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FOREWORD

This final technical report was prepared for the Ames Research Center,

Moffett Field, Calif., by Goodyear Aerospace Corporation, Akron, Ohio,

under NASA Contract NAS2-8643, "Feasibility Study of Modern Airships. "

4 The technical monitor for the Ames Research Center was Dr. Mark D.

Ardema.

This report describes work covered during Phase I (9 December 1974 to

9 April 1975) and consists of four volumes:

Volume I

Volume II Parametric Analysis (Task III)

Volume HI - Historical Overview (Task I)

Volume IV - Appendices

The report was a group effort headed by Mr. Ralph R.

mitted in May 1975.

Summary and Mission Analysis (Tasks II and IV)

Huston and was sub-

The contractor's report number is GER-16146.
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FEASIBILITY STUDY OF MODERN AIRSHIPS

VOLUME II - PARAMETRIC ANALYSIS (TASK III)

Jon W. Lancaster*

Goodyear Aerospace Corporation

SUMMARY

Various types of lighter-than-air (LTA) vehicles from fully buoyant to semi-

buoyant hybrids were examined. Geometries were optimized for gross lifting

capabilities from 1360.8 kg to 2,721,600 kg (3000 Ib to 6,000,000 Ib) for ellip-

soidal airships, modified delta planform lifting bodies, and a short-haul, heavy-
lift vehicle concept.

Neutrally buoyant airships employing a rather conservative update of mater-

ials and propulsion technology offer significant improvements in productivity.

Advanced fabric applications for non-rigid airships offer great potential for im-
proved performance.

Propulsive lift for VTOL and aerodynamic lift for cruise can significantly

improve the productivity of low to medium gross weight ellipsoidal airships.

For large gross weights, neutrally buoyant flight maximizes productivity.

For the CTOL lifting body hybrid, no optimum ratio of buoyant lift to gross
weight, _, was found, based on productivity, between 0. l and 0.6. For all but

very large ranges the productivity of the _ = 0. 1 hybrid exceeds that of the _=

0.6 hybrid. Depending on gross weight and range, semibuoyant lifting body hybrid

vehicles can offer improved productivity relative to ellipsoidal airships, par-
ticularly at the large gross weights. However, in comparison with commercial

cargo aircraft at equal gross weight and range, their productivity appears to be
significantly lower.

The short-haul, heavy-lift vehicle, consisting of a simple combination of
an ellipsoidal airship hull and existing helicopter componentry, offers significant

potential for low-cost, near-term applications for ultra-heavy lift missions.
Results indicate useful load-to-empty weight ratios of approximately 1.0 can be
maintained to gross weights of approximately 907,200 kg (Z,000, 000 ib).

*Development engineer, Goodyear Aerospace Corporation, Akron, Ohio.
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INT RODUCT ION

One of the overall objectives of Phase I was to examine the general prin-

ciple of lighter-than-air flight as it applied to concepts leading to more efficient

vehicles. The specific objective for Task III, as specified by the statement of

work, was "to identify concepts for airships which are fully or partially buoyant

and conduct a parametric study of these concepts to investigate the tradeoffs

among aerodynamic performance, propulsion requirements, and structural re-
quirements. "

The parametric analysis was the major task activity during Phase I. The

statement of work further defined the objective of the parametric study "to opti-

mize the geometry of the families of vehicles for gross lifting capability of from
1360.8 kg to 2, 721,600 kg (3000 ib to 6, 000, 000 Ib). The scope of the study in-

cluded LTA vehicles ranging from fully buoyant to combinations of buoyant and

aerodynamic lift (hybrids). As specified by the statement of work, "specific

shapes to be considered are ellipsoidal for fully buoyant concepts and delta

planforms for hybrids."

The figure of merit for the parametric evaluation, as specified in the state-

ment of work, was "payload ton-miles per hour and range, if applicable."

BACKGROUND

Prior to the modern airship feasibility study, many years had lapsed

since detailed airship design work had been conducted other than the Goodyear-

sponsored efforts, which principally dealt with non-rigid airships.

One of the important aspects of Phase I was to evaluate the application of

modern technology for airship vehicle designs, particularly materials usage

and structural design. Conventional designs from the 1930's as well as new

or different concepts were to be considered during Phase I.
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Recent work at the NASA Ames Research Center at Moffett Field, Calif.,

had indicated that a semibuoyant, hybrid vehicle might be attractive. Prelimi-

nary studies indicated that, for the same buoyant volume, hybrid vehicles may
have several times the payload capability of fully buoyant airships. No such ve-
hicles had ever been produced or operated, however, and there was no historical

data base to permit accurate estimates of vehicle inert weights and costs. The

validity of the initial indications were, therefore, subject to question, and con-

ventional airships were retained as a base point for the Phase I study by state-
ment of work definition.

Over the years Goodyear Aerospace has developed a number of computer-

based analytical tools for continuing corporately supported research and develop-

ment in LTA technologies. Several of these programs and analyses were ideally

suited to becoming principal elements of the Goodyear airship synthesis program

(GASP) to be used during the parametric analysis of conventional airships and
adapted for the analysis of lifting body hybrid vehicles.

A second major effort was a structural design update of conventional rigid

and metalclad airship technology. This activity was prompted by several major
cons ide ration s:

I. The considerable lapse in time since detailed "rigid" airship
design work had been conducted

2. The need to assess the impact of current materials technology

and other design knowledge developed during the last several

decades in the company's non-rigid airship activities

3. Recognition of the importance of the structural design and

weight characteristics to airship performance evaluation

Preliminary comparisons of conventional airships and several hybrid con-

cepts had indicated the fundamental importance of structural efficiency and the
resulting empty weight-to-gross weight ratio (EW/GW) to vehicle productivity.



Depending on the EW/GW ratio of the hybrid vehicle visa vis the conven-

tional airship, hybrids either could be highly competitive (in terms of produc-

tivity measured in useful load times cruise velocity, UL times VC) or rather

poor.

Recognizing the critical dependency of relative vehicle productivity on

structural efficiency resulted in the following general philosophy for Phase 1:

1. The hybrid performance evaluation must be based on a sound

definition and design evaluation of the required structure and

associated empty weight

2. As a base point for comparison, the conventional airship

structural design and empty weight characteristics must be

realistically evaluated and defined employing current tech-

nology

OBJECTIVES

The objectives of the parametric analysis were as follows:

1. Optimize the geometry of a family of modern airship vehicles

with gross lifting capabilities from 1360.8 kg to 2,721,600 kg

(3000 to 6,000, 000 lb), including neutrally buoyant ellipsoidal

airships and delta planform hybrids in terms of productivity

(payload ton-miles per hour and range, if applicable)

2. Define, parametrically, the configuration and performance

characteristics of the vehicles for combination with mission

requirements defined in Task II (Reference 1)

w

SCOPE

The scope of the parametric study can be defined in terms of primary and

secondary study variables. The primary variables considered for the bulk of

the parametric optimization study consist of:

-4-



I. Configuration geometry
a. Aspect ratio and thickness ratio for delta

planform hybrids
b. Fineness ratio and type of construction for ellipsodial

airships

Z. Gross weight, GW

3. Cruise velocity, VC
4. Static lift-to-gross weight ratio, /3

5. VTOL vs CTOL (vertical takeoff and landing propulsion

capability versus conventional takeoff and landing capa-

bility}

In addition to those primary variables, several secondary variables and

design options were briefly evaluated as discussed in Appendix H of Reference 2.

I. Secondary variables

a. Design head wind,VW

b. Design altitude, h D

Z. Design options

a. Alternate buoyant gases

b. Gaseous fuel propulsion augmentation

c. Artificial superheat

d. Stern propulsion

e. Boundary layer control

f. Ballast recovery

The bulk of the parametric analysis dealt with the performance evaluation

and configuration optimization with respect to the primary study variables of

three vehicle types: conventional airships; modified delta planform hybrids,

and short-haul, heavy-lift VTOL vehicles.

GENERAL APPROACH

The overall approach to the parametric analysis consisted initially of

screening and evaluating candidate hybrid configurations that were broadly

grouped into two categories: lifting body vehicles and winged airships. A

-5-



modified delta planform lifting body configuration was selected for detailed

parametric analysis. Three types of conventional ellipsoidal airships were

retained as baseline study vehicles: rigid, pressurized metalclads, and pres-

surized fabric non-rigids. The vehicle selected for the short-haul, heavy-lift

VTOL vehicle was a simple combination of a conventional airship hull and con-

ventional helicopters. Appendix 1 of Reference 2 presents the results of the hy-

brid configuration evaluation, including the winged airship configuration results.

After the baseline study vehicles were selected, aerostatic, aerodynamics,

structural weight, and propulsion relationships were developed or finalized

based on precontract efforts for each type of vehicle.

The general methodology used for the parametric optimization procedure
is presented in Figure 1 for conventional takeoff performance evaluation.

Methodology for VTOL vehicles is presented in Figure 2.

METHODS OF ANALYSIS

To analyze the conventional airships and modified delta planform hybrid

vehicles, a hybrid vehicle and "conventional" airship synthesis program was

developed at Goodyear Aerospace using the general methodology of aircraft

synthesis programs developed at NASA Ames Research Center (References 3

and 4). Based on this methodology, the program is designated GASP (Good-

year airship synthesis program) and is shown schematically in Figure 3. The

program has been developed for compatibility with the detailed mission profile

and economic assessments required for Phase II. GASP consists of a control

program and several subroutines to perform the various tasks required for the

parametric evaluation and configuration optimization of hybrid and conventional

airships.

The program is controlled by input data that dictates the vehicle type and

takeoff option and subroutines required in each stage of calculation. Figure 3

also is an example of the processing flow through the subroutines for a delta

planform hybrid vehicle.

-6-
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The control program reads the input data and calls the geometry subroutine

to calculate the modified delta vehicle geometry as a function of gross weight,

GW; static lift-to-gross weight ratio, _; aspect ratio, AR; and thickness ratio,

(t/c); hull efficiency, rTH; lifting gas characteristics; and design altitude, h D.

After the geometry calculations are complete, the aerodynamics subroutine is

called to estimate the vehicle lift, drag, and pitching moment and aerodynamic

bending moment characteristics. Horizontal and vertical tail surface require-

ments are calculated as a function of input static stability margin (positive or

negative) or are optionally sized for static stability. The methods used in this

subroutine and all GASP subroutines are detailed in Reference 2. Once the

aerodynamics of the configuration have been established, the aerodynamic lift

x cru  orequired Turboprop

engine horsepower requirements are calculated using Hamilton Standard pro-

peller efficiencies. If VTOL is required, the propulsion system requirements

for vertical takeoff are defined and compared with the sea level installed horse-

power required for cruise. The engines are sized based on the largest sea
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level installed horsepower. Total propulsion system weight is calculated based

on bare engine weight; propeller weight; gear box weight; and a nacelle, acces-

sories, outrigger, and installation weight factor.

Depending on the input options, a conventional takeoff length can be evalua-

ted or thrust deflection requirements for a (input) short takeoff can be evalua-

ted. In addition, the structural weight subroutine is called and the vehicle non-

propulsive weight calculated and combined with the propulsion system weight

for the total vehicle empty weight.

Based on the vehicle design characteristics, a trajectory/cruise perfor-

mance subroutine is entered and the fuel required for a given design range, or

fuel consumed as a function range (or both), is calculated. A separate vertical

takeoff to horizontal flight transition analysis program,which was used sepa-

rately from the GASP during Phase I (see Reference Z),will be incorporated in

GASP by Phase II.

Based on the design and performance calculations, the figure of merit sub-

routine is called to evaluate the performance figures of merit used in Phase I.

Two different iteration loop capabilities are available for parametric analysis:

(I) a primary variable iteration loop (VC, V W, h D, GW, _, I/d, AR, t/c) and

(Z) a sensitivity variable loop. The sensitivity study allows ± K % variations

in all key design or performance variables calculated or input to the basic pro-

gram (SFC, engine weight, vertical takeoff thrust to weight, nonpropulsive

structural weight, tail area, design bending moment coefficient, design load

factor, prismatic coefficient, CDO , CL, stability margin, and design gust

velocity). An economics module will be developed for Phase II to calculate the

mission-dependent economic figures of merit and conduct the performance-

economic tradeoff studies required during Phase If.

The GASP was used extensively during Phase I. The main value of

this synthesis program is to provide reasonable estimates of conventional and

hybrid airship performance and allow consistent comparisons of vehicle per-

formance using the same ground rules, assumptions, and constraints. As

such, the program is merely a means to an end and not an end item in itself.

Its value lies in the capability to integrate the many technological interactions

defining vehicle performance. Any program is only as good as the methods
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and analysis on which the computations are based. These methods and the analy-

sis from which they were derived are briefly discussed in the following sections

and in Reference 2.

PARAMETRIC STUDY OVERVIEW

The parametric analysis constitutes a rather substantial study in itself.

Thus, the following overview of the study and material may be a helpful "road

map" to the parametric study results. Three major subsections are presented

corresponding to the three vehicle types: conventional airships, lifting body

hybrids, and the short-haul, heavy-lift vehicle.

Conventional airships are treated first. The analysis of the conventional

airships represents both a vehicle class themselves and a baseline for compari-

son with the hybrid vehicle. Hence, the results of the conventional airship analy-

sis are fundamental to intrepretation of the results of the hybrid vehicle.

The term "conventional airship" as used herein implies only a vehicle of

ellipsoidal geometry. Conventional airships are analyzed using large amounts of

aerodynamic lift for cruise flight with propulsive lift sufficient for vertical take-

off. Thus, the "conventional airships" as investigated are actually "hybrids"

in the true context of the study.

Analysis and results of the lifting body hybrid vehicle, based on a family of

modified delta planform lifting bodies, are presented following the conventional

airship results. The final subsection deals with the short-haul, heavy-lift ve-

hicle concept.

Each subsection is organized in a similar manner. A design description

is presented following by a discussion of the key elements of the technical analy-

sis used in the study. This discussion generally follows the logic employed in

the synthesis program: geometry, aerodynamics, propulsion, and structural

weights. The final portion of each subsection presents the results of the para-

metric analysis of the vehicle type or class. Reference 2 gives further details of

the GASP methods of analysis.
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CONVENTIONAL AIRSHIPS

Three basic types of conventional airships were analyzed:

rigids, conventional (pressurized fabric envelope) non-rigids,

metalclads.

conventional

and pressurized

Design Description (Conventional Rigid}

Figure 4 shows the general design features of a conventional rigid air-

ship.

The outer shell of a conventional rigid airship is made up of longitudinal

and shear wires covered by an impregnated cloth supported by the longitudinals

and flutter tie wires. The internal structure consists of (1) main frames that

compartment the airship and distribute such concentrated loads as would ori-

ginate from the keel structure, outriggers, and fins to the shell structure and

(2.) intermediate frames that are spaced between the main frames and serve as

struts between the longitudinals assisting them in connection with the shear

wires to maintain the longitudinal rigidity of the airship. The lifting gas is

contained within fabric cells located between the main frames. These cells

transmit the gas pressure loads to gas bag wires to the longitudinals located on

the surface of the shell, and to the bulkhead wires located in the plane of the

main frames.

In this parametric study, the girders and trusses that make up the longi-

tudinals, main frames, intermediate frames, empennage frames, and empen-

nage longitudinals will be made from 7050 aluminum alloy. The fabric compo-

nents will be made from coated dacron; the wires will conform to Federal

Specification QQ-W-470b.

The principal structural components and key structural design assumptions

are presented below. The structural components are:

1. Main frames

2. Axial gi rde r

3. Intermediate frames
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4. Longitudinals

5. Shear wires

6. Outer cover and outer cover wires

7. Gas cells and gas cell wires

8. Empennage and cruciform

Main Frames

Wire-braced rings will be used that, in effect, act as a spoked wheel. The

circumference of the wheel consists of triangular aluminum girders (see Figure

5). The main frames serve two principal functions: (1) distribute concen-

trated loads to the outer shell and (2) restrain the gas pressure loads that oc-

cur if there is an accidental deflation of a gas cell on one side of the main frame.

Axial Girder

In order to reduce the loads to which the main frames are subjected in the

deflated cell condition, an aluminum axial girder is connected to the hub of the

wire braced main frames. This permits the radial wires to transmit a portion

of the gas pressure load to the axial girder rather than to the ring of the main

frame, thus resulting in a weight savings.

Intermediate Frames

Unlike the main frames, the intermediate frames are not wire braced and

consist simply of a ring structure. The cross-section of the ring is similar to

the main frame in that it consists of a triangular girder. Since the loads to

which the intermediate frames are subjected are not as great as those of the

main frames, the size of the intermediate frame girders is smaller than that

of the main frame.
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Figure 5 - Triangular Aluminum Girders (Main Frames)



Together with the longitudinals and the diagonal shear wires, the inter-

mediate frames form a shear panel. The intermediate frames, therefore, are

subjected to shear loads in addition to gas pressure loads.

Longitudinals

The longitudinals also are aluminum triangular girders similar to those

employed in the main and intermediate frames. Their principal function is to

provide the bending strength needed in the airship. The bending moments pro-

duce axial loads in the longitudinals. The longitudinals a]so resist bending

loads resulting from the gas pressure and aerodynamic pressure transmitted

to them by the gas cells and outer cover, respectively.

Shear Wires

In this study it has been assumedthat the shear wires aremade from hard

wire (Federal Specification QQ-W-470B). It is conceivable that in the larger

sized airships stranded cables may be required. The shear wires provide the

necessary shear strength. They are attached to the intersection points of the

longitudinals and intermediate rings.

Outer Cover and Outer Cover Wires

The outