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HIGHER ORDER ACCURATE PARTIAL IMPLICITIZATION: 


AN UNCONDITIONALLY STABLE FOURTH-ORDER- ACCURATE 


EXPLICIT NUMERICAL TECHNIQUE 


Randolph A. Graves, Jr. 

Langley Research Center 


SUMMARY 

An unconditionally stable fourth-order-accurate explicit numerical technique is 
derived, based on the method of partial implicitization. The Von Neumann stability 
analysis demonstrates the unconditional linear stability. The order of the truncation 
e r r o r  is deduced from the Taylor s e r i e s  expansions of the linearized difference equations 
and is verified by numerical solutions to Burgers' equation. For comparison, results are 
also presented for Burgers' equation using a second-order-accurate partial-implicitization 
scheme, as well  as the fourth-order scheme of Kreiss. 

INTRODUCTION 

A great deal of effort has been expended in developing numerical methods to solve 
fluid-dynamic problems, and much of the recent work is compiled in reference 1. A 
large part of that work centered on obtaining accurate solutions to the fluid-dynamic equa
tions for transient processes. In many cases where only the steady-state solution is 
desired, the transient analyses have been applied since the introduced time dependency 
changes the boundary-value problem to an initial-value problem. The initial-value prob
lem lends itself readily to solution by explicit methods which have highly desirable char
acteristics for vector processing computers (see ref. 2). The steady-state solutions . 

obtained by marching the transient problem asymptotically to steady state can still be 
costly in t e rms  of computer resources since the maximum marching step is generally 
limited by stability considerations. Some effort has gone into speeding up the transient 
phase, increasing stability, so that the steady state is reached more rapidly; reference 3 
typifies this approach. Published in reference 4 was a partial-implicitization technique, 
an unconditionally stable second-order-accurate explicit scheme, which was shown in 
reference 2 to be well suited for use on vector processing computers. The unconditional 
stability of the partial-implicitization technique allows for more rapid calculation of the 
steady state. 
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The purpose of the present paper is to present a modification to the procedure of 
reference 4 which produces a fourth-order-accurate method with only small  changes i n  
the second-order-accurate scheme. Maintaining the same form of the solution as ref
erence 2 insures the method will still have the desirable features for vector processing 
computers. 

SYMBOLS 

intercept 

average e r r o r  (see eq. (20)) 

amplification factor 

spatial step size,  Aq 

total number of finite-difference points 

order of accuracy 


cell Reynolds number, Uoh/u 


coefficients in scheme 2 finite-difference relations 


coefficients in scheme 1finite-difference relations 


time 


transformed time 


velocity 


velocity variable, U 


steady-state wave speed, -1 

2 

amplitude factor 


coordinate direction 


parameter in scheme 3 (see eq. (23)) 




‘17 transformed coordinate 

e phase angle 

V viscosity 

Subscripts : 

e exact 

j finite-difference nodal point index 

Superscript: 

N time step index 

The primes indicate differentiation with respect to the transformed coordinate 7. 

MATHEMATICAL DEVELOPMENT 

Model Equation 

Burgers’ equation has been used by a number of authors (for example, refs. 5 to 7) 
as a model equation with which to test numerical techniques. The equation is 

In this form, equation (1) represents a diffuse shock wave through the application of the 
following boundary conditions: 

U(x,t) = 1 (x - -m) 

U(x,t) = 0 (x - +m) 

Since only the steady-state solution is desired, the following wave-oriented transformation 
is applied to equation (1): 
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where 5 is the steady-state wave speed. Equation (1)now becomes 

-+U0-=”-- a2uau au 
a i  arl a$ 

where Uo = U - v. The boundary conditions under the transformations become 

U(r])i) = 1 

U(q,i) = 0I 
The exact steady-state solution to equation (2) subject to boundary conditions (3) is 

Solutions to equation (4) for v = 1/8, 1/16) and 1/24 a r e  given in figure 1where the 
decrease in wave thickness with decreasing viscosity is readily apparent. 

