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A PARALLEL JACOBSON -0KSMAN OPTIMIZATION ALGORITHM 

Ter ry  A. Straeter  and Athena T. Markos 
Langley Research Center 

SUMMARY 

A gradient -dependent optimization technique which exploits the vector -streaming 
o r  parallel-computing capabilities of some modern computers is presented. The algo ­
r i thm, derived by assuming that the function to be minimized is homogeneous, is a modi­
fication of the Jacobson-Oksman serial minimization method. 

In addition to describing the algorithm, conditions insuring the convergence of the 
iterates of the algorithm and the resul ts  of numerical experiments on a group of sample 
tes t  functions are presented. The resul ts  of these experiments indicate that this algo­
rithm will solve optimization problems in less  computing time than conventional se r ia l  
methods on machines having vector -streaming o r  parallel-computing capabilities. 

INTRODUCTION 

In recent years  gradient-dependent optimization techniques have been used to solve 
a number of aerospace and aeronautical engineering problems with the digital computer. 
The most widely used gradient-dependent techniques are the conjugate gradient (CG) and 
Davidon-Fletcher-Powell (DFP) methods (see refs. 1to 3). These methods are s imilar  
in many ways. The similari ty of interest  here is the fact that the methods are serial in 
nature. That is, the n-dimensional minimization is replaced with a sequence of univariate 
minimizations where the new direction is determined as a resul t  of the value of the gradi­
ent of the function and the previous univariate minimization. When these methods were 
developed, their  se r ia l  nature did not seem to be a particular disadvantage. In fact, many 
felt it an  advantage since the digital computers for  which the algorithms were programed 
were also serial. However, a new generation of computers with vector-streaming or 
parallel-computing capabilities has appeared (for example, Illiac IV ,  C . mmP,  and STAR). 
These capabilities are used here  to synchronously or simultaneously evaluate the function 
and its gradient at a number of different points. These advanced computing capabilities 
cannot be exploited by the CG and DFP methods. 

Thus far, some work has been done to develop optimization algorithms which exploit 
these parallel capabilities. Avriel, Karp, and their  associates (refs.  4 and 5) have worked 
on the univariate minimization problem. Miranker et al., have developed a nongradient 



"parallel" version of the Powell-Zangwill method (refs. 6 to  8). Straeter  (ref. 9) has 
developed a parallel variable metric (PVM) technique which is gradient dependent and a 
close relative of the Davidon-Broyden (refs. 10 to 12) rank one techniques. Although the 
PVM, CG, and DFP differ in that the former  exploits parallel-computing capabilities and 
the others do not, they are s imi la r  in that they are all closely tied to  quadratic functions 
because the model function used to develop the algorithms is a quadratic. Algorithms like 
PVM, DFP,  and CG which minimize positive definite quadratics in a finite number of steps 
exhibit good convergence properties on more general  functions because near i ts  minimum 
a sufficiently smooth function is closely approximated by a quadratic. However, this 
quadratic may be singular. In such cases ,  the convergence of these algorithms is slowed 
considerably . 

Recently, Jacobson and Oksman (ref. 13) have proposed an algorithm (denoted by JO) 
which assumes that the model function is homogeneous. The class  of homogeneous func­
tions contains the quadratics as a subclass and is therefore r icher  than the quadratics. 
Functions which have a singular matrix of second partials at  the minimum can be more  
accurately approximated by the homogeneous model. Jacobson and Oksman report  that 
their  algorithm is competitive with the DFP and CG; however, as originally formulated, 
the JO algorithm is a serial technique. In fact, it was the serial nature of the then-current 
computers that would appear to have influenced Jacobson and Oksman to form their  algo­
rithm as they did. 

The purpose of this report  is to describe an algorithm based on a homogeneous 
function model which exploits vector -streaming o r  parallel-computing capabilities. The 
algorithm is called the parallel  Jacobson-Oksman (PJO) method. The t e rm parallel was 
chosen to describe the synchronous o r  simultaneous evaluation of the function and i t s  
gradient at a number of different points. In addition to describing the algorithm and a 
modification, some conditions guaranteeing convergence a r e  presented. Also presented 
are the resul ts  of numerical experiments involving the application of these methods to a 
collection of test functions. 

