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ABSTRACT

Three series of rocket soundings were conducted from high latitude

sites during winter. In the first series, four pitot pressure soundings

were launched during a 13 hour period from Pt. Churchill, Canada

(590N) on January 31, and Feb. 1, 1907. The second series con-

sisted of one pitot sounding and two acoustic grenade soundings

carried out during a three hour period on January 13-14, 1970.

Temperature and wind profiles and one density profile were

observed independently to obtain the thermodynamic structure, the

wind structure, and thus their interdependence in the mesosphere. The

third series of soundings was conducted from Point Barrow, Alaska

(710N) on December 0, 1971. This series consisted of five sound-

ings of which the first two and the last two were pitot-grenade pairs.

Temperature profiles from all soundings in each series were aver-

aged, and a smooth curve (or series of smooth curves) drawn through
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the points. A hydrostatic atmosphere based on the average, meas-

ured temperature profile was computed, and deviations from the

mean atmosphere were analyzed in terms of gravity wavo theory.

The vortical wavelengths of the deviations were 10-20 1cm, and the
I

wave amplitudes slowly increased with height. The experimental

data were matched by calculated gravity waves having a period of

15-20 minutes and a horizontal wavelength of 60-80 k7n. Our

interpretation is generally consistent with the results of others

who have studied gravity-acoustic waves in the atmosphere. The

wind measurements are consistent with the thermodynamic meas-

urements. The results also suggest that gravity waves travel

from East to West with a horizontal phase velocity of approxi-

mately 60 m sec i.



a

f

CONTENTS

Page

INTRODUCTION . . . 	 . . . . . . . . . . . . . . . . . . . 	 1

EXPERIMENTAL PROCEDURE . . . . . . . . . . . . . . . . 	 3

OUTLINE OF GRAVITY WAVE THEORY . . . . . . . . . . . . 	 4

ANALYSIS OF DATA . . . . . . . . . . . . . . . . . . . . . 	 8

TIIE PARABOLIC TRAJECTORY EFFECT . . . . . . . . . . . 	 14

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 	 15

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . 	 19

v

J.:m...



ILLUSTRATIONS

Figure Page

1 Illustration of Gravity Wave Concept and

Nature of Experimental Measurement. 	 .	 .	 .	 .	 .	 .	 . 24

2 Gravity Wave Phase Speed as Function of

Temperature, Vertical Wave Length, and Period 25

3 Mean 'Temperature Structure for 1967

Ft.	 Churchill Series	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 26

4 Measured Density Structure for 1967

Ft.	 Churchill Series	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 29

5 Spatial Auto-Correlation Functions for

Density,	 1967 Series . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 28

6 Power Spectral Density Versus Wavelength for

Experimental Deviations, 1907 Series 	 .	 .	 .	 .	 .	 .	 . 29

Gravity Wave Comparable to Measured Vertical

Density Deviation for 1967 Series	 .	 .	 .	 .	 .	 .	 .	 .	 . 30

8 The Observed Pressure and Density Perturbations

(Solid Curves) over Churchill on January 13-14, 1970

Compared with the Perturbations Calculated.from

Theory (Broken Curves) as a Function of Altitude 31

9 The Observed Zonal Wind Component Compared

with the Zonal Wind Profile Calculated From the

Theory for the Described Experiment	 •	 .	 .	 .	 .	 .	 . 32

e



Figure PII^p

10 The Theoretical Vertical Velocity Profile
F

Which is Consistent with the Gravity Wave

Given by Figures 8-9	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 33

r
11 1971 Series Gravity Wave Matched to first Pitot

Temperature Deviation	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 34
i

12 Comparison Between Theoretical and Observed

Wind Patterns for 1,971 Series 	 .	 .	 .	 .	 •	 .	 •	 .	 .	 . 35

13 Comparison of Second Pitot Temperature Devia-

tion with Gravity Wave Prediction for 1971 Series 	 . .	 30

14 Comparison of Third Pitot Temperature Devia-

tion with Gravity Wave Prediction for 1971 Series . .	 37

15 Typical Pitot Probe Trajectory	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 38

16 Gravity Wave Doppler )effect.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 39

vii



TABLES

Table	 Pam

1	 Launch Sequence of First Series . . . . . . . . . . . .	 22 e

2	 Launch Sequence of Second Series . . . . . . . . . . . 	 22

3	 Launch Sequence of Third Series • • . . . . 	 . . . . .	 23

viii

.



