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ABSTRACT

Evidence for a large metallic core in Mercury is all
indirect: the internal magnetic field may imply a convective
dynamo; the surface geology is suggestive of large-scale
differentiation; and thermal history calculations based on
cosmochemical models for Mercury predict core formation.

The presence of a core will not be confirmed by an accurate
measure of J2’ probably two orders of magnitude larger than
the hydrostatic value.

Core infall on Mercury would be accompanied by an increase
in planetary radius of 13 km, an increase in the mean internal
temperature of 700 K, and substantial melting of the mantle.

If Mercury's core differentiated from an originally homogeneous
planet, such an event must predate most of the present surface.
Subsequent to core formation, Mercury's radius has decreased
by about 2 km cue primarily to ¢»oling of the lithosphere,

in agreement with the estimate by Strom and others of the
amount of planetary contraction based on photogeologic measure-
ments of length, dip and throw on the global system of lobate
scarps.

A convective dynamo mechanism for Mercury's magnetic
field is in apparent conflict with cosmochemical models that
dc not predict a substantial source of heat, most probably
radiogenic, in Mercury's core. Without such a heat source,
the core would solidify within about 1 b.y. after core infall,

producing an unacceptably large contraction in Mercury's radius.



INTRODUCTION
0f fundamental importance to discussions of internal

structure and tectonic evolution of a terrestrial planet is
The size of the high

the question of a dense centr:l core.
density core in the earth, in Mars and in the moon is a

major distinguishing feature of their relative structures,
The redistribution

and presumably of their formation histories.
of gravitational and thermal energy during core formation can have

a profound effect on the surface of the planet.
Because of the detection of an apparently intrinsic

magnetic field in the planet Mercury (Ness et al., 1974;
1975%a,b) and in light of several deductions about Mercury's

history made after study of Mariner 10 photographs of the

planet's surface (Murray et al., 1974a, b, 1975; Trask and

Guest, 1975; Strom et al., 1975), several questions dealing

with the nature and history of any large metallic core in
Does Mercury have a core? If so,
What was the time scale

Mercury need to be asked,
how big is it? 1Is it f£luid or solid?
What would be the geologic consequences

for core formation?
and are these consistent with surface

of core formation,
ceology? This paper o»ffers some of the answers to these

questions.



IS THERE A CORE?

If a metallic core has been completely differentiated
from a silicate mantle in Mercury, then the size of such a
core may be determined. Necessary for such a calculation are
the mass and radius of the planet, both sufficiently well
known (Smith et al., 1970; Ash et al., 1971; Howard et al.,
1974), a nominal temperature profile, and assumed equations
of state for both the mantle and core. Siegfried aud
Solomon (1974. estimated that a fully differentiated core in
Mercury would have a radius equal to 75 percent of the
planetary radius and a4 mass equal to 66 percent of Mercury's
total mass, These fijures are weakly sensitive to the assumed
temperature distribution, to the equation of state parameters,
and to the adopted values for the zero prassure densities of
the mantle and core, the latter reflecting the amount of nickel
and any lighter elements alloyed with iron. As a result, the
iron abundance in Mercury, about 60 weight percent in the models
of Siegfried and Solomon (1974), has a probable uncertainty
of 6 to 10 weight percent (Reynolds and‘Summers, 1969;
Kozlovskaya, 19689).

In the absence of seismological information about a
planetary interior, the only unequivocal evidence for a
planetary core is a dimensionless moment of inertia C/MR2
substantially less than 0,40. The moment of inertia cannot

be observed directly,; however. For the earth and the moon,




C/MR?

is obtained from a combination of second-degree coeffi-
cients in the spherical harmonic expansion of the gravitational
potential and relative differences among principal moments
obtained from an analysis of the response of the planet's
motion to external torgques. For Mars, C/MR2 is generally
obtained from Jz, the second-degree zonal coefficient in the
expansion of the gravity field, using the hydrostatic theory

of Clairaut and Radau (e.g., Binder, 1969). The non-hydro-
static shape of Mars makes the assumption of hydrostatic
equilibrium guestionable, and modifications of the assumption

lead to reduced wvalues for C/MR2

and larger cores (Binder
and Davis, 1973).