SYMBOLS 

A positive definite (n X n) symmetric matrix 

A-1 inverse of A 

b n vector of constants 

C (n + 2) x (n + 2) matrix defined in equation (4) 
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elementary vector 


fixed sca la r  


function of n variables 


gradient vector of f 


integers 


n index 


R" vector space of n-tuples 


Sk kth search direction 


t scalar  


X variable, n vector 


X j  jth component of n-vector x 


intermediate i terates  (n-vectors) 

V n + 2 vector with components vj  ( j  = 1, 2 ,  . . ., n + 2)  

scaler  defined by x"
j 

gFj )  

P n-vector , location of minimum 

p" n-vector estimate of p 

Y sca la r ,  degree of homogeneity 

Y 

Y 	 scalar, estimate of y 

sca la rs ,  s tep s ize  
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c T c T29 * * *,on+l set of n vectors which spans Rn
1 9  

7- scalar (0 < T < 1) 

Y 


w estimate of w 


( IT transpose 

II-II norm of n vector; fo r  example 1 1  x11= 6 
HOMOGENEOUS FUNCTIONS AND THE PJO ALGORITHM 

Let f be a function of the n-tuple x.  The function f is said to be homogeneous 
of degree y about the point p if for all x throughout a region R containing p 

for  all t such that tx E R. 

Notice that quadratic functions are homogeneous of degree two about their  minimum 
point. This relationship follows because i f  

f(x) = fo  + b Tx + - x1 TAX 
2 

for  A an n X n positive definite symmetric matrix, b a fixed vector in Rn, fo 
a scalar ,  the gradient is g(x) = b + Ax and the minimum is a t  p = -A-lb. As a 

A 2 
1 2 TAx, and thusresult ,  f(tx+ p) = fo  2 

1 bT - 1b + - t x 

1 2 TAX = tf(tx + p)  - f(p) = - t x 
2 

This definition is a generalization of the usual one where p = 0 and f(p) = 0. If 
f is differentiable with gradient g(x), homogeneous of degree y about p,  then Euler’s 
theorem states  that for all x G R 

This relationship is established by differentiating equation (1)with respect to t ,  setting 
t = 1, and replacing x by x - p. 
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The preceding definition and model equations are as given by Jacobson and Oksman. 
(See ref. 1.) The model equation (eq. (2)) for  a homogeneous function forms  the basis of 
the PJO algorithm. For each x E Rn, equation (2) contains n + 2 constants. These con­
stants are p ,  the location of the minimum, the minimum value of f and y ,  and the degree 
of homogeneity. Moreover, if  y f(p) is denoted by w equation (2) can be rewritten as 

which is linear in the n + 2 unknowns, w ,  y ,  and the n-tuple p .  This observation is, 
of course,  the same observation that led Jacobson and Oksman to their  algorithm. How­
ever ,  their algorithm is a serial algorithm as each evaluation of equation (3) resul ts  in an 
estimate of p ,  y ,  and w. The next location for  evaluation of equation (3) is determined 
by this estimate of p .  Their formulation of the solution of equation (3) at n + 2 points 
was based on the sequential or serial nature of the then-present-day computers. A short  
description,of their method follows the description of the new algorithm. 

Most of the computer time required to solve significant optimization problems is 
spent evaluating the function and i t s  gradient. The parallel-computing capabilities of 
advanced computers allow the evaluation of the function and i t s  gradient a t  a number of 
points simultaneously at a cost in time of not much more than a single evaluation. How­
ever ,  if a number of simultaneous gradient and function evaluations were made in parallel ,  
the original JO  algorithm could not use this inexpensive information because after each 
function and gradient evaluation, a decision is made concerning the location of the next 
evaluation. Hence, the algorithm as stated is inherently serial. 

The modification of the JO algorithm presented here  involves parallel evaluation of 
the function and i t s  gradient at n + 2 distinct points (that is, values for x) ,  and the 
solution a t  those points of the resulting linear system of n + 2 equations in n + 2 
unknowns, w ,  y ,  and p being defined by equation (3).  This estimate of p then defines 
a search direction. The algorithm proceeds in that direction until a point is found a t  which 
the value of the object function is decreased. The process is repeated until the norm of 
the gradient is sufficiently small .  A formal statement of the algorithm is as follows: 

Step'O: Let xo be the initial estimate of the location of the minimum and compute f (x0)
and g(xo). Let ol,a2,. . ., un+l be a se t  of n-vectors which spans Rn and any 

proper subset which is linearly independent on Rn and let k = 0. 

Step 1: Define 

(j = 1, 2 ,  . . .,n + 1) 
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Evaluate f and g in parallel  at x”j fo r  j = 1, 2, . . ., n + 1. Set sn+2= xk and 

evaluate equation (3) at the n + 2 points xj and form the linear system 

ca=v (4) 

where 

(p being an estimate of p) 

( j  = 1, 2, . . .,n + 2) 

( i = l , 2 , .  . . , n + 2 ;  j = 1 , 2 , .  . . , n )  

( i = l , 2 , .  . . , n + 2 ;  j = n + l )  

( i = l , 2 , .  . . , n + 2 ;  j = n + 2 )  

Solve equation (4) for p, 7, and G. 
w

Step 2: Define the search direction sk by Sk = - xk and evaluate f(p) and g(p); 

if  lIg(p”)ll is sufficiently small ,  stop. If not and f(p) < f(xd, then se t  Xk+l = p, 
k = k + 1, and return to step 1. Otherwise, choose the step s ize  by minimizing f (xk + A s  1$ 
with respect to A .  Denote the minimizing A’ by Ak. Let Xk+l = Xk + Ak(p - xk), s e t  

k = k + 1, and return to s tep 1. 

In the original Jacobson-Oksman algorithm, step 1 is replaced by assuming that a t  
step 1 one has a current  estimate of C - l  and a .  The oldest information in C is then 
replaced by the corresponding information about f at xk. This means that one row of 
C has been replaced. The new C - l  and a are then computed by Householder’s for­
mula. (See ref.  14.) Finally, step 2 is taken and the process repeats as necessary.  

CONVERGENCE RESULTS 

If f is a homogeneous function of n variables with minimum a t  p and 
01,022’ * . ‘ 7  4+1 are such that the system of n + 2 linear equations formed by evalu­

ating equation (3) a t  xo, xo + 0- (j = 1, 2 ,  . . .,n c 1) has a unique solution, then theJ 
algorithm described herein locates the minimum in one cycle. This is immediate by the 
construction of the algorithm and definition of a homogeneous function. 
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By slight modifications of the algorithm defined, one can obtain more powerful con­
vergence results.  First, it is required that the step direction sk as chosen in step 2 
satisfies 

for  some scalar  T where 0 < T < 1. If this condition is not satisfied, then sk is 
chosen as -g(xk). Additionally, i t  is required that the s tep size Xk is chosen so  that 

Then the following stronger convergence result can be established. 

If at every iteration these modifications to the search direction and step s ize  a r e  
made, the i terates  of the PJO algorithm will converge to the location of the minimum of 
a C2 strongly convex function. (A C2 strongly convex function is a function with a 
continuous, uniformly positive definite matrix of second derivatives.) This result  follows 
from a more general resul t  given by Ortega and Rheinboldt. (See ref.  14.) 

As will  be seen in a la ter  section, in practice the modified algorithm, for which the 
stronger convergence result  held, did not perform better than the basic algorithm. In 
fact ,  the performance of the modified algorithm w a s  sometimes worse in t e rms  of function 
evaluations required to solve the problem. This behavior of minimization algorithms has 
been observed by others (for example, Daniel, ref. 15). 

NUMERICAL CONSIDERATIONS 

In order  to insure that the elements of the C matr ix  were approximately of the 
same magnitude, the n + 2 column was scaled by 0.5f x( d. This scaling mea.nt that the 
l inear equation solver returned 2w/f(xd instead of w .  Since w was not used in any 
par t  of the algorithm, this condition was of no consequence. Recall that to locate the 
minimum of a homogeneous function, the vectors U1,O2, . . ., un+l required by s tep  1 
of the algorithm need only span Rn and generate a unique solution to equation (4); how­
ever,  to be more likely that equation (4) has a unique solution, the 0 vectors were 
chosen so that any subset of n vectors is also linearly independent. In fact, for the 
numerical examples, un+l is chosen as the sum of the first n u vectors.  Of interest ,  
of course,  is the sensitivity of the performance to other c r i te r ia  for  choosing these vec­
t o r s  of the algorithm when minimizing general functions. Clearly, the length of the vec­
t o r s  ui should be small  enough to insure that the local representation of f(x) as an 
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homogeneous function is valid; however, this means that the entr ies  of the rows of the 
C matrix of equation (4) are very s imilar .  For example, the n + 1 column of C is 

T 
~given by kpk)7 f("k + O1)7 . ., f(xk + C J ~ + . ~ Since the norm of oi is small  for  

every i, this means that the entr ies  are very close numerically. Hence, for  very small  
oi, the system given by equation (4) may not have full rank o r  may be very close to being 
singular. Therefore,  the solution of the system of equations may be sensitive to small  
changes in the entries of the C matrix.  Thus, i t  would seem that there are two factors  
affecting the performance of the algorithm: (1)the c r i te r ia  for  choosing the CJ vectors 
and (2) the linear solver of equation (4). In order  to investigate these factors,  two tech­
niques of solving the linear system and several  schemes of choosing CJ vectors were 
used. The solution techniques used were Gaussian elimination with total pivotal strategy 
(ref. 16) and a singular value decomposition technique (ref. 17). The latter gives the rank 
of the matrix,  i t s  singular values, and the least-squares solution to the linear system 
given by equation (4). The latter algorithm is generally considered to give the better 
(that is, more accurate) solution. 

In general, the following observations a r e  made after many numerical experiments 
involving the tes t  functions described: 

(1)The performance of the PJO algorithm was independent of the l inear solver used. 
By independent, i t  is meant that with both linear solvers,  convergence to the minimum was 
achieved in essentially the same number of function evaluations for the same problem, 

The use of the singular value decomposition linear solver did indicate the fact that 
the C matrix is not necessarily of full rank. On two example problems, the rank of the 
C matrix was computed as n - 1 for the first iteration; however, as the iterations pro­
ceeded, C was of full rank and remained so. Table I l is ts  the rank of C,  the largest ,  
and the smallest  singular values for each iteration while minimizing one of the sample 
functions. Note that after the f i r s t  iteration, the singular values a r e  well within the 
15-place accuracy of the computers used in the experiments. Although the performances 
were generally independent, in one anomolous case the algorithm using the Gaussian el im­
ination minimized one of the tes t  functions in 3 cycles and only 19 function evaluations, 
whereas this function usually required a t  least  11 cycles and about 67 function evaluations. 
This one case of phenomenal performance is due to a fortuitous first cycle which, while 
decreasing the function value from 215 to only 214, gave rise to a good starting point for 
the second cycle. The second cycle then decreased the function to and the final 
step to Ordinarily, the decrease in  the f i rs t  step is from 215 to about 150. Then 
the algorithm proceeds to decrease f(x) by about an order  of magnitude per  cycle. 
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(2) The experiments indicated that the manner in  which the ui vectors were cho­
sen  was more important in  t e rms  of overall performance than the l inear equation-solving 
technique. 

The following schemes referred to as methods (a) and (b) for  choosing the ai vec­
to r s  were investigated: 

(a) The f i r s t  method (method (a))for  choosing the ai vectors was to let oi = eic 

for  i = 1, 2 ,  . . .,n and = c{l, 1, . . ., where ei denotes the ith elementary 
vector and c is a sca la r  fixed for  all iterations. Figure 1 il lustrates the performance 
of the algorithm in t e rms  of function evaluations on three sample problems, for  c = 

and Notice that as c decreases ,  the number of function evalua­
tions required for  convergence decreases  until a minimum is reached; thereafter,  the 
performance deteriorates rapidly. The t e rm robustness is used herein to describe the 

