations: Cold Gas
Equipment Type: Relief Valve (Pyronetics)
Performance
Technical Characteristics
(1) Minimum set point: $1.86 \times 10^{6} \cdot \mathrm{~N} / \mathrm{m}^{2}$ (270 psia)
(2) * Maximum set point: $2.07 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (300 psià)
(3) Maximum operating pressure: 2. $413 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (3500 psia)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): $: 0.09^{\circ}(0.2 \mathrm{lb})$
Volume (cc): $560 \quad\left(0.02 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $333\left(140^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $233\left(-40^{\circ} \mathrm{F}\right)$
Pressure. $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

Performance (continued)
CDPI
Power Switching Gommands, (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):

- 'Digital Points (No.):

Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): l
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm y} \mathrm{hr}$):
20
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): .
-1. 0
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):0

Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): l:
Schedule
Development Lead Time Constant (months): 0 .
Development Lead Time Variable (months): 0 :
Qualification Lead Time Constant (months): 0 :
Qualification Lead Time Variable (months): 0.
State-of-Art Factor (N.D.): ध.l.0
Subsystem: APS (0801)
Configurations: Monopropellant
Equipment Type: Thruster (Rocket Research MR-74)
Performance
Technical Characteristics
(1) Thrust level: $0.44 \mathrm{~N}(0.1 \mathrm{lb})$
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse:*
(5) ISP:*

100,000 cycles
2. $07 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (300 psia)
$8.0 \times 10^{4} \mathrm{~N}-\mathrm{sec}(18,000 \mathrm{lb}-\mathrm{sec}$ 220 sec
(6) Mixture ratio (N.D.): **
Power

Average Power (watts):	1.0
Maximum Power (watts):	2.6
Minimum Power (watts):	0
Nominal Voltage (volts):	28.0
Maximum Voltage (volts):	32.0
Minimum Voltage (volts):	24.0

Converter/Inverter Requirement (flag):
Weight (kg) :
$0.29(0.65 \mathrm{lb})$
Volume (cc):
$2.0 \times 10^{3}\left(0.07 \cdot \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): $\quad 17.0$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$355\left(180^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right)$:
$278\left(40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^8]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$):, 1700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factori:(N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 109.0
Test and Evaluation (\$1000): 27.0
Unit Production (\$1000): 8.2
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule \because;
Development Lead Time Constant (months): 3.0
Development Lead Time Variable (months): 0.8
Qualification. Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (0802)
Configurations: Monopropellant
Equipment Type: Thruster (Hamilton Standard REA-10-13) .
Performance
Technical Characteristics
(1) Thrust level: $0.44 \mathrm{~N} .(0.1 \mathrm{lb})$
(2) Pulse life:
Inlet pressure:
375,000 cycles.
(4) Total impulse:* $7.43 \times 10^{4} \mathrm{~N}-\sec (16,700 \mathrm{lb}-\mathrm{sec}$.1. $72 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (250 psia)
(5) ISP:*(6) Mixture ratio (N.D.):**
Power
Average Power (watts): 1.0
Maximum Power (watts): 6.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $0.14(0.3 \mathrm{lb})$Volume (cc):$850 \cdot\left(0.03 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 21.0
Non-Random (g):TemperatureMaximum (${ }^{\circ} \mathrm{K}$):$333\left(140^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):$266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^9]Performance (continued)
CDPI
Power Switching Cominañè (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{hr}$); 700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):

- Dormancy Factor (N. D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 61.0
Test and Evaluation (\$1000): 15.0
Unit Production (\$1000): 4.4.
Reference Quantity (No.): 3
Factor (N.D.): 1 .
Schedule
Development Lead Time Constant (months): 3. 0
Development Lead Time Variable (months): 0.8
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0

Subsystem:
APS (0803)
Configurations: 4 Monopropellant
Equipment Type: Thruster (Rocket Research MR-6C)
Performance
Technical Characteristics
(1) Thrust level:
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse*:
(5) IS P\%:
(6) Mixture ratio (N. D.) **:
(7)

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): 4.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): . $0: 29$ (0.65 lb)
Volume (cc):
$2.0 \times 10^{3}\left(0.07 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): $\quad 21.0$
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 328\left(130^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$244\left(-20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^10]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
"Iigh Rate.Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 5
Failure Parameters.
Failure Rate or Mean ($\times 10^{\prime \prime} \mathrm{hr}$): - 1700
Standard Deviation ($\mathrm{x} \cdot 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Enginee ring (\$1000): 109.0
Test and Evaluation (\$1000): 27.0
Unit Production (\$1000): 8.2
Reference Quantity (No.): 3
Factor (N.D.): 1.
Schedule
Development Lead Time Constant (months): 3.0
Development Lead Time Variable (months): 0.8
Qualification Lead Time Constant (months): 1. 5 :
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0

Subsystem: APS (0804)
Configurations: Monopropellant
Equipment Type: Thruster (Hamilton Standard REA-17-7)
Performance
Technical Characteristics
(1) Thrust level:
$2.2 \mathrm{~N}(0.5 \mathrm{lb})$
(2) Pulse life:
1.5×10^{6} cycles
(3) Inlet pressure:
$1.72 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (250 psia)
(4) Total impulse*:
$8.0 \times 10^{4} \mathrm{~N}-\mathrm{sec}(18,000 \mathrm{lb}-\mathrm{sec})$
(5) ISP : 227 sec
(6) Mixture ratio (N. D.) **:
(7)
(8)
(10)

Power

$$
\text { Average Power (watts): } \quad 1.0
$$

Maximum Power (watts): 8.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg):
$0.2(0.4 \mathrm{Ib})$.
Volume (cc):
$1.1 \times 10^{3}\left(0.04 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$333\left(140^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

Performance (continued)

CDPI
Power-Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): $\quad{ }^{2}$
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean (x $10^{ \pm 9} \mathrm{hr}$): $\quad 1700$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000):
76.0

Test and Evaluation (\$1000):
76.0

Unit Production (\$1000):
5.6

Reference Quantity (No.):
3
Factor (N.D.):
Schedule
Development Lead Time Constant (months): 3.0'
Development Lead Time Variable (months): 0.8
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0

```
Subsystem: . APS (0805)
Configurations: Monopropellant
Equipment Type: Thruster (Hughes HS -333)
Performance
Technical Characteristics
(1) Thrust level: 4.4 N (1.0 lb)
(2) Pulse life: 20,000 cycles
(3) Inlet pressure (psia):
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N.D.)**:
(7)
(8)
(9)
(10)
Power
```

```
Average Power (watts):
```

Average Power (watts):
Maximum Power (watts):
Minimum Power (watts):
Nominal Voltage (volts):
Maximum Voltage (volts):
Minimum Voltage (volts):
Converter/Inverter
Requi rement (flag):
Weight (kg):
Volume (cc):
Vibration
Random (g, rms
Non-Random (g):
Temperature
Maximum (}\mp@subsup{}{}{\circ}\textrm{K}\mathrm{):
Minimum (}\mp@subsup{}{}{\circ}\textrm{K}\mathrm{):
Pressure (kg/m}\mp@subsup{}{}{2})

```

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
Performance (continued)
    CDPI
        Power Swittching Commands (No
        Time Tagged Commands (No.):
        Other Commands (No.):
        High Rate Telemetry
            Analog Points (No.):
            Digital Points (No.):
            Sample Rate ( \(\mathrm{sec}^{-1}\) ):
            Word Length.(bits):
Low Rate Telemetry
            Analog Points (No.): ''2
            Digital Points (No.):
            Sample Rate ( \(\mathrm{sec}^{-1}\) ): I
            Word Length (bits): 8
Safety
    Failure Model (flag): 5
    Failure Parameters
    Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 1700\)
    Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
    Dormancy Factor (N. D.): 0.1
    Total Redundant Elements (No.): 12
Cost
    Design Engineering (\$1000): \(\quad 115.0\)
    Test and Evaluation (\$1000): 115.0
    Unit Production. (\$1000): 8.7
    Reference Quantity (No.): 3
    Factor (N.D.): 1
Schedule
    Development Lead Time Constant (months): 3.0
    Development Lead Time Variable (months): 0.8
    Qualification Lead Time Constant (months): 1.5
    Qualification Lead Time Variable (months): 0.1
    State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations: Monopropellant
Equipment Type: Thruster (TRW MRE-1)
Performance
Technical Characteristics
(1) Thrust level:
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse*:
(5) ISP*:
4.4 N ( 1.0 Ib )

100, 000 cycles
\(2.59 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (375 psia).
\(4.4 \times 10^{4} \mathrm{~N}-\mathrm{sec}(9,800 \mathrm{lb}-\mathrm{sec})\)
220 sec
(6) Mixture ratio (N. D.) **:
(7)
(8)
(10)

Power
Average Power (watts): \(\quad 1.0\)

Maximum Power (watts): 5.4
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): \(\quad 31.0\)
Minimum Voltage (volts): \(\quad 26.0\)
Converter/Inverter Requirement (flag):

Weight (kg): \(\quad 0.3\) (0.7 1b)
Volume (cc): \(\quad 2.0 \times 10^{3}\left(0.07 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): \(\quad 21.0\)
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... \(5^{\circ}-\)
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\) ): : ..... 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N. D.): ..... 0.1
Total Redundant Elements (No.): ..... 12
Cost
Design Engineering (\$1000): ..... 115.0
Test and Evaluation (\$1000): ..... 115.0
Unit Production (\$1000): ..... 8.7
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1Schedule
Development Lead Time Constant (months) ..... 3.0
Development Lead Time Variable (months): ..... 0.9
Qualification Lead Time Constant (months): ..... 1.5
Qualification Lead Time Variable (months): ..... 0,1
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: APS (0807)
Configurations: Monopropellant
Equipment Type: Thruster (TRW MRE-3)
Performance
Technical Characteristics
(I) Thrust level: \(16 \mathrm{~N}(3.7 \mathrm{lb})\)60,000 cycles
(3) Inlet pressure: ..... \(4.14 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (600 psia)
(4) Total impulse (lb-sec)*:
(5) ISP (sec)*:
(6) Mixture ratio (N.D.)**:
Power
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 5.4
Minimum Power (watts): ..... 0.0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 31.0
Minimum Voltage (volts): ..... 26.0
Converter/Inverter
Requirement (flag):
Weight (kg) : ..... \(0.3(0.6 \mathrm{lb})\)
Volume (cc): ..... \(1.7 \times 10^{3}\left(0.06 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 19.5
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ) : ..... \(322\left(120^{\circ} \mathrm{F}\right)\)Minimum ( \({ }^{\circ} \mathrm{K}\) ):\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable. to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
Performance (continued)
    CDPI
        Power Switching Commands (No.):
        Time Tagged Commands (No.):
        Other Commands (No.):
        High Rate Telemetry
        Analog Points (No.):
        Digital Points (No.):
        Sample Rate ( \(\mathrm{sec}^{-1}\) ):
        Word Length (bits):
    Low Rate Telemetry
        Analog Points (No.): 2
        Digital Points (No.):
        Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
        Word Length (bits): 8
Safety
    Failure Model (flag): . 5
    Failure Parameters
        Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 1700\)
        Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
        Dormancy Facṭor (N.D.): 0.1
    Total Redundant Elements (No.): " 12
Cost
    Design Engineering (\$1000): 101.0
    Test and Evaluation (\$1000): 101.0
    Unit Production (\$1000):
        7.7
    Reference Quantity (No.): . 3
    Factor (N.D.): 1
Schedule
    Development Lead Time Constant (months): 3.0
    Development Lead Time Variable (months): 0.8
    Qualification Lead Time Constant (months): 1.5.
    Qualification Lead Time Variable (months): 0.1
    State-of-Art Factor (N.D.): 1.0
Subsystem: ..... APS (0808)
Configurations: Monopropellant
Equipment Type: . Thruster (TRW 4uчocu)
Performance
Technical Characte ..... -....-
(1) Thrust level: ..... 18 N (4.1 1b)
(2) Pulse life: 93, 000 cycles
(3) Inlet pressure: ..... \(4.14 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) ( 600 psia )
(4) Total impulse*: ..... \(6.49 \times 10^{4} \mathrm{~N}-\mathrm{sec}(14,600 \mathrm{lb}-\mathrm{sec})\)
(5) ISP*: ..... 230 sec
(6) Mixture ratio (N. D.)**:
'ower
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 5.53
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32.6
Minimum Voltage (volts): ..... -26.0
Converter/Inverter
Requirement (flag):
Weight (kg): ..... \(0.3(0.6 .1 \mathrm{lb})\)
Volume (cc): ..... \(1.7 \times 10^{3}\left(0.06 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 19.5
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ) : ..... \(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) : ..... 278 ( \(\left.40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

\section*{Performance (continued)}

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points.(No.):
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameteŕs
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 1700\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
, Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit-Production (\$1000):
Reference Quantity (No.):
3
Factor (N.D.): 1
Schedule :...
Development Lead Time Constant (months): 3.0
Development Lead Time Variable (months): 1.0
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: ..... APS (0809)
Configurations: . Monopropellant
Equipment Type: Thruster (Hamilton Standard REA-16-10)
Performance
Technical Characteristics
(1) Thrust level: ..... \(22 \mathrm{~N}(5.0 \mathrm{Ib})\)
(2) Pulse life :100, 000 cycles(3) Inlet pressure:\(2.07 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (300 psia)
(4) Total impulse*: \(1.49 \times 10^{5} \mathrm{~N}\)-sec \((33,500 \mathrm{lb}-\mathrm{sec})\)(5) ISP*:235 sec
(6) Mixture ratio (N.D.)**:(7)
(10)
Power
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 17.8
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32.0
Minimum Voltage (volts): ..... 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): ..... \(0.4 \quad(0.9 \mathrm{Ib}\)Volume (cc):\(2.5 \times 10^{3}\left(0.09 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 19.6
Non-Random (g):
TemperatureMaximum ( \({ }^{\mathrm{O}} \mathrm{K}\) ):\(333\left(140^{\circ} \mathrm{F}\right)\)Minimum ( \({ }^{\circ} \mathrm{K}\) ):\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.):
Time Tagged Commands (No.).:
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
Word Length (bits): 8

Safety
Failure Model (flag): . . 5
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\) ): . 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
139.0
139.0
10.6

Reference Quantity (No.): 3

Factor (N.D.):1

Schedule
Development Lead Time Constant (months): 3.0
Development Lead Time Variable (months): 1.2
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): . 0.1
State-of-Art Factor (N. D.): "n
Subsystem:
Configurations: Monopropellant
Equipment Type: Thruster (Rocket Research MR-50A)
Performance
Technical Characteristics
(1) Thrust level:
(2) Pulse Iife:
(3) Inlet pressure:
(4) Total impulse*:
(5) ISP*:

22 N ( 5.0 lb )
175, 000 cycles
\(1.59 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (230 psia)
\(2.02 \times 10^{5} \mathrm{~N}-\mathrm{sec}(45,500 \mathrm{Ib}-\mathrm{sec})\)
227 sec
(6) Mixture ratio (N, D.) \(* *\) :
(7)
(10)
Power
\[
\text { Average Power (watts): } 1.0
\]
Maximum Power (watts): \(\quad 21.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): \(\quad 28.0\)
Maximum Voltage (volts): \(\quad 32.0\)
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 0.54 (1.2 1b)
Volume (cc):
\(2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): \(\quad 38.0\)
Non-Random (g):
Temperature
Maximum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
Maximum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
    333 (140}\mp@subsup{}{}{\circ}\textrm{F}
    333 (140}\mp@subsup{}{}{\circ}\textrm{F}
Minimum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
Minimum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
    278 (40
    278 (40
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}

Performance (continued)
CDPI
Power Switching Commānds (No..):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
- Word Length (bits):

Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
Word Length (bits): . 8

\section*{Safety}
- Failure Model (flag): 5

Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ) 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements ( \(\mathrm{N}^{\top}\) ) . 12
Cost
Design Engineering (\$1000): \(\quad 171.0\)
Test and Evaluation ( \(\$ 1000\) ): \(\quad 171.0\)
Unit Produćtion (\$1000): 13:2
Reference Quantity (No.): 3
Factor (N.D.' I
Schedule
Development Lead Time Constant (months): \(\quad 3.0\)
Development Lead Time Variable (months): 1.0
Qualification Lead Time Constant•(months): 1.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: APS (0811)
Configurations: Monopropellant
Equipment Type: Thruster (Rocket Research MR-3A)
Performance
Technical Characteristics
(1) Thrust level: ..... 110 N ( 25.0 lb )
(2) Pulse 1ife:
(3) Inlet pressure:
(4) Total impulse*: ISP*:

25,000 cycles
\(2.48 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad(360 \mathrm{psia})\)
\(6.27 \times 10^{5} \mathrm{~N}\)-sec \((141,000 \mathrm{lb}-\mathrm{sec})\)
228 sec
Mixture ratio (N. D.)**:

(6) Mixture ratio (N. D.)**:
Power
Average Power (watts): ..... 1. U
Maximum Power (watts): ..... 26.0
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32.0
- Minimum Voltage (volts): ..... 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): ..... \(2.10(4.64 \mathrm{lb})\)
Volume (cc): \(1.3 \times 10^{4} \quad\left(0.46 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms): ..... 36.0
Non-Random (g):
TemperatureMaximum ( \({ }^{\circ} \mathrm{K}\) ):\(394\left(250^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) : ..... \(278\left(40^{\circ} \mathrm{F}\right)\)Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}

Performance (continued)

\section*{CDPI}

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag):
5
Failure Parameters
Failure Rate or Mean ( \(\dot{x} 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 1700\) Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ): Dormancy Factor (N.D.): 0.1

Total Redundant Elements (No.):6

\section*{Cost}

Design Engineering (\$1000):
480.0

Test and Evaluation (\$1000):
480.0

Unit Production (\$1000): 39.0
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): \(\quad 3.0\)
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: ..... APS (0812)
Configurations: Monopropellant
Equipment Type: Thruster (Marquardt R-24-C)
Performance
Technical Characteristics
(1) Thrust level: ..... 110 N (25.0 15)
(2) Pulse life:(3) Inlet pressure:200,000 cycles
\(2.28 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (330 psia)(4) Total impulse*:\(2,22 \times 10^{5} \mathrm{~N}-\mathrm{sec}(50,000 \mathrm{Ib}-\mathrm{sec})\)
(5) IS P*:
231 sec
(6) Mixture ratio (N. D.)**:
Power
Average Power (watts): ..... 1.0
Maximüm Power (watts): ..... 56.0
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32.0
Minimum Voltage (volts): ..... 24.0
Converter/InverterRequirement (flag):
Weight (kg): ..... 1.1 (2.5 1b)Volume (cc):\(7.1 \times 10^{3}\left(0.25 \mathrm{ft}^{3}\right)\)VibrationRandom ( \(\mathrm{g}, \mathrm{rms}\) ):Non-Random (g):Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(322\left(120^{\circ} \mathrm{F}\right)\)
278 ( \(40^{\circ} \mathrm{F}\) )Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}

\section*{Performance (continued)}

\section*{- CDPI}

Power.Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
‥ Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
;
2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): I
Word Length (bits): 8
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ) 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{~h}^{\prime} \mathrm{r}\) ):
Dormancy. Factor (N. D.):
0.1

Total Redundant Elements (No.): 6
Cost
Désign Engineering (\$1000):
Test and Evaluation (\$1000): .300 .0 .

Unit Production (\$1000): 300.0

Reference Quantity (No.): 23.8

Factor (N.D.): 3

Schedule
Development L
Jonstant (months):
3.0

Development Lead Time Variable (months): • 'i.5
Qualification Lead Time Constant (months): . 1.5
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): \(n\)

Subsystem:
Configurations: Monopropellant

Equipment-Type: Thruster (Rocket Research MR-3C)
Performance
Technical Characteristics
(1) Thrust level:
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse*:
(5) ISP*:
(6) Mixture ratio (N.D.) \(\%\) :

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): 28.0
Minimum Power (watts): 0
Nominal Voltage (volts): . 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight \((\mathrm{kg}): \quad 1.26\) (2.78 lb )
Volume (cc): \(\quad 7.9 \times 10^{3}\left(0.28 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms): \(\quad 36.0\)
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(394\left(250^{\circ} \mathrm{F}\right)\)
Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :
278 ( \(\left.40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
Word Length (bits): 8

\section*{Safety}

Failure Model (flag):5

Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.):
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
322.0

Test and Evaluation (\$1000): 322.0

Unit Production (\$1000): 25:8
Reference Quantity (No.):
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): \(\quad 3.0\)
Development Lead Time Variable (months): 1.7
Qualification Lead Time Constant (months): 1.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): I:0

Subsystem:
APS (0814)
Configurations: : Monopropellant
Equipment Type: Thruster (TRW MRE-50-73)
Performance
Technical Characteristics
(1) Thrust level: \(222 \mathrm{~N}(50.0 \mathrm{lb})\)
(2) Pulse life: 1500 cycles
(3) Inlet pressure (psia):
(4) Total impulse*: \(2.22 \times 10^{4} \mathrm{~N}-\mathrm{sec}(5000 \mathrm{lb}-\mathrm{sec})\)
(5) ISP*: 230 sec
(6) Mixture ratio (N. D.) \(* *:\)
(7)
(8)
(9)
(10)

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): 20.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
\(2.3(5.0 \mathrm{lb})\)
Volume ( cc ):
\(1.4 \times 10^{4}\left(0.5 \mathrm{ft}^{3}\right)\)

Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 333\left(140^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

\section*{Performance (continued)}
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.): Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... 5
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... 1700
Standard Deviation ( \(\mathrm{x} \cdot 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): ..... 0.1
Total Redundant Elements (No.): ..... 6
Cost
Design Engineering (\$1000): ..... 02. 0
Test and Evaluation (\$1000): ..... 02.0
Unit Production (\$1000): ..... 41. 0
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... 3.0
Development Lead Time Variable (months): ..... 1.9
Qualification. Lead Time Constant (months): ..... 1.5
Qualification Lead Time Variable (months): ..... 0.3
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: APS (0815)
Configurations: Monopropellant
Equipment Type: Thruster (Marquardt R-30).
'erformance
Technical Characteristics
(1) Thrust level : ..... 689 N ( 155.0 lb )
(2) Pulse life:
500 cycles
(3) Inlet pressure:
\(3.10 \times 10^{6} . \mathrm{N} / \mathrm{m}^{2}\). (450 psia)
(4) Total impulse*:
\(2.22 \times 10^{5} . \mathrm{N}-\sec (50,000 \mathrm{lb}-\mathrm{sec})\)
(5) ISP*:234 sec
(6) Mixture ratio (N. D.)**:(7)
Power
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 29.0
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32: 0
Minimum Voltage (volts): ..... 24.0
Converter/InverterRequirement (flag):
Weight (kg): ..... 1.3 (2.9 1b)Volume (cc):\(8.2 \times 10^{3} \cdot\left(0.29 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 15.0Non-Random (g):
TemperatureMaximum ( \({ }^{\circ} \mathrm{K}\) ):\(322\left(120^{\circ} \mathrm{F}\right)\)Minimum ( \({ }^{\circ} \mathrm{K}\) ):\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters 
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Tellemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... 5.
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ) :
Dormancy Factor (N.D.): ..... 0.1
Total Redundant Elements (No.): ..... 6
Cost
Design Engineering (\$1000): ..... 334.0
Test and Evaluation (\$1000): ..... 334.0
Unit Production (\$1000): ..... 26.8
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... 3.0
Development Lead Time Variable (months): ..... 3.0
Qualification Lead Time Constant (months): ..... 1.5
Qualification Lead Time Variable (months): ..... 0.6
State-of-Art Factor (N.D.): ..... 1.0

Subsystem: .

\section*{Configurations 'quipment'Type \\ 'erformance \\ Technical Characteristics}

APS (0816)
(1) Thrust level: \(\quad 1330 \mathrm{~N}(300.0 \mathrm{lb})\)
(2) Pulse life (cycles):
-(3) Inlet pressure (psia):
(4) Total impulse*: \(2.22 \times 10^{\circ} \mathrm{N}-\sec (500,000 \mathrm{lb}-\mathrm{sec})\)
(5) ISP (sec)*:
(6) Mixture ratio (N.D.)**:
(10)

\section*{Power}
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 20.0
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 32.0
Minimum Voltage (volts): ..... 24.0
Converter/InverterRequirement (flag):
Weight (kg): ..... \(2.3(5.0 \mathrm{lb})\)Volume (cc):\(1.4 \times 10^{4}\left(0.5 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(333\left(140^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) :\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters**Applicable to bipropellant thrusters only

Performance (continued)
CDPI
Power Switc̈hing Commands"(No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length '(bits):
Low Rate Telemetry
Analog Points (No.): \(\cdot 2\)
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag):
\[
5
\]

Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 17 \grave{1} 00\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.):
0.1

Total Redundant Elements (No.):
4

\section*{Cost}

Design Engineering (\$1000):
Test and Evaluation ( \(\$ 1000\) ):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months): \(\quad 3.0\)
Development Lead Time Variable (months): \(\quad 3.7\)
Qualification Lead Time Constant (months): 1.5
Qualification Léad Time Variable (months): 0.6
State-of-Art Factor (N.D.): . . 1.0 .
Subsystem: ..... APS (0817)
Configurations: Monopropellant
Equipment Type: Thruster (Rocke

\(\qquad\) ..... h MR-80A)
Performance
Technical Characteristics
(1) Thrust level:
(2) Pulse life :
(3) Inlet pressure:
(4) Total impulse*:
(5) ISP*:
\(2810 . \mathrm{N}\) ( 632.0 Ib )
500 cycles
\(3.31 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (480 psia)
\(2.30 \times 10^{5} \mathrm{~N}-\sec (51,600 \mathrm{lb}-\mathrm{sec})\)
227 sec
(6) Mixture ratio (N.D.)**:
Power
Average Power (watts): ..... 1.0
Maximum Power (watts): ..... 18.5
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 37.0
Maximum Voltage (volts):
Minimum Voltage (volts):
Converter/Inverter
Requirement (flag):
Weight (kg): ..... 7.67 (16.9 1b)
Volume (cc):\(4.8 \times 10^{4}\left(1.7 \mathrm{ft}^{3}\right)\)Vibration
Random ( \(\mathrm{g}, \cdot \mathrm{rms}\) ): ..... 5.5
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(325\left(125^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
Perfórmance (continued)
CDPI ..
Power Switching Commands (No.):
Time Tagged Commands (Nn 1.
Other Commands (No.):
High Rate. Telemetry
Analog Poiints (Nö.) :
Digital Points (No.):
.. Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... 5
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):Dormancy Factor (N. D.):0.1
Total Redundant Elements (No.): .....  4.
Cost
Design Engineering (\$1000): ..... 1250.0
Test and Evaluation (\$1000): ..... 1250.0
Unit Production (\$1000): ..... 105.0
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... 3.0
Development Lead Time Variable (months): ..... 5.1
Qualification Lead Time Constant (months): ..... 1.5
Qualification Lead Time Variable (months): ..... 1,3
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: APS (0901)
Configurations: Monopropellant
Equipment Type: Isolation Valve (latching solenoid)(Hydraulic Research 258278)
Performance
Technical Characteristics
(1) Maximum pressure:
\(2.41 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) ..... (350 psia)
(2) Flow area:\(0.01 \mathrm{~cm}^{2} \cdot\left(0.0017 \mathrm{in}^{2}{ }^{2}\right)\)

(3)
Power
Average Power (watts): ..... 0
Maximum Power (watts): ..... 88.0
Minimum Power (watts): ..... 0
Nominal Voltage (volts): ..... 28.0
Maximum Voltage (volts): ..... 33.0
Minimum Voltage (volts): ..... 23.0
Converter/Inverter
Requirement (flag):
Weight (kg): ..... \(0.3(0.7 \mathrm{lb})\)
Volume (cc):\(2.0 \times 10^{3},\left(0.07 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 21.5
Non-Random (g):Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... 333 ( \(140^{\circ} \mathrm{F}\) )
Minimum ( \({ }^{\circ} \mathrm{K}\) ):\(278\left(40^{\circ} \mathrm{F}\right)\)Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
Performance (continued)
CDPI
Power'Swițching Commandis (No."):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry.
Analog. Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): ..... 1
Failure Parameters.
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ) : ..... 200
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): ..... 1.0
Total Redundant Elements (No.): ..... 7
Cost
Design Engineering (\$1000): ..... 0
Test and Evaluation (\$1000): ..... 0
Unit Production (\$1000): ..... 0
Reference Quantity (No.): ..... 1
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... 0
Development Lead Time Variable (months): ..... 0
Qualification. Lead Time Constant (months): ..... 0
Qualification Lead Time Variable (months): ..... 0.
State-of-Art Factor (N.D.): ..... 1.0

Subsystem: : APS (0902)

\section*{Configurations: Monopropellant}

Equípment Type: Isolation Valve (latching solenoid) (Marquardt 22700)
Performance
Technical Characteristics
(1) Maximum pressure:
\(2.48 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\left(360^{\circ} \mathrm{psia}\right)\)
\(0.77 \mathrm{~cm}^{2} \quad\left(0.12\right.\) in. \(\left.{ }^{2}\right)\)
(2) Flow area:
(3)
(4)
(10)

Power
Average Power (watts): 0
Maximum Power (watts): \(\quad 60.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): 27,0
Maximum Voltage (volts): \(\quad 30.0\)
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
0.59 (1.31b)

Volume (cc):
\(3.7 \times 10^{3} \quad\left(0.13 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\).
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
:rformance (continued)
DPI
: Poówèr riSwitching Commands (No..):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points' (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model. (flag): ..... 1
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... 200
Standard Deviation ( \(\mathrm{x} 10^{+9} \mathrm{hr}\).
Dormancy Factor (N.D.): ..... 1.0
Total Redundant Elements (No.) ..... 7
Cost
Design Engineering (\$1000): ..... 0 :
Test and Evaluation (\$1000): ..... 0
Unit Production (\$1000): ..... 0
Reference Quantity (No.): ..... 1.
Factor (N.D.): ..... 1
Schedule\(=\)
Development Lead Time Constant (months):-r. ..... 0
Development Lead Time Variable (months): ..... 0
Qualification Lead Time Constant (months): ..... 0
Qualification Lead Time Variable (months): : 0
State-of-Art Factor (N.D.): ..... 1.0

Subsystem:
Configurations:
Equipment Type:

APS (0903)
Monopropellant
Isolation Valve (pyrotechnic) (Pyronetics 1349)

\section*{Performance}

Technical Characteristics
(1) Maximum pressure:
(2) Flow area: -
(3)
(6)

Power
Average Power (watts): 1.0
Maximum Power (watts): 140.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 0.68 (1.5 1b)
Volume (cc):
\(4.2 \times 10^{3}\left(0.15 \mathrm{ft}^{3}\right.\).
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(325\left(125^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) :
\(219\left(-65^{\circ} \mathrm{F}\right)\)
Prèssure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
\(2.758 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad\) (4000 psia)
\(7.7 \mathrm{~cm}^{2}\left(1.2 \mathrm{in}^{2}\right)\).
Performance (continued)

\section*{DPI}

Power Switching Commands (No.):
Timè Tagged Commands' (No.):
Other Commands (No.):
High Rate Telemetry
\(\therefore\) Analog Points (No.ت):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): . 100
Standard Deviation \(\left(\times 10^{+9} \mathrm{hr}\right)\) :
: Dormancy Factor (N. D.): 1.0

Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1,000): 0
Reference Quantity (No.): I
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0


\section*{Performánce (continued)}

CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
- Analog Points :(No.):
- Digital. Points (No.):
- Sample Rate ( \(\mathrm{sec}^{-1}\) ):

Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): io.
Standard Deviation. ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): . , 1.0.
Total Redundant Elements (No.): . 7
Cost
Design Engineering (\$1000)
Test and Evaluation (\$1000) \(\quad \because 0\)
Unit Production (\$1000): 0
Reference Quantity (No. ): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):. \(0_{i}\)
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): : \(0{ }^{\circ}\)
Qualification Lead Time Variable (months) : \(\because \quad 0\)
State-of-Art Factor (N.D.): \(\quad 1.0\)
```

Subsystem: . APS (1002).

```
Configurations: Monopropellant

Equipment Type: 'Filter (Wintec...15267-5.92)

\section*{Performance}

\section*{Technical Characteristics}
(1) Maximum pressure: \(2.76 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) ( 400 psia)
(2) Flow resistance: \(\quad 1.19 \times 10^{7} \mathrm{~N} /(\mathrm{kg}-\mathrm{m})^{2}\left(356 \mathrm{psic} \cdot \mathrm{sec}^{2} / 1 \mathrm{~b}^{2}\right)\)
(3)
(4)
(5)
(6)
(7)
(8)
(.9)
(10)

Power.
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg):
\(0.2(0.5 \mathrm{lb})\)
Volume (cc):
\(1.4 \times 10^{3} \quad\left(0.05 \mathrm{ft}^{3}\right.\).
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 333\) ( \(140^{\circ} \mathrm{F}\) )
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\section*{Performance (continued)}
CDPI
Power Switching Commands (No.)
Time Tagged Commands ' \({ }^{\text {co.. }}\) ):
Other Commands (No.):
High Rate Telemetry
\& : Analog Points (No.):
- Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): ..... 1
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ) : ..... 10
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): • ..... 1.0
Total Redundant Elements (No.): ..... 7
Cost
Design Engineering (\$1000): ..... 0
Test and Evaluation (\$1000): ..... - 0
Unit Production (\$1000): ..... 0
Reference Quantity (No.): ..... 1
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... 0
Development Lead Time Variable (months): ..... 0
Qualification Lead Time Constant (months): ..... \(0 \because\)
Qualification Lead Time Variable (months): ..... 0 -
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: APS (1101)
Configurations: Monopropellant
Equipment Type: Tank (Arde HS D3780)
Performance
Technical Characteristics
(1) Volume: \(1.5 \times 10^{3} \mathrm{~cm}^{3}\left(92 \mathrm{in}^{3}\right)\)(2) Maximum pressure:\(3.86 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad(560 \mathrm{~F}\)(3)(6)
Power
Average Power (watts): ..... NA
Maximum Power (watts): ..... NA
Minimum Power (watts): ..... NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): ..... \(1.3(2.8 \mathrm{lb})\)
Volume (cc): ..... \(1.5 \times 10^{3}\left(0.053 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): ..... 10.0
Non-Random (g):Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(333\left(140^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\section*{Performance (continued)}

CDPI
Power Switching Commänds'(No..): : .
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : I
Word Length (bits): 8

\section*{Safety}

Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ( \(x=10^{ \pm 9} \mathrm{hr}\) ): \(\quad 360\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): "1.0
Total Redundant Elements (No.): \(5^{\circ}\)
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):


Schedule
Development Lead Time Constant (months): \(0^{\circ}\)
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
Subsystem: ..... APS (1102)
Configurations: Monopropellañt
Equipment Type: Tank (PSI 80i56-1)
Performance
Technical Characteristics
(1) Volume: \(6.88 \times 10^{-3} \mathrm{~cm}^{3} \quad\left(420 \mathrm{in}^{3}\right)\)
(2) Maximum pressure: ..... \(4.21 \times 10^{6} \mathrm{~N} / \dot{\mathrm{m}}^{2}\) (610 psia)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): ..... 1. 3 (2.9 lb)
Volume (cc): ..... \(6.8 \times 10^{3}\left(0.24 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(333\left(140^{\circ} \mathrm{F}\right)\)Minimum \(\left({ }^{\circ} \mathrm{K}\right): \quad 278\left(40^{\circ} \mathrm{F}\right)\)Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
Performance (continued)
CDPI
Power Switching Commands' (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rațe Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... 1
Failure Parameters
Failure Rate or Mean ( \(\mathrm{x} \mathrm{O}^{ \pm 9} \mathrm{hr}\) ): ..... 360
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.):1. 0
Total Redundant Elements (No.). ..... 5
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):\(\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right\}\).
Factor (N.D.):\(\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right\}\).
Schedule
Development Lead Time Constant (months): ..... 0
Development Lead Time Variable (months): ..... \(0^{\circ}\)
Qualification Lead Time Constant (months): ..... 0 .
Qualification Lead Time Variable (months): ..... \(0 \cdots\)
State-of-Art Factor (N.D.): ..... 1.0
*Subsystem:
Configurations: Monopropellant
Equipment Type: Tank (PSI 80177-1)

Performance
Technical Characteristics
(1) Volume:
\(3.851 \times 10^{4} \mathrm{~cm}^{3} \cdot\left(2350 \mathrm{in}^{3}\right)\)
-(2) Maximum pressure:
\(2.76 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (4.00 psia)
(3)
(6)
(10)

Power
-Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA :
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight (kg): \(\quad 4,63\). (1.0.2 1 lb )
Volume (cc):
\(3.9 \times 10^{4}\left(1.36 \mathrm{ft}^{3}\right.\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(333\left(140^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commañds" (No.):
Time Tagged Commands (No.):
Other Commands (No.):
figh Rate Telemetry
Analog Points (No.):
Digital-Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):

\section*{Safety}

Failure Model (flag):1

Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 360\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): \(2^{\text {. }}\)
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference: Quantity (No.):
Factor (N.D.):


Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): : 0
Qualification Lead Time Variable (months): . 0
State-of-Art Factor (N.D.): I

Subsystem:
Configurations:
Equipment Type:

APS (1104)
Monopropellant
Tank.(Arde E3848)

\section*{Performance}

\section*{Technical Characteristics}
(I) Volume:
(2) Maximum pressure:

Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Power
Average Power (watts): NA

Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requì rement (flag):
Weight (kg): 7. 7 ( 17.0 lb )
Volume (cc):
\(4.2 \times 10^{4}\left(1.60 \mathrm{ft}^{3}\right.\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): \(\quad 8.3\)
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
Minimum ( \({ }^{\circ} \mathrm{K}\) ) :
3)

> Maximum Power (watts): NA
7. 7 (17.0 1b)
\(333\left(140^{\circ} \mathrm{F}\right)\)
\(278\left(40^{\circ} \mathrm{F}\right)\)
\(4.547 \times 10^{4} \mathrm{~cm}^{3}\left(2775 \mathrm{in}^{3}\right)\)
\(2.41 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (350 psia)

\section*{Performance (continued)}

CDPI
Power Switching Commands (No: ): .
Time Tagged Commands (No.):
Jther Commands (No.):
figh Rate Telemetry
Analog Points (No.):
\(\because\) Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
\[
\text { Analog Points (No.): } 2
\]

Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits):

\section*{Safety}
\(\therefore\) Failure Model (flag):
Failure Parameters
Failure Rate or Mean \(\left(x 10^{ \pm,} \mathrm{hr}\right): \quad 360\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ).
Dormancy Factor (N. D.): \(\quad 1.0\)
Total Redundant Elements (No.) \(3^{\circ}\)
Cost
Design Engineering (\$1000): \(\quad 0\)
Test and Evaluation ( \(\$ 1000\) ): 0
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months): \(\begin{aligned} & 0 \\ & 0\end{aligned}\)
Development Lead Time Variable (months): 0 .,
Qualification Lead Time Constant (months): , 0
Qualification Lead Time Váriable (months): 0.
State-of-Art Factor (N.D.): . 1. 0
Subsystem APS (1105) :
Configưrations: Monopropellant
Equipment Type: ..... Tank (PSI 80112-115)
Performance
Technical Characteristics
(1) Volume:
(2) Maximum pressure:
(3)
(4)
(10)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): \(\quad 7.85\) (17.3 lb)
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 322\left(120^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
\(9.144 \times 10^{4} \mathrm{~cm}^{3} \cdot\left(5580 \mathrm{in}^{3}\right)\)
\(2.41 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (350 psia)
Performance (continued)
CDPI
Power Switching Commands; (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
\(\because\) Añalog Póints (No.):
\(\because\) Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): ..... 2
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ): ..... 1
Word Length (bits): ..... 8
Safety
Failure Model (flag): ..... 1
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{~h}\) ..... 360
Standard Deviation ( \(\mathbf{x} \cdot 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N:D.): ..... 1.0
Total Redundant Elemențs (No.): ..... 3
Cost
Design Engineering (\$1000): ..... 0
Test and Evaluation (\$1000): ..... 0
Unit Production (\$1000): ..... 0
Reference Quantity (No.): ..... 1
Factor (N.D.): ..... \(1)\)
Schedule
Development Lead Time Constant (months): ..... 0
Development Lead Time Variable (months): ..... 0
Qualification Lead Time Constant (months): ..... 0
Qualification Lead Time Variable (months): ..... 0
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: ..... APS (1201)
Configurations:
Equipment Type:
Fill and Drain Valye (TRW DSP)
Performance
Technical Characteristics
(1) Maximum pressure: \(3.55 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (515 psia)(2)
Power
Average Power (watts): ..... NA
Maximum Power (watts): ..... NA
Minimum Power (watts): ..... NA
Nominal Voltage (volts): ..... NA
Maximum Voltage (volts): ..... NA
Minimum Voltage (volts): ..... NA
Converter/Inverter
Requirement (flag):
Weight (kg): ..... 0.09 ( 0.2 lb )
Volume (cc): 5.70. (0.02 ft \({ }^{3}\) ).
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(322\left(120^{\circ} \mathrm{F}\right)\)Minimum ( \({ }^{\circ} \mathrm{K}\) ):\(278\left(40^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands. (No..
Time Tagged Commands (No.):
Other Commands (No.):
igh Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
ow Rate Telemetry
Analog Points. (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model-(flag): ..... 1
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ) ..... 70
Standard Deviation ( \(\mathrm{x} \cdot 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): ..... 1.0
Total Redundant Elements (No.): ..... 1
Cost
Design Engineering (\$1000): ..... 0
Test and Evaluation (\$1000): ..... 0
Unit Production (\$1000): ..... 0
Reference Quantity (No.): ..... 1
Factor (N.D.): ..... 1
Schedule
Development Lead. Time Constant (months): ..... 0
Development Lead Time Variable (months): ..... 0
Qualification Lead Time Constant (months): ..... 0
Qualification Lead Time Variable (months): ..... 0
State-of-Art Factor (N.D.): ..... 1.0
Subsystem: APS (1202)
Configurations: Monopropellant
Equipment Type: Fill and Drain Valve \({ }^{*}\) (Hughes 3181407-110)
Performance
Technical Characteristics
(1) Maximum pressure: ..... \(3.45 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) ( 600 psia )
(8)
Power
Average Power (watts): ..... NA
Maximum Power (watts): ..... NA
Minimum Powe \(x\) (watts): ..... NA
Nominal Voltage (volts): ..... NA
Maximum Voltage (volts): ..... NA
Minimum Voltage (volts): ..... NA
Converter/Inverter
Requirement (flag):
Weight (kg): ..... 0.09 (U. \(\angle\) 1D)
Volume (cc): ..... \(570\left(0.02 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms): ..... 21.5
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): ..... \(350\left(170^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) : ..... \(222\left(-60^{\circ} \mathrm{F}\right)\)
- Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

Performance (continued)

\section*{CDPI}

Power Switching Commands (No.):
,Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digitál Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety

Failure Model (flag):
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ):
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.):
1. 0

Total Redundant Elements (No.):1

Cost
Design Engineering (\$1000)
Test and Evaluation (\$1000):0
Unit Production (\$1000): ..... 0
Reference Quantity: (No.): ..... 1
Factor (N.D.): ..... I

Schedule
Development Lead Time Constant (months)
0.

Development Lead Time Variable (months) 0
Qualification Lead Time Constant (months) 0
Qualification Lead Time Variable (months) 0
State-of-Art Factor (N.D.):
1.0

Subsystem:
Configurations:
Equipment Type:

APS (1301)
Bipropellant
Thruster (Marquardt R-6C)

\section*{Performance}

Technical Characteristics
(1) Thrust level:
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse*:
(5) ISP*:

22 N ( 5.0 lb )
30,000 cycles
\(1.31 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (190 psia)
\(7.562 \times 10^{5} \mathrm{~N}-\mathrm{sec}(170,000 \mathrm{lb}-\mathrm{sec})\)
278 sec
(6) Mixture ratio (N.D.)**:1.5
(7)

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): \(\quad 32.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): \(\quad 28.0\)
Maximum Voltage (volts): \(\quad 32.0\)
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): \(\quad 0.68(1.5 \mathrm{lb})\)
Volume (cc):
\(4.2 \times 10^{3}\left(0.15 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 394\left(250^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
Performance (continued)
CDPI
Power Switc̣hing Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry.
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): ..... 5
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... 700
Standard Deviation ( \(\mathrm{x} 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.): ..... 0.1
Total Redundant Elements (No.): ..... 12
Cost
Design Engineering (\$1000): ..... 203.0
Test and Evaluation (\$1000): ..... 203.0
Unit Production (\$1000): ..... 16.0
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1
Schedule
Development Lead Time Constant (months): ..... -4.5
Development Lead Time Variable (months): ..... 1.2
Qualification Lead Time Constant (months): ..... 2.5
Qualification Lead Time Variable (months): ..... 0.1
State-of-Art Factor (N.D.): ..... 1.0

\section*{Subsystem:}

\section*{Configurations:}

Equipment Type: Thruster (Aerojet AJ10-181)
APS (1302)

Performance
Technical Characteristics
(1) Thrust level: \(\quad 22 \mathrm{~N}(5.0 \mathrm{lb})\)
(2) Pulse life:

50,000 cycles
(3) Inlet pressure:
\(2.07 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (300 psia)
(4) Total impulse*:
\(2.224 \times 10^{4} \mathrm{~N}-\mathrm{sec}(5000 \mathrm{lb}-\mathrm{sec})\)
(5) ISP*:

300 sec
(6) Mixture ratio (N. D.) \(* *: 1.2\)

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): \(\quad 30.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): \(\quad 32.0\)
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg) :
0.54 (1.2 1b)

Volume (cc):
\(3.4 \times 10^{3}\left(0.12 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) :
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
- Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :

Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): 1700
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N. D.):
0.1

Total Redundant Elements (No.): 12

Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
171.0

Unit Production (\$1000):
171.0

Reference Quantity (No.):
Factor (N.D.):

\section*{Schedule}

Development Lead Time Constant (months): 4.5
Development Lead Time Variable (months): 1.1
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.):
1. 0

Subsystem:
Configurations:
Equipment Type: Thruster (Marquardt R-1E)

\section*{Performance}

Technical Characteristics
(1) Thrust level:
(2) Pulse life:
(3) Inlet pressure:
(4) Total impulse \(\%\) :
(5) ISP*:
\(98 \mathrm{~N}(22.0 \mathrm{lb})\)
30, 000 cycles \(1.31 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\) (190 psia) \(1.5 \times 10^{7} \mathrm{~N}-\mathrm{sec}\left(3.4 \times 10^{6} \mathrm{lb}-\mathrm{sec}\right)\) 276 sec
(6) Mixture ratio (N. D, ) \(* *: 1.6\)

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): \(\quad 32.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): 27.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 22.0
Converter/Inverter
Requirement (flag):
Weight (kg):
\(1.3(2.9 \mathrm{lb})\)
Volume (cc):
\(8.2 \times 10^{3}\left(0.29 \mathrm{ft}^{3}\right)\)
Vibration
Random ( \(\mathrm{g}, \mathrm{rms}\) ): \(\quad 26.0\)
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 394\left(250^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ) :
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
Performance (continued)
CDPI
Power Switchịg \(\dot{\text { Commands }}\) (No.) :
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):
Safety
Failure Model (flag): ..... 5
Failure Parameters
Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): ..... \(170^{\circ} 0^{\circ}\)
Standard Deviation ( \(\times 10^{+9} \mathrm{hr}\) ): ..... 0.1
Total Redundant Elements (No.): ..... 12
Cost
Design Engineering (\$1000): ..... 333. 0
Test and Evaluation (\$1000): ..... 333.0
Unit Production (\$1000): ..... 26.8
Reference Quantity (No.): ..... 3
Factor (N.D.): ..... 1 .
Schedule
Development Lead Time Constant (months) ..... 4. 5
Development Lead Time Variable (months) ..... 1.6
Qualification Lead Time Constant (months) ..... 2.5
Qualification Lead Time Variable (months) ..... 0.2
State-of-Art Factor (N.D.): ..... 1.0

Subsystem:
APS (1304)
Configurations: Bipropellant
Equipment Type: Thruster (Bell MM P/Y)
Performance
Technical Characteristics
(1) Thrust level:
\(100 \mathrm{~N}(23.0 \mathrm{lb})\)
(2) Pulse life:

30,000 cycles
(3) Inlet pressure:
\(1.67 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad\) (242 psia)
(4) Total impulse*:
\(2.002 \times 10^{4} \mathrm{~N}-\mathrm{sec}(4500 \mathrm{lb}-\mathrm{sec})\)
(5) ISP*:

288 sec
(6) Mixture ratio (N. D.)**:1.6

Power
Average Power (watts): 1.0
Maximum Power (watts): \(\quad 30.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): 27.0
Maximum Voltage (volts): \(\quad 30.0\)
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 1.2 (2.7 lb)
Volume (cc):
\(7.6 \times 10^{3}\left(0.27 \mathrm{ft}^{3}\right)\)
Vibration.
Random ( \(\mathrm{g}, \mathrm{rms}\) ):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(\quad 303\left(85^{\circ} \mathrm{F}\right)\)
Minimum \(\left({ }^{\circ} \mathrm{K}\right): \quad 289\left(60^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):

\footnotetext{
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
}
\[
2-175
\]

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
- Word Length (bits):

Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate ( \(\mathrm{sec}^{-1}\) ):
Word Length (bits):

\section*{Safety}
- Failure Model (flag):

\section*{Failure Parameters}

Failure Rate or Mean ( \(\times 10^{ \pm 9} \mathrm{hr}\) ): \(\quad 1700^{\circ}\)
Standard Deviation ( \(\mathrm{x} 10^{+9} \mathrm{hr}\) ):
Dormancy Factor (N.D.):• . 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000): \(\quad 315.0\)
Unit Production (\$1000): 25.1
Reference Quantity (No.): 3
Factor (N.D.): I
Schedule
Development Lead Time Constant (months): 4.5
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): ' 0.2
State-of-Art Factor (N.D.): . . 1.0
```