Partial  Implicitization 

Scheme 1 (second-order accurate).- The derivation of the second-order-accurate_ _ ~-

partial-implicitization technique as given in reference 4 wi l l  be repeated here in order to 
provide a base for the development of the fourth-order scheme. In reference 4,  three-
point equally spaced central finite-difference relations of second-order accuracy were 
used to express the f i r s t  and second spatial derivatives of equation (2) at the points j - 1, 
j ,  and j + 1. These finite-difference relations a re :  

1 

u .  - Uj-2 uj - 2 u j 4  f Uj-2

-

=(T)j-l J 2  Aq j - 1  Aq2 

uj+l- 2 u .J + u.1-1 
(5)

($)j = Aq2 

’j+2 - Uj u.+2- 2u.+1 + u(z)= 2 A q  j + l  
--

AV2 
j 

j + l  

4 




Using the finite-difference relations (5) and expressing the time derivative as a simple 
backward difference, 

equation (2) can be written as 

Uo,j A? 
where r. = and s =- At. Equation (6) is written a t  points j - 1, j ,  and j + 1; 

2 Aq fW2 
however, the variables a t  points j - 2 and j + 2 a r e  considered explicitly. (The 
explicit consideration of the variables at points j - 2 and j + 2 does produce an incon
sistent technique; that is, the resulting partial-implicitization technique cannot be used 
on true transient problems. This is of no consequence herein where the interest  is in 
formulating a method to rapidly achieve a steady-state solution.) 

The system of three simultaneous equations is of the form 

Point j - 1 

(1 + 2S)uy ;  - (s - r j - l)UT: = u ~ - ~  )"+ (rj-l + s u ~ - ~  

Point j 

Point j + 1 

-(rj+l+ s p y  + (1  + 2 s ) u j + lN+l = uZl + (s - rj + l)u"j+2 

In order to obtain the solution a t  point j ,  use Cramer's  rule (see ref. 8) which gives an 
equation that will be used at all interior points in the finite-difference mesh except for  the 
two points immediately adjacent to the boundaries. At these points, system (7) is solved 

to obtain equations for and Uj+l . Note that the equations for Ujml N+ 1N+ 1 N+l and Uj+l 



a r e  used only for the two points adjacent to the boundary. The solution using Cramer ' s  
rule is obtained from 

J 
(1+ 2s) -(s - rj-l) 0 

-(rj + s) (1 + 2s) -(s 
0 -(rj+l + s) (1+ 2s) 

where 
r 

-
B = U 	N 

i 

The result is 

+ r. + s)Uj-l  + 
( J  

where 

1 


r. + s>(rjml+ s Uj-2 
( J  ) " 1  

6 
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Equation (9) now involves five points from the previous t ime level only; hence, equa
tion (9) is an explicit equation obtained from the partial implicitization of the difference 
form of the governing equation. In reference 4 this form w a s  shown to be unconditionally 
stable fo r  one dimension, and a s imilar  form was  shown to be unconditionally stable i n  
the two-dimensional solutions of reference 2. In the present paper this partial
implicitization technique is re fer red  to as scheme 1. 

Scheme 2 (fourth-order accurate).- In the following development, five-point finite-- - - ..- - .-

difference relations a r e  used to express the first and second derivatives of equation (2) 
at the points j - 1, j ,  and j + 1. The use of five-point relations produce an overall 
accuracy of fourth order. These finite-difference relations are: 

($). = &[-Uj-2 + 6Uj-l  - 18Uj + 10Uj+l + 3Uj+2] h4 UV 
20 

J + 1  

i iuj-2 - 20Uj-l + 6Uj + 4Uj+l - Uj+2] + h3 uV 
12 

Following a procedure similar to that used i n  the scheme 1development, the finite-
difference relations (10) with the t ime derivative expressed as a simple backward differ

au 
ence y - UN, equation (2) can be written at points j -.l,  j,  and j + 1. In 

a t  A? 
scheme 1the variables at points j - 2 and j + 2 were treated explicitly; similarly, 
the same procedure is followed here. However, it was found that the resulting technique 

7 




did not have unconditional stability; hence, some of the values of U at the points j - 1, 
j,  and j + 1 had also to be treated explicitly in  order  to obtain unconditional stability. 
Again, as in scheme 1the explicit consideration of the variables at the points j - 2, 
j - 1, j + 1, and j + 2 produces an inconsistent technique which is accurate only for the 
condition of steady state. 

. Ai 
When R .  - and S = -'Ai , the system of three simultaneous equations 

12A77 12 Aq2 
is of the form 

Point j - 1 

I J ~ - ~  N(1+ 2 0 S ) U z 1  + 18Rj- l  - 6S)U7f1 = - N  + Rj-l(3Uj-2 - Uj+2 

Point j 

Point j + 1 

-(18Rj+l + 6S)U;'l + (1+ 20S)Uj+1 N NN+1 = Uj+l  +' Rj+1("F2 - 3 U z 2 )  + S(llUj+2 - Uj-2 

- U;1(GRjcl - 4s) - 10Rj+lU;l 

Use of Cramer 's  rule, as in  the scheme 1procedure, gives an equation which is used at 
all interior points in the finite-difference mesh, except for the two points immediately 
adjacent to the boundaries. At these points, system (11) is solved to obtain equations for 

'j-1 N+1. Note that the equations for Uj-lN+l and Uj+l N+l and U F t  a r e  used only for the 

two points adjacent to the boundary. The solution using Cramer 's  rule is obtained from 

8 




- 
- 

(1+ 20s) 

-(8Rj + 16s) 

I (1 + 20s) 

-(8Rj + 16s) 

0 

. where 

-
B = Uj  + Rj(UE2 - U r 2 )  


-
A 0 
-
B (8Rj - 16s) 
--
C (1 + 20s) I 

(l8Rj-1 - 6s) 
O I 

(1 + 30s) (8Rj - 16s) 

-(l8Rj+l + 6s) (1+ 20s) 

- N - S(,lJE2 + UF2)  

The result is 



where 

Equation (13a) involves five points from the previous time level as in  scheme 1; however, 
the difference relations in  the present formulation involve all five of those points instead 
of only three. This technique is hereinafter referred to as scheme 2. 

Stability 

The Von Neumann stability analysis of equation (13a) can be performed by substi
tuting Fourier components of the form 

U.N = VN ei j 8  
1 

The phase angle 8 is a function of the wave number % and the spacing h; that is, 

The phase angle var ies  in  the range 

Substituting the appropriate forms of equation (14) into equation (13a) and assuming R 
and S to be constant results i n  

+ i(2R - 280RS) sin 28 - i(16R + 64RS) sin 8 + (1+ 20s)1 
Looking first at equation (13b), 

-	-
D =  1 

1+ 50s + 408S2 + 288R2 

10 




Since 0 < S < +m and --oo < R e +a, the denominator of equation (15b) is then always 
VN+1 

greater than zero and, thus, no singularity exists in equation (15a). Defining G = -
VN 

and noting that the Von Neumann condition for stability requires IGI 5 1, equation (15a) 
becomes 

+ 20s)2 + 2 ( 1 +  20s)(-2s + 28032 + 3 2 ~ 2 )cos 2e + 2 ( 1 +  20s)(32s + 12882 

2
+ 256R2) cos e cos 28 + (32s + 128S2 + 256R2) cos2 0 + (2R - 280RS)2 sin2 281 

7 1/2 

+ (16R + 64RS)2 sin2 6 - 2 (2R - 280RS)(16R + 64RS) sin 28 sin 

Since equation (16) is rather complicated, consider first the simpler limits as in refer
ence 4. For S = 0 and R # 0, equation (16) becomes 

The maximum value of equation (17) occurs at 8 = 0, which results i n  

(1 + 576R2 + 82944R4)
1/2 

= 1IGI = 1 + 288R2 

Equation (16) satisfies the Von Neumann stability criterion in  the limit S = 0 and R # 0. 
Similarly it can be shown that, when S # 0 and R = 0 (the maximum again occurs at 
e = 01, 

I ll I 111 I 



(1 + 100s + 3316S2 + 40800S3 + 1664648 
= 1(G I  = 

1 + 50s + 408s' 

Equation (16) satisfies the Von Neumann stability criterion in  both se t s  of limits, implying 
equation (13a) is stable for all values of Ai in the limit conditions. It w a s  determined 
by numerical evaluation that the maximum of equation (16) occurs a t  0 = 0; thus, 

+ 100s + 3316S2 + 40800S3 + 166464S4 + 576R2 

L 
82944R4 + 2880R2S + 235000R2S2) 

/ 
1/2 

_I 
1 

IGI = 
1 + 50s + 408S2 + 288R2 

and, finally, 

Equation (16) thus satisfies the stability criterion for all values of Ai and, hence, 
equation (13a) is an unconditionally stable solution for equation (2). 

Accuracy 

The formal accuracy of the linearized partial-implicitization technique, both 
schemes 1and 2, is obtained from the steady-state form of equations (9) and (13a) by 
expanding each te rm of the partially implicit-difference scheme in  a Taylor s e r i e s  
expansion about Uj. The scheme 1linearized steady-state counterpart to equation (9) is 

Substituting the Taylor s e r i e s  expansions for Uj+2 and Uj-2,making use of the linear

ized steady-state form of equation (2) , and after algebraic simplification, the following 
result  can be obtained: 

12 




The scheme 2 linearized steady-state counterpart to equation (13a) is 

(140S2 + 140RS + 16R2)Uj-2 + (128R2 + 32RS + 64S2)Uj-l 1I+i (128R2 - 32RS + 64s2)uj+l + (140S2 - 140RS + 16R2)Uj+2 
J
I 

u. = 
J 408S2 + 288R2 

Following the previously outlined procedure for scheme 1 results in 

a2 
u, -- v---

aq2 
- -34 h4UoUv + O(h6) 

aq 1170 J 

Note that the third-order truncation e r r o r s  from the second-derivative finite-difference 
relations cancel, thereby giving overall fourth-order accuracy for scheme 2. Thus, 
scheme 1 is of second-order accuracy whereas scheme 2 is fourth-order accurate. The 
increased accuracy of scheme 2 was accomplished with only a few changes to the scheme 1 
procedure. 

The formal accuracies given by equations (18) and (19) can be demonstrated numer-
ically by using the following analysis. Defining the average e r r o r  E as 

L- 1- 1 
E = -L - 2  2 IUe,j - uj1

j=2 

and assuming the average e r r o r  to be a function of the spacing h = Aq results i n  the 
following relation: 

L r l-
E = - 1 

L - 2  	
1 Ue,j  - U j /  = bhm 
j =2 

where m is the order of :he e r r o r  te rm and b is considered constant. Taking the 
logarithm of both sides of equation (20)gives 

In E = m In h + In b (21) 

The value of m is determined by the slope of the plot of In E as a function of In h. 
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NUMERICAL RESULTS 

The solution to Burgers '  equation was obtained over the interval - 5  5 5 5 with 
v = 1/8, 1/16, and 1/24 for a range of values of h. For the partial-implicitization tech
niques, the time step A i  = 1000 w a s  used because this value exceeds the value of Ai 
necessary for convergence in  the minimum number of iterations. For Kreiss'  method 
(see ref. 9), A i  was taken to be a value which did not exceed the stability criterion. The 
solutions were considered to be converged when the following criteria were met: 

The order  of accuracy of schemes 1 and 2, as well as Kreiss'  method included for com
parison purposes, was obtained from figures 2 to 4 where, from the analysis of equa
tion (2 l ) ,  the order  m was  taken as the slope of the corresponding curves. The partial
implicitization results indicate that the scheme 1technique is of second-order accuracy 
and the scheme 2 technique is of fourth-order accuracy, thus verifying the formal accu
racies given by equations (18) and (19). The fourth-order Kreiss technique is more accu
rate in  t e rms  of the average e r r o r  than the fourth-order scheme 2; but, the explicit nature 
of scheme 2 offers a number of advantages, particularly for vector processing computers. 
In tables 1to 3 representative results are presented which reflect the relative accuracies 
seen in  figures 2 to 4 for scheme 1, scheme 2,  and Kreiss'  method. Both of the fourth-
order  accurate techniques give considerably better results,  compared with the exact solu
tion, than the second-order accurate method of scheme 1. This is particularly true for 
the smaller  values of v and la rger  values of h which imply larger  cell Reynolds 
numbers. 