SYMBOLS

co = circular frequency of the wave

a = local sound speed

ko = w/a

7 = ratio of specific heats

w B = g/a AFY- 1 = Brunt - Vaisala frequency

WA = 7 g/2 a = a/2 II

g = acceleration due to gravity

H = Pressure scale height

A = wA / w

Ii = wB / w

S = kx/ko

G = wh/w

wh = a'/2k

lc = thermal diffusivity

-s
U = wind velocity of background field

k = propagation vector

Ice	= kX + kz

P = static pressure

P° = stagnation pressure

p = density

u = velocity
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INTRODUCTION

Waves in a stratified fluid under the influence of gravity appear to have

been initially discussed by Burnside (1889) and Love (1891). Both authors

treated an incompressible fluid. GOrtler (1943) used schlierin photography to

show experimentally that disturbances in an incompressible stratified medium

!	 under the influence of gravity propagate along characteristic rays. Lamb (1909)
t

treated a compressible, adiabatic, ideal gas whose density is stratified by

gravity. Since the early contributions by Burnside, Love, and Lamb, there have

been many theoretical papers on various types of gravity waves. Reasonably

up-to-date treatments of the subject may be found in Eckart (1900) and Yih

(1905). However, gravity wave theory Is currently undergoing an active phase

of development and contributions are being added to the literature at a rapid

rate. A recent addition is the boot" by Tolstoy (1973).

The present paper treats several series of rocket soundings of atmos-

pheric temperature, density, and wind structure. The experimental results

are interpreted in terms of gravity-acoustic wave theory. The experiments

are of two types, pitot and grenade. For the pitot experiment, a picot stagna-

tion probe is mounted on the rocket vehicle. The position and velocity of the

vehicle are measured by radar tracking. For an incompressible fluid, we

have the simple formula

`' = P+ 1/2PU'
	

(1)

1



^ ^k

1

where PO Is stagnation pressure

P is static pressure

p is density

u is velocity

Eq. (1) may also be written in the form;

2P( O-P)_
P 

_	
u2

It is obvious from Eq. la that density is determined if stagnation pressure,

static pressure, and velocity are measured. The addition of compressibility

makes the analysis somewhat more involved without affecting the basic prin-

ciple presented above. The pitot technique is described in detail by Horvath

et. al (1962).

For the grenade experiment, a series of grenades are explodrd in the

atmosphere. The position and time of the explosion is determined and the time,

andthe direction of arrival of thespherical soundpulse aremeasured by aground

based microphone array. This information is used to deduce the mean temper-

ature and horizontal wind speed in atmospheric slabs whose thickness varies

between 2 km and 4 km depending on the particular grenade payload used.

(Nordberg and Smith, 1964)

Essentially, the pitot technique provides a high vertical resolution

(0.5 km) direct measurement of atmospheric density, while the grenade tech-

nique gives a direct measure of atmospheric temperature and horizontal wind

with a 2-4 km vertical resolution. For both techniques, the time to make the

3
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atmospheric traverse is approximately one minute, resulting in a virtually

instantaneous picture of the vertical structure.

EXPERIMENTAL PROCEDURE

The experimental data consist of three series of rocket soundings which

were conducted from high latitude sites during winter. In the first series, four

pitot soundings were launched during a thirteen hour period from Ft. Churchill,

Canada (59 0N) spanningJi., nuary 31 and February 1, 1907 (see Table 1), The

data have been published by Smith, et al (1909).

The second series consisted of three soundings carried out during a

three hour period on January 13-14, 1970 from Churchill (Smith, ot. al . , 1972)

The first sounding was made with Clio acoustic grenade technique to measure

the temperature and wind profiles in the 35-90 lcm region; the second sounding

was a pitot probe launched 88 minutes later to measure the density profile;

and the last sounding employed the acoustic grenade technique 104 minutes

after the pitot sounding. Thus two temperature and wind profiles and one

density profile were obtained independently to permit examination of the ther-

modynamic structure, the wind structure, and the interdependence of each in

the mesosphere.