There is some promise of extracting a reliable value of
J2 for Mercury from the three Mariner 10 encounters (Howard
et al., 1974; Esposito et al., 1975). Can the measurement of
J, be used to estimate C/MR2 using hydrostatic theory? Almost
certainly it cannot.

Because Mercury rotates only very slowly, the nonhydro-
static contributions to the second degree coefficients in
the planet's gravitational potential are much larger than the
hydrostatic contribution. An illustration of this point is
given in Table 1. For the earth, moon and Mars, J2 is well

known and the hydrostatic contribution J can be calculated

2

2H

either from the known value of C/MR® and hydrostatic theory,

as for the earth (Khan, 1969) and the moon (Jeffreys, 1970),



or from a physical mode. for the nonhydrostatic contribution,
as for Mars (Binder and Davis, 1973). The nonhydrostatic
of J A rough estimate of

fraction, J 2 is simply JZ-J

2NH' 20"

J for Mercury may be obtained using Kaula's (1966) equal

2NH
stress hypothesis, according t» which nonhydrostatic contri-
butions to spherical harmonic coefficients of the gravitational
potential should scale as the inverse square of surface gravity
g. By that hypothesis, J2NH for Mercury should be between

=5 and 1074

10 , roughly two orders of magnitude greater than
J2H for hydrostatic models of Mercury, either with or without
cores (Siegfried and Solomon, 1974). Preliminary estimates

of J, for Mercury (Esposito et al., 1975; R.D. Reasenberyg,

2
personal communication, 1975) fall approximately in the range
of J2NH predicted in Table 1.

Thus even after J2 for Mercury is determined to great
accuracy, C/MR2 and the constraint that guantity places on
core size will not be known without maki: . additional measure-
ments of the response of Mercury's motic : no s3o0lar torques,
measurements requiring a precision that can be attained only
by observations from the planet's surface (Peale, 1975).

Proof that a core does or does not exist in Mercury, therefore,
will not be forthcoming for some time.
There are several lines of evidence, all of them indirect

and assumption dependent, to svigest nonetheless that a core

has formed in Mercury:




(1) Mercury has an internal magnetic field (Ness et al.,
1974, 1975a, b), and a convective dynamo in a £luid conducting
core is the preferred mechanism for field generation (Ness
et al., 1975b; Stevenson, 1974, 1975).
(2) Large areas on Mercury's surface are covered with snooth
plains, which from stratigraphic relationships and similarities
to lunar maria are thought to be largely volcanic in origin
(Murray et al., 1974a, b; Trask and Guest, 1975; Strom et al.,
1975). The inferred melting necessary to produce widespread
igneous activity and the close similarity of the surfaces
of Mercury and the moon suggest that Mercury has an iron-rich
core and a silicate crust and mantle (Murray et al., 1974a, b,
1975).
(3) If Mercury has retained its full solar system complement
of uranjum and thorium, as suggested by the most specific of
the current chemical models for solar nebula condensation
and planetary accretion (Lewis, 1972, 1973; Grossman, 1972;
Grossman and Larimer, 1974), then differentiation of a core
is predicted for all likely initial temperature distributions
and thermal conductivity wvalues (Siegfried and Solomon, 1974).
For the remainder of this paper, a large iron-rich core
in Mercury is regarded as probable., We examine next some

possible histories of core formation and evolution.