Subsystem:
Configurations:
Equipment Type: Thruster (TRW MMBPS)
Performance
Technical Characteristics
(1) Thrust level: 390 N (88.0 lb)
(2) Pulse life (cycles):
(3) Inlet pressure (psia):
(4) Total impulse*:
$4.4 \times 10^{6} \mathrm{~N}-\mathrm{sec}\left(1.0 \times 10^{6} \mathrm{lb}-\mathrm{sec}\right)$
(5) ISP\%: 295 sec
(6) Mixture ratio (N. D.) $* *: 1.6$

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): $\quad 30.0$
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg): $\quad 2.6 \quad(5.8 \mathrm{lb})$
Volume (cc):
$1.6 \times 10^{4}\left(0.58 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 333\left(140^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) :
$278\left(40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 560.0
Test and Evaluation (\$1000): 560.0
Unit Production (\$1000): 46.1
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead'Time Constant (months): 4, 5
Development Lead Time Variable (months): 1.9
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0,3
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations:
Equipment Type: Thruster (Marquardt R-4D)

Performance
Technical Characteristics
(1) Thrust level:

445 N (100.0 lb)
(2) Pulse life:

30,000 cycles
(3) Inlet pressure:
$1.31 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad$ (190 psia)
(4) Total impulse*:
$8.9 \times 10^{6} \mathrm{~N}-\mathrm{sec}\left(2.0 \times 10^{6} \mathrm{lb}-\mathrm{sel}\right.$
(5) ISP*:

290 sec
(6) Mixture ratio (N.D.)**:1.6
(8)

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): 112.0
Minimum Power (watts): 0
Nominal Voltage (volts): 27.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 22.0
Converter/Inverter
Requirement (flag):

```
Weight (kg):
2.2 (4.9 1b).
Volume (cc):
    1.4\times10 4
Vibration
    Random (g, rms):
Non-Random (g):
Temperature
Maximum ( \({ }^{\circ} \mathrm{K}\) ): \(380\left(225^{\circ} \mathrm{F}\right)\)
Minimum ( \({ }^{\circ} \mathrm{K}\) ):
\(278\left(40^{\circ} \mathrm{F}\right)\)
Pressure ( \(\mathrm{kg} / \mathrm{m}^{2}\) ):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
```

$$
2-179
$$

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
, Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 1700
Standard Deviation (x $10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 498.0
Test and Evaluation (\$1000): 498.0
Unit Production (\$1000): 40.4
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 4.5
Development Lead Time Variable (months): -1. 9
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations:
Equipment Type:

APS (1307)
Bipropellant
Thruster (Rocketdyne RS-2101-C)

Performance

Technical Characteristics
(1) Thrust level: $\quad 1330 \mathrm{~N}(300.0 \mathrm{Jb})$
(2) Pulse life (cycles):
(3) Inlet pressure: $\quad 1.59 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (230 psia)
(4) Total impulse\%:
$1.3 \times 10^{7} \mathrm{~N}-\sec \left(3.0 \times 10^{6} \mathrm{lb}-\mathrm{sec}\right)$
(5) $\operatorname{ISP}{ }^{*}$:

293 sec
(6) Mixture ratio (N. D.) $* \%: 1.5$
(10)

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): 13.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 7.03$ (15.5 1b)
Volume (cc): $\quad 4.2 \times 10^{4}\left(1.5 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 303\left(85^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right): \quad 286 \quad\left(55^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
*Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 5
Fàilure Parameters
Failure Rate or Mean ($\times 10^{ \pm y} \mathrm{hr}$): 1700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 1200.0
Test and Evaluation (\$1000): 1200.0
Unit Production (\$1000): 100.0
Reference Quantity (No.): 3
Factor (N.D.): $\because 1$
Schedule
Development Lead Time Constant (months): 4.5
Development Lead Time Variable (months): 3.7
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.8
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations:
Equipment Type: Thruster (Rocketdyne SS/RCS)

Performance
Technical Characteristics
(1) Thrust level: 2670 N . $(600.0 \mathrm{lb})$
(2) Pulse life:
(3) - Inlet pressure:
(4) Total impulse\%:
(5) ISP*:
(6)
(7)
(9)
(10).

Power
Average Power (watts): $\quad 1.0$
Maximum Power (watts): 12.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
7.89 (17.4 1b)

Volume (cc):
$4.8 \times 10^{4}\left(1.7 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
55.0

Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$316\left(110^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$278\left(40^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

[^11]Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Raté $\left(\mathrm{sec}^{-1}\right)$:
Word Length '(bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): E
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 1700
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.): 0.1
Total Redundant Elements (No.): 12
Cost
Design Engineering (\$1000): 1300.0
Test and Evaluation (\$1000): 1300. 0
Unit Production (\$1000): 112.0
Reference Quantity (No.): 3
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 4.5
Development Lead Time Variable (months): 3.7
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.8
State-of-Art Factor (N.D.): 1.0

Sụbsystem:
Configurations:
Equipment Type:

APS (140I)
Bipropellant
Isolation Valve (latching solenoid) (Marquardt T8700)

Performance
Technical Characteristics
(1) Maximum pressure: $2.34 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (340 psia)
(?) Wlow area: $0.04 \mathrm{~cm}^{2} \quad\left(0.006 \mathrm{in}^{2}{ }^{2}\right)$
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Power
Average Power (watts): 0
Maximum Power (watts): 56
Minimum Power (watts): 0
Nominal Voltage (volts): $\quad 28.0$
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 0.3(0.6 \mathrm{lb})$
Volume (cc): $\quad 1.7 \times 10^{3}\left(0.06 \mathrm{ft}^{3}\right)$
Vibration.
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 380\left(225^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$278\left(40^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

. Power Switching Commands (No.):

- Time Tagged Commands (No.):

Other Commands (No.):•
High Rate Telemetry

- "Analog Points (No:):

Digital Points (No.):
Sample Rate. $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):

Safety

Failure• Model (flag): . l
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 200$
Standard Deviation (x $10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements ${ }^{\text { }}$ (No.): . 7 .
Cost
Design Engineering (\$1000): $\quad 0$
Test and Evaluation (\$1000): 0 .
Unit Production (\$1000): 0
Reference Quantity (No.): .'l
Factor (N.D.): . 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): . 0
Qualification Lead Time Constant (months): . $\quad 0$
Qualification Lead Time Variable (months): 0 .
State-of-Art Factor (N.D.): $\quad 1.0$

Subsystem:
Configurations:
Equipment Type:

Performance

Technical Characteristics
(1) Maximum pressure: $-2.48 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (360 psia)
(2) $\quad 0 .-\cdots \quad 0.62 \mathrm{~cm}^{2}\left(0.096 \mathrm{in}^{2}\right)$
(3)
(4)

Power
Averáge Power (watts): 0
Maximum Power (watts): $\quad 60.0$
Minimum Power (watts): 0
Nominal Voltage (volts): 27.0
Maximum Voltage (volts): $\quad 30.0$
Minimum Voltage (volts): 24.0
Converter/Tnurartar
Requirement (flag):
Weight (kg): 0.59 (1.3 lb).
Volume (cc):
$3.7 \times 10^{3}\left(0.13 \mathrm{ft}^{3}\right)$
Vibration.
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
322. (120 $\left.0^{\circ} \mathrm{F}\right)$

Minimum (${ }^{\circ} \mathrm{K}$) :
$278\left(40^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:

Performance (continued)

CDPI

> Power Switching Commands (No.):

Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 200$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 7
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (minums): 0 ..
Development Lead Time Variable (months): '0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): ' 0. .
State-of-Art Factor (N.D.): . 1.0
Subsystem: APS (1403)
Configurations: Bipropellant
Equipment Type: Isolation Valve (latching solenoid)(Consolidated Controls 73295)
PerformanceTechnical Characteristics
(1) Maximum pressure: $2.48 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (360 psia)
(2) Flow area: $0.13 \mathrm{~cm}^{2}$ ($0.02 \mathrm{in}^{2}{ }^{2}$)
(3)
Power

Average Power (wiatts):	0
Maximum Power (watts):	108.0
Minimum Power (watts):	0
Nominal Voltage (volts):	25.0
Maximum Voltage (volts):	30.0
Minimum Voltage (volts):	20.0

Converter/Inverter
Requirement (flag)
Weight (kg): $1.2(2.7 \mathrm{lb})$
Volume (cc): $7.6 \times 10^{3}\left(0.27 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 23.2
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $305\left(90^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$244\left(-20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)
CDPI
Power Switching Commands (No:):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog, Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry Analog Points (No.): Digital Points (No.): Sample Rate (sec^{-1}): Word Length (bits):

Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 100$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.B.): $\quad 1.0$
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): . 0
Unit Production (\$1000): 0
Reference Quantity (No.): , 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0°
Qualification Lead Timé Variable (months): 0 .
State-of-Art Factor (N.D.):
SubsystemConfigurations: Bipropellant
Equipment Type: Isolation Valve (latching solenoid) (Valcor 27700-61)
Performance
Technical Characteristics
(1) Maximum pressure: $3.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (435 psia)
(2) Flow area: $2.9 \mathrm{~cm}^{2}\left(0.45 \mathrm{in}^{2}\right)$
Power
Average Power (watts): $\quad 0$
Maximum. Power (watts): 110.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg): 2. $7^{\circ}(6.0 \mathrm{Ib})$
Volume (cc): 1. $7 \times 10^{4}\left(0.6 \mathrm{ft}^{3}\right.$
Vibration
Random (g, rms): 15.0
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $.322\left(120^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$266\left(20^{\circ} \mathrm{F}\right)$
Pressure (kg/m ${ }^{2}$):

Performance (continued)

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): l

- Failure Parameters

Failure Rate or Meàn ($x 10^{ \pm 9} \mathrm{hr}$): $\quad 100^{\circ}$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.) 7 .
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): , 0
Reference Quantity (No.): 1
Factor (N.D.): 1

Schedule

Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Leád Time Constant (months): $\dot{0}^{0}$
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.):
Subsystem: APS (1405)
Configurations: Bipropellant
Equipment Type: Isolation Valve (pyrotechnic)(Pyronetics 1349)
Performance
Technical Characteristics
(1) Maximum pressure: 2. $758 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ (4000 psia)
(2) Flow area: $7.7 \mathrm{~cm}^{2}\left(1.2 \mathrm{in}^{2}\right)$
(3)
(10)
Power
Average Power (watts): 0
Maximum Power (watts): 140.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg) : 0.68 (1.5 1b)Volume (cc):$4.2 \times 10^{3}\left(0.15 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $325\left(125^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$219\left(-65^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): I
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 100
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.;D.): 1. 0
Total Redundant Elements (No.): 7
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months) , 0
Development Lead Time Variable (months) 0
Qualification Lead Time Constant (months) 0
Qualification Liead Time Variable (months) 0
Stato-nf-Art Fartnr iN n'i. 1.0

Subsystem:
Configurations: Bipropellant
Equipment Type: Filter (Wintec 15267)
Performance
Technical Characteristics ,
(1) Maximum pressure: $2.76 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (400 psia)
(2) Flow resistance:
$1.3 .7 \times 10^{8} \mathrm{~N} /(\mathrm{kg}-\mathrm{m})^{2} \quad\left(4.08 \mathrm{psi} \mathrm{sec}{ }^{2} / \mathrm{lb}^{2}\right.$
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight (kg):
1.4 (3.0 Ib)

Volume (cc):
$8.5 \times 10^{3}\left(0.3 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$333\left(140^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$278\left(40^{\circ} \mathrm{F}\right)$

Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
.. Anallog Points (No.):

- Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 10.
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factorir (N. D.): 1. 0
Total Redundant Elements (No.): 7
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No:): 1'
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0 .
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factorin n.. 1. 0°
Subsystem: APS (160I)
Configurations: BipropellantEquipment Type: Tank (Arde MM-3)
Performance
Technical Characteristics
(1) Volume: $1.27 \times 10^{4} \mathrm{~cm}^{3}\left(775 \mathrm{in}^{3}\right)$
(2) Maximum pressure: $5.65 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \quad(820 \mathrm{psia})$
(3)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts) NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): $2.9(6.5 \mathrm{lb})$
Volume (cc):
$1.3 \times 10^{4}\left(0.47 \mathrm{ft}^{3}\right)$
Vibration
Random (g, ' rms): 8.3
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $700\left(800^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.): .
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 1$
Word Length (bits): 8

Safety

- Failure Model (flag): I

Failure Parameters

- Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 360$

Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): .1.0
Total Redundant Elements (No.): 5
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):

- Unit Production (\$1000):

CERR
Reference Quantity (No.):
Factor (N.D.):

Schedule

Development Lead Time Constant (months): : 0
Development Lead Time Variable (months): 0 .
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): $\quad 0$
State-of-Art Factor (N.D.): . 1.0