The third series of soundings was conducted from Point Barrow, Alaska

(710N) on December 0, 1971 (Smith et. al. , 1974). This series consisted of

five soundings, of which the first two and last two were pitot-grenade pairs.

The remaining sounding was performed with a pitot probe. The objective of

3
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launching such pairs was to obtain high vertical resolution thermodynamic

structure (pitot) and wind information (grenade) simultaneously. The series

commenced at 0300 GMT with a pilot probe, which was followed by a grenade

at 0302 GMT. These profiles were flown over essentially the same trajectory

only two minutes apart. The remai ning soundings, a pitot at 0442 GMT, a pitot

at 0762 GMT, and a grenade at 0802 GMT completed the series.

OUTLINE OF GRAVITY WAVE THEORY

Consider a series of layers of fluid, each lighter than the one below,

as shown in figure 1. A surface. wave in the lowest layer will transmit a

disturbance to the layer above it, which in turn will transmit the disturbance

to the layer above it, etc. Now let the density difference between layers and

the layer thickness both approach small values a and 6, respectively. In the

limit, as a and E approach zero, we have internal gravity waves. The sound-

ings dascribed above have taken samples vertically through the layers.

The simple theory involves linearizing the atmospheric equations of

motion and specifying a sinusoidal solution, I. e. ,

¢ _ ¢a exp ri(wt - kx x - kz z )1 	(2)

Perturbations in pressure, density, temperature, and gravity wave

generated wind are related to 0 by what Hines (1960) has called polarization

relations, and a dispersion relation which has the form:

/\z	 \2
nzz	1 - I 

0
A iw - nxz 1 - I w8 1	 (3)
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where

kx a	 isa
nx = w nz = w	 (4)

(Pitteway and Hines, 1963)

The following expressions are obtained for phase velocity:

	

_ w	 w wX z_ Nz
Vpx kx ' Vpz kz	2:r _ r	

5

Also,
NZpxV	 rB

provided that	 r 9 r 

Since atmospheric gradients are usually gentle, the ray approximation

for vertical wave propagation was used. Volland (1969a) has shown that the

ray treatment is a sufficient approximation for gravity waves propagating

obliquely upwards, provided the horizontal wave number is in the order of, or

greater than w/a, where a is the sound speed, and w is the circular frequency

of the v..ve, 1. o. Icx a , or (w/a)/Icx 61. Reference to eq. 5 shows that

the last mentioned inequality may be written as V px/a 6 1. Thus the ratio

of horizontal phase velocity to sound speed must be less than one.

The above ratio, called VPXA, is plotted in Figure 2. We see that it

is relatively insensitive to temperature and wave period, but varies linearly

with vertical wave length. For vertical wave lengths less than 15 lcm, VPXA

5



Is generally less than 0.2. Thus, the condition for use of the ray approxima-

tion is well satisfied.

The next problem which comes to mind is how to take account of back-

ground wind. The frequency of a moving fluid particle, or the 'intrinsic

frequency' may be defined as

S2 = w - Is	 U	 (6)

where

It is wave number

U is wind velocity

co is wave frequency in a quiescent atmosphere

The above value of intrinsic frequency may be substituted into equa-

tions describing gravity wave propagation in a quiescent atmosphere, and a

solution outained. Jones (1969) discusses the conditions under which the above

procedure is valid. Basically, the following assumptions must be satisfied:

1. Vertical and horizontal derivatives of vertical winds must be less

than (NZ - 521)0, where N is the Brunt-Vaisala frequency.

2. 1-lorizontal derivatives of horizontal winds must be smaller than 52.

3. Time dl .ivatives of horizontal winds must be much smaller than

( 52/ p ) x (NZ - n') 1/2, where A = NZ/g.

4. Time derivatives of vertical winds are much smaller than g, the

acceleration due to gravity.

