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TECHNICAL MEMORANDUM X-64939

LIMIT CYCLE ANALYSIS OF LARGE SPACE TELESCOPE WITH
CMG NONLINEARITY

I. INTRODUCTION

The purpose of this investigation is to study the existence of self-sustained oscilla-
tions in the Large Space Telescope (LST) system due to the presence of nonlinear gimbal
friction of the control moment gyroscope (CMG), if it is used as the momentum exchange
controller for LST [1,2]. A continuous-data, single-axis model of the LST control sys-
tem is considered with the CMG nonlinearity modeled as shown in Rigme 1. One of the
major differences seen in the various dynamic models of the CMG is in the accurate
representation of the nonlinear friction characteristics of the CMG. The runningring frict,-)n
of the gimbal axis consists of tachometer brush friction and the hysteresis drag which is
associated with the brushless do permanent-magnet torque motor. These frictional torques
do not have significant effect oil 	 motion gimbal-rate control loop performance, other
than the power loss required to overcome the drag torque. However, the accurate repre-
sentation of these torques for small motion has a pronounced influence oil 	 gimbal-
rate control loop small-motion performance. Whereas these effects have been second order
for most previously reported systems, their effect is significant for the highly accurate per-
formance requirements of LST. Therefore, the accurate modeling of these torques is
essential in predicting the existence of limit cycles and the control loop response to very
low level commands.

Using the solid friction model reported in Reference 3, a mathematical model of
the CMG friction nonlinearity is derived for continuous describing function analysis. It is
shown that the input-output characteristics of the nonlinearity are only a function of the

Figure 1. Single-axis model.



l

amplitude A of the input sinusoid and the nonlinearity parameters. A continuous describ-
ing function N(A) is derived for the CMG nonlinearity, using the analytical frictional
torque expression, and conditions for self-sustained oscillations are determined analytically.
For the expected nominal values associated with CMG and LST parameter, all 	 of
limit cycle behavior is predicted. Digital computer simulations have been carried out to
corroborate the analytical results.

II. A SINGLE-AXIS MODEL OF THE LST CONTROL SYSTEM

A simplified single-axis model of the LST fine-pointing control system is shown in
Figure I. The block diagram represents a simplified version of the LST control system
obtained by neglecting the bending modes of the vehicle and the current loop and back
emf of the CMG. However, the results of this report call 	 extended to more complex
system models without difficulties.

The transfer function G 5 (s) denotes the vehicle dynamics of the LST as a single
inertia I. The dynamics of the CMG are also modeled by a single inertia with the trans-
fer function G 4 (s). The transfer functions G 2 (s) and G^(s) represent the CMG gimbal
controller. The torsional feedback of the CMG output axis has been neglected. The block
N denotes the CMG gimbal friction nonlinearity. The assumed characteristics of the non-
linearity are described and mathematically treated in the next section.

The controller for the LST vehicle is represented by the transfer function G, (s)
which is of the proportional-plus-derivative (attitude-attitude rate) type. Since the objec-
tive of this report is not the design of the LST system, this conventional form of G, (s)
is chosen for the purpose of computer sinndation. It can be shown that the controller
G, (s) is optimal in the sense of pole-placement design without the nonlinearity. Simula-
tion results show that the system's response is quite satisfactory with this controller.

A list of symbols that describe the 'LST system variables and parameters, together
with their numerical values, is given in Table 1.

III, MATHEMATICAL MODEL OF THE CMG FRICTIONAL NONLINEARITY

The running friction of the gimbal axis of the CMG consists of both the tachometer
brush friction and the hysteresis drag, which is associated with the brushless dc permanent-
magnet torque motor. These frictional torques do not have significant effect oil

 gimbal-rate control loop performance other than through the power loss required
to overcome the drag torque. In ordinary control system practice, these frictional charac-
teristics call 	 either modeled as viscous or coulomb frictions or totally neglected if the
amplitude of the frictional torque is relatively small. However, because of the fine-pointing
accuracy and stability requirements of the LST system, accurate representation of the
frictional torque becomes extremely important. For fine-pointing studies of the LST, the
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TABLE 1, LST SYSTEM PARAMETERS

Variable Description Magnitude

H CMG Angular Momentum 271 Nms

I Vehicle Inertia 1.354 X 10 5 Nnis'