TIME SCALE FOR CORE FORMATION AND THE STATE OF THE CORE
Segregation of core from mantle in Mercury could have
altered drastically the planet's geology, as is discussed in
a later section. The present state of Mercury's core may be
intimately related to the planet's magnetic field., It is
therefore important to understand the time scales for various
chapters in the history of the core and to relate these times,
where possible, to events recorded at the planet's surface.
Three times will be of particular interest in this paper:
the time when core formation began, the duration of core infall,
and the time between core formation and core solidification,
To model the process of core formation in Mercury,
several assumptions are necessary. For the calculations
reported here, it is assumed that the planet began as a body
homogeneous on a large scale., Such a premise is likely only
if condensation in the primitive solar nebula was a much
faster process than planetary accretion, and while a case
can be made for such a hypothesis on both chemical (Lewis,
1972, 1973) and mechanical (Safronov, 1972; Weidenschilling,
1974) grounds, the issue i3 far from settled, If there were
a pronounced chemical hecerogeneity in Mercury after accretion,
particularly a varying content of metallic iron with radius
{Grossman and Larimer, 1974), many of the arguments of this
paper would be qualitatively unchanged but the detailed

calculations would require revision,



Core formation is assumed to follow Elsasser's (1963)
scenario for core infall in the earth. To quantify Elsasser's
model it is necessary to postulate a necessary criterion for
segregation of metal from silicate. In our calculations
(Siegfried and Scleuiwn, 1974) this criterion is taken to be
local melting of the metal phase. This is formally different
from Elsasser's (1963) treatment in which the viscosity of
the silicat: material controls segregation. Such a distinction
is not quantitatively significant as the melting curves for
iron -and silicates in Mercury are likely similar (Siegfried
and Solomon, 1974) and close approach to silicate melting
is necessary in Elsasser's scenario for rapid core differenti-
ation. The Elsasser model for the earth has been modified
by the postulate that core infall began when local tempera-
tures exceeded the Fe-FeS eutectic (Murthy and Hall, 1970),

a temperature significantly below the iron melting curve
(Brett and Bell, 1969; Usselman, 1975). Such a possibility

is not expected to be important for Mercury if current cosmo-
chemical models for the terrestrial planets (Lewis, 1972;
Grossman, 1972}, which predict negligible sulfur and volaciles
in Mercury, are approximately valid.

The thermal evoluticn of Mercury prior to, during and
following core formation is modeled as in Siegfried and
Solomon (1974). Only a few minor modifications are made in

our earlier procedure. Adiabatic compression is included



as an initial heat source, The surface temperature is fixed
throughout the planetary history at 380 K {(Morrison, 1970;

Ulich et al., 1973: Briggs and Drake, 1973). The adopted
ratios for Th/U and U/Fe are 3.7 and 6.4 x 107, respectively,
the latter taken as a representative "cosmic" ratio from the
carbonaceous and L-type chondrites (Mason, 1971}. With such

a U/Fe ratio, the mean present day uranium abundance in Mercury
is 38 p.p.b., slightly lower than the figure used by Siegfried
and Solomon (1974) inmost of their models.

The time when core differentiation begins in Mercury is
critically dependent on the nature of the early sources of
heat in the planets, about which very little is known, In
the absence of significant heat from accretional energy or
from a solar or other extraplanetary source, core formation
would not begin for at least 1 b.y. after planetary formation
(Sieyfricd and Solomon, 1974), This is illustrated by the
thermal model in Fig. 1, for which all parameters were chosen
to favor early differentiation but for which no ad hoc early
heating processes are postulated, The initixl temperature
is taken to be 1400 K, the approximate condensation temperature
for most of the planet (Lewis, 1972), plus an adiabatic
compression term. The thermal conductivity of the metal-
silicate mix is taken to be the lower Hashin-Shtrikman bound
(see Siegfried and Solomon, 1974).

Core formation begins at 1,2 b.y, after planetary origin
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in the model of Fig. 1 and is complete by 1,8 b.y.. The
conversion of gravitational energy to heat (RBirch, 1965)
accelerates core infall somewhat, but the event is by no
means the catastrophe proposed for the earth (Elsasser, 1963;
Birch, 1965). The total heat gained during differentiation
is equivalent to a mean temperature rise of less than 700 K, as
discussed in a later section. A duration of about 500 m,y.
for core segregation is typical of thermal models with a
nearly flat initial temperature profile. The figure is con-
trolled by the rate of heat production, including gravitational
energy, and ‘¢ not sensitive to shifting upwards or downwards
the temperature-depth curve used as the criterion for local
metal-silicate separation.