6
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(8)
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dVil

dt	
< g (

N

7

Derivatives of winds are not generally known, but we can examine the

range which is permitted by the above conditions. Condition 11411 places a

limit of 9.8 m sec -2 to accelerations in vertical motion. Vertical winds

generated by gravity waves are generally less than 10 m see- i. The fre-

quency must be less than the Brunt-Vaisala frequency which is about

0. 02 -1 . The resulting acceleration is 0.2 m see -2 , which is well below

gravitational acceleration. Vertical wavelengths for major wind shifts are

generally longer than 5 kilometers. Thus, we may approximate the maximum

vertical derivative of vertical wind to be of the order of 10 m sec-1 per 5 km,

or 2 m sec-i km- 1 . Horizontal derivatives of vertical winds are less, since

horizontal wavelengths are longer than vertical oneb. For conditions con-

sidered in this paper 92 <0. 5N, consequently 42 2 < 0.25N2, and to a first

approximation, we may simply require that vertical gradients of vertical wind

be less than the Brunt-Vaisala frequency, I. e.

dVz/dz < N	 (7)

Cancelling the space dimension, dV z/dz becomes 0. 002 sec -1 . N is

approximately equal to 0. 02 sec -1 . Thus condition 11 1 11 is amply satisfied.

Conditions 11211 and 11 3 11 are the problematic ones. Taking S2 2 < N2,
I

condition 11 3 1 ' simplifies to

.^,Hm:..:.	 I	 . . .



Condition 112" may he written in the form

dVII
6 SZ

dx 

If time and space variations of horizontal winds are due to synoptic

phenomena, then the following quantities are characteristic:

VII , 50 m sec-t ; t ^-10, 000 sec; dX — 500 km

One can then estimate synoptic time and space derivatives to be 10- 3 m sec -1,

and 10-4 sec 1 . In the Above case, eq. (8) requires ( St/N) to be greater than

0. 001 and eq. (9) requires n to he greater than 10
-4 see- i.

ANALYSIS OF DATA

Table 1 shows the schedule of the four launches in the first series.

The times between launches are, respectively, 0h21m, 2h48m, and 3h32m.

Temperature profiles from all soundings in each series were averaged and a

smooth curve (or a series of smooth curves) drawn through the points. A

hydro *tatically determined atmosphere based on the average measured:tem-

perature profile was computed. The average temperature profile for the first

set of data is given in Figure 3. Av^:rage background atmospheres were

calculated in a similar manner for the second and third sets of experimental

(9)
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The pitot probe technique provides a measurement of the atmospheric

density profile by relating the density to the measured rain pressure using

appropriate aerodynamic theory, while the acoustic grenade technique provides

a measurement of the atmospheric temperature profile by relating the tem-

perature to the measured speed of sound using gas kinetic theory. The hydro-

static equation and the equation of state are used to obtain the remaining two

thermodynamic parameters in each technique. Such an approach assumes that

vertical accelerations in the atmospheric motions are negligible relative to

the acceleration due to gravity, and is valid for mean atmosphere calculations.

Smith, et al (1908) compared the results of grenade soundings and pitot probe

soundings at Wallops Island, Va. They found temperature agreement to be

better than 3 0K below 00 Inn and better than 5 0IC between 00 and 90 km altitude.

Thus hydrostatic equilibrium was valid under the generally undisturbed con-

ditions of Wallops Island, confirming the validity of the hydrostatic approx-

imation for background atmosphere calculations.

For the first test series, the ratio of the density measured by the pitot

probe to the hydrostatically computed density (based on the average temperature

profile) was plotted as a function of altitude for each probe. The density varia-

tions are shown in Figure 4. The second and third soundings show a density

minimum at around 110 km. This is most pronounced for the second sounding.

The pronounced density drop, associated with a pronounced temperature rise, is

quite probably due to an auroral event. The structure below 100 km contains

9



vnrious features which could conceivably be traced from cne sample to the next,

but this typo of exercise will be left to the interested reader. Rather, the authors

matched the experimental curves to results obtained from gravity wave theory.

Our program was adapted from one used by Volland (1909 a, b). The periods which

result in a reasonable fit are in a range of 15-20 minutes with a horizontal wave-

length of 00-801an. The above values correspond approximately to those found by

Gossard (1902) who observed gravity waves in the troposphere, Figure A essen-

tially gives only the vertical wavelength, X z, thus only allowing one to obtain the

product of wXx. The reason fon noosing the short period, short horizontal

wavelength waves, is that these are more strongly damped. Reference to Fig-

ure A shows that the growth of amplitude with altitude is extremely weak, while

theory predicts that all 	 wave will grow exponentially with altitude.

Figure 5 shows the spatial auto correlation function for atmospheric

density between 28 and 80 km, and Figure 0 shows the corresponding power

spectral density versus wavelength. Analysis techniques employed are dis-

cussed in Bendat and Piersol (1900) and Blackman and Tukey (1958). (In this

case "power" is defined in terms of wavelength and amplitude). Wavelengths

between 2 km and 17 km are represented, with a primary peak around 14 km,

and a secondary peak around 9 kin. The auto correlation function for the second

sounding shows awavelength of 2 x 7 km, and for the fourth, a wavelength of 2 x9

km, I. e. 14 km and 18 km, respectively, for the dominant sinusoidal component.

Figure 7 shows representative gravity waves propagating in a sinusoidal wind

10



field, and in a quiescent atmosphere. The regular sinusoidal pattern present

In the quiescent atmosphere density deviation with altitude is dramatically

altered by the introduction of a regularly varying background wind. Thus in

the real atmosphere, it is expected that the regular patterns superimposed on

the thermodynamic structure by internal gravity waves will not be obvious.

The interactions between propagating waves and varying background conditions

are exceedingly complex and cannot be separated readily without a priori

knowledge of the conditions.

In the second test series, an attempt to Identify propagating internal

gravity waves in the mesosphere was made by sounding the region with three

instrumented rockets on January 13-14, 1970, from Churchill, Canada

(590N). The three observations, which were conducted at approximately

90 min. intervals, consisted of a pitot probe bracketed by two acoustic grenade

soundings. Thus, two temperature rnd wind profiles and one density profile

were obtained independently, permitting an examination of the thermodynamic

structure and the wind structure. The first sounding was conducted at 2223

GMT with the acoustic grenade technique to measure the temperature and

wind profiles in the 35-90 km region; the second sounding was launched 88

minutes later (2351 GMT) and employed a pitot probe to measure the density

profile with 0. 5 km vertical resolution; and the last sounding again was made
F	 •

r
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with the acoustic grenade technique 104 minutes after the pitot sounding

(0135 GMT). Thus, two temperature and wind profiles, and one density

profile were obtained independently to permit an examination of the thermo-

dynamic structure, the wind structure, and the interdependence of each in

the mesosphere. For descriptions of the experiment, see Smith, at. al.

(1972).

An average atmosphere was calculated based on the three soundings,

and the differences of the pitot -'ata from the mean were computed (these are

referred to as perturbations). The observed perturbations are shown as the

solid curves in Figure 8 and are seen to give a pattern characteristic of in-

tornal gravity waves in a stratified, compressible fluid. Recall that the ex-

perimental density is measured directly, while the pressure is a del ived

quantity. In Figure 8, the period of the calculated gravity wave was 20 minutes,

and the horizontal wavelength was 00 km.

Figure 9 shows the comparison between the zonal wind profile meas-

ured by the first grenade sounding, and the wind pattern associated with the

theoretically calculated gravity wave. (A zonal drift wind varying linearly from

12 m sec -1 at 30 km to 44 In sec-1 at 90 km has been included). The wind pat-

tern obtained by the second grenade sounding is generally similar. Figure 10

shows the theoretically derived vertical velocity profile, which includes values

of approximately 10 in sec- 1 in the 80 km region. Justus and Edwards (1971) have

12
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reported measured vertical velocities on the order of 20 m sec- 1 at altitudes

between 88-118 km. Although these measurements wore made at a different

latitude and time of year, they are at least comparable in magnitude. The

Justus and Edwards data do confirm the existence of relatively largo vertical

velocities at high altitudes. The vertical velocity profile given by rigure 10

was included in the data reduction for the two grenade soundings and its effect

on the mean profile was found to be small.

The third set of measurements consisted of a series of pitot and grenade

soundings from Point Darrow (71 0N) launched on December 0, 1971. Tile first

two soundings, a pitot and a grenade, wore launched two minutes apart. The

temperature perturbation obtained from the pitot profile is shown in Figure 11

together with a theoretical gravity wave which was matched to it for a best fit

(by eye). Figure 12 shows a comparison between the theoretical and observed

wind patterns. The calculated wind pattern is that associated with the gravity

wave whose temperature perturbation is given in Figure 11. A mean drift wind

of 40 m sec'' has been included. The measured wind is obtained from the gre-

nade sounding, so it represents a series of values in which the winds were aver-

aged over layers (2-3 km thick.) between grenade explosions.

Figures 13 and 14 show the temperature perturbations derived from

j	 the observed density structure by the subsequent pitot soundings at 0442 GMT
)

i
	 and 0752 GMT, respectively. The gravity wave structure is based upon the

r	 original match of Figure 11 and allowed to propagate with time to correspond to

13
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the times of the observational data. The best match was found to have a

horizontal wavelength of 70 Icrn and a period of about 18 minutes. It is signif-

icant ;hat only the first theoretical curve was fitted to the observed data, and

that the remaining matches followed from the computer. Unit, our data in-

dicate that not only are the spatial density and wind structure measurements

compatible with gravity wave theory, but also with the expected behavior with

time.

THE PARABOLIC 'TRAJECTORY .EFFECT

For simplicity of discussion, we have considered a vertical, instanta-

neous slice through the atmosphere. In fact the actual sample is neither wholly

vertical nor quite instantaneous. The latter approximation, however, is very

good. The sampling time is one minute, representing only 59a of a wave period.

The deviation of the actual trajectory from vertical is a more serious matter.

Figure 15 shows a typical pitot probe trajectory. Figure 10 compares a

trajectory going into the wave, a trajectory following the wave, and an instan-

taneous vertical traverse. We see the expected Doppler phenomenon of short-

ened wavelength going into the wave, and lengthened wavelength when going

with the wave.

The wave considered has a horizontal wavelength of 70 km and a period

of 18.5 minutes. While the measurements are being made, the horizontal

distance traversed.by the rocket is 12 ]cm, or 1/0 of a wavelength. Thus, it is

1s
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the horizontal motion of the rocket rather than the finite sampling time which

results in significant deviation from the original simplifying assumption.

Examination of the experimental curves shows that the wavelength de-

creases with altitude. Thus the rocket is going into the wave train. Since the

launch direction from Pt. Barrow is duo east, we may conclude that the

wave train is coming from an easterly direction. The same situation pre-

vails at Ft, Churchill, Our results suggest that the waves in these instances

travelled from East to West. The horizontal phase velocity is approximately

60 m sec -1.

CONCLUSIONS

Three series of soundings were carried out at high latitude sites during

winter. The first series gave four essentially instantaneous vertical density

traverses during a 13 hour period at Ft. Churchill. The density variations from

the mean stratospheric conditions were matched by gravity waves having ver-

tical wavelengths of 14-17 km. A reasonable fit to the data was obtained with a

plane gravity wave ,i;a. acterized by a horizontal wavelength of 70 km and a period

of 18 minutes. The wave amplitude increased with altitude, but at a rate much

slower than the exponential growth predicted for undamped waves. Thus one
i

must conclude that the waves were heavily damped as they propagated upward

through the atmosphere.

Comparing our observations with the damping predictions of Pitteway

and Hines (1963), it Is found that for the constant viscosity case, (i. e. increasing

15
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kinemntic viscosity) waves having the input parameters considered. (i. o. 70

km horizontal wavelength, and 10-20 km vertical wavelength) would tend to

reach a peak amplitude at about 120 km altitude. The Pitteway-Ilines predic-

tions are consistent with our observations, and their amplitude balance damp-

ing case appears to be close to what we observed. The observations indicate

a modest growth of amplitude with altitude, much closer to the no-growth

approximation than to the exponential growth limit.

Consider now the 70 km horizontal wavelength and the 18 minute period.

Gossard (1902) observed gravity waves in the troposphere. IIe found the period

to vary between 15 minutes and 120 minutes. The horizontal wavelength for

waves of 15 minute period was 19 km, and for two hour period, it was 150 km.