IGE Ghnbal Inertia 5.0 Nnns2

K I Gimbal Rate Loop Integral Gain 1.354 X 101 Nni

Kp Gimbal Rate Loop Gain 379 Nms

Aa Vehicle Controller Coefficient 2 X 101 (rad/s)'l

A i Vehicle Controller Coefficient 3 X 101 (rad)''

C Error Input Command to CMG 0.136 Nm

Tf Torque Output of Nonlinearity Nm

Tre Running Friction Torque 0,136 Nm

y Gimbal Bearing Part metrr 1.871 X 10 5 (Nnis)'l

S Gimbal Position rad

E Gimbal Velocity rad/s

0 Vellicle Position rad

6 Vehicle Velocity rad/s

accurate modeling of the frictional torques is essential in predicting the existence of limit
cycles and the control loop stability when the system is subject to very low-level disturb-
ances and commands,

In this section, a mathematical model of the CMG friction nonlinearity is derived,
based on the Dahl solid friction model (3,4). The purpose of this model is that it can
be used for the continuous-data describing function analysis of the nonlinear LST system.

3
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A mathematical and simulation model of solid friction, such as that encountered in
a bearing, was reported in Reference 4. Subsequent experimental studies have indicated
that the frictional characteristics of the CNiG can be approximated by this solid friction
model. A more accurate model that has the same general characteristics as the one used
herein has recently been developed 151. However, since it is not precisely the same as
that used in References 3 and 4, studies are now underway at NASA's Marshall Space
Flight Center, by the co-authors of Reference 5, and other CMG developers, to develop
an understanding of the effects of the more precise model on CMG and LST dynamics.
If CMG output shaft friction torque versus shaft attitude (S) or altitude rate (6) were

plotted, it could be seen that the simplified model used herein yields the envelope of the
plots obtained with the model of Reference 5. Hence, it is felt (but as yet unproven)
that the limit cycle predictions yielded by using the simplified model are approximately
correct.

As indicated in References 3 and 4, the key to the simulation model is that the
frictional torque, Tf, is a function of the CMG shaft displacement, b, and can be differ-

entiated with respect to time. Thus,

dT f• _ dTf• dS _
TidS dt — Tf6

The frictional torque Tf can be generated by integrating both sides of equation (1) with 	 ;

respect to t.
B
x

In the simulation model, T^ is generated by a function generator with input Tf.

The output of the function generator is multiplied by S to give the right-hand side of
equation (1), which is then integrated to yield T f•. Figure 2 is a simulation diagram of

the CMG friction noniinearity. The input of the model is 6, and the output is T f. The
relays are necessary because T f• is sensitive to the sign of 6.

It has been demonstrated experimentally that for solid rolling friction, the rela-
tion between Tf and T f• may be approximated by a square-law expression,

IN

T•	 y(Tr - Tr ,, )'	 Tf S T f •a = 0	 Tf > Tfa 	(2)	 s

1
'S

where y is a positive consta;!t and T f•e is the nomtnlizing factor of T f•. However,

	

the frictional torque is also velocity {S) dependent, as shown in Figure 2. Therefore, 	 5
equation (2) should be written

t

Tl' = y(Tf.-Tfe 	 (3)
r
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Figure 2. Simulation of CMG friction nonlinearity,

where

Tf, = Tf sgn b	 (4)

Integrating both sides of equation (2), one obtains

5 + C = ry (Tf+ - T 1. 0	 (5)

and

8 - C = -7 (T{ - Tfo^	
b	 0	 (G)

where C is the constant of integration and

Tf = Tf+	 E	 0

= TC	 b 6 0	 (7)	
q
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1	 If one assumes a sinusoidal input for d , such as

d = A cos wt	 (8)

then

1	

^

C = A + [y(R + 1) Tfo] u
	

(9)

i
i

j	 R -a-' + (az -+1) /12 	 (10)

j	 a	 2yA't'fo U I>

and solving equations (5) and (G) for T f , one obtains

Tf = Tr = -ly(A cos wt + C)J
-,
 + Tfo	

S	 0

TC _ -[y(A cos wt - C)] -' - Tro 	 a	 0

IV. A DESCRIBING FUNCTION FOR THE CMG GIMBAL
FRICTION NONLINEARITY

In order to derive a describing function for the assumed CMG nonlinearity, one
assumes a sinusoidal input to the nonlinearity of the form of equation (8). The output
of the nonlinearity, T f , is approximated by the fundamental -,omponent of its courier
series. Since the input-output relation of the nonlincarity is symmetrical about the zero-
torquc uxis, there is no do component in the series. Thus,

Tf - T, (t) = A i sin wt + 61 cos wt	 (13)

where

2zr	 n	 21r

f Tr sin wt dwt = 
I

f Tf sin wt dwt +	 f T + sin wt dwt

0	 0	 n

(14)

6
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and

21r	 2tr
fT f cos wt dwt =	 f Tr cos wt dwt
0	 0

2a

+ 
â 

f T(+ cos wt dwt

Equation (13) can also be written as

T, (t) =	 A, 2 + B, z cos (wt • ¢)	 ,

(15)

(16)

where

0 = tali " (A,/Br)	 (17)

or in phasor notation,

T, (ica)	 A, 2 + B, 2 exp [i tan -1 (A, /Ii i )l	 (18)

The describing function is given by

N(A) = T, (iw)/S(iw) = (B, /A) - i(A, /A) = N i + iN 2 	(19)

The coefficients A, and B, can be obtained by substituting equation (12) into
equations (14) and (IS), respectively, and performing the appropriate integrations. The
results are:

-(4T fo /rr) + 22n[(C + A)/(C - A)] /aA y

_ (2Tf0 /aa)[Qn(a + -+1)2  - 2a]	 (20)

7



and

l3, = 2 [ (C/ C 2 - A2 ) - 11 /'YA

(4T fa /a)	 [a2+a+1+(a+I)	 a2 +11 /2(a+	 a 2 +1)-1	 (21)

For stability analysis, it is of interest to determine the behavior of -I/N(A). This
may be computed readily by use of equations (19) through (21), Figure 3 shows the
magnitude (db) versus phase (degrees) plots of • I/N(A) for Y = 1.871 X 10 5 , 1.871 X
106 , and 1.87 X 10 7 (Nms)- ', as the magnitude of A varies.

.60 r-

6X10'5	 6
A-10'4	

10

0

6Xti 5

	

s`	 1

	

6X10 \	 • N ,
 

,y-1.871X10 5 (Nmr)''

.60

•70

HJ
w
00 -80
C,5
w0

•90

•100

-110

w-6.5 rd/s

5X 106

i ,Y=1.871X107
N

I
.9M

0
•N,Y-7.871X106

2.0
10'^

5X10'7	0

0

PHASE (dog)

Figure 3. Plots of -I IN and G(S).

Figure 3 shows that as A aproaches zero, the magnitude of -I/N(A) in db
approaches 20 log 1 a [ I/YT f0 1 and the phase is -180 degrees, This asymptotic behavior

of -1/N(A) for small values of A may be derived analytically be expanding the
logarithmic term ill 	 (20) and using relations (7) through (9):

8
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ilm (X I /A) = 0	 (22)

A-+0

Similarly, by expanding the square root tern of equation (21) into a power series one
obtalme

lim(B I /A) = o	 (23)
A-+0

where

^(	 a = yTJ0 	(24)

Thus,

{4

1(	 lim [-1/N(A)] = lim {- [(B, /A)-i(Ar/A)])" = -1/o	 (25)
P	 A-+0	 A-+0
I

For large values of A, the value of C becomes

lim C = lim (A + 2/yTf ) = lim [A] -+	 (26)
A-*cc 	A- -o	 °	 A-wo

{
Then,

I^	 lim (A I /A) = lim (-41f fo /7rA) _ -0	 (27)
A-^co	A-"

i
and

j	

lim (B /A) _ +0	 (28)

t

9
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Thus,

lira [-I/N(A)l = -1/0 = w/-270°
	

(29)
A—k4

As shown in Figure 3, the gain-phase plots of -I/N(A) approach %/-278° as A -* oo
for all values of y and TI•o ,

Alternately, a general map of Nz versus N, (as a function of the argument A)
may be developed for use in this and future limit cycle investigations for this particular

	

form of nonlinearity (Fig. 4) [Gl, It is universal 
III

	 sense that it permits one to cUoose
any design values for Tf0 and y, and see their effect on the N 2 versus N, map.

N,
0

1	 _e

1c 1
A°ln/18 yTfo 1 LN, /ai

1X10'
1 Ni

a
10'0

NOTE: DESCRIBING FUNCTION ASYMPTOTES: ••••••
VALUES FOR A ARE FOUND FOR CURE
CURVES No, i i No. 2, RESPECTIVELY,
BY READING THE VALUE OF N 2/q FOR THE
POINT IN QUESTION AND THEN APPLYING
THE APPROXIMATION INDICATED.

Engure 4. Normalized Dahl describing function locus.

V. STABILITY ANALYSIS BY USE OF THE DESCRIBING FUNCTION

The system described in Figure I appears to be suitable for describing function
analysis because it is low-pass and the system parameters are assumed Pine-invariant. The
condition for a self-sustained oscillation in a linear system with a nonlinearity is given by

1 + N(A) G(iw) = 0	 (30)

10 t
s

_._._.._	 - .r.	 _.-_	 I



where N(A) is the describing function of the nonlinearity and G(iw) is rho transfer
function of the system which is seen by the nonlinearity, The solution of equation (30)
can be obtained graphically by plotting the G(iw) curve for the system and the -1/N(A)
curve for the nonlinearity. The point of intersection of these curves will yield the solu-
tion to equation (30). The magnitude and frequency of the oscillation corresponds to
the values of A and w at the solution point.

For the LST system in Figure 1, the transfer function which the nonlinear element
sees is

G(s) _	 ls1

IIGEs^ + IKpsa + IKlsz + kI HA l s + KIHAe

The relevant portions of the frequency-domain plot of G(s) are super-imposed
on the -1/N curves of Figure 3 in db versus phase coordinates. With y = 1.87 X 107
the -1/N curve intersects the G(s) curve at two points. ',1'he stable point for sustained
oscillations is the one on the left at the higher frequency. The approximate magnitudes
for frequencies of the oscillations are 3 X 10 -7 rad and 1.8 rad/s, respectively, for the
unstable limit cycle, and 2 X 10" s rad and 5.6 rad/s, respectively, for the stable limit
cycle. The curves in Figure 3 also show that for y considerably smaller than 1.871 X
107 , the system will exhibit a stable response.

Following the alterm;le approach begun in the previous section, limit cycle condi-
tions and characteristics may be predicted, using the parameter plane technique [6].
Specifically, one may place the describing function locus (Fig. 4) on 

all 	 , Nz param-
eter plane stability map to analyze and predict limit cycle behavior. The result is por-
trayed oil 	 5 and agrees with the stability analysis technique portrayed on Figure.

VI. SIMULATION

To corroborate these results, the LST system was simulated oil digital compuV^r. The
CMG friction nonlinearity was simulated as shown in Figure 2. For the computer simula-
tion, the input to the LS', system, Tc , was set to zero, along with all of the initial stater,
except for the vehicle position, 0 , which was set at 5 X 10

-5 rad. This value was chosen
so that the input signal to the nonlinearity, 8 , would be large enough to cause the torque
to saturate but not so large as to exceed the limiting value of the input signal. The
quantities plotted from the simulation runs are vehicle attitude and attitude rate, 0 and
0 , and friction torque. T f .

(31)
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Figure 5. NI NZ parameter plane.

Figure 6 shows the plots with y = 1.871 X 10 7 . It is observed from the plot of
Tf in Figure 6 that the system has a sustained oscillation. This oscillation is not seen on

the other plots because of the large initial transients. For this reason, the vertical scale
of the plot is adjusted (Fig. 7) to show the oscillations. The frequencies and magnitudes
of oscillations obtained are quite close to the predicted values. The small discrepancy is

partly attributed to the quantization caused by the nonlinearity implementation on the
digital computer.

Figure 8 shows the response plots with y = 1.871 X 10 6 . As predicted, the
system is stable for the lower values of y.
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x
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TIME Id

Figure 6. Simulation (y = 1.871 X 107)

VII. CONCLUSION

For numerical values considered to be representative of the LST and CMG's (if
they are used), analysis of the simplified continuous-data model with a solid friction CMG
nonlinear characteristic indicates (and analogue simulation confirms) the absence of limit
cycle behavior due to the CMG nonlinearity. It must be borne in mind that the analysis
has not yet included the dynamic effects induced by the sampling phenomena of the
onboard digital computer. Experience with past spacecraft would lead one to expect
quantization, for example, to induce limit cycling of the plant.
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