Because the thermal conductivity of the iron core is
high and because all radioactive heat sources are presumed to
remain in the silicate phase during differentiation, the core
cools rapidly in the model of Fig, 1 and is solid 1.5 b.y.
after core infall is complete, Such a core solidification
time is characteristic of the thermal models we have considered,
and should more properly be treated as a lower bound since
solid state convection in the silicate mantle, a process not
included in these calculations, might hasten solidification
greatly (Cassen, 1975). -

The process of core formation leads to melting of most

of the mantle of Mercury (Fig. 1), the effects of which would

Y . ket it +
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surely modify greatly the planetary surface, If the surface
of Mercucy is as old as has been inferred trom photcgeology
(Murray et al., 1974a, b, 1975), at least as old as the period
of heavy bombardment of the lunar surface 4.0 b.y. ago, then
core formation would have to have been complete at least 1 b.y.
earlier than in Fig, L and the core, for an otherwise similar
thermal model, would have been solid for the last 2,5 b.y..
Until viable alternatives to the convective dynamo are
proposed as mechanisms for generating Mercury's magnetic
field, thermal models such as that in Fig. 1 which predict
a solid core should be regarded with some disfavor. What
additional sources of heat are available that would keep the
core in the model of Fig., 1l molten or pdartly molten until the
present time? Tidal dissipation is one possible source, since
Mercury's rotation is clearly a product of tidal evolution
(Pettengill and Dyce, 1965; Peale and Gold, 1965; Colombo,
1965; Goldreich and Peale, 1966). The tidal heating is depen-
denit on the original rotation period ¢of the planet, on the
time scale for deceleration, and on the distribution of an-
elasticity with depth and time, none of which are known well
enough to estimate whether tidal heating could have prevented
core solidification, though this possibility is proiably doubtful,
Radioactive heat sources in the core could maintain a
molten state. Suppose that during core segregation, separation
of U and Th into the silicate ccamponent did not operate at

perfect efficiency. What fraction of U and Th would have to
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be trapped in the core to keep the metal molten at present
for a thermal model ctherwise similar to that of Fig, 1? If
10 percent of the total U and Th were uniformly Jdistributed
in the core, core solidiliication would be retarded by 1 b.y.
but the corz at present would be solid, Only if 20 percent
or more of Mercury's U and Th were in the core would the core
be at least partly melted at present. Such inefficient frac-
tionation of U and Th during differentiation is geochemically
impausible.

Heating due to K40

has been ignored in the calculations
here and in Siegfried and Solomon (1974) because of the pre-
dictions of cosmochemical models (Lewis, 1972; Grossman, 1972)
that Mercury should be composed dominantly of materials that
condensed at temperatures higher than that at which potassium-
bearing phases first appear as solids. Because ot the sugges-
tion (Lewis, 1971; Goettel, 1972) that K40 may be an important
heat source in the earth's core, it is of interest to ask how
much potassiwn in Mercury's core would be necessary to prevent
core sclidification, Toksdz and Johnston (1975), using models
similar to those of Siegfried and Solomon (1974) but with

40 in the

earlier core formation, estimate that 156 p.p.b. K
core is the minimum necessary for the iron to be at least

partly molten at present. This corresponds to a total potassium
abundance in the planet of about .l percent by weight, or a

bulk XK/U ratio of about 20,000. Such a high K/U ratio would
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require substantial revision of cosmochemical models for
the terrestrial planets.

A fluid iron core is a necessary but by no means a suf-
ficient condition for a convective dynamo. Stevenson (1975)
has examined the stronger condition that the thermal gradient
in the core be at least as steep as an adiabat., The details
of such a condition are not certain even for the earth
(Higgins and Kennedy, 1971; Birch, 1972; Kennedy and Higgins,
1973}, but for Mercury about half the heat sources in the
planet must be retained in the core, according to Stevenson
(1975), for convection to be permitted. If this radicactive

heat in the core is provided by x40

r & roughly chondritic X/U
ratio (Wasserburg et al., 1964) is implied.

An alternative to radioactive heat sources in the core
is to distribute the gravitational heating over more of the
planet's history. One such model is shown in Fig. 2. The
initial temperature is ad hoc, but is chosen so that the near
surface regions are hot and the deep interior apprcaches the
equilibrium black-body temperature at Mercury's distance from
the sun. The nature of the energy source for heating the
exterior of the planet is not considered here; several large
impacts or the unipolar induction heating model of Sonett
et al. (1968) are two possibilities.

The upper 350 km of Mercury in the model of Fig, 2 are

initially melted and rapidly cool and differentiate. Metal-
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silicate differentiation proceeds downward slowly, because the
heat released by gravitational infall is only a small fraction
of the heat necessary to melt the deep interior. Core formation
extends over a period of about 4 b.y., and the core is partly
molten at present. In such a thermal model, the near~-surface
igneous activity would be expected to be confined to the

early history of the planet and th: partly f£luid iron core

would satisfy at least a minimum condition for dynamo genera-
tion of Mercury's magnetic field.

A final possibility to reconcile the postulates of early
core formation and a currently fluid core is that in addition
to iron and to nickel and other siderophiles, Mercury's core
contains one or more additional elements such as a sulfur
which substantially lower the solidus temperature of core
material (Brett, 1975). Unless such elements have been
incorporated at greater than trace amounts, however, the core
would be molten only within a thin outer layer. Whether a
dynamo can be generated in a thin fluid shell is a serious
question, The order-of-magnitude calculations of Stevenson
(1975) indicate that the magnetic Reynolds number would likely
be subcritical for fluid metalli< layers much thinner than
100 km. To maintain convection in such a layer would still

require heat sources within the core.

e ———— B
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GEOLOGICAL CONSEQUENCES OF CORE FORMATION

Because more is known about the surface of Mercury than
about the interior, a situation unlikely to be changed by new
information in the future, it is important to relate the pre-
ceding discussion to Mercury's geology. What changes does
core formation produce on Mercury's surface? What constraints
does the known or inferred surface geological history place
on the thermal history and on core formation? Two major
consequences of core differentiation in Mercury are examined
in this section: the change in planetary volume and the
change in internal temperatures.

Volume changes with time in Mercury are of especial
interest because of the global system of lobate scarps identified
in the Mariner 10 photographs (Murray et al., 1974b; Strom
et al., 1975). From the morphology and dimensiwuns of these
scarps and from their transection relationships, the features
have been interpreted as thrust faults indicative of planet-
wide compressive stresses. Strom et al. (1975) estimate that
the observed displacements on the faults represent a 1 to
2 km decrease in the radius of Mercury. The compressive
stage in Mercury's history apparently began at least by the
end of the period of heavy bombardment of the surface (Trask
and Guest, 1975) and continued after the later (but perhaps
overlapping) period of emplacement of the smooth plains,

thought to be of volcanic origin (Strom et al., 1975). Both



16l

Murray et al. (1974b) and Strom et al, (1975) speculate that
the planetary compression may be the result of core surinkage.

Two effects contribute to the volume change associated
with core formation: the change in compression associated
with the redistribution of mass and the thermal expansion due
to the conversion of gravitational potential energy to heat.
For purposes of discussion, the thermal model of Fig. 1 is
used to illustrate the magnitude of the volume change associated
with these two phenomena.