The difference between our observations and those of Gossard may be ex-

plained by assuming that tropospheric waves with short vertical wavelengths

are damped out. In fact Gossard (1902) found that the maximum leakage into

the upper atmosphere occurs at periods of 10 to 20 minutes, starting with a

white energy spectrum in the troposphere. Our value of 18 minutes is thus

consistent with Gossard's prediction.. Gossard found a horizontal phase speed

of approximately 21 m see-1 . For an 18 minute period and 2000K, the follow-

ing table relates our estimated horizontal phase velocity to vertical wavelength.

200 degrees was chosen because it is approximately the temperature at the

bottom of our test region.

f
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20001; 18 minute period

X z (Inn) %X(km) Vpx(m/see) Vpz(m/sec)

5 18.2 16.9 4.6

10 36.4 33.7 9.3

15 54.4 50.4 13.9

20 72.3 67.0 18.5

25 11.1 83.3 23.1

From noctilueent cloud studies, Witt (1962) observed characteristic

wavelengths of 30-40 km, and of 75 km, the latter being very nearly the 70 km

deduced in the present study. Witt (1962) also estimated the wave velocity

with respect to n frame of reference moving with the cloud system, obtaining

a range of 70 to 135 m sec-'. The agreement with the values given in our table

above f„> reasonable. Noctilueent clouds are formed in the 80 to 85 Icm region

of the atmosphere.

Our results are also generally consistent with the discussion of internal

atmospheric gravity waves at ionospheric heights presented by mines (1960).

Thus the 12 km vertical wavelength which Iiines deduced from the meteor wind

data of Greenhow and Neufeld (1955, 1959) is in reasonable agreement with our

observations. Iiines considered 125 m see-' to be a typical horizontal phase

speed and quoted the following experimental results. Munro (1958) found phase

spaeds to generally be in the range of 52-175 m sec -1 , in agreement with both

17



our deductions and Witt's (1962) noctilucent cloud observations. IIeisler (1958)

found phase speeds to range between 97-207 m sec -1 . The phase speed agree-

ment is remarkable considering that ionospheric heights range up to more than

100 km above the top of our observation regime. Our period is more than ten

times shorter than the 200 minutes deduced by Mines (1960) from correlation

studies of meteor wind trails. However, a careful reading of Hines' paper

suggests that the 200 minutes is an upper limit to the periods rather than a

most characteristic value.

The second series of soundings is also compatible with a gravity wave

Interpretation. Vertical wavelengths were consistent with the values obtained

in the first series. There was also reasonable agreement between measured

and predicted horizontal velocities.

The results of the third series confirmed the conclusions abcat vertical

wavelength and amplitude of the first two series and the agreement of measured

wind with gravity wave predictions. It was also pGlssible to trace one gravity

wave pattern through three consecutive samples, indicating that our period is

correct. 'There is, of course, the possibility of aliasing. however, the slow

wave growth with altitude points toward the short wavelength, short period

solution, as do Witt's observations at noctilucent cloud altitudes.

18
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Table I

Launch Sequence of First Series

Fort Churchill, (59 0N); 1967

GMT Date
Time After
First Shot

Type

2317 Jan 31 Oh00m Pitot

0538 Feb 1 6h21m Pitot

0826 Feb 1 9h09m Pitot

1158 Feb 1 12h41m Pitot

Table II

Launch Sequence of Second Series

Fort Churchill (590N); 1970

GMT Date Time After
First Shot

Type

2223 Jan 13 Oh00m Grenade

2351 Jan 13 1h28m Pitot

0135 Jan 14 3h12m Grenade

r
22
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Table III

Launch Sequence of Third Series

Point Barrow (71 N); 1971

GMT Data
Time After
First Shot

Type

0300 Dec G OhOOm Pitot

0302 Dec 0 OhO2m Grenade

0442 Der, f, 1h42m Pitot

0752 Dec 0 4h52m Pitot

0802 Dec 0 5hO2m Grenade
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BACKGROUND ATMOSPHERE FOR 1967 CHURCHILL SERIES
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RATIO DEVIATION

Figure 8. The Observed Pressure and Density Perturbations (Solid Curves)
Over Churchill on January 13-14, 1970 Compared With f. rA'Perturbations

Calculated from Theory (Broken Curves) as a Func(son r,\f Altitude
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