Subsystem: APS (1602)
Configurations: Bipropellant
Equipment Type: Tank (Arde E3840)
Performance
Technical Characteristics.
(1) Volume:
$4.424 \times 10^{4} \mathrm{~cm}^{3}\left(2700 \mathrm{in}^{3}\right)$
(2) Maximum pressure:
2. $41 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (350 psia)
(3)
(4)
(5)
(6)
(8)
(9)
(10)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight $(\mathrm{kg}): \quad .7$ (17.0 lb)
Volume (cc): $\quad-.01 \times 10^{4}\left(1.77 \mathrm{ft}^{3}\right.$
Vibration
Random (g, rms): 8.3
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 700 \quad\left(800^{\circ} \cdot \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $\quad 266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}):1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \cdot \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): ${ }^{0}$
Test and Evaluation (\$1000): 0
Unit Production (\$1000): Referen$0\}$
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time; Constant (months): 0 0
Qualification Lead Time Variable (months):
State-of-Art Factor (N: D.): 1. 0
Subsystem: APS (1603)
© Configurations: Bipropellant
Equipment Type: Tank (PSI 80123-1)
Performance
Technical Characteristics
(1) Volume: 1. $131 \times 10^{5} \mathrm{~cm}^{3}\left(6900 \mathrm{in}^{3}\right)$
(2) Maximum pressure: $1.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (200 psia)

(3)(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 4. 76 (10.5 1b)
Volume (cc): $1.16 \times 10^{5}\left(4.10 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random ${ }^{\prime}(\mathrm{g})$:
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $266\left(20^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commànds (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):

- Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): I
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
Subsystem: APS (1604)
Configurations: Bipropellant
Equipment Type: Tank (PSI 80140-1)
Performance
Technical Characteristics
(1) Volume

2. $130 \times 10^{5} \mathrm{~cm}^{3}\left(13,000 \mathrm{in}^{3}\right)$
(2) Maximum pressure: $2.07 \times 10^{6} \mathrm{~N} / \dot{\mathrm{m}}^{2}$ (300 psia)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): $10.2(22.5 \mathrm{lb})$
Volume (cc): 2. $20 \times 10^{5}\left(7.78 \mathrm{ft}^{3}\right.$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $344\left(160^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): $266\left(20^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\mathrm{x} 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 1. 0
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): $0\}$
Reference Quantity (No.): 1
Factor (N.D.): $1)$
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Váriable (months): 0 .
Subsystem: APS (1605)
Configurations: Bipropellant
Equipment Type: Tank (Arde)
Performance
Technical Characteristics
(1) Volume: $5.080 \times 10^{5} \mathrm{~cm}^{3}\left(31,000 \mathrm{in}^{3}\right)$
(2) Maximum pressure:
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts) NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts) NA
Converter/InverterRequirement (flag):

Weight (kg):
68.0 (150.0 1b)

Volume (cc): $5.24 \times 10^{5}\left(18.5 \mathrm{ft}^{3}\right)$

Vibration
Random (g, rms):
Non-Random (g):
Temperature

Maximum $\left({ }^{\circ} \mathrm{K}\right):$	$700\left(800^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right):$	$266\left(20^{\circ} \mathrm{F}\right)$

Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands.(No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 360
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D:): 1. 0
Total Redundant Elements (No.): 3
Cost
Design Enginee ring (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
CER
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time:Variable (months): 0
State-of-Art Factor (N.D.): 1. 0
Subsystem: APS (1701)
Configurations: Bipropellant
Equipment Fill and Drain Valve (Pyronetics 1831)
Performance
Technical Characteristics
(1) Maximum pressure: $3.72 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ (540 psia)
\square(3)Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): 0.09 (0.2 lb)
Volume (cc): $570\left(0.02 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms): 14.8Non-Random (g):Temperature

Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$) :
$394\left(250^{\circ} \mathrm{F}\right)$
$233\left(-40^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching: Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 70
Standard Deviation ($\times 10^{+9} \mathrm{hr}$) :
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 1
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0 :
Unit Production (\$1000): 0
Reference Quàntity (No.): 1
Factor (N.D.): 1
Schedule.
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0 .
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
Subsystem: DP(0101)
Configurations: General Purpose Processors a
Equipment Type: General Purpose Processor (CDC 469)
Performance
Technical Characteristics
(1) Instruction rate: 160 (kips)
(2) W ord length: 16 (bits)
Power
Average. Power (watts): 15.0
Maximum Power (watts): 15.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg):
Volume (cc): $990\left(0.035 \mathrm{ft}^{3}\right)$$1.3(2.8 \mathrm{lb})$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$.Minimum (${ }^{\circ} \mathrm{K}$):275 ($\left.35^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.:): :
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{hr}$): 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements'(No.): 2
Cost
Design Engineering (\$1000): 2500
Test and Evaluation (\$1000): 1000
Unit Production (\$1000): 650
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.0
Development Lead Time Variable (months): 8.0
Qualification Lead Time Constant (months): 6. 0
Qualification Lead.Time Variable (months): 4. 7
State-of-Art Factor (N.D.): 2. 0
Subsystem: DP (0102)
Configurations: General Purpose Processors.
Equipment Type: General Purpose Processor (RCA MARC)
Performance
Technical Characteristics
(I) Instruction rate: 200 kips
(2) Word length: 32 bits
(3)
Power
Average Power (watts): 20.0
Maximum Power (watts) 20.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $6.8(15.0 \mathrm{lb})$Volume (cc):
$2.1 \times 10^{3}\left(0.075 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$):$275\left(35^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.):- 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points-(No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 15,000$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 1850
Test and Evaluation (\$1000): 1150
Unit Production (\$1000): 1000
Reference Quantity (No.): : 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months); 24.0
Development Lead Time Variable (months): 8.0
Qualification Lead.Time Constant (months): 6.0
Qualification Lead Time Variable (months): 4. 1
State-of-Art Factor (N.D.): 2. 0
Subsystem: DP•(0103)
Configurations: General Purpose Processors
Equipment Type: General Purpose Processor (Autonetics D216)
Performance
Technical Characteristics
(1) Instruction rate: 250 kips
(2) Word length: 16 bits
(3)(4)(10)
Power
Áverage Power (watts): 80.0
Maximum Power (watts): 80.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32. 0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $6.8(15.0 \mathrm{lb})$
Volume (cc): $2.0 \times 10^{3}\left(0.069 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$) : $275\left(35^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{hr}$): . 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 1850
Test and Evaluation (\$1000): 1150
Unit Production (\$1000): 1000
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24. 0
Development Lead Time Variable (months): 8.0
Qualification Lead Time Constant (months): 6. 0
Qualification Lead Time'Variable (months): 4. 1
State-of-Art Factor (N.D.): 2. 0
Subsystem: DP (0104)
Configurations: General Purpose Processors
Equipment Type: General Purpose Processor (Bunker Ramo 1018)
Performance
Technical Characteristics
(1) Instruction rate 300 kips
(2) Word length: 16 bits
Power
Average Power (watts): 40.0
Maximum Power (watts): 40.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg): $5.4(12.0 \mathrm{lb})$Volume (cc):2. $94 \times 10^{3}\left(0.104 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$) :275 ($35^{\circ} \mathrm{F}$)Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
Performance (continued)
CDPI
Power Switching Commánde (No.):
Time Tagged Commands '(No.):"
Other Commands (No.): 20.
High Rate Telemetry
Analog Points (No:): 6°
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 2150
Test and Evaluation (\$1000): 1400
Unit Production (\$1000): 850
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.0
Development Lead Time Variable (months): 8. 0
Qualification Lead Time Constant (months): 6.0
Qualification Lead Time Variable (months): -4.8
State-of-Art Factor (N'.D.): 2. 0
Subsystem: . DP (UIUS)
Configurations: - General Purpose Processors
Equipment Type: General Purpose Processor (Northrop RCTOT)
Performance
Technical Characteristics
(1) Instruction rate:(2) Word length:24 bits
Power
Average Power (watts): $\quad 50.0$
Maximum Power (watts): 50.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 6.8 (15.0 lb)
Volume (cc):
$2.5 \times 10^{3}\left(0.087 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 311\left(100^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right): \quad 275\left(35^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
\therefore Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
Safety
Failure Model (flag): I
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.):0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 2680
Test and Evaluation (\$1000): 1667
Unit Production (\$1000): 1000
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24. 0
Development Lead Time Variable (months): 9.0.
Qualification Lead Time Constant (months): 6.0
Qualification Lead Time Variable (months): 5. 9
State-of-Art Factor (N.D.): 2. 0
Subsystem: DP (0106)
Configurations: General Purpose Processors
Equipment Type: General Purpose Processor (Autonetics D224)
Performance
Technical Characteristics
(1) Instruction rate: 750 kips
(2) Word length: 24 bits
Power
Average Power (watts): 140.0
Maximum Power (watts): 140.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):
Weight (kg): 11 (25.0 1b)Volume (cc):$820\left(0.029 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$): 275 ($\left.35^{\circ} \mathrm{F}\right)$Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 3360
Test and Evaluation (\$1000): 2310
Unit Production (\$1000): 1400
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.0
Development Lead Time Variable (months): 10. 0
Qualification Lead Time Constant (months): 6.0
Qualification Liead Time Variable (months): 7.: 7 .
State-of-Art Factor (N.D.): 2. 0
Subsystem: DP (0107)
Configurations: General Purpose Processors•
Equipment Type: General Purpose Processor (RCA SMARC)
Performance
Technical Characteristics
(1) Instruction rate: 1000 kips
(2) Word length: 32 bits
(3)
Power
Average Power (watts): 40.0
Maximum Power (watts): 40.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0Converter/InverterRequirement (flag):
Weight (kg):
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature

Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$):
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$) :
$11(25.0 \mathrm{lb})$
$2.1 \times 10^{3}\left(0.075 \mathrm{ft}^{3}\right)$
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points' (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{-7} \mathrm{hr}$): 15,000
Standard Deviation ($\mathrm{x} 10^{+9}, \mathrm{hr}$):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 3960
Test and Evaluation (\$1000): 2725
Unit Production (\$1000): 1400
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.1
Development Lead Time Variable (months): 13. 1
Qualification Lead Time Constant (months): 6.1
Qualification Lead Time Variable (months): 9. :
State-of-Art Factor (N.D.): 2. 1
Subsystem: DP (0108)
Configurations: General Purpose Processors
Equipment Type: General Purpose Processor (CDC AMPP)
Performance
Technical Characteristics
(1) Instruction rate: 1200 kips
(2) Word length: 32 bitsPowerAverage Power (watts): 100.0Maximum Power (watts): 100.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24. 0
Converter/InverterRequirement (flag):
Weight (kg):9.1 (20.0 Ib)
Volume (cc):
2.0×10^{3} (0. $069 \mathrm{ft}^{3}$)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): 311 ($100^{\circ} \mathrm{F}$)
Minimum (${ }^{\circ} \mathrm{K}$): $275\left(35^{\circ} \mathrm{F}\right)$
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$:
Performance (continued)
CDPI
Power Switching Commands' (No.):
Time Tagged Commands (No.):
Other Commands (No.): 20
High Rate Telemetry
Analog Points (No.): 6
Digital Points (No.):
Sample Rate (sec^{-1}): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{hr}$): 15,000
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 4300
Test and Evaluation (\$1000): 2850
Unit Production (\$1000): 1200
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 24.0
Development Lead Time Variable (months): 14.0
Qualification Lead Time Constant (months): 6.0
Qualification Lead Time Variable (months): 9.8
State-of-Art Factor (N.D.): 2: 0
Subsystem: DP (0201)
Configurations: All
Equipment Type: Digital Telemetry Unit
Performance
Technical Characteristics
(1) Bit rate: 0.250 kbps
(2) Word length: 8 bits
(3) Number of main frame words: 32
(4) Number of subframes: 4
(5) Number of words per subframe: 128
D gital multiplexer (yes/no): Yes (1)
Power

Average Power (watts): 3.0
Maximum Power (watts): 3.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 23.0
Minimum Voltage (volts): 20.0
Converter/Inverter Requirement (flag):

Weight (kg): 4.7 (10.4 lb)
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$) :
$316\left(110^{\circ} \mathrm{F}\right)$
$255\left(0^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power Switching Commands (No.):•
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry Analog Points (No.):
Digital Points (No.): 1
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): I
Digital Points (No.): 4
Sample Rate (sec^{-1}):
0.0075

Word Length (bits):
8
Safety
Failure Model (flag):
1 i
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 8,302$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.): •
0.5°
Total Redundant Elements (No.):
2

Cost

Design Engineering (\$1000):
Test and Evaluation (\$1000):
$21 \ddot{0} 0$

Unit Production (\$1000):
97.0

Referenće"Quantity (No.):
35.0

Factor (N.D.):
Schedule
$\begin{array}{ll}\text { Development Lead Time Constant (months): } & 6.2 \\ \text { Development Lead Time Variable (months): } & 2.7 . \\ \text { Qualification Lead Time Constant (months): } & 1.8 . \\ \text { Qualification Lead Time Variable (months): } & 0.2 . \\ \text { State-of-Art Factor (N.D.): } & 1.0\end{array}$
Subsystem: DP (0202)
Configurations: All
Equipment Type: Digital Telemetry Unit
Performance
Technical Characteristics
(1) Bit rate: 128 kbps
(2) W ord length: 8 bits
(3) Number of main frame words: 128
(4) Number of subframes: 4
(5) Number of words per subframe: 128
(6) Digital multiplexer (yes/no): Yes (1)
(7)
Power
Average Power (watts): 3.0
Maximum Power (watts): 3.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 33.0
Minimum Voltage (volts): 20.0
Converter/InverterRequirement (flag):
Weight (kg): $4.1(9.0 \mathrm{lb})$Voiume (cc):2. $5 \times 10^{4}\left(0.9 \mathrm{ft}^{3}\right)$
VibrationRandom (g, rms):Non-Random (g):
TemperatureMaximum (${ }^{\circ} \mathrm{K}$):Minimum (${ }^{\circ} \mathrm{K}$):$316\left(110^{\circ} \mathrm{F}\right)$
$255\left(0^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI

Power-Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.): I
Sample Rate (sec^{-1}.): 125
Word Length (bits): 8
Low Rate Telemetry.
Analog Points (No.): 4
Digital Points (No.): I
Sample Rate $\left(\mathrm{sec}^{-1}\right): \quad 1$
Word Length (bits): 8
Safety
Failure Model (flag): 1
Tailure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 18,302$.
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N. D.):
0.1

Total Redundant Elements (No.):
2
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
500. 1
175. 1

Unit 'Production (\$1000): 95.(
Reference Quantity (No.): 2.
Factor (N.D.): 1
Jichedule
Development Lead Time Constant (months): 6.
Development Lead Time Variable (months): 4.5
Qualification Lead Time Constant (months): i. ε
Qualification Lead Time Variable (months) : 0.4
State-of-Art Factor (N.D.): $\quad \because$ l. C

Subsystem:
Configurations:
Equipment Type:
DP (0301)

Performance
Technical Characteristics
(1) Capacity:
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:
(6)
(9)
(10)

Power
Average Power (watts): $\quad 3.0$
Maximum Power (watts):
5.0

Minimum Power (watts):
Nominal Voltage (volts): . 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (fiag):
Weight (kg) :
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
$311\left(100^{\circ} \mathrm{F}\right)$
Minimum (${ }^{\circ} \mathrm{K}$):
$275\left(35^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):
6.5×10^{5} bits.
122 m (400 ft)
$59.1 \mathrm{bits} / \mathrm{cm}$ ($150 \mathrm{bits} / \mathrm{in}$.
$1 \mathrm{~cm} / \mathrm{sec}(0.4 \mathrm{in} . / \mathrm{sec})$
$18 \mathrm{~cm} / \mathrm{sec}$ ($7.2 \mathrm{in} . / \mathrm{sec}$)

Performance (continued)

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (sec^{-1}):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): 6
Sample Rate $\left(\mathrm{sec}^{-1}\right): \quad 1$
Word Length (bits):

Safety

Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\mathrm{x} 10^{ \pm 9} \mathrm{Chr}$): $\quad 16.00$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): . . 0.5
Total Redundant Elements (No..): :. 4
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000): :
305.0
252.0

Reference Quantity (No.):
Factor (N.D.):
265. 0

1

Schedule
Development Lead Time Constant (months): $\quad 12.0$
Development Lead Time Variable (months): 8.3
Qualification-Lead Time Constant (months): 8.0
Qualification Lead Time Variable (months): 1.6°
State-of-Art Factor (N.D.): 1.0
Subsystem: DP (0302)
Configurations: All
Equipment Type: Tape Recorder (CNES/D2B)
Performance
Technical Characteristics
(1) Capacity: 1.6×10^{6} bits
(2) Equivalent length:$152 \mathrm{~m}(500 \mathrm{ft})$
(3) Density:
$133 \mathrm{bits} / \mathrm{cm}$ ($338 \mathrm{bits} / \mathrm{in}$.)
(4) Record rate: $1.9 \mathrm{~cm} / \mathrm{sec}(0.74 \mathrm{in} . / \mathrm{sec})$
(5) Reproduce rate: $61.5 \mathrm{~cm} / \mathrm{sec}$ ($24.2 \mathrm{in} . / \mathrm{sec}$)(6)
(10)
Power
Average Power (watts): 4.5
Maximum Power (watts): 7.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 4.99 (11.0 ft)Volume (cc):$6.48 \times 10^{3}\left(0.229 \mathrm{ft}^{3}\right)$Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $311\left(100^{\circ} \mathrm{F}\right)$Minimum (${ }^{\circ} \mathrm{K}$) :$275\left(35^{\circ} \mathrm{F}\right)$Pressure ($\mathrm{kg} / \mathrm{m}^{2}$) :

Performance (continued)
CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 5

High Rate Telemetry
Analog Points (No.):
Digital: Points (No.):

- Sample, Rate (sec^{-1}):

Word Length (bits):
Low Rate Telemetry
Analog Poìnts (No.): 2
Digital Points (No.): 6
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag):-1

Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$) $\quad 1600$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$): .
Dormancy Factor (N.D.):
0.5

Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000):
334.0

Test and Evaluation (\$1000):
271.0

Unit Production (\$1000):
285.0

Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):
12.0

Development Lead Time Variable (months):
8.3

Qualification Léad Time Constant (months): 8.0
Qualification Lead Time Variable (months): $\quad 1.6$
State-of-Art Factor (N.D.):
1.0

Subsystem: DP (0303)
Configurations: ; All
Equipment Type: Tape Recorder (NASA/ISS)
Performance
Technical Characteristics

(1) Capacity:	$7.1 \times 10^{6} \mathrm{bits}$	
(2)	Equivalent length:	$142 \mathrm{~m} \mathrm{(360.ft)}$
(3)	Density:	$4318 \mathrm{bits} / \mathrm{cm} .(1700 \mathrm{bits} / \mathrm{in})$.
(4)	Record rate:	$1.5 \mathrm{~cm} / \mathrm{sec}(0.6 \mathrm{in} . / \mathrm{sec})$
(5) Reproduce rate:	$39.6 \mathrm{~cm} / \mathrm{sec}(15.6 \mathrm{in} . / \mathrm{sec})$	

Power
Average Power (watts): 4.0
Maximum Power (watts): 8.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
Volume (cc):
4.99 (11.0 11b)

Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 311$ ($100^{\circ} . \mathrm{F}$)
Minimum (${ }^{\circ} \mathrm{K}$) :
$275\left(35^{\circ} \mathrm{F}\right)$
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)

CDPI
Power Switching Commànds (No.): I
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
= Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 6
Sample Rate $\left(\mathrm{sec}^{-1}\right)$: $\quad 1$
Word Length (bits):

Safety

Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean (x $10^{-1} \mathrm{hr}$): - 1600

Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000):
i34. 0
Test and Evaluation (\$1000): :71. C
Unit Production (\$1000):
:85. C
Reference Quantity (No.):
2
Factor (N.D.):
1.

Schedule
Development Lead Time Constant (months): 12.C
Development Lead Time Variable (months): $8 . \approx$
Qualificatión Lieảd Time Constant (months): . 8. C
Qualification Lead Time Variable (months): • I.t
State-of-Art Factor (N.D.): : 1..
ubsystem:
DP (0304)
ionfigurations: All \#
iquipment Type: : Tape Recorder (NASA/AE)
lerformance
Technical Characteristics
(I) Capacity: 1.2×10^{8} bıts
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:
$336 \mathrm{~m} \cdot(1200 \mathrm{ft})$
1614 bits $/ \mathrm{cm}$ ($4100 \mathrm{bits} / \mathrm{in}$.)
$10 \mathrm{~cm} / \mathrm{sec}(4.0 \mathrm{in} . / \mathrm{sec})$
(6)
(7)
(8)
(9)
(10)
Power
Average Power (watts): $\quad 6.5$
Maximum Power (watts): 11.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): $\quad 32.0$
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): $\quad 7.26$ (16.0 lb)
Volume (cc):
$1.23 \times 10^{4}\left(0.434 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$): $\quad 311\left(100^{\circ} \mathrm{F}\right)$
Minimum $\left({ }^{\circ} \mathrm{K}\right)$:
275 ($35^{\circ} . \mathrm{F}$)
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$):

Performance (continued)
CDPI

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): $\because 5$
High Rate Telemetry
Analog' Points (No.):

- Digital Points (No.):
.. Sámple Raté $\left(\mathrm{sec}^{-1}\right)$:
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): 6
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8

Safety

Failure Model (flag): !
Failure Parameters
Failure Rate or Mean (x $10^{ \pm 9} . \mathrm{hr}$): $\quad 1600$.
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): :
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):
Development Lead Time Variable (months): 8.3
Qualification Lead Time Constant (months): 8.0
Qualification Lead Time Variable (months): 1.6
State-of-Art Factor (N.D.):
12.0
0.5

4
430.0

335:0
349.0

2
1.0

Performance (continued)

CDPI

Power Switching Commands (No.): I :
Time Tagged Commands (No.):
Other Commands (No.): 5^{*}
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate. $\left(\overline{\mathrm{sec}}^{-1}\right)$:

- Word Length (bits):
- Low Rate Telemetry

Analog Points (No.): 2
Digital Points (No.): 6
Sample Rate (sec^{-1}): $\quad 1$
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean ($\times 10^{ \pm 9} \mathrm{hr}$): $\quad 1600$
Standard Deviation ($\times 10^{+9} \mathrm{hr}$):
Dormancy Factor (N.D.): . 0.5
Total Redundant Elements (No.): .. 4

Cost

Design Engineering ($\$ 1000$):
420: 0
330.0
341.0

2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):
Development Lead Time Variable (months): .8.3
Qualification Lead. Time Constant (months): $\quad 8.0$
Qualification Lead Time Variable (months): 1.6
State-of-Art Factor (N.D.): i.0
12.0

Subsystem: DP (0306)

Configurations:
Equipment Type: Tape Recorder (NASA/NIMBUS-E)

Performance

Technical Characteristics
(1) Capacity:
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:
(10)

Power
Average Power (watts): $\quad 14.5$
Maximum Power (watts): $\quad 15.5$
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Convèrter/Inverter
Requirement (flag):
Weight (kg):
Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (${ }^{\circ} \mathrm{K}$):
Minimum (${ }^{\circ} \mathrm{K}$) :
Pressure ($\mathrm{kg} / \mathrm{m}^{2}$) :
2.1×10^{7} bits
533 m (1750 ft)
1772 bits/cm (4500 bits/in.
$107 \mathrm{~cm} / \mathrm{sec}(42 \mathrm{in} . / \mathrm{sec})$
$107 \mathrm{~cm} / \mathrm{sec}$ ($42 \mathrm{in} . / \mathrm{sec}$)
$311\left(100^{\circ} \mathrm{F}\right)$
$275\left(35^{\circ} \mathrm{F}\right)$
$9.30(20.5 \mathrm{lb})$
$1.28 \times 10^{4} \quad\left(0.451 \mathrm{ft}^{3}\right)$

```
Performance (continued)
    CDPI
            Power Switching Commands (No.): , 1
            Time Tagged Commands (No.): ,
            Other Commands (No.):
```5

High Rate Telemetry
Analoǵ Póints (No.): Digital Points (No.):
Sámple Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):. 2
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 1600\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): ‘ 4
Cost
Design Engineering (\$1000):
508.0

Test and Evaluation (\$1000):
Unit Production (\$1000):
385, 0
400.0

Reference Quantity (No.): 2
Factor (N.D.): 1

\section*{Schedule}

Development Lead Time Constant (months):
Development Lead Time Variable (months):
Qualification Lead Time Constant (months):
Qualification Lead Time Variable (months):
State-of-Art Factor (N. D.):
\begin{tabular}{|c|c|}
\hline Subsystem: : DP (0307) & \\
\hline Configurations: All & \\
\hline Equipment Type: Tape Rec & (AF/SESP-70-1) \\
\hline Performance & \\
\hline Technical Characteristics & \\
\hline (1) Capacity: & .2.3 \(\times 10^{9} \mathrm{bits}\) \\
\hline (2) Equivalent length: & 594 m (1950 ft. \\
\hline (3) Density: & \(5591 \mathrm{bits} / \mathrm{cm}\) (\(14,200 \mathrm{bits} / \mathrm{sec})\) \\
\hline (4) Record rate: & \(23 \mathrm{~cm} / \mathrm{sec} \cdot(9.0 \mathrm{in} . / \mathrm{sec})\) \\
\hline (5) Reproduce rate: & \(137 \mathrm{~cm} / \mathrm{sec}\) (\(54 \mathrm{in} . / \mathrm{sec}\)) \\
\hline (6) & \\
\hline (7) & \\
\hline (8) & \\
\hline (9) & \\
\hline (10) & \\
\hline Power & \\
\hline Average Power (watts): & 20.0 \\
\hline Maximum Power (watts) : & 30.0 \\
\hline Minimum Power (watts) : & 0 \\
\hline Nominal Voltage (volts): & 28.0 \\
\hline Maximum Voltage (volts) : & 32.0 \\
\hline Minimum Voltage (volts): & 24.0 \\
\hline \begin{tabular}{l}
Converter/Inverter \\
Requirement (flag):
\end{tabular} & \\
\hline Weight (kg) : & 7.04 (15,5 Ib) \\
\hline Volume (cc): & \(9.51 \times 10^{3} \quad\left(0.336 \mathrm{ft}^{3}\right.\) \\
\hline Vibration & \\
\hline - Random (g, rms): & \\
\hline Non-Random (g): & \\
\hline Temperature & \\
\hline - Maximum (\({ }^{\circ} \mathrm{K}\)) : & \(311\left(100^{\circ} \mathrm{F}\right)\) \\
\hline Minimum (\({ }^{\circ} \mathrm{K}\)) : & 275 (\(\left.35^{\circ} \mathrm{F}\right)\) \\
\hline Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)) : & \\
\hline
\end{tabular}
Performance (continued)
CDPI
Power Switching. Commands (No.): 1.
Time Tagged Commands (No.):
Other Commands (No.): ᄃ
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No..): 2
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) \(\quad 1600\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.):: 4
Cost :
Design Engineering (\$1000): 420.0
Test and Evaluation (\$1000): 330.0
Unit Production (\$1000): 341.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months 12.0
Development Lead Time Variable (months: 8.3
Qualification Lead Time Constant (months' 8.0
Qualification Lead Time Variable (months: 1.6
State-of-Art Factor (N'. D.): 1.0
Subsystem: DP (0308)
Configurations:All
Equipment Type: Tape Recorder (AF/STP71-2 and 72-1).
Performance
Technical Characteristics
(1) Capacity:
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:

Power
Average Power (watts): \(\quad 15.0\)
Maximum Power (watts):
25.0

Minimum Power (watts): . . 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts):
Converter/Inverter Requirement (flag):
Weight (kg):
7.04 (15.5 1b)
Volume (cc):
\(9.51 \times 10^{3}\left(0.336 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
\begin{tabular}{lll}
Maximum \(\left({ }^{\circ} \mathrm{K}\right):\) & \(311\left(100^{\circ} \mathrm{F}\right)\) \\
Minimum \(\left({ }^{\circ} \mathrm{K}\right):\) & \(275\left(35^{\circ} \mathrm{F}\right)\)
\end{tabular}
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

Performance (continued)
CDPI

Power Switching Commands (No.): \(\quad i\)
Time Tagged Commands (No.): \(\quad \therefore\)
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
\(\therefore\) Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
:- . . Wórd Length (bits):
- Low Rate Teleminetry

Analog Points (No.): 2
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Mode1 (flag):
Failure Parameters.
Failure Rate or Mean \(\left(\times 10^{ \pm 9} \mathrm{hr}\right)\) : \(\quad 1600\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.):
Total Redundant Elements (No.):' : Cost

Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months)
Development Lead Time Variable (months)
Qualification Lead Time Constant (months)
Qualification Lead Time Variable (months)
State-of-Art Factor (N.D.):
12.0
8.3

8:0
-i.6:
1. 0
Subsystem: DP (0309)

Configurations:
Equipment Type:

All
Tape Recorder (AF/STP72-2)
Performance
Technical Characteristics
(1) Capacity:
\(1.53 \times 10^{9}\) bits
(2) Equivalent length:
549 m (1800 ft)
(3) Density:
(4) Record rate:
(5) Reproduce rate:
5591 bits/cm (14, 200 bits/in.
(s) Reproduce rate. \(5.72 \mathrm{~cm} / \mathrm{sec}(2.25 \mathrm{in} . / \mathrm{sec})\)
(6)
(7)
(8)
(10)
Power
Average Power (watts): 14.0
Maximum Power (watts): \(\quad 30.0\)
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):
```

Weight (kg):
7.62 (16.8 1b)
Volume (cc):
Vibration
Random ( $\mathrm{g}, \mathrm{rms}$ ):
Non-Random (g):
Temperature
Maximum ( ${ }^{\circ} \mathrm{K}$ ):
$311\left(100^{\circ} \mathrm{F}\right)$
Minimum ( ${ }^{\circ} \mathrm{K}$ ):
$275\left(35^{\circ} \mathrm{F}\right)$

```
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.);
Time Tagged Commands (No.):
Other Commands (No.): 5 .

High Rate Telemetry
Analog Pöints'(Nó.):
Digital Points (No.):
- Sample Rate (\(\mathrm{sec}^{-1}\)):

Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8

\section*{Safety}

Failure Model (flag):
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) 1600
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): .
4
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000):
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months):
12, 0
Development Lead Time Variable (months):
8.3

Qualification. Liead Time Constant (months):
8.0

Qualification Lead Time Variable (months):
1.6

State-of-Art Factor (N.D.):
1.0

Subsystem: DP (0310)

\section*{Configurations:}

Equipment Type:

All
Tape Recorder (AF/S-3)

\section*{Performance}

Technical Characteristics
(1) Capacity:
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:
\(2.0 \times 10^{8}\) bits
294 m (966 ft)
3504 bits/cm (\(8900 \mathrm{bits} / \mathrm{in}\).)
\(4.67 \mathrm{~cm} / \mathrm{sec}(1.84 \mathrm{in} . / \mathrm{sec})\)
\(37.3 \mathrm{~cm} / \mathrm{sec}(14.7 \mathrm{in} . / \mathrm{sec})\)

Power

Average Power (watts): \(\quad 7.0\)
Maximum Power (watts): 14.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg):
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)):
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
275 (.35 \({ }^{\circ} \mathrm{F}\))

\section*{Performance (continued)}

CDPI
Power Switching Commarids: (No.): \(\because\)
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}{ }^{-1}\)):
Word L̇ength (bits):
- Low Rate Telemetry

Analog Points (No.):
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag):1

Failure Parameters
Failure Rate or Mèan (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 1600\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor'(N. D.): 0.5
Total Redundant Elements (No.):- 4
Cost
Design Engineering (\$1000): 401.0
Test and Evaluation (\$1000): 318.0
Unit Production (\$1000):
Refereńce Quantity'(No.):
330.0

Factor (N.D.):
Schedule
Development Lead Time Constant. (months): \(\quad 12.0\)
Development Lead Time Variable (months): 8.3
Qualification Lead Time Constant (months): 8.0.
Qualification Lead Time Variable (months): \(\quad 1.6\)
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations:
Equipment Type: Tape Recorder (AF)

DP (0311)
All

Performance
Technical Characteristics
(1) Capacity:
(2) Equivalent length:
(3) Density:
(4) Record rate:
(5) Reproduce rate:
(7)

Power
Average Power (watts):
8.0

Maximum Power (watts):
33.0

Minimum Power (watts):
Nominal Voltage (volts):
28.0

Maximum Voltage (volts):
32.0

Minimum Voltage (volts):
24.0

Converter/Inverter
Requirement (flag):
Weight (kg):
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
275 (\(\left.35^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
\(1.7 \times 10^{9} \mathrm{bits}\)
640 m (2100 ft)
\(3622 \mathrm{bits} / \mathrm{cm}\) (\(9200 \mathrm{bits} / \mathrm{in}\),)
\(26.2 \mathrm{~cm} / \mathrm{sec}(10.3 \mathrm{in} . / \mathrm{sec})\)
\(105 \mathrm{~cm} / \mathrm{sec}^{-}(41.2 \mathrm{in} . / \mathrm{sec})\)

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.): 1 Timé Tagged Commands (No.):
Othex Commands (No.): 5 High Rate Telemetry

Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 6
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : I
Word Length (bits): 8
Safety
Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\)): 1600. Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Enginee ring (\$1000): 547.0
Test and Evaluation (\$1000): 410.0
Unit Production (\$1000): 420.0
Reference Quantity (No.): . 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): .. 12.0
Development Lead Time Variable (months): .8.3
Qualification Lead Time Constant (months): 8.0
Qualification Lead Time Variable (months): .. 1.6
State-of-Art Factor (N.D.): 1.0 .

Subsystem:

\section*{Configurations:}

Equipment Type:

CDPI (040'1)

\section*{Dúal Spin}

Electrical Integration Assembly (includes converter)
Performance
Technical Characteristics
(1)
(2)
(3)
(4)
(5)
(6)
(10)
Power
\begin{tabular}{lr}
Average Power (watts): & 17.1 \\
Maximum Power (watts): & 24.0 \\
Minimum Power (watts): & 9.0 \\
Nominal Voltage (volts): & 28.0 \\
Maximum Voltage (volts): & 32.0 \\
Minimum Voltage (volts): & 24.0 \\
Converter/Inverter & \\
\(\quad\) Requirement (flag): &
\end{tabular}
Weight (kg):
\(9.07(20.0 \mathrm{lb})\)
Volume (cc):
\(5.7 \times 10^{4}\left(2.0 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No,):
Time Thaged Commands (No.)
Other Commands (No\%): \(\ldots\)
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 5
Digital Points (No.): 6
Sample Rate (\(\mathrm{sec}^{-1}\)): 0.0075
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure•Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 6500
Standard Deviation. (\(\times 10^{+9} \mathrm{hr}\)):Dormancy Factor (N.D.):0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 107. 0
Test and Evaluation (\$1000): :09.0
Unit Production (\$1000): 06. 0
Reference Qúantity (No.): \(1-\)
Factoŕ (N.D:): 1
Schedule
Development Lead Time Constant (months): 3.5
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 1.9
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N. D.): \(1.0^{\circ}\)
Subsystem: CDPI (0501)
Configurations: Dual Spin
Equipment Type: Switching Logic Assembly(includes converter)
Performance
Technical Characteristics
Power
Average Power (watts): 22.2
Maximum Power (watts): 30.0
Minimum Power (watts): 11.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/InverterRequirement (flag):

Weight (kg):
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature

\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (Nó.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag):
1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)):
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.):
0.5

4
Cost
Design Engineering (\$1000):
(Included
Test and Evaluation (\$1000):
Unit Production (\$1000):
with
Reference Quantity (No.):
Factor (N.D.):
0401)

Schedule
Development Lead Time Constant (months): \(\quad 3.5\)
Development Lead Time Variable (months): \(\quad 1.5\)
Qualification Lead Time Constant (months): -. 9
Qualification Lead Time Variable (months): . 2
State-of-Art Factor (N.D.): . 0
Subsystem: CDPI (0601)
Configurations: All except Dual Spin
Equipment Type: Electrical Integration Assembly(includes converter)
Performance
Technical Characteristics(1)
Power
Average Power (watts): 4.0
Maximum Power (watts): 6.0
Minimum Power (watts): 2.0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): 8.71 (19.2 1b)Volume (cc):\(5.4 \times 10^{4}\left(1.9 \mathrm{ft}^{3}\right)\)VibrationRandom (\(\mathrm{g}, \mathrm{rms}\)):Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): 311. \(\left(100^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)):\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
```

Performance (continued)
CDPI
Power Switching Commanḍ (No.):

```

Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 38
Digital Points (No.): 15
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 4

\section*{Safety}

Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) \(\quad ; 500\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000):
1963.0

Test and Evaluation (\$1000):
469.0

Unit Production (\(\$ 1000\)):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months)
3.5 .

Development Lead Time Variable (months)
Qualification Lead Time Constant (months)
Qualification Lead Time Variable (months)
State-of-Art Factor (N.D.):
1.5
1.9 .
0.2
1.0

Subsystem: . CDPI (0701)

Configurations:
Equipment Type:

\section*{Performance}

Allsexcept Dual Spin
Auxiliary Integration Assembly (includes converter).

\section*{Technical Characteristics}
(1)
(2)
(3)
(4)

Power
Average Power (watts): 5.8
Maximum Power (watts): \(\quad 7.5\)
Minimum Power (watts): . 3.0
Nominal Voltage (volts): \(\quad 28.0\)
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight \((\mathrm{kg}): \quad 5.44\) (12.0 1b)
Volume (cc):
\(3.62 \times 10^{3}\left(0.128 \mathrm{ft}^{3}\right.\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum \(\left({ }^{\circ} \mathrm{K}\right): \quad 311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)): \(\quad 266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No. \(\overline{\text { O }}\) \(-6\)
Time Tagged Commands (No.):
2
Other Commands (No.): 2
High Rate Telemetry
- Analog Points (No.): 10
Digital Points (No.): Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
\(\because\) Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\)): 6500
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N.D.):•- 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): (Included
Test and Evaluation (\$1000):
Unit Production (\$1000): in
Reference Quantity (No.):
Factor.(N.D.):0601)
Schedule
Development Lead Time Constant (months): 3.5
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 1:9
Qualification Léad Time Variable (months): 0.2
State-of-Art Factor (N. D.): 1.0

Subsystem:
Configurations:
Equipment Type:

Comm (0101)
All except Separate Uplink and Downlink
Baseband Assembly Unit

\section*{Performance}

Technical Characteristics
(I) Compatibility:

SGLS (I)
(2) First data rate stream*:

128 kbps
(3) Second data rate stream (Kbps): NA
(4) First subcarrier frequency*: \(\quad 1.024 \mathrm{MHz}\)
(5) Second subcarrier frequency (Mhz): NA
(6) Transmitter requirement (\(\mathrm{T}_{\ldots}\) _): NA
(10)

Power
Average Power (watts): \(\quad 0.52\)
Maximum Power (watts): 0.52
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag): \(\quad\) C31(0701)
Weight (kg): 0.39 (0.85 lb)
Volume (cc):
\(280\left(0.01 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): 322 (\(120^{\circ} \mathrm{F}\))
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(264\left(15^{\circ} \mathrm{F}\right)\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
*Second rate or frequency is the lower of the two if two are provided.
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
-High Rate Telemetry
‥ Analog Points (No.):
Digital Points. (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\mathbf{x} \cdot 10^{ \pm 9} \mathrm{hr}\)): 1147
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 29.0
Test and Evaluation (\$1000): 9:0
Unit Production (\$1000): 16.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 7.3
Development Lead Time Variable (months): 3.1
.. Qualification Lead Time Constant (months): 1.8
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0

Power
Average Power (watts): (included in T01)
Maximum Power (watts):
Minimum Power (watts):
Nominal Voltage (volts):
Maximum Voltage (volts):
Minimum Voltage (volts):
Converter/Inverter
Requirement (flag):
Weight (kg):
(included in TOI)
Volume (cc):
(included in T01)

Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(333\left(140^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
FSecond rate or frequency is the lower of the two if two are provided. 2-261
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.):
' Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 2000
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N.D.):* - - 0.5
Total Redundant Elements (No.): - 3
Cost
Design Engineering (\$1000): 29.0
Test and Evaluation (\$1000): 9.0
Unit Production (\$1000): 16.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 7.3
Development Lead Time Variable (months): 3.1
Qualification Lead Time Constant (months): 1.8
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations:
Equipment Type:

\section*{Performance}

Technical Characteristics
(1) Frequency, high band max.: \(\quad 2300 \mathrm{MHz}\)
(2) Frequency, high band min.: \(\quad 2200 \mathrm{MHz}\)
(3) Frequency, low band max. : 1850 MHz
(4) Frequency, low band min.: 1750 MFz
(5) Type and equipment number:

Biconical 21
(6) On-axis gain:

2 dB
(7)
(8)
(9)
(10)

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg):
\(2.5(5.6 \mathrm{lb})\)
Volume (cc):
\(1.6 \times 10^{5}\left(5.6 \mathrm{ft}^{3}\right.\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(373\left(212^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(218\left(-67^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits)
Low Rate Telemetry
'Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 100
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 180.0
Test and Evaluation (\$1000): 153.0
Unit Production (\$1000): 32.0
Reference' Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0 .
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0 .

Subsystem:
Configurations:
Equipment Type:
Perforn
Technical Characteristics
(1) Frequency, high band max.:
(2) Frequency, high band min.: \(\cdot \quad 2200 \mathrm{MHz}\)
(3) Frequency, low band max. (Mhz):' 'NA
(4) Frequency, low band min. (Mhz): NA
(5) Type and equipment number: Parabola 1
(6) On-axis gain: . 20 dB
(10)

\section*{Power}

Average Power (watts): NA
Maximum Power (watts):
NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight (kg):
0.95 (2.1 1b)

Volume (cc):
Vibration
Random (g, rms):
Non-Random (g):
Temperature
\begin{tabular}{lll}
Maximum \(\left({ }^{\circ} \mathrm{K}\right):\) & 373 & \(\left(212^{\circ} \mathrm{F}\right)\) \\
Minimum \(\left({ }^{\circ} \mathrm{K}\right):\) & 218 & \(\left(-67^{\circ} \mathrm{F}\right)\)
\end{tabular}

Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points. (No.):Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): 1 ;
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 40
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 1.0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 104.0
Test and Evaluation (\$1000): 80.0
Unit Production (\$1000): 11.5
Reference Quantity (No.): 2.
Factor (N.D.): 1.
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable'(months): - 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1. \(0^{\prime}\)
Subsystem: Comm (0203)
Configurations: All
Equipment Type: Antenna
Performance
Technical Characteristics
(1) Frequency, high band max.: 2300 MHz
(2) Frequency, high band min.: 2200 MHz
(3) Frequency, low band max.: 1850 MHz
(4) Frequency, low band min: : 1750 MHz
(5) Type and equipment number: Omni 11
(6) On-axis gain: \(-9 \mathrm{~dB}\)
Power
Average Power (watts): NA
Maximum Power (watts) NA
Minimum Power (watts) NA
Nominal Voltage (volts): 'NA
Maximum Voltage (volts -NA
Minimum Voltage (volts NA
Converter/Inverter
Requirement (flag):
Weight (kg):
0.45 (1.0 lb)
Volume (cci):
\(2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(\quad 373 \quad\left(212^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(218\left(-67^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No:):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): 1 .
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 100
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 1.0
Total Redundant Elements (No.): 2
Cost.
Design Engineering (\$1000): 67.0
Test and Evaluation (\$1000): 46.0
Unit Production (\$1000): 12.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
- Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0 .
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0

\section*{Subsystem: Comm (0204)}

\section*{Configurations: All}

Equipment Type: Antenna
Performance
Technical Characteristics
(1) Frequency, high band max. (Mhz):
(2) Frequency, high band \(\min\). (Mhz):
(3) Frequency, low band max. (Mhz):
(4) Frequency, low band min. (Mhz):
(5) Type and equipment number:

Monopole 51
2 dB
(6) On-axis gain:

Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA.
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight (kg):
\(0.45(1.0 \mathrm{lb})\)
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)):
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
\(373\left(212^{\circ} \mathrm{F}\right)\)
\(2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)\)
\(218\left(-67^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points:(No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): l
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) 100
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormançy Factor (N.D.): 1.
Total Redundant Elements (No.): 2
Cost
Design Engineering (piuvu): 67.
Test and Evaluation (\$1000): 46.
Unit Production (\$1000): 12.
Reference Quantity (No.): -2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.
Subsystem: Comm (0205)
Configurations: All
Equipment Type: Antenna
Performance
Technical Characteristics
(1) Frequency, high band max. (Mhz):
(2) Frequency, high band min. (Mhz):
(3) Frequency, low band max. (Mhz):
(4) Frequency, low band min. (Mhz):
(5) Type and equipment number: Conical spiral 41
(6) On-axis gain: \(-1 d B\)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg):
Volume (cc):
0.45 (1.0 1b)\(2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):\(373\left(212^{\circ} \mathrm{F}\right.\)Minimum (\({ }^{\circ} \mathrm{K}\)) :\(218\left(-67^{\circ} \mathrm{F}\right.\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 100
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 1.0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 67.0
Test and Evaluation (\$1000): 46.0
Unit Production (\$1000): 12.0
Reference Quantity (No.): 2:
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): \(0^{*}\)
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
Subsystem: Comm (0206)
Configurations: All
Equipment Type: Antenna
Performance
Technical Characteristics
(I) Frequency, high band max. (Mhz):
(2) Frequency, high band \(\min .(\mathrm{Mhz})\) :
(3) Frequency, low band max. (Mhz):
(4) Frequency, low band min. (Mhz):
(5) Type and equipment number: Helix 31
On-axis gain: 10 dB
Power
Average Power (watts): N.
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): N.A
Maximum Voltage (volts): NA
Minimum Voltage (volts): N A
Converter/Inverter
Requirement (flag):
Weight (kg):Volume (cc):\(0.45(1.0 \mathrm{Ib})\)\(2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
TemperatureMaximum (\({ }^{\circ} \mathrm{K}\)):\(373\left(212^{\circ} \mathrm{F}\right)\)Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :\(218\left(-67^{\circ} \mathrm{F}\right)\)Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No:):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 100
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy. Factor (N. D.): 1.0
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 67.0
Test and Evaluation (\$1000): 46.0
Unit Production (\$1000): 12.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Timé Constant (months): 0
Development Lead Time Variable (months): 0
Qualification Lead Time Constant (months): 0
Qualification Lead Time Variable (months): 0
State-of-Art Factor (N.D.): 1.0
\begin{tabular}{|c|c|}
\hline Subsystem: Comm (0301) & \\
\hline Configurations: All & \\
\hline Equipment Type: Transmitter & \\
\hline Performance & \\
\hline Technical Characteristics & \\
\hline (1) Special requirement code (\(\mathrm{T}_{\text {_ }}\) -) : \(\cdot \cdots\) & \\
\hline (2) Compatibility: & SGLS (1) \\
\hline (3) Maximum frequency: & 2300 MHz \\
\hline (4) Minimum frequency: & . 2200 MHz \\
\hline (5) Power output: & 0.8 watts \\
\hline (6) Unified or nonunified*: & Unified (1) \\
\hline (7) First subcarrier frequency: & 1.024 MHź \\
\hline (8) , Second subcarrrier frequency (Mhz): \(\cdot\) & NA \\
\hline (9) Input data rate (Mbps): & NA \\
\hline (10) Modulation type: & Phase (1) \\
\hline Power & \\
\hline Average Power (watts): & \(\therefore 10.0\) \\
\hline Maximum Power (watts): & 15.0 \\
\hline Minimum Power (watts) : & 5.0 \\
\hline Nominal Voltage (volts): & 28.0 \\
\hline Maximum Voltage (volts) : & 32.0 \\
\hline Minimum Voltage (volts) : & 24.0 \\
\hline Converter/Inverter Requirement (flag): & \({ }^{C} 31(701)\) \\
\hline Weight (kg) : & 0.839 (1.85 1b) \\
\hline Volume (cc): & \(5.4 \times 10^{3} 10.19 \mathrm{ft}^{\ddagger}\), \\
\hline Vibration & \\
\hline Random (\(\mathrm{g}, \mathrm{rms}\)) & \\
\hline Non-Random (g): & \\
\hline Temperature & \\
\hline Maximum (\({ }^{\circ} \mathrm{K}\)) : & 322 (\(120^{\circ} \mathrm{F}\)) \\
\hline Minimum (\({ }^{\circ} \mathrm{K}\)) : & 264 (\(\left.15^{\circ} \mathrm{F}\right)\) \\
\hline Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)) & \\
\hline
\end{tabular}
*Nonunified requires (7) and (8) to be blank. Unified requires (9) to be blank. 2-27.5
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 12
High Rate Telemetry
Analog Points (No.):Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No..): 6
Digital Points (\(\mathrm{No}^{\circ}\) :): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
- Failure Model (flag): I'
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 336
Standard Deviation (\(\mathrm{x} 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design'Engineering (\$1000): 50.0
Test and Evaluation (\$1000): 50.0
Unit Production (\$1000): 20: 0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 5.0
Qualification. Lead Time Constant (months): 3.4
Qualification Lead Time Variable (months): 0.4
State-of-Art Factor (N.D.): I. 0
\begin{tabular}{|c|c|}
\hline Subsystem: Comm (0302) & \\
\hline Configurations: All & \\
\hline Equipment Type: Transmitter & \\
\hline Performance & \\
\hline Technical Characteristics & \\
\hline (1) Special requirement code (\(\mathrm{T}_{\ldots}\) - \()\) : & NA \\
\hline (2) Compatibility: & SGLS (I) \\
\hline (3) Maximum frequency: & 2300 MHz \\
\hline (4) Minimum frequency: & 2200 MHz \\
\hline (5) Power output: & 1.6 watts \\
\hline (6) Unified or nonunified*: & Nonunified (0) \\
\hline (7) First subcarrier frequency (Mhz): & NA \\
\hline (8) Second subcarrier frequency (Mhz): & NA \\
\hline (9) Input data rate: & 1.024 Mbps \\
\hline (10) Modulation type: & Phase (1) \\
\hline Power & \\
\hline Average Power (watts) : & 16.0 \\
\hline Maximum Power (watts) : & 24,0 \\
\hline Minimum Power (watts) : & 8.0 \\
\hline Nominal Voltage (volts): & 28.0 \\
\hline Maximum Voltage (volts) : & - 32.0 \\
\hline Minimum Voltage (volts) & 24.0 \\
\hline Converter/Inverter Requirement (flag): & C31 (0701) \\
\hline Weight (kg) : & 0.95 (2.1 1b) \\
\hline Volume (cc): & \(5.9 \times 10^{4}\left(0.21 \mathrm{ft}^{3}\right)\) \\
\hline Vibration & \\
\hline Random (\(\mathrm{g}, \mathrm{rms}\)): & \\
\hline Non-Random (g) : & \\
\hline Temperature & \\
\hline Maximum (\({ }^{\circ} \mathrm{K}\)) : & 311 (100 \(\left.{ }^{\circ} \mathrm{F}\right)\) \\
\hline Minimum (\({ }^{\circ} \mathrm{K}\)) : & 275 (\(\left.35^{\circ} \mathrm{F}\right)\) \\
\hline Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)) : & \\
\hline
\end{tabular}
*Nonunified requires (7) and (8) to be blank. Unified requires (9) to be blank.
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands, (No.): 12
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 3022
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements' (No.): 3
Cost
Design Engineering (\$1000): 231.0
Test and Evaluation (\$1000): 84.4
Unit Production (\$1000): 30.7
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 10.7
Qualification Lead Time Constant (months): 3.4
Qualification Lead Time Variable (months): 1.2
State-of-Art Factor (N.D.): 1.0

Subsystem:
Comm (0303)
Configurations:
All
Equipment Type: Transmitter .
Performance
Technical Characteristics
(1) Special requirement code:

T01 (0102)
(2) Compatibility:
(3) Maximum frequency:
(4) Minimum frequency:
(5) Power output:
(6). Unified or nonunified*:

Unified (1)
(7) First subcarrier frequency:
(8) Second subcarrier frequency (Mhz): NA
(9) Input data rate (Mbps): NA
(10) Modulation type:

Phase (1)

Power
```

Average Power (watts):
10.0

```

Maximum Power (watts):
15.0

Minimum Power (watts): 5.0
Nominal Voltage (volts): \(\quad 28.0\)
Maximum Voltage (volts): 36.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag):

Weight (kg):
1.1 (2.4 1b)

Volume (cc):
\(1.2 \times 10^{3} \quad\left(0.042 \mathrm{ft}^{3}\right)\)

Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(333\left(140^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
\(255\left(0^{\circ} \mathrm{F}\right)\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
*Nonunified requires (7) and (8) to be blank. Unified requires (9) to be blank.
Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 14
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No..):
Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\)): 14, 000
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 27.0
Test and Evaluation (\$1000): 33.0
Unit Production (\$1000): 25.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 2.1
Qualification Lead Time Constant (months): 3.4
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0 :

Subsystem:
Configurations:
Equipment Type: Transmitter

Performance
Technical Characteristics
(1) Special requirement code (\(\mathrm{T}_{\ldots}\)) : NA
(2) Compatibility:

USB (2)
(3) Maximum frequency (Mhz):
(4) Minimum frequency (Mhz):
(5) Power output: 5 watts
(6) Unified or nonunified*: . Nonunified (0)
(7) . First subcarrier frequency (Mhz): . NA
(8) Second subcarrier frequency (Mhz): NA
(9) Input data rate: 0.308 Mbps
(10) Modulation type:

Frequency (2)
Pówer
Average Power (watts): 60.0
Maximum Power (watts): 90.0
Minimum Power (watts): \(\quad 30.0\)
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
\(0.4(0.9 \mathrm{lb})\)
Volume (cc):
\(230\left(0.0081 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :
261 (\(10^{\circ} \mathrm{F}\))
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
*Nonunified requires (7) and (8) to be blank. Unified requires (9) to be blank.

\section*{Performánce (continued)}

\section*{CDPI}
\[
\text { Power Switching Commands (No.): } 2
\]

Time Tagged Commands. (No.):
Other Commands. (No.): 12
High Rate Telemetry \({ }^{-}\)
Analog Points (No.): 3
Digital Points (No.):
Sample Rate \(\left(\sec ^{-1}\right): \quad 125\)
Word Length (bits):: 8 .
Low Rate Telemetry
Analog.Points'(No.): 6
\(\cdots\) Digital Points (No..): \(\quad 2\)
Sample: Rate (\(\mathrm{sec}^{-1}\)): I
Word Length. (bits): 8

\section*{Safety}

Failure Model (flag): I
Failure Parameters.
Failure Rate or Mean (\(\times 10^{\ddagger \varphi} \mathrm{hr}\)): \(\quad 14,000\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)).
Dormancy- Factor (N.D.): . 0,5.
Total Redundant Elements (No.): 3 .

\section*{Cost}
- Design Engineering (\$1000): 90..

Test and Evaluation (\$1000): 175.0
Unit Production. (\$1000): 31.0
Reference Quantity (No.): 4
Factor (N.D.): : 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 9.6
Qualification Lead Time Constant (months): . 3. 4
Qualification Lead Time Variable'(months): 1.0
State-of-Art Factor (N.D.): . 1.0
```

Subsystem:
Comm (0305)
Configurations:
All
Equipment Type: Transmitter
Performance
Technical Characteristics
(1) Special requirement code (T __): NA
(2) Compatibility: : SGLS (1)
(3) Maximum frequency: }2300\textrm{MHz
(4) Minimum frequency: '. 2200 MHz
(5) Power output: 10 watts
(6) Unified or non-unified*: Unified (1)
(7) First subcarrier frequency . 1.024 MHz
(8) Second subcarrier frequency (Mhz): NA
(9) Input data rate (Mbps): NMA
(10) Modulation type: Phase (1)
Power
Average Power (watts): 40.0
Maximum Power (watts): 50.0
Minimum Power (watts): 20.0
Nominal. Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg):
Volume (cc):
1.1 (2.5 lb)
570 (0.020 ft 3)
Vibration
Random ( $\mathrm{g}, \mathrm{rms}$ ):
Non-Random (g):
Temperature

| Maximum $\left({ }^{\circ} \mathrm{K}\right):$ | $322\left(120^{\circ} \mathrm{F}\right)$ |
| :--- | :--- | :--- |
| Minimum $\left({ }^{\circ} \mathrm{K}\right):$ | $264\left(15^{\circ} \mathrm{F}\right)$ |

Pressure ( $\mathrm{kg} / \mathrm{m}^{2}$ ):

```
*Nonunified requires (7) and (8) to be blank. Unified requires (9) to be blank.

Performance (continued)

\section*{CDPI}

Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 12
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): .
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 125\)
Word Length (bits): 8
Low Rate Telemetry \(\quad\).
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): . 8
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 14,000\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3

\section*{Cost}

Design Engineering (\$1000):
100.0

Test and Evaluation (\$1000): 100.0
Unit Production (\$1000): 25.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 7.9
Qualification Lead Time Constant (months): \(\quad 3.4\)
Qualification Lead Time Variable (months): 0.8
State-of-Art Factor (N.D.):
1.0

Subsystem:
Configurations:
Equipment Type: Transmitter
Performance
Technical Characteristics
(1) Special requirement code (\(\mathrm{T}^{\circ}\) _ \()\) : NA
(2) Compatibility: SGLS (1)
(3) Maximum frequency: \(\quad 2300 \mathrm{MHz}\)
(4) Minimum frequency: 2200 MHz
(5) Power output: 20 watts
(6) Unified or nonunified*: Unified (1)
(7) First subcarrier frequency: \(\quad 1.024 \mathrm{MHz}\)
(8) Second subcarrier frequency (Mhz): NA
(9) Input data rate (Mbps): NA
(10) Modulation type:

Phase (I)
Power
Average Power (watts):
Maximum Power (watts):
110.0

Minimum Power (watts):
50.0

Nominal Voltage (volts):
28.0

Maximum Voltage (volts):
32.0

Minimum Voltage (volts):
24.0

Converter/Inverter
Requirement (flag):
Weight (kg) :
1.25 (2.75 1b)

Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(322\left(120^{\circ} \mathrm{F}\right)\)
ressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\section*{Perfórmance (continued)}

CDPI.
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 12
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): . 125
Word Length (bits): \(\quad .8\)
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): I
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 14,000\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): \(\quad 110.0\)
Test and Evaluation (\$1000): 110.0
Unit Production (\$1000): 27.5
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 8.5
Qualification Lead Time Constant (months): 3.4
Qualification Lead Time Variable (months): 0.8
State-of-Art Factor (N.D.): 1.0

Subsystem:
Comm. (0307)
Configurations:
All
Equipment Type: Transmitter
Performance
Technical Characteristics
(1) Special requirement code (T _ _): NA
(2) Compatibility:

SGLS (1)
(3) Maximum frequency:

2300 MHz
(4) Minimum frequency:

2200 MHz
(5) Power output:
(6) Unified or nonunified*:

5 watts
(7) First subcarrier frequency:
(8) Second subcarrier frequency (Mhz):

Unified (1)
1. 024 MHz
(9) Input data rate (Mbps):

NA
(10) Modulation type:

NA
Phase (1)

\section*{Power}

Average Power (watts):
20.0

Maximum Power (watts):
26.0

Minimum Power (watts):
10.0

Nominal Voltage (volts):
28.0

Maximum Voltage (volts):
32.0

Minimum Voltage (volts):
24.0

Converter/Inverter Requirement (flag):
Weight (kg): \(\quad 1.02 \quad(2.25 \mathrm{lb})\)
Volume (cc): \(570\left(0.020 \mathrm{ft}^{3}\right)\)

Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\mathrm{O}} \mathrm{K}\)):
\(322^{\circ}\left(120^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(264\left(15^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
*Nonunified requires (7) and (8) to be blank, Unified requires (9) to be blank.

Performance (continued)

\section*{CDPI}
Power Switching Commands (No.): 2
Time Tagged Commands (No.):
Other Commands (No.): 12
High Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry
Analog Points (No.): 6
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 14, 000
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 90.0
Test and Evaluation (\$1000): 80.0
Unit Production (\$1000): 22.5
Reference Quantity (No.): 2
Factor (N.D.): '1
Schedule
Development Lead Time Constant (months): 11.7
Development Lead Time Variable (months): 7.1
Qualification Lead Time Constant (months): - 3.4
Qualification Lead Time Variable (months): 0.6
State-of-Art Factor (N.D.): 1. 0 .

Performance (continued)
CDPI
Power Switching Commands (No.): 2
Time Tagged Commands (No.): Other Commands (No.): 2
High Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 7
Sample Rate (\(\mathrm{sec}^{-1}\)): 125
Word Length (bits): 8
Low Rate Telemetry.
-Analog Points (No.): 2
Digital Point's (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\mathrm{x} 10^{ \pm 9} \mathrm{hr}\)):- 4206
Standar̈d Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (NaD.): 0.5
Total Redundant Elements (No.): 3
Cost.
Design Engineering (\(\$ 1000\)): 76.0.
Test and Evaluation (\$1000): 11.0
Unit Prödūction (\$1000): 35.0.
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
4.2
Development Lead Time Constant (months):
4.3
: Development Lead Time Variable (months):
7.1
Qualification Lead Time Constant (months):
2.9
x. Qualification Lead Time Variable (months):1.0
Subsystem: Comm (0402)
Configurations: All
Equipment Type: Receiver
Performance
Technical Characteristics
(1) Compatibility, range and range räte: SGLS (1)
(2) Maximum frequency: 1850 MHz
(3) Minimum frequency: 1750 MHz
(4) Modulation type: Phase (1)
(5) Maximum command rate (baud or bps): 1000
(6) Command output type: Ternary FSK (3)
(7) \(F_{1}\) : 65 kHz
(8) : \(F_{2}\) : 76 kHz
(9) \(F_{3}\) : 95 kHz
(10) Signal conditioner requirement: SC01 (0501)
Power
Average Power (watts): 3.25
Maximum Power (watts) \(5.0^{\text {i }}\)
Minimum Power (watts): 1. 1
Nominal Voltage (volts): 28.0
Maximum 'Voltage' (volts' 36.0
Minimum Voltage (volts) 24.0
Converter/InverterRequirement (flag):
Weight (kg): 1.6 (3.0 ib)
Volume (cc): \(1.2 \times 10^{3}\left(0.042 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(333\left(140^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)):\(255\left(0^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

Performance (continued).

\section*{CDPI}

Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Othex Commands (No.):
High Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 7
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 125\)
Word Length (bits): 8.
Low Rate Telemetry
Analog Points. (No.): 2
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag):
.1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 3000\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): \(3^{\text {. }}\)
Cost
Design Engineering (\$1000):
72.0

Test and Evaluation (\$1000): 160.0
Unit Production (\$1000): 34.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months):
4.2

Development Lead Time Variable (months):
3.8

Qualification Lead Time Constant (months):
7.1

Qualification Lead Time Variable (months):
2.5

State-of-Art Factor (N.D.):
1.0
Subsystem: Comm (0501)
Configurations: All
Equipment Type: Command Signal Conditioner
Performance
Technical Characteristics
(1) Compatibility:
(2) Special requirement code:
(3) Command input:
(4) \(\mathrm{F}_{\mathrm{I}}\) :
(5) \(\quad F_{2}\) :
(6) \(\mathrm{F}_{3}\) :
(7) Maximum command rate:

Power
Average Power (watts):
Maximum Power (watts)
Minimum Power (watts):
Nominal Voltage (volts):
Maximum Voltage' (volts)
Minimum Voltage (volts)
Converter/Inverter
Requirement (flag):
Weight (kg):
(included in receiver)
Volume (cc):
(included in receiver)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)):
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

SGLS (1)
SC01 (0402)
Ternary FSK (3)
65 kHz
76 kHz
95 kHz
1000 baud a

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag): I
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): . 3000
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): - 0.5
Total Redundant Elements (No.): 3

\section*{Cost}

Design Engineering (\(\$ 1000\)): \(\quad 36.0\)
Test and Evaluation (\(\$ 1000\)): 27.0
Unit Production (\$1000): 25.0
Reference Quantity (No.): 2
Factor (N.D.):
Schedule
Development Lead Time Constant (months): 7.3
Development Lead Time Variable (months): 3.1
Qualification Lead Time Constant (months): 1.8
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0

Subsystem:

\section*{Configurations:}

Equipment Type: Command Signal Conditioner

Comm (0502)
All
Performance
Technical Characteristics
(1) Compatibility:
(2) Special requirement code (SC \(\qquad\)):
SGLS (1)
(3) Command input:
(4) \(\mathrm{F}_{1}\) :
NA
Ternary FSK (3)
(5) \(\quad F_{2}\) :
65 kHz
76 kFFz
(6) \(\quad \mathrm{F}_{3}\) :
95 kHz
(7) Maximum command rate:
1000 baud
(8)
(9)
(10)
Power
Average Power (watts): 1.0
Maximum Power (watts): 1.0
Minimum Power (watts): 0.5
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter Requirement (flag): C30 (0702)
Weight (kg): \(\quad 0.612(1.35 \mathrm{lb})\)
Volume (cc): \(\quad 4.0 \times 10^{3}\left(0.14 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.): 2
High Rate Telemetry
Analog Points (No.):Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 2296
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 36.0
Test and Evaluation (\$1000): 27.0
Unit Production (\$1000): 25.0
Reference Quantity (No.): 2
Factor (N.D.): I
Schedule
Development Lead Time Constant (months): 7.3
Development Lead Time Variable (months): 3.1
Qualification Lead Time Constant (months): 1.8
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem:
Configurations:
Equipment Type: . Diplexer
Performance
Technical Characteristics
(1) Compatibility:
(2) . Max. receive frequency:
(3) Min. receive frequency:
(4) Max. transmit frequency:
(5) Min. transmit frequency: 2200 MFz
(6) Max. allowable transmit power: 7 watts
Power
\begin{tabular}{lc}
Average Power (watts): & 1.0 \\
Maximum Power (watts): & 1.0 \\
Minimum Power (watts): & 0 \\
Nominal Voltage (volts): & 28.0 \\
Maximum Voltage (volts) & 32.0 \\
Minimum Voltage (volts): & 24.0
\end{tabular}
Converter/Inverter Requirement (flag):
Weight (kg): \(\quad 0.3 .4 \quad(0.75 \mathrm{lb})\)
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(344^{\circ}\left(160^{\circ} \mathrm{F}\right)\)
\(239\left(-30^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

\section*{Performance (continued)}

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
1.

High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Safety
Failure Model (flag):
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\)): \(\quad 130\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000):
Test and Evaluation (\$1000): 6.0
Unit Production (\$1000):
Reference Quantity (No.):
Factor (N.D.):
Schedule
Development Lead Time Constant (months):
4.2

Development Lead Time Variable (months): 1.6
Qualification Lead Time Constant (months): 0.9
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0

Subsystem:
Configurations: Configurations Having Common Antenna
Equipment Type: Diplexer

\section*{Performance}

Technical Characteristics
(I) Compatibility:
(2) Max. receive frequency:

SGLS (1)
(3) Min, receive frequency:
(4) Max. transmit frequency:
(5) Min. transmit frequency:
(6) Max. allowable transmit power:
(10)

Power
Average Power (watts): \(\quad 1.0\)
Maximum Power (watts): . 1.0
Minimum Power (watts): 0
Nominal Voltage (volts): 28.0
Maximum Voltage (volts): 32.0
Minimum Voltage (volts): 24.0
Converter/Inverter
Requirement (flag):
Weight (kg): \(0.82(1.8 \mathrm{lb})\)
Volume (cc): \(\quad 990\left(0.035 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(344\left(160^{\circ} \mathrm{F}\right)\)
Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :
\(239\left(-30^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):1
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (x \(10^{ \pm 9} \mathrm{hr}\)): 130
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)): Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 2
Cost
Design Engineering (\$1000): 14.2
Test and Evaluation (\$1000): 10.0
Unit Production (\$1000): 11.2
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 4.2
Development Lead Time Variable (months): 2.0
Qualification Lead Time Constant (months): 0.9
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: Comm (0701)
Configurations:
Equipment Type: Power Converter (Transmitter)
Performance
Technical Characteristics
(1) Special requirement code: C31 (0701)
(2)(4)
(10)
Power
Average Power (watts): 13.5
Maximum Power (watts 20. 0
Minimum Power (watts 10.0
Nominal Voltage (volts) 28.0
Maximum Voltage (volt 32.0
Minimum Voltage (volts 24.0
Converter/InverterRequirement (flag):
Weight (kg):
Volume (cc):
\(0.794(1.75 \mathrm{lb})\)Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(5.1 \times 10^{3}\left(0.18 \mathrm{ft}^{3}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :\(322\left(120^{\circ} \mathrm{F}\right)\)\(264\left(15^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands:(No.):
Other Commands (No.):
High Rate Telemetry
Analog. Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 872
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0.
Unit Production (\$1000):
0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 7.4
Development Lead Time Variable (months): 3.2
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0
Subsystem: Comm (0702)

Configurations:
Equipment Type: Power Converter (Receiver)
Performance
Technical Characteristics
(1) Special requirement code: C30 (0702)
(2)
(4)
(10)

Power

Average Power (watts):
Maximum Power (watts):
Minimum Power (watts):
Nominal Voltage (volts):
Maximum Voltage (volts):
Minimum Voltage (volts):
Converter/Inverter Requi rement (flag):

Weight (kg):
Volume (cc):
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(322\left(120^{\circ} \mathrm{F}\right)\)
Minimún (\({ }^{\circ} \mathrm{K}\)) :
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
7.63
10.0
3.8
28. \(0^{\circ}\)
32.0
24.0
\(0.794^{\prime}(1.75 \mathrm{lb})\)
\(5.1 \times 10^{3}\left(0.18 \mathrm{ft}^{3}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.): 1
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 1
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
- Failure Parameters
Failure Rate or Mean (\(\mathrm{x} 10^{ \pm 9} \mathrm{hr}\)): 882
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 3
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): \(\dot{0}\)
Unit Production (\$1000):0 CER
Reference Quantity (No.):1
Factor (N.D.): \(1)\)
Schedule
Development Lead Time Constant (months) 7.4
Development Lead Time Variable (months): 3.2
Qualification Lead Time Constant (months): 2.5
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0101)
Configurations: Shunt \& Shunt and Dist charge Regulation
Equipment Type: Shunt Regulator
Performance
Technical Characteristics
(1) Maximum power capacity: 62.6 watt
(2)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 1. \(9(4.2 \mathrm{lb})\)
Volume (cc):
\(2.8 \times 10^{4}\left(1.0 \mathrm{ft}^{\text {² }}\right.\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): 373 (212 \(\left.{ }^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):\(218\left(-67^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 1
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
3afety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 200
Standard Deviation (\(\mathrm{x} 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
;ost
Design Engineering (\$1000): 80.0
Test and Evaluation (\$1000): 40.0
Unit Production (\$1000): 7.0
Reference Quantity (No.): 4
Factor (N.D.): 1
chedule
Development Lead Time Constant (months): 9.5
Development Lead Time Variable (months): 7.4
Qualification Lead Time Constant (months): 2. 3
Qualification Lead Time Variable (months): 0.6
State-of-Art Factor (N.D.): 1. 0
```

Subsystem: EP (0102)
Configụrations: Shunt \& Shunt and Discharge Regulation
Equipment Type: Shunt Regulator
Performance
Technical Characteristics
(1) Maximum power capacity: 62.0 watts
(2)
(3)
(4)
(5)
(6)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Mịnimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight.(kg): 2.00 (4.4 lb)
Volume (cc):
1. 2 x 10 4 (0.44 ft }\mp@subsup{}{}{3}
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ('}\mp@subsup{}{}{\circ}\textrm{K}): 373(2120' F
Minimum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ) :
218 (-670}\textrm{F}
Pressure (kg/m}\mp@subsup{}{}{2})

```
Performance (continued)
CDPI
Power Switching Commands (No.
Time Tagged Commands (No.):
Other Commands (No.):1
High Rate TelemetryAnalog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): I
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
.Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 00
.Standard Deviation (\(\mathrm{x} 10^{+9} \mathrm{hr}\)):Dormancy Factor (N. D.) :0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 80.0
Test and Evaluation (\$1000): 40.0
Unit Production (\$1000): 7.0
Reference Quantity (No.): 4
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 9.5
Development Lead Time Variable (months): 3. 6
Qualification Lead Time Constant (months): 2. 3
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0201)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 3. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N.D.): 0.65
(3)(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg):Volume (cc):\(0.14(0.30 \mathrm{Ib})\)\(66.3\left(0.00234 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\mathrm{x} \cdot 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.):
Total Redundant Elements (No.): \(\quad 6\)
Cost
Design Engineering (\$1000): 51.0
Test and Evaluation (\$1000): 59.0
- Unit Proḍuction (\$1000): 24.5

Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): \(\quad 6.9\)
Development Lead Time Variable (months): 1.0
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0202)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 4. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N.D.): 0.65
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): \(0.15(0.34 \mathrm{lb})\)
Volume (cc):\(68.8\left(0.00243 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature- Maximum (\({ }^{\circ} \mathrm{K}\)):\(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (N
Time Tagged Commands (No.)
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate' \(\left(\mathrm{sec}^{-1}\right)\) :
Word Length (bits):
Low Rate Telemetry.
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 8
Word Length (bits):
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NAStandard Deviation (\(\times 10^{+9} \mathrm{hr}\)):Dormancy Factor (N.D.):
Total Redündant Elements (No.): 6.
Cost
Design Engineering (\$1000): 55.0
Test and Evaluation (\$1000): 62. 0 .
Unit.Production (\$1000): 26.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): I. 1
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
\begin{tabular}{|c|c|}
\hline Subsystem: EP (0203). & \\
\hline Configurations: All & \\
\hline Equipment Type: Battery cell & \\
\hline Performance & \\
\hline Technical Characterıst & \\
\hline (1) Capacity: & 6. \(5 \cdot \mathrm{amp}-\mathrm{hr}\) \\
\hline (2) Watt/hour charge efficiency (N.D.'): & '0:65 \\
\hline (3) & \\
\hline (4) & \\
\hline (5) & \\
\hline (6) & \\
\hline (7) & \\
\hline (8) & \\
\hline (9) & \\
\hline :10) & \\
\hline Power & \\
\hline Average Power (watts): & NA \\
\hline Maximum Power (watts) : & NA \\
\hline Minimum Power (watts) : & NA \\
\hline Nominal Voltage (volts): & NA \\
\hline Maximum Voltage (volts) : & NA. \\
\hline Minimum Voltage (volts) : & NA \\
\hline Converter/Inverter Requirement (flag): & \\
\hline Weight (kg) : & 0.27 (0.60 16) \\
\hline Volume (cc): & \(110{ }^{\circ}\left(0.0040 \mathrm{ft}^{3}\right.\)) \\
\hline Vibration & \\
\hline Random (g, rms) & \\
\hline Non-Random (g) : & \\
\hline Temperature & \\
\hline Maximum (\({ }^{\circ} \mathrm{K}\)) : & 300 (80.6 \(\left.{ }^{\circ} \mathrm{F}\right)\) \\
\hline Minimum (\({ }^{\circ} \mathrm{K}\)) : & \(\bigcirc 277\) (39.2 \(\left.{ }^{\circ}{ }^{\circ} \mathrm{F}\right)\) \\
\hline Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)): & \\
\hline
\end{tabular}
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
- Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standàrd Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 64.0
Test and Evaluation (\$1000): 82. 0
Unit Production (\$1000): 32.5
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 1. 4
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0204)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: \(7.0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge effici. cy (N.D.): 0.65

\section*{Power}
Average Power (watts): NiA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts): NA
Converter/Inverter Requi rement (flag):
Weight (kg):
Volume (cc): \(.0 .28(0.62 \mathrm{lb})\) 105 (\(0.00372 \mathrm{ft}^{3}\))
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39. \(2^{\circ} \mathrm{F}\))
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
 CDPI.
 Power Switching Commands (No.)
 Time Tagged Commands (No.): .
 Other Commands (No.):
 High Rate Telemetry
 Analog Points (No.):
 Digital Points (No.):
 Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) :
 Word Length (bits):
 Low Rate Telemetry
 Analog Points (No.): 3
 Digital Points (No.):
 Sample Rate (\(\mathrm{sec}^{-1}\)):1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters.
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N. D.):
Total Redundant Elements (No.):' 6
CostDesign Engineering (\$1000):65.0
Test and Evaluation (\$1000): 82.5
Unit Production (\$1000): 32.5
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 1.4
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: EP (0205)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(I) Capacity: \(10.0 \mathrm{amp}-\mathrm{hr}\)(2) Watt/hour charge efficiency (N.D.):0.65
(3)(4)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA.
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): \(0.32(0.70 \mathrm{lb})\)Volume (cc):127 (\(0.00449 \mathrm{ft}^{3}\))
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):\(300\left(80.6^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)) :277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\cdot 1\)
Word Length (bits): 8
Safety
Failure Model (flag): 3
- Failure Parameters
Failure Rate or Mean (\(\mathrm{x} 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.):
Total Redurdant Elements (No.): 6
Cost
Design Engineering (\$1000): 241. 0
Test and Evaluation (\$1000): 88.0
Unit Production (\$1000): 34.5
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
```

Subsysiem: EP (0206)
Confıgurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: "ll.0 amp-hr
(2) Watt/hour charge efficiency (N..D.): 0. 65
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA.
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):
Weight (kg) :
$0.38(0.83 \mathrm{Ib})^{\circ}$
Volume.(cc):
$143\left(0.00506 \mathrm{ft}^{3}\right)$
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( ${ }^{\circ} \mathrm{K}$ ):
$300\left(80.6^{\circ} \mathrm{F}\right)$
Minimum ( ${ }^{\circ} \mathrm{K}$ ) :
277 (39. $\left.2^{\circ} \mathrm{F}\right)$.
Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ :

```

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
- Analog Points (No.): 3

Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad\) i
Word Length (bits): 8
Safety
Failure Mode.l (flag): 3
Failure Parameters
Failure Rate or Mean \(\left(\times 10^{ \pm 9} \mathrm{hr}\right)\) : NA
Standard Deviation (\(\mathrm{x} \cdot 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000):
255.0

Test and Evaluation (\$1000):
95.0

Unit Production (\$1000):
37.0

Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): , 6.9
Development Lead Time Variable (months): 1.7
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): \(\quad 1.0\)
Subsystem: EP (0207)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 12. \(0 \mathrm{amp}-\mathrm{hr}\)(2) Watt/hour charge efficiency (N.D.):0.65
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): \(0.454(10.0 \mathrm{lb})\)
Volume (cc): \(180\left(0.00637 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(300\left(80.6^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)):277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 270.0
Test and Evaluation (\$1000): 102.0
Unit Production (\$1000): 39.5
Reference Quantity. (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6. 9
Development Lead Time Variable (months): 1. 8
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0208)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(I) Capacity:

14. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency.(N.D.):
(3)
(4)
(6)
(7)
(8)
(9)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 0.522 (1.15 lb)Volume (cc):\(.208\left(0.00734 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):\(300\left(80.6^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39.2 \(\left.{ }^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):Sample Rate (\(\mathrm{sec}^{-1}\)):1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): …
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 295.0
Test and Evaluation (\$1000): 111.0
Unit Production (\$1000): 42.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 2. 0 .
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: EP (0209)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity:
(2) Watt/hour charge efficiency (N.D.): 0.6517. Ó amp-hr

\section*{Power}
Average Power (watts): NA.
Maximum Power (watts): Maximum Power (watts): NA.
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts) NA
Converter/InverterRequí rement (flag):
Weight (kg):
\(0.612(1.35 \mathrm{lb})\)
Volume (cc):\(216\left(0.00763 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):TemperatureMaximum (\({ }^{\circ} \mathrm{K}\)):\(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
- Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
..; Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): .
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 330.0
Test and Evaluation (\$1000): 120: 0
Unit Production (\$1000): 44.8
Reference Quantity (No.): 2
Factor (N.:D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 2. 1
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1. 0
Subsystem: EP (0210)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1). Capacity: 18. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N. D.): 0.65
Power
Average Power (watts): NA
Maximum Power (watts): NA.
Minimum Power (watts): NA
Nóminal Voltage (voltṣ): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg) : 0.721 (1.59 1b)
Volume (cc):\(442\left(0.0156 \mathrm{ft}^{3}\right)\)
VibrationRandom (\(\dot{\mathrm{g}}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):300 (\(80.6^{\circ} . \mathrm{F}\))Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.): .
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
. Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag):3

Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.):
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): \(\quad 340.0\)
Test and-Evaluation (\$1000): 129.0
Unit Production (\$1000): 47.6
Reference Quantity (No.): 2
Factor (N.D.): I

\section*{Schedule}

Development Lead Time Constant (months):
6. 9

Development Lead Time Variable (months):
2. 3

Qualification Lead Time Constant (months):
2. 1

Qualification Lead Time Variable (months):
0.2

State-of-Art Factor (N. D.):
1.0
Subsystem: EP (0211)
Configurations: A11
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 26. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) -Watt/hour charge efficiency (N.D.): 0.65
(10)
Power
Average Power (watts): NA:
Maximum Power (watts): NA \({ }^{-}\)
Minimum Power (watts): NA
Nominal Voltage (volts): NA.
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
- Converter/Inverter
- Requirement (flag):
Weight (kg): 0.91 (2.0 Ib).
Volume (cc): \(306\left(0.0108 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 421.0
Test and Evaluation (\$1000): 143. 0
Unit Production (\$1000): 52.2
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 2. 6
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): I: 0
Subsystem: EP (0212)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(I) Capacity: . \(26.0 \mathrm{amp}-\mathrm{hr}\)
(2) ' Watt/hour charge efficiency (N.D.): 0.65 .'
(3) .
(4)
(5)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): . 0.91 (2.0 1b)
Volume (cc):
\(340\left(0.0120 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :
\(300\left(80.6^{\circ} \mathrm{F}\right)\)
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate. Telemetry
Analog Points (No.):
Digital Points (No..): :
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.):
Digital Points. (No.):
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters .
Failure Rate or Mean \(\left(\times 10^{ \pm 9} \mathrm{hr}\right)\) : NA
Standard Deviation (\(\mathrm{x}^{-1} 0^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.) :
Total Redundant Elements (No.):- 6
Cost
Design Engineering (\$1000): 421.0,
Test and Evaluation (\$1000): 143.0
* Unit Production (\$1000): 52.2

Referenće Quantity (No.): 2 '
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): • 6.9
Development Lead Time Variable (months): 2.6.
Qualification Lead Time Constant (months): , 2. 1
Qualification Lead Time Variable (months): 0.2 .
State-of-Art Factor (N.D.): . 1.0

\section*{Subsystem: EP (0213). \\ Configurations: All}

Equipment Type: Battery cell
Performance
Technical Characteristics
(1) • .Gapacity:
28.0 amp-hr
(2) Watt/hour charge efficiency (N.D.): . 0.65
(3)
(4)
(6)

Power
Average Power (watts): NA
Maximum Power (watts): NA.
Minimum Power (watts): 'NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):

Weight' (kg) :
\(1.0(2.3 \mathrm{lb})\)
Volume (cc):
413 (0.0146 \(\mathrm{ft}^{3}\))
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.): .
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
- Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
- Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N.D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): \(440.0^{\circ}\)
Test and Evaluation (\$1000): 151.0
Unit Production (\$1000): 55.0
Reference Quantity (No.): 2.
Factor (N.D.): 1
Schedule\(\therefore \cdot\)
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 2. 8
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0214)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 33. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N.D.):
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg):\(1.1(2.4 \mathrm{lb})\)Volume (cc):\(326\left(0.0115 \mathrm{ft}^{3}\right)\)
VibrationRandom (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):TemperatureMaximum (\({ }^{\circ} \mathrm{K}\)):\(300\left(80.6^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)) :277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\mathrm{x} 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 485. 0
Test and Evaluation (\$1000): 155. 0
- Unit Production (\$1000): 56.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 2. 9
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable,(months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0215)
Configurations: All
Equipment Type: Battery cell
Performance
- Technical Characteristics
(1) Capacity:\(40.0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N.D.): 0.65
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts) NA
Converter/Inverter
Requi rement (flag):
Weight (kg) : l. 3 (2.8 1b)Volume (cc):487 (0.0172 \(\mathrm{ft}^{3}\))
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(300\left(80.6^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)) :277 (\(39.2^{\circ} \mathrm{F}\))
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commanḍ (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No..):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N:D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 542.0
Test and Evaluation (\$1000): 167: 0
Unit Production (\$1000): 60.0 .
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 3.0
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
Subsystem: EP (0216)
Configurations: All .
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: \(50.0 \mathrm{amp}-\mathrm{hr}\)
(2) Watt/hour charge efficiency (N.D.): 0.65
10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts) NA
Minimum Voltage (volts) NA
Converter/InverterRequirement (flag):
Weight (kg):\(1.6(3.6 \mathrm{lb})\)
Volume (cc):\(590\left(0.0207 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(300\left(80.6^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
277 \(\left(39.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (Nọ.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.):
Total Redundant Elements (No.): 6
Cost
Design Engineering (\$1000): 620.0
Test and Evaluation (\$1000): 188.0
Unit Production (\$1000): 66.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): , 3.5
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.3
- State-nf-Art Fartor (N N). 1. 0
Subsystem: EP (0217)
Configurations: All
Equipment Type: Battery cell
Performance
Technical Characteristics
(1) Capacity: 。 60. \(0 \mathrm{amp}-\mathrm{hr}\)
(2) . Wattt/hour charge efficiency (N. D.): 0.65
Power

Average Power (watts): ‘NA
Maximum Power (watts): NA
Minimum Power (watts): NA.
Nominal Voltage (volts): NA
Maximum Voltage (volts): . NA
Minimum Voltage (volts): NA
'Converter/Inverter Requirement (flag):

Weight (kg) :
Volume (cc):
1. 8 (4.0 lb)
\(650\left(0.0230 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
Minimum (\({ }^{\circ} \mathrm{K}\)) :
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
\(300\left(80.6^{\circ} \mathrm{F}\right)\)
277 (39. \(\left.2^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commands (No.):'
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital-Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 6
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 685.0
Test and Evaluation (\$1000): 196.0 .
Unit Production (\$1000): 69.0
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 3.7
Qualification Lead Time Constant (months): 2. 1
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0
\begin{tabular}{|c|c|}
\hline Subsystem: \({ }^{\text {a }}\) (0218) & \\
\hline Configurations: All & \\
\hline Equipment Type: Battery cell & \\
\hline Performance & \\
\hline Technical Characteristics & \\
\hline (I) Capacity: & \(65.0 \mathrm{amp}-\mathrm{hr}\) \\
\hline (2) Watt/hour charge efficiency (N.D.): & 0.65 \\
\hline (3) & \\
\hline (4) & \\
\hline (5) & \\
\hline (6) & \\
\hline - (7) & \\
\hline '(8). & \\
\hline (9) & \\
\hline (10) & \\
\hline Power & \\
\hline Average Power (watts): & NA \\
\hline Maximum Power (watts) : & NA \\
\hline Minimum Power (watts) : & NA \\
\hline Nominal Voltage (volts): & -NA \\
\hline Maximum Voltage (volts) : & NA \\
\hline Minimum Voltage (volts) : & NA \\
\hline Converter/Inverter Requirement (flag): & \\
\hline Weight (kg) & 2.0 (4.5 1b) \\
\hline Volume (cc): & \(670\left(0.0236 \mathrm{ft}^{3}\right)\) \\
\hline Vibration & \\
\hline Random (g, rms) : & \\
\hline Non-Random (g): & \\
\hline Temperature & \\
\hline Maximum (\({ }^{\circ} \mathrm{K}\)) : & 300 (80.6 \({ }^{\circ} \mathrm{F}\)) \\
\hline Minimum (\({ }^{\circ} \mathrm{K}\)) : & 277 (39.2 \({ }^{\circ} \mathrm{F}\)) \\
\hline Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)) : & \\
\hline
\end{tabular}
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No..):
- Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 3
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) NA
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)): ,
Dormancy Factor (N. D.):
Total Redundant Elements (No.): 6
CostDesign Engineering (\$1000):719.0
Test and Evaluation (\$1000): 209.0
. Unit Production (\$1000): 72.0 .
Reference Quantity (No.): 2
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 6.9
Development Lead Time Variable (months): 4.0
Qualification Lead Time Constant (months): 2.1
Qualification Lead Time Variable (months): 0.4
State-of-Art Factor (N.D.): 1.0
Subsystem: ER. (0301)
Configurations:
Equipment Type:All
Battery ChargerPerformanceTechnical Characteristics
(1) Current rating: 10.0 amps
(2) Efficiency (N. D.): 1.0
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/InverterRequirement (flag):
Weight (kg): \(1.70(3.75 \mathrm{lb})\)Volume (cc):\(3.1 \times 10^{3}\left(0.11 \mathrm{ft}^{3}\right)\)VibrationRandom (\(\mathrm{g}, \mathrm{rms}\)):Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)): 266. (\(\left.20^{\circ} \mathrm{F}\right)\)Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 3
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Pöints (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 260
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0: 5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation. (\$1000): 0
Unit Production (\$1000): 0 .
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 3.5
Qualification Lead Time Constant (months): 2:3
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1.0.
Subsystem: EP (0302)
Configurations: All
Equipment Type: Battery Charger
Performance
Technical Characteristics
(1) Current rating: 6.5 amps
(2) Efficiency (N. D.): 1.0
(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NAConverter/InverterRequirement (flag):
Weight (kg): \(1.66(3.67 \mathrm{lb})\)Volume (cc):\(2.2 \times 10^{3} \quad\left(0.076 \mathrm{ft}^{3}\right)\)Vibration
Random (g, rms):
Non-Random (g):
Temperature

Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure \(\left(\mathrm{kg} / \mathrm{m}^{2}\right)\) :

\section*{Performance (continued)}

CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): I
Sample Rate (\(\mathrm{sec}^{-1}\)): I
Word Length (bits):
Safety
... Failure Model (flag):1

Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)):
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D:):
Total Redundant Elements (No.):
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0 .
Unit Prodụction (\$1000):- 0
Reference Quantity (No.): 1
Factor (N.D.):
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 3.5
Qualification Lead Time Constant (months): 2.3
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): • . 1.0

Subsystem:
Configurations:
Equipment Type: Discharge Regulator.

Performance
Technical Characteristics
(1) Power capability:
59.0 watts
(2) Efficiency (N. D.):
0.85
(3)
(4)
(10)

\section*{Power}

Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg):
\(1.4(3.0 \mathrm{lb})\)
Volụme (cc): \(\quad 8.5 \times 10^{3}\left(0.3 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\mathrm{O}} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 3
High Rate Telemetry -.
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): - 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 250
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 70.0
Test and Evaluation (\$1000): 70.0
Unit Production (\$1000): 25.0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 2.0
Qualification Lead Time Constant (months): 2.3
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1, 0
Subsystem: EP (0501)
Configurations:Shunt \& Shunt and Discharge Regulation
Equipment Type: Shunt Regulator
Performance
Technical Characteristics
(1) Maximum power capacity: 62.0 watts(2)
(3)
Power
Average Power (watts):
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): \(2.0(4.3 \mathrm{lb})\)
Volume (cc) :\(1.2 \times 10^{4}\left(0.43 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms)
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): 373 (212 \(\left.{ }^{\circ} \mathrm{F}\right)\)Minimum (\({ }^{\circ} \mathrm{K}\)):\(218\left(-67^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands' (No.):
Other Commands (No.): 2
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): I
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 200
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)): .
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
\({ }^{-2}\) Design Engineering (\$1000): 80.0
Test and Evaluation (\$1000): 40.0
Unit Production (\$1000): 7.0
Reference Quantity (No.): 4
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 9.5
Development Lead Time Variable (months): 3.6
Qualification Lead Time Constant (months): 2.3
Qualification Lead Time Variable (months): 0.2
State-of-Art Factor (N.D.): 1.0
```

Subsystem: EP (0601)

```

Configurations:
Equipment Type:

All
Battery Charger
```

Performance
Technical Characteristics
(1) Current rating: $\quad 10.0 \mathrm{amps}$
(2) Efficiency (N. D.): 0.85
(3)
(4)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight $(\mathrm{kg}): \quad 3.2$ ( 7.0 lb )
Volume (cc):
$4.2 \times 10^{4}\left(1.5 \mathrm{ft}^{3}\right)$
Vibration
Random ( $\mathrm{g}, \mathrm{rms}$ ):
Non-Random (g):
Temperature

```

Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(266\left(20^{\circ} \mathrm{F}\right)\)
```

Pressure $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ :

```
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 6
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{~h} r\).) \(j 50\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.1
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0 .
Reference Quantity (No.): 1.
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 3, 5
Qualification Lead Time Constant (months): 2.3
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 1. C

Subsystem: EP (0701)
Configurations: . Shunt and Discharge Regulation
Equipment Type: Central Control Unit.
Performance
Technical Characteristics
(1)
(2)
(10)
rower.
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 0.45 (1.0 lb)
Volume (cc):
\(2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{3}\right)\)
Vibration
Random (\(\mathrm{g}, \mathrm{rms}\)):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)) :
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.): 10
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) 950
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 32.5
Test and Evaluation (\$1000): 32.5
Unit Próduction (\$1000): 11.5
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 1.2
Qualification Lead Time Constant (months): \(2.3^{*}\)
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1:. 0
```

Subsystem: EP (0801)
Configurations: Series Load Regulation
Equipment Type: Series Load Regulatorr
Performance
Technical Characteristics
(1) Output power: 350.0 watts
(2) Efficiency (N, D.): 0.9
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
Power
Ave\dot{rage Power (watts): NA}
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag):
Weight (kg): 0.73 (1.6 1b)
Volume (cc):
7.4\times10 3 (0.26 ft }\mp@subsup{}{}{3}\mathrm{ )
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
311 (100% F)
Minimum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
266 ( 20 % F)
Pressure ( kg/m}\mp@subsup{}{}{2})

```
Perforrrance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.):
Other Commands (No.): 6
High Rate Telemetry.
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): I
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1.
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 650
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0,5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 45.0
Test and Evaluation (\$1000): 45.0
Unit Production (\$1000): 16.0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8. 1
Development Lead Time Variable (months): 1.5
Qualification Lead Time Constant (months): 2.3
Qualification Lead Time Variable (months): 0.1
State-of-Art Factor (N.D.): 1.0
```

Subsystem: EP (0802)
Configurations: Series Load Regulation *
Equipment Type: Series Load Regulator
Performance
Technical Characteristics
(1) Output power: 225.0 watt
(2) Efficiency (N. D.): 0.9
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requi rement (flag):
Weight (kg): 3.6 (8.0 lb)
Volume (cc):
8.5 < 10 3 (0. 30 ft }\mp@subsup{}{}{3
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
311 (100 % F).
Minimum ( }\mp@subsup{}{}{\circ}\textrm{K}\mathrm{ ):
266 ( 20' F)
Pressure (kg/m}\mp@subsup{}{}{2})

```
Performance (continued)
CDPI
Power Switching Commands (No.):
Time Tagged Commands (No.l:
Other Commands (No.): 6
High Rate Telemetṛy.
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) 650
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)) :
Dormancy Factor (N, D.): 0. 5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): \(145 . .0\)
Test and Evaluation (\$1000): 145.0
Unit Production (\$1000): 51.5
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): 3. 3
Qualification Lead Time Constant (months): 2. 3
Qualification Leãd Time Variable (months): 0.2
State-of-Art Factor (N.D.): , \(n\)
Subsystem: EP (0901)
Configurations: A11
Equipment Type: Battery Charger.
Performance
Technical Characteristics
(1) Current ratịng: 22. 0 amps
(2) Efficiency (N. D.):(3)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requirement (flag)
Weight (kg) : \(3.6(8.0 \mathrm{Ib})\)Volume (cc):\(8.5 \times 10^{3}\left(0.30 \mathrm{ft}^{3}\right)\)VibrationRandom (\(\mathrm{g}, \mathrm{rms}\)):Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)):\(266\left(20^{\circ} \mathrm{F}\right)\)
Performance (continued)
CDPI
Power Switching Commaṇds (No.):
Time Tagged Commands (No.):
Other Commands (No.): 6
High Rate Telemetry
Analog Pöint's (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Word Length (bits):
Sample Rate (\(\mathrm{sec}^{-1}\)): 18
Safety
Failure Mode1. (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)) 650
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineering (\$1000): 0
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
Development Lead Time Constant (months): 8. 1
Development Lead Time Variable (months): 3.5
Qualification Lead Time.Constant (months): 2. 3
Qualification Lead Time Variable (months): 0.3
State-of-Art Factor (N.D.): 10
Subsystem: EP (0902)
Configurations: All
Equipment Type: Battery Charger
Performance
Technical Characteristics
(1) Current rating: 12.0 amps
(2) Efficiency (N.D.): 0.85
(3)
(4)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Requi rement (flag):
Weight (kg) : 0.64 (1.4 1b)
Volume (cc):\(8.55 \times 10^{3}\left(0.302 \mathrm{ft}^{3}\right.\).VibrationRandom (\(\mathrm{g}, \mathrm{rms}\)):Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)): \(311\left(100^{\circ} \mathrm{F}\right)\)Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :\(266\left(20^{\circ} \mathrm{F}\right)\).
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.)
Time Tagged Commañds (No.):
Other Commands (No.): 6High Rate TelemetryAnalog Points, (No.):Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate (\(\mathrm{sec}^{-1}\)): I
Word Length (bits): 8
Safety
Failure Model (flag): I
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 650
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.): 4
Jost
Design Engineering (\$1000):
Test and Evaluation (\$1000): 0
Unit Production (\$1000): 0
Reference Quantity (No.): 1
Factor (N.D.): I
ichedule
Development Lead Time Constant (months): 8. 1.
Development Lead Time Variable (months): 3.5
Qualification Lead Time Constant (months): 2. 3
Qualification Lead Time Variable (months): 0.3State-of-Art Factör (N : D.) :1. 0
```

Subsystem: EP (1001)
Configurations: Series Load Regulation
Equipment Type: Solar Power Distributor
Performance
Technical Characteristics.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
Power
Average Power (watts): NA
Maximum Power (watts): NA
Minimúm Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter Requirement (flag):
Weight (kg): 0.45 ( 1.0 lb )
Volume (cc):
$2.8 \times 10^{3}\left(0.1 \mathrm{ft}^{\text {² }}\right.$
Vibration
Random ( $\mathrm{g}, \mathrm{rms}$ ):
Non-Random (g):
Temperature

```
- Maximum (\({ }^{\circ} \mathrm{K}\)):

Minimum \(\left({ }^{\circ} \mathrm{K}\right)\) :
311 (\(100^{\circ} \mathrm{F}\))
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):

\section*{Performance (continued)}

\section*{CDPI}

Power Switching Commands (No.):
Time Tagged Commands (Nó.):
Other Commands (No.):
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 3
Digital Points (No.): 1
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): 8
Safety
Failure Model (flag): 1 .
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): \(\quad 300\)
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N.D.): 0.5
Total Redundant Elements (No.) 4
Cost
Design Engineering (\$1000):
32.5 .

Test and Evaluation (\$1000):
32.5

Unit Production (\$1000):
Reference Quantity (No.):
-11. 5

Factor (N.D.):
1
1
Schedule
Development Lead Time Constant (months):
8. 1

Development Lead Time Variable (months):
1. 2

Qualification Lead Time Constant (months):
2. 3

Qualification Lead Time Variable (months):
0.1

State-of-Art Factor (N.D.):
1.0

\section*{Performance (continued)}

CDPI
Power Switching Commands (No:):
Time Tagged Commands (No.):
Other Commands (No.): 3.
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): . 3
Digital Points (No.): I
Sample Rate \(\left(\mathrm{sec}^{-1}\right)\) : \(\quad 1\)
Word Length (bits): 8

\section*{Safety}

Failure Model (flag):
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 300 .
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\))
Dormancy Factor (N.D.): . 0.5
Total Redundant Elements (No.): . 4
Cost
Design Engineering (\$1000): \(\quad 32.5\)
Test and Evaluation (\$1000): 32.5.
Unit Production (\$1000): 11.5
Reference Quantity (No.): 1
Factor (N.D.): • 1
Schedule
Development Lead Time Constant (months): 8.1
Development Lead Time Variable (months): \(\quad 1 . \ddot{2}\)
Qualification Lead Time Constant (months): \(\quad 2.3\)
Qualification Lead Time Variable (months): 0. Ii
State-of-Art Factor (N.D.): . 1.0
Subsystem: EP (1201)
Configurations: Shunt Regulation
Equipment Type: Power Control Unit
Performance
Technical Characteristics(1)
Power

Average Power (watts): NA
Maximum Power (watts): NA
Minimum Power (watts): NA
Nominal Voltage (volts): NA
Maximum Voltage (volts): NA
Minimum Voltage (volts): NA
Converter/Inverter
Ramininamant (fin~1.
Weight (kg): \(\quad 4.76\) (10.5 1b)
Volume (cc):
\(6.2 \times 10^{3}\left(0.22 \mathrm{ft}^{3}\right)\)
Vibration
Random (g, rms):
Non-Random (g):
Temperature
Maximum (\({ }^{\circ} \mathrm{K}\)):
\(311\left(100^{\circ} \mathrm{F}\right)\)
Minimum (\({ }^{\circ} \mathrm{K}\)) :
\(266\left(20^{\circ} \mathrm{F}\right)\)
Pressure (\(\mathrm{kg} / \mathrm{m}^{2}\)):
Performance (continued)
CDPI
Power Switching Commands (No.1.
Time Tagged Commands (No.):
Other Commands (No.): 4
High Rate Telemetry
Analog Points (No.):
Digital Points (No.):
Sample Rate (\(\mathrm{sec}^{-1}\)):
Word Length (bits):
Low Rate Telemetry
Analog Points (No.): 2
Digital Points (No.): 2
Sample Rate (\(\mathrm{sec}^{-1}\)): 1
Word Length (bits): 8
Safety
Failure Model (flag): 1
Failure Parameters
Failure Rate or Mean (\(\times 10^{ \pm 9} \mathrm{hr}\)): 421
Standard Deviation (\(\times 10^{+9} \mathrm{hr}\)):
Dormancy Factor (N. D.): 0.5
Total Redundant Elements (No.): 4
Cost
Design Engineeṛing (\$1000): 175.0
Test and Evaluation (\$1000): 175.0
Unit Production (\$1000): 57.0
Reference Quantity (No.): 1
Factor (N.D.): 1
Schedule
8. 1
Development Lead Time Constant (months):
3.8
Development Lead Time Variable (months):
2. 3
Qualification Lead Time Constant (months):
Qualification L̇ead•Time Variable (months): 0.3
State-of-Art Factor (N.D.): l. 0

THE AEROSPACE CORPORATION
,

\section*{EXTERNAL DISTRIBUTION LIST}
(REFERENCE: COMPANY PRACTICE 7-21-1)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{REPORT TITLE} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Systems Cost/Performance Analysis (Study 2.3) Final Report Volume II, Appendix A: Data Base}} \\
\hline & & \\
\hline \begin{tabular}{l}
REPORT NO. \\
ATR-74(7343)-1, Vol. II, Appendix A
\end{tabular} & Publication date
27 September 1974 & sECURITY CLASSIFICATION
Unclassified \\
\hline MLLITARY AND GOVERNMENT OFFICES & ASSOCIATE CON & NTRACTORS AND OTHERS \\
\hline
\end{tabular}

NASA Scientific and Technical Information Facility
P.O. Box 33

College Park, Maryland 20740
NASA Headquarters
Washington, D.C. \(20546^{\circ}\)
Attn: R. R. Carley, Code MTE
Dr. J. W. Wild, Code MTE
New Technology Representative, Code KT

NASA - MSFC
Marshall Space Flight Center,
AL 35812
Attn: R. D. Kramer, PD 13
NASA
P. O. Box 92960

Worldway Postal Center
Los Angeles, CA 90009
Attn: Mr. Duncan Collins, Bldg. 120, Rm 1406B

SAMSO
Attn: Col. Paul J. Kennedy, ÀC E. Richard Green, ACC

AFR 80.45 DISTRIBUTION STATEMENT X'D BELOW APPLIES
no distribution statement
(Classified documents only)

A. APPROVED FOR PUBLIC RELEASE;

b. distribution limited to u. s. govit agencies only;
(FOR THE AEROSPACE CORPORATION)
(Reason)

OTHER REQUESTS FOR THIS DOCUMENT
\(\overline{\text { (Date statement applied) }}\).
MUST BE REFERRED TO \(\qquad\)
(Controlling DOD office) oare Socspt'ze
- :
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{(Reasoin)} \\
\hline \multicolumn{2}{|l|}{\(\overline{\text { (Date statement applied) }}\). OTHER REQUESTS FOR THIS DOCUMENT} \\
\hline MUST BE REFERRED TO & (Controlling DOD office) \\
\hline ION1 & \[
\text { DATE } 30 \cdot 50 / 121
\] \\
\hline
\end{tabular}
dATE \(\qquad\)```

[^0]: *Applicable to monopropellant and bipropellant thrusters **A pplicable to bipropellant thrusters only

[^1]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^2]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^3]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^4]: *Applicable tò monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^5]: *Applicable to monopropellant and bipropellant thrusters **Applicable:to bipropellant thrusters only

[^6]: *A pplicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^7]: *Applicable to monopropellant and bipropellant thrusters **A pplicable to. bipropellant thrusters only

[^8]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^9]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^10]: *Applicable to monopropellant and bipropellant thrusters **Applicable to bipropellant thrusters only

[^11]: *Applicable to monopropellant and bipropellant thrusters
 :*Applicable to bipropellant thrusters only