From the solutions presented in  tables 1to 3, it can be observed that scheme 1gen
erally produces a steeper wave than does the exact solution, whereas scheme 2 produces 
a more diffuse wave. This observation leads to the possibility of combining the difference 
relations of schemes 1 and 2 so that a wave more closely resembling the exact solution 
could be calculated. Assuming new finite-difference relations of the linearly combined 
form results i n  a solution referred to as scheme 3. Since 

Scheme 3 = a(Scheme 1)+ (1 - @)(Scheme2) 

then the e r r o r  t e rms  in  equations (18) and (19) involve CY linearly. Next, setting a 
such that the derivative e r r o r  t e rms  through the fifth are ze ro  results i n  the functional 
form 

14 
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where p1 and p2 are constants to be Gterminei from numerical solutions. By vary
ing CY over a range of values, the resulting average e r r o r s  can be plotted as a function 
of CY to determine that value of CY which gives the minimum e r r o r  for  each Rc. Fig
ure  5 demonstrates just such a procedure. By calculating a number of CY values cor
responding to the minimum e r r o r s ,  the constants i n  equation (22) can be evaluated. The 
best-fit results are given by p1 = 7 and 82 = 0.88 so that 

C Y =  R: 

7 + 0.88Rc2 (23) 

Equation (23) is plotted in figure 6 along with values of a determined from e r r o r  mini
mums. Equation (23) was used to determine the appropriate values of LY and the test 
cases  were rerun; these results a r e  given in the last column of tables 1to 3. It is 
immediately apparent that scheme 3 is always more accurate than schemes 1and 2, 
particularly a t  larger  cell Reynolds numbers. At these large cell Reynolds numbers the 
combination of second-order-accurate and fourth-order-accurate schemes gives a fourth-
order result, indicating that the lower order truncation e r r o r s  may not be a true measure 
of what is occurring. The approximate fourth-order accuracy can be seen in figures 7 
to 9. 

The number of iterations to convergence varied from a minimum of 26 for scheme 1 
with v = 1/24 and h = 0.1042 to a maximum of 1159 for scheme 3 with v = 1/8 and 
h = 0.0521. For the conditions of tables 1to 3, scheme 1consistently took the fewest 
iterations whereas scheme 3 took the most. However, a more meaningful relationship is 
to compare the iterations to convergence for a given e r r o r  level. From table 3, scheme 3 
took 114 iterations for h = 0.2083 to converge to a n  accuracy of 1.3860 X and 
scheme 1took 660 iterations for h = 0.0521 to converge to a comparable accuracy of 
1.2621 x Scheme 2 took only 89 iterations for h = 0.2083 to converge to an accu
racy of 2.2395 X which is in  the range of the just-mentioned two cases. Thus, since 
schemes 2 and 3 do not require six t imes as many operations per step as does scheme 1, 
i t  appears that for a given level of accuracy, the higher order  techniques are more 
efficient. 

15 
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......- .. . .. .... 

CONCLUDING RE MARKS 

The second-order-accurate partial-implicitization numerical technique has been 
modified with little complication to achieve fourth-order accuracy yet retain the uncon
ditionally stable explicit feature of the method. The resulting fourth-order method still 
retains the desirable features fo r  application to vector processing computers. In addition, 
an observation was made that at coarse grid spacings a linear combination of the second-
and fourth-order schemes produces a more accurate result. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
July 8, 1975 
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TABLE 1.- SOLUTIONS TO BURGERS' EQUATION FOR V 1/24 

B Exact 
steady-state

solution 

-1.2500 1.00000 
-1.0417 1.00000 

-.E333 .99995 
-.6250 .99945 
-.4167 .99331 
-.2083 .92414 
0 .50000 

~. -
E - _ _ _ _ -

B Exact 
steady-state

solution __ 
-1.2500 1.00000 
-1.0417 1.00000 

-.E333 .99995 
-.6250 ,99945 
-.4167 ,99331 
-.2083 .92414 
0 ,50000 
-
E - -_- - -

B Exact 
steady-state

solution 

-1.2500 1.00000 
-1.0417 1.00000 

-.E333 .99995 
-.6250 .99945 
-.4167 .99331 
-.2083 .92414 
0 .50000 
-
E -_----

(a) h = 0.2083; CY = 0.500; Rc = 2.5 

U 


(second-order
accurate)  

(fourth-order
accurate)  method 

1.00000 1.00013 0.99919 
1.00000 1.00056 1.00162 
,99985 1.00153 ,99691 

1.00137 1.00090 1.00590 
. 9 8 ~ 0  .98113 .98180 

1.12500 .E6568 ,95055 
.50000 .50000 ,50000 

8.8688 X 3.1649 X 2.1574 X 

Scheme 1 Scheme 2 Kre iss '  

(b) h = 0.1042; CY = 0.186; Rc = 1.25 

U 


Scheme 1 Scheme 2 Kre iss '(second-order (fourth-order method 
_-

1.00000 1.00000 1.00000 
1.00000 1.00000 1.00000 

.99999 ,99998 ,99995 
,99985 ,99965 .99944 
,99717 .99402 .99322 
.94944 ,91887 ,92415 
.50000 .50000 .50000 

1.6221 X 3.6103 X 5.5105 X 

accurate)  accurate)  

(C) h = 0.0521; CY = 0.0532; Rc = 0.6250 

U 

Scheme 1 
(second-order

accurate)  

Scheme 2 
(fourth-order

accurate)  
Kre iss '  
method 

1.00000 1.00000 1.00000 
1.00000 1.00000 1.00000 

.99997 .99996 ,99995 

.99957 .99946 .99945 

.99436 .99335 .99330 

.92999 .92391 .92415 

.50000 .50000 .50000 

3.8364 X 10-4 2.2888 X 3.3731 x 

Scheme 3 

(linearly combined 


form) 


1.00000 
1.00008 
1.00057 
1.00208 
.99884 
,92383 
,50000 

3.9081 x 

Scheme 3 
(linearly combined 

form) 

1.00000 
1.00000 

,99998 
.99969 
.99473 
,92413 
.50000 

1.7380 X 

Scheme 3 

(linearly combined 


form) 


1.00000 
1.00000 

.99996 

.99946 

.99340 

.92423 

.50000 

1.4873 X 10-5 
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TABLE 2.- SOLUTIONS TO BURGERS' EQUATION FOR v = 1/16 

[ z + U o G =aU "I 
(a) h = 0.2083; Q = 0.294; Rc = 1.667 

-. _- . . . . . .  . . . . .  

U 
- .. -. .~. __ 

11 	 Exact Scheme 3 
steady-state Kreiss '  (linearly combined 

solution method 
- -....... . .  .. .-_ - -. . _ _  - -. form) 

-1.2500 0.99995 1,00000 1.00009 0.99990 1.00003 

-1.0417 .99976 1.00000 1.00032 .99987 1,00018 
-.8333 .99873 .99993 1.00018 .99840 1.00029 
-.6250 .99331 ,99925 ,99442 .99381 ,99701 
-.4167 ,96555 .99180 .95750 .96359 ,96803 
-.2083 .84113 .91667 ,81639 ,84835 .83507 
0 ,50000 .50000 ,50000 ,50000 ,50000 

. .-_. -.-- ._____ _ _-
E _ _ _ _ - _  4.3483 X 10- 6.3338X 

- - .. - - .  

(b) h = 0.1042; CY = 0.0912; Rc = 0.8333 

. - - _. . - ........... .~ ._.--

U 
-__ -. -_ ~- _. . ..... .. . 

11 Exact Scheme I Scheme 2 Scheme 3 
steady-state

solution accurate)  accurate)  method form) 
.......... 

0.99995 0.99991 0.99996 0.99995 0.99996 
.99976 .99986 .99978 .99976 ,99978 

(second-order (fourth-order Kreiss' (linearly combined 

-.8333 .99873 ,99917 ,99878 ,99872 --r .99882 
,99331 .99515 .99344 ,99329 ,99360 

-.4167 .96555 .97206 ,96544 ,96553 ,96604 
-.2083 ,84113 .85503 .83925 .84137 ,84059 

....... 
.50000- . -

,50000 
- .  

,50000 
, . . . . . . . . . .  

,50000 

1.0409 X 
.. 

1.1081X lop4
.-



(c) h = 0.0521; Q = 0.0243; Rc = 0.4167 

11 Exact Scheme 1 Scheme 2 Scheme 3 
steady-state (second-order (fourth-order ::Ed' (linearly combined 

.. - - . . .  - - .~-

-1.2500 0.99995 0.99996 0.99995 0.99995 0.99995 
-1.0417 .99976 .99979 ,99976 .99976 .999?6 
-.8333 .99873 .99885 .99873 .99873 .99873 
-.6250 .99331 .99378 .99331 .99331 .99333 
-.4167 .96555 .96716 ,96555 .96555 .96559 
-.2083 ,84113 .84441 .84102 .84114 .84110 
0 .50000 .50000 .50000 .50000 .50000 

solution accurate) accurate) form)  

_ _  ___ - -. ._~-
E 2.5364 X 6.6485 X 9.8238x 1 O - l  4.4013 X 

~. . 
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TABLE 3.- SOLUTIONS TO BURGERS' EQUATION FOR Y = 1/8 

(a) h = 0.2083; Q = 0.0912; Rc = 0.83333 

U 

Exact 
steady-state

solution 

Scheme 1 
(second-order

accurate) 

Scheme 2 Kreiss'(fourth-order methodaccurate) 

Scheme 3 
(linearly combined 

form) 

0.99515 0.99344 0.99329 0.99360 

.98413 ,98830 .98484 .98471 .98511 

-.8333 .96555 .97206 .96544 .96553 .96604 

-.5250 .92414 .93474 .92333 .92418 ,92434 

-.4161 .84113 .85503 .a3925 .84137 .84059 

-.2083 .69706 .I0833 .69506 ,69748 .69613 

.50000 .50000 .50000 .50000 ,500001 1.3860 X 

(b) h = 0.1042; = 0.0243; Rc = 0.4167 

U 
_ _ ~~ ~ . .  

Exact Scheme 1 Scheme 2 Kreiss' Scheme 3 

solution accurate) accurate) form) 

-1.2500 0.99331 0.99378 0.99331 0.99331 0.99333 

-1.0417 .98473 .98564 .98474 .98473 .98416 

-.a333 .96555 .96716 .96555 .96555 .96559 

-.6250 ,92414 .92670 .92411 .92414 .92416 

-.4167 .84113 ,8444 1 .84 102 .84114 .a4110 

- .2083 .69706 ,69967 ,69694 .69708 .69700 

rl 
steady-state (second-order (fourth-order method (linearly combined 

0 	 .50000 .50000 .50000 .50000 .50000 
-
E ----_- 5.0996 X 1.3361 X 1.9143 X 8.8481 X 

( C )  h = 0.0521; (1 = 0.00617; : . = 0.2083 

U 

v Exact 
steady-state 

solution 

Scheme 1 
(second-order

accurate) 

Scheme 2 
(fourth-order

accurate) 
Kreiss' Scheme 3 

(linearly combined 
form) 

-1.2500 0.99331 0.99343 0.99331 0.99331 0.99331 

-1.0411 .98473 .98496 .98413 .98473 .98473 

-.8333 .96555 .96596 .96555 .96555 .96556 

-.6250 .92414 .92418 .92414 .92414 .92414 

-.4161 .84113 .84194 .84112 .84113 .84113 

-.2083 .69106 .69110 .69105 .69106 .69106 

0 .50000 .50000 .50000 .50000 .50000 
-
E 1.2621 X 10-4 8.1648 x lo-' 1.2053 X 10-7 5.5139 X 10" 



Lw 

0 


-1 -.8 - . 6  -.4 - . 2  0 .2  .4 .6 .8 

rl 

Figure 1.- Exact solutions to Burgers' equation. 
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Figure 2.- Average e r r o r s  from solutions to Burgers’ equation for v = 1/24. 
(The abbreviation PI indicates partial implicitization.) 
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Figure 3.- Average e r r o r s  from solutions to Burgers '  equation for Y = 1/16. 
(The abbreviation PI indicates partial implicitization.) 
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Figure 4.- Average e r r o r s  from solutions to Burgers '  equation for v = 1/8. 
(The abbreviation PI indicates partial implicitization.) 
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Figure 5.- Average e r r o r  as a function of the free parameter from 
solutions to Burgers' equation. v = 1/24; L = 49; R, = 2.5. 
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Figure 6 . - Variation of the free parameter with cell Reynolds number. 
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Figure 7.- Average e r r o r s  from solutions to Burgers’ equation for v = 1/24. 
(The abbreviation PI indicates partial implicitization.) 
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Figure 8.- Average errors from solutions to Burgers’ equation for v = 1/16. 
(The abbreviation PI indicates partial implicitization.) 
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Figure 9.- Average errors from solutions to Burgers' equation for v = 1/8. 
(The abbreviation PI indicates partial implicitization.) 
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