For a planet fully differentiated inteo mantle and core
with a temperature distribution given by the present-day
profile in Fig. 1, the core coccupies 66.5 percent of the
planetary mass for likely values of the zero-pressure densities
of mantle and core material (Siegfried and Solomon, 1975).

The change in planetary volume due only to the redistribution
of mass upon core differentiation may be determined by finding
the radius of the homogeneous planet with the same composition
and same temperature profile and with a mass equal to Mercury's
present mass. This exercise is illustrated in Fig 3, which

is a mass-radius diagram for planets isochemical with the
assumed present-day model for Mercury (Siegfried and Solomon,
1974) and with temperature distributions taken from Fig. 1.

The equation of state of the metal-silicate mix follows the
procedures of Siegfried and Solomon (1974). No account is

taken of possible volume changes associated with chemical
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reactions,. in particular with melting or with solid-solid
phase chances.

The mass-radius curve labeled 4.€¢ b.y. gives the change
in planetary radius AR/R due only to the rearrangement of
mass: the radius increases by 0.36 percent, or 8 km, upon
core infall. The expansion of the planet during differentiation
is due to the greater compressibility of the silicate fraction
and to the greater pressures in the outermost 700 km of the
planet for the undifferentiated state (see Fig. 9 of Siegfried
and Solomon, 1975). Birch (1965) and Flasar and Birch (1973)
obtained a similar result for the earth.

An additional increase in planetary radius is caused by
thermal expansion. The planet is hotter after core infall
than prior to differentiation (see below) and there is a
thermal expansion added to the expansion calculated above at
fixed temperature distrivution. This extra AR may be obtained
from Fig. 3 by taking the difference in radius, at fixed mass,
predicted by the mass-radius curves for temperature distri-
butions just prior to (1.2 b.y.) and immediately following
(1.8 b.y.) core segregation, giving AR = .0030 R. The total
change in radius associated with core formation is AR = ,0066 R
or over 13 km., This expansion would produce an increase in
surface area of 1.3 percent, a figure that would be increased
slightly if account had been taken of solid-solid and solid-

liquid phase changes concurrent with differentation. The
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total expansion is not sensitive to the particular thermal
model used to construct Fig. 3, i.e., to the precise timing
of core infall,

The pronounced increase in Mercury's surface area would
not go unnoticed at the planet's surface. Huge rift valleys,
grabens and other tensional features would be expected cf a
lithosphere subjected to the stresses associated with such a
volume change. The absence of such features on Mercury's
surface today (Murray et al., 1974a, b) indicates either that
(1) Mercury never expanded by the large amount calculated
above or (2} the effects of the expansion have been erased
by subsequent surface-modifying events. If case (1) holds,
then the scenario of homogeneous accretion followed by core
differentiation would have to be replaced by one of inhomo-
geneous accretion and more or less in situ core development
(Grossman and Larimer, 1974; Murray et al., 1975). If case
(2) holds, then core infall must have been substantially com-
plete prior to the period of heavy bombardment of Mercury's

surface, tentatively identified (Murray et al., 1975) with

the similar period on the moon lasting until 3.9 to 4.0 b.y. ago

(e.g., Tera et al., 1974). Choice between these two alterna-
tives must await information beyond what is now available.
We might note that in the model ¢f Fig. 2, planetary expansion
would be spread over 4 k.y., probably a basis for the model's
rejection.

Subsequent tv completjon of core differentiation, Mercury

couis. A5 a coaselyaesne There is a slow theemal contraction
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of the planet, with by far the greatest contribution to the
contraction coming from the lithosphere. The amount of this
contraction may be determined by comparing the mass-radius
curves for 1.8 and 4.6 b.y. in Fig. 3: AR = -.0010 R or 2 km.
(A comparison of the mass-radius curves for differentiated
planets with the appropriate temperature distributions gives
the same result.} Thus thermal contraction of Mercury follow-
ing core formation is consistent in time and in magnitude with
the contraction necessary to have produced the global pattern
of lobate scarps (Strom et al., 1975).

For the volume change following completion of gore infall,
neglect of volume changes associated with chemical reactions
may be a critical omission, If the core has partly or wholly
solidified, the additional volume decrease may have been
considerable. The relevant reaction at core pressures in
Mercury (P > 70 kbar, Siegfried and Solomon, 1974) is
Fe liquid -+ y-Fe (Bundy, 1965}, for which no measurements of
the specific volume change are available. Birch (1972) has
estimated the volume change associated with melting y-Fe to
be 0.42 cm3/mole at zero pressurn and 0.36 cm3/mole at 50 kbar.
Using the latter figure and a molar volume of 7.02 cm2 for
Y-Fe (Birch, 1972) gives a volume change of slightly more
than 5 percent upon core solidification., Mercury's core
occupies 43 percent of its volume, so that complete solidi-
fication of the core would introduce a total decrease in the

planetary volume of 2.2 percent, or a decrease in the radius

Rt F I
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of .73 percent (18 km}.

If the specific volume change upon melting v-Fe is even
approximately correct, then solidification of Mercury's core
can be excluded as a possibility for the last 3.9 to 4.0 b.vy.
and, if the time scale for solidification determined above is
valid, for its entire history. If the core began by melting
and gravitational infall of molten metal, then the core is
still largely molten at present and one of the heat sourcas
discussed earlier must be present in the core. On the other
hand, if the core largely accreted in situ as solid metal,
either it is still scolid or it melted very early in Mercury's
history and has stayed fluid. Use of volume change as a
definitive constraint on core history, however, should await
direct measurement of the thermodynamic properties of the
Y-Fe melting reaction.

The change in gravitational energy during core formation
is converted largely to heat. This heat is added in appropriate
increments in the thermal history calculational scheme
(Siegfried and Solomon, 1974), but it is useful also to estimate
the mean temperature rise in the planet equivalent to the
total additional thermal energy. The difference in the gravi-
tational potential energy

R

Q = 47 g gl(r) p(xr) r3

dr
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(Birch, 1965) between an undifferentiated Mercury (1.2 b.y,
in the thermal model of Fig. 1) and a differentiated planet
immediately following core segregation (1.8 b.y. in Fig. 1)

is S.S:w:.'l.o9

erg/g. Ignoring differences in the strain energy
of the two states (Birch, 1965) and using a specific heat
appropriate to the mass-weighted values for iron and appropriate
silicates (see Siegfried and Solomon, 1974), this energy is
equivalent to a rise in the mean temperature of Mercury of 680 K,
For comparison, the rise in mean temperature after core infall
is 2300 K in the earth (Flaser and Birch, 1973) and less than
300 K in Mars.

The distribution of this heat with radius is somewhat
arbitrary, but it likely that partial melting at shallow
depths in the planet was one conseguence of core fractionation.
Prcbably some igneous activity -at Mercury's surface would
result, but on thermal grounds the surfice need not have
suffered the massive melting and disruption that has often
been suggested for the earth following core formation. The
inference from photogeology that Mercury's near surface
regions are moon-like (Murray et al., 1974a, b), however,
would require efficient differentiation of the shallow portion
of Mercury prior to events recorded in the present morphology

of the surface.
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DISCUSSION

There are three major constraints on the evolution and
present state of a metallic core in Mercury: (1) Mercury's
magnetic f£ield, (2) Mercury's surface geology, and (3) cosmo-
chemical models for the terrestrial planets, All three con-
straints imply that a core is present. Individually these
constraints and the inferences made from them impose various
and ofﬁén conflicting conditions on the history of the planet
and of the core.

If the core in Mercury differentiated from an originally
homogeneous planet, then an expansion in planetary radius
of 13 km and a rise in mean temperature of about 700 K would
result from core infall, Because the surface of the planet
would be substantially altered by such an event, core differ-
entiation must predate the oldest geological units comprising
a major fraction of Mercury's surface, probably either the
intercrater plains or the heavily cratered terrain mapped by
Trask and Guest (1975). Murray et al. (1975} postulate that
the heavily cratered terrain records a period of intense
bombardment of all of the terrestrial planets at about 4.0 b.y,.
ago. If core formation was completed in the first 500 m.y.
of Mercury's history, an early source of heat is necessary.
Accretion of small planetesimals is probably too slow to trap
much gravitational energy as heat (Safronov, 1972; Weiden-

schilling, 1974), but late impacts by large bodies, solar
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effects and tidal dissipation are all possibili’ ‘es. The age
of Mercury's surface is controversial (Chapman, «.75), however,
and a younger age would relax the regquirement for such early
heat sources.

If the cosmochemical models of Lewis (1972, 1973) or
Grossman {1972) are taken literally, then Mercury's core is
almost entirely iron-nickel with little or no light elemunts
added and the radioactive heat in Mercury is provided dominantly
by uranium and thorium with only negligible potassium. For
such chemical models, solidification of the core would follow
completion of core infall within 1 b.y. or less. Thus con-
straints (2) and (3) above are incompatible with the most
common inference from constraint (1), that Mercury has a
fluid convecti.: core. The only other currently viable mechanism
for internal magnetic field generation is permanent magnetization
(Ness et al., 1974, 1975a, b; Stevenson 1974, 1975). Most
thermal models for Mercury probably preclude such an explana-
tion, however. Only a thin outer shell, perhaps 50 to 80 km
thick (Figs. 1 and 2), is cur.'ently below the Curie temperature
in models in which core differentiation has proceeded to
completion, and the magnetization required of such a shell
would be very high (Ness et al., 1975b). If segregation of
metal from silicates has been incomplete in the outer portions
of the planet, however, then the higher Fe content would

give a greater thermal conductivity, and thus a thicker shell
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at sub-Curie temperatures, as well as a potential for greater
remanent magnetization. Such a rossibility may still permit
permanent magnetization as an explanation of the observed field.
Taking a contrary view, if the inference of a convective
dynamo is taken literally, then a substantial source of heat
in the core not predicted by current cosmochemical models
must be postulated, Gravitational energy and tidal dissipation
are two likely heat sources, but both were prohably spent
early in Mercury's history and thus would not have prevented
subsequent core solidification. Radicactive heating is the
most probable heat source, and cosmochemical models for Mercury
incorporating such a necesalcy deserve considerable attention
in the future.
Most likely Mercury has a large metallic core. Very
probably the core 1s molten, both because of the magnetic
field arguments and because shrinkage of the core upon solidi-
fication can probably be excluded for most of Mercury's
history hy its surface geology. An cbvious implication of
the discussion of this paper is that the simplest comprehensive
models of chemistry, of magnetism, or of surface history of
the terrestrial planets are unlikely to survive in complete
detail the guantitative tests made possible by new data from

these bodies.
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FIGURE CAPTIONS

Fig. 1. A model for the thermal evolution of Mercury. Tae
initial temperature is 1400 K (after Lewis, 1972} plus
a contribution from adiabatic compression. Other input
parameters are discussed in the text or follow Siegfried
and Sclomon (1974). The time since planetary origin,
in billions of years, is shown adjacent to the corresponding
temperature profile.

Fig. 2. An alternative thermal history model for Mercury.,
Because the (arbitrary) initial temperature distribution
is strongly peaked toward the surface, planetary differ-
entiation is spread over a substantially longer time
than in Fig. 1. Other parameters are identical for the
two models.

Fig. 3. Mass-radius diagrams for planets composed of a homo-
geneous mixture of 66.5 weight percent Fe-Ni (po = 7,97 g/cm3)
and 33.5 weight percent "silicate" (po = 3,2 g/cmB), for
temperature distributions at various times taken from
Fig. 1. fThe radius of such planets for a mass equal to
Mercury's mass may be used to infer the radius changes

during various phases of the planet's history (see text).
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