and the techniques ofrelative insensitivity of the algorithm to the magnitude of 

0 
n 

c1 


0 


n 

a 

0 Rosenbrock 

a 4D Banana 
A Powell's function 

0 

0 


n 

I ' I I u 

C 


a 

Figure 1.- Robustness of PJO (5 vectors chosen by method (a)). Symbol with 
asterisk denotes that function did not converge in 500 function and gradient 
evaluations; Powell's function for  norm of 5 = was not tested. 
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choosing oi. For the test problems solved herein,  it was observed that PJO had about 
a 2 to 3 order  of magnitude deadband on performance in  t e rms  of function evaluations 
required to converge to the solution. 

(b) The second technique (method (b)) for  choosing the oi vectors was to  let 

oi = -cei t imes sgn (ith component of g(xk)) for  i = I ,  2, . . .,n and on+l = f oi 
i=1 

(ith component of g(xk)) where c is a scalar. This technique seemed to improve the 
overall  performance of the algorithm, but not to a great  degree. The improvement was 
probably due to the fact that the approximation to f by a homogeneous form was local­
ized and coordinated with the probable n-dimensional orthant of decrease.  (An orthant 
is an  n-dimensional quadrant.) 

A final numerical consideration was that the one -dimensional minimization required 
in step 3 of the algorithm was car r ied  out as follows. The initial step-size estimate is 
given by 

I 

where Xk is the estimate of X a t  the Mh cycle and f m  is the estimated value of f 
at the minimum. If f (xk + y sk) < f(xk), the next cycle is begun; otherwise, Davidon's 

cubic interpolation (eq. (3)) is performed to locate the one-dimensional minimum. 

EXAMPLE PROBLEMS AND RESULTS 

To illustrate the performance of the minimization algorithms defined herein, numer ­
ical  experiments were conducted on several  standard example problems. Although the 
experiments were conducted in single precision on a Control Data Corporation (CDC) 6000 
se r i e s  computer, the resul ts  of the computations were used as if they had been done in a 
parallel fashion. Five sample functions were used for  the numerical experiments. 

The first function was a simple quadratic function of three variables 

f 1(x,y,z) = x2 + 2y2 + 522 - 2xy 

As indicated in the section "Convergence Results, ' '  convergence was achieved in one cycle. 

The second function was Rosenbrock's parabolic valley function 
2 

f2(x7y)= (2- y) + O.Ol(x ­
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This is a particularly difficult function to minimize because of the long parabolic valley 
y = x2 along which the minimization must travel. The traditional start ing point is 
(-1.2, 1.0) and the minimum is located a t  (1,l). 

The third function known as Powell's function is 
2 2 4 4 

f3(x1,x2,x3,x4) = (xl - lox2) + 5(x3 - x4) + (x2 - 2x3) + - x4) 

with start ing values at (3,-l,O,l). This function is particularly difficult for  a variable 
metr ic  algorithm to minimize because a t  the minimum the Hessian is singular. The algo­
rithm described herein performed extremely well on this problem. 

The fourth tes t  function is called the 4-D Banana and is defined by 

2 2 2 2 
f4(xl,X2,X3,X4) = loo(x; - x2) + (l- xl) + 90jx; - x4) + (l- x3) 

+ 10.1[(x2 - 1)2+ (x4 - l)2j+ 19.8 (x2 - 1)(x4 - 1) 

The traditional start ing estimate is a t  (-3,-1,-3,-1). This function is difficult to minimize 
2because the quadratics x12 - x2 and x3 - x4 make the level surfaces banana shaped. 

The fifth function is the helical valley function defined by 

where 

fan-1  x2/x1 (xl 2 0) 

2ne = { 
+ t a n - l x  x

21 1 

The usual start ing estimate is a t  (-1,O,O). 

The key factor in the performance of any minimization technique is the number of 
function evaluations required for convergence as the computation required for  evaluating 
the function is usually much greater  than that involved in the algorithm. It is for  this 
reason that the resul ts  of the experiments are given in t e rms  of the number of function 
evaluations required to achieve convergence. 

Table JJ gives some of the resul ts  of these numerical experiments. For these 
experiments the convergence c r i te r ia  was that the largest  component of the gradient be 
less in magnitude than E = The Q vectors were defined by method (b) with 
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e = 10-4, that is, oi = (10-4ei)(sgn ith component of g(xk)) and on+l = -10-4ei (sgn ith 

component of g(x4 X where ei is the ith elementary vector. For each test func­
tion the number of cycles required to achieve convergence is listed. Also listed is the 
total number of function and gradient evaluations required for  convergence on the serial 
computer and on an ideal parallel computer. By assuming that the computations had been 
done on an ideal parallel computer with p processors  (p 2 n + l),step 1would have 
been performed by utilizing these capabilities; therefore,  if overhead costs are ignored 
and an ideal parallel computer is assumed, these gradient and function evaluations would 
take essentially the same time as one such computation. It is for this reason that the 
entry in column @ is found by taking the number of variables t imes the number of cycles 
and subtracting the resul t  from the entry in column 0.Columns @ and @) give meas­
ures  of the accuracy of the minimization. 

Table 111 shows the same information for the modified algorithm for  which the 
resul ts  given in "Convergence Results" hold with 7 = 0.001. A comparison of tables I1 
and 111 shows that the modification which guarantees convergence does not help the per ­
formance of the algorithm to any significant degree. 

Table IV shows the resul ts  for  the modified PJO with the CJ vectors chosen by 
method (a) given and with c = A comparison of tables 111 and IV shows that the 
performance of the modified algorithm is not radically affected by either of the two ways 
of choosing the CJ vectors. The same situation held for  the PJO itself. 

Table V gives the performance of the algorithm by use of the singular value decom­
position linear solver. Note here again that the performance of the algorithm is not 
radically affected. 

Table VI i l lustrates a comparison of the performance of the DFP algorithm with the 
PJO algorithm on the four example functions, f 2 ,  f3 ,  f 4 ,  and f5 .  The DFP method 
was chosen as the standard of comparison because of its wide use and generally favorable 
comparison with other techniques. Table VI lists the number of function evaluations 
required by the DFP method to locate the minimum start ing from the same initial condi­
tions. These resul ts  were reported by Jacobson and Oksman (ref. 13). Finally, in 
table VI, the performance of the PJO is given for  two cases .  In the f i r s t  case,  the method 
is used on a serial computer; hence the operations in step one (that is, gradient evalua­
tions) a r e  not done in parallel. For the second case it is assumed that the operations in 
s tep 1 are carr ied out in  parallel. Hence the n + 1 gradient and function evaluations of 
step 1will require only the time to car ry  out one evaluation. So the entry in table V for  
the parallel case is merely the same as that for the serial case minus n t imes the num­
ber  of cycles. The next two entr ies  give the performance of the PVM algorithm for  these 
same problems. 
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CONCLUDING REMARKS 

The numerical experiments indicate that the parallel  Jacobson-Oksman (PJO) algo ­
rithm outlined herein can be used to exploit effectively parallel computing capabilities to  
solve unconstrained optimization problems in  less computation time. In fact, the per­
formance of the algorithm indicates that for  smal l  problems (that is, two o r  three var i ­
ables) the PJO can be competitive with currently used serial algorithms. Also, in  the 
parallel  mode the PJO appears to  be competitive with another proposed parallel optimi­
zation algorithm, the parallel  variable metr ic  algorithm. 

It is interesting that the modified PJO did not perform as well on the sample prob­
lems as did the PJO, in spite of the more general  convergence theory for  the modified 
algorithm; however, this phenomenon is not uncommon. A note of concern about the PJO 
is the limited robustness of the algorithm; however, the 2 to 3 order  of magnitude robust­
ness  band was encouraging. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
July 8 ,  1975 
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1.3 

TABLE I.- TYPICAL RANK, SPJGULAR VALUE RANGE OF C MATRIX 

Iteration Computed rank, Larges t  Smallest 
full rank = 5 singular value singular value 

~. 

1 4 6.9 x 103 0 
2 5 81 2.5 X 


3 5 115 7.7 x 10-10 

4 5 80.3 4.8 x 10-9 

5 5 67.4 2.7 x 10-9 

6 5 34.3 1.5 x 

7 5 60.9 1.8 x 

8 5 20.7 6.5 x 10-9 

9 5 18.7 7.3 x 10-9 

10 5 16.4 8.3 x 10-9 

11 5 14.6 9.2 x 10-9 

12 5 13.8 10 x10-8 

13 5 11.8 1 x10-8 

14 5 8 9 x 10-9 

15 5 4.3 7.7 x 10-9 

16 5 1.2 5.5 x 10-9 

17 5 5.9 x 10-2 4.6 x 10-9 

18 5 1.2 x 10-2 2.46 x 


-

TABLE 11.- RESULTS OF NUMERICAL EXPERIMENTS FOR THE 

PARALLEL JACOBSON-OKSMAN ALGORITHM (PJO) 

bxpe r imen ta l  conditions: IT, chosen by method (b); c = 
I 


0 

Function Number of Total evaluation Total evaluation 


cycles (serial)  (parallel) 


Quadratic 1 6 3 

Rosenbrock 20 87 47 

Powell 3 19 7 

4-DBanana 36 227 87 

Helical valley 14 74 32 


I I 


- -.
1 Function VZue--T- Norm of 1 

at convergence gradient 


-

6.6 X 9.7X 10-lo 
91.9 ~ 1 0 - l ~x 

1.6 x~10-6­1
6.5 X 3 X 

5.9 x 10-18 5 x 10-8 
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TABLE III.-RESULTS OF NUMERICAL EXPERIMENTS FOR THE MODIFIED 


PARALLEL JACOBSON-OKSMAN ALGORITHM 


Fxperimental conditions: ui chosen by method (b); c = T = 0.0011 

Function Number of I Total evaluation Total evaluation j Function value Norm of 
cycles (serial) (parallel) , at convergence gradient 

Rosenbrock 20 87 47 9 x 10-14 

Powell 13 80 28 2 x 10-9 

4 4  Banana 34 223 87 7 x 10-13 

Helical valley 14 74 32 3 x 10-16 


5 x 10-8 

3 x 

4 x 

5 x 10-7 


TABLE 1V.- RESULTS OF NUMERICAL EXPERIMENTS FOR THE MODIFIED 

PARALLEL JACOBSON-OKSMAN ALGORITHM 

[Experimental conditions: ui chosen by method (a); c = T = 0.004 

Function Number of ' Total evaluation Total evaluation " Function value Norm of
icycles ~ (serial) , (parallel) I at convergence gradient 


3 x 10-8
Rosenbrock 

Powell 

4-D Banana 

Helical valley 


21 91 49 

11 67 23 

33 208 76 

18 92 38 


4 x 10-6 
2.9 x 
3.5 x 10-6 



TABLE V.- PERFORMANCE OF PJO WITH SINGULAR VALUE 

DECOMPOSITION LINEAR SOLVER 

[Experimental conditions: chosen by method (b); c = 10-41I 

I Function 

Rosenbrock 
Powell 
4-D Banana 
Helical valley

1 

I Number Of Total evaluation Total evaluation 
cycles (serial)  (parallel) 

20 87 47 
11 67 23 
34 223 76 
14 74 32 

I 

TABLE VI.- RESULTS OF NUMERICAL EXPERIMENTS: TOTAL NUMBER OF 
4 

FUNCTION AND GRADIENT EVALUATIONS REQUIRED TO ACHIEVE 

CONVERGENCE FOR EXAMPLE FUNCTIONS 

I Quadratic
function 

Rosenbrock's 
function 

Powell 's 
function 

4-D 
Banana 

Helical 
valley 

~ 

Parallel 6 74 19 204 74 
Jacobson-Oksman 
(Serial computer) 

Parallel 3 40 7 76 32 
Jacobson -0ksman 
(Parallel computer) 

Davidon -Fletcher -Powe 11* Not reported 165 80 161 76 
(Serial computer) 

PVM 7 58 118 ,185 75 
(Serial computer) 

PVM 5 45 61 95 47 
(Parallel  computer) 

*As reported by Jacobson and Oksman (ref.  13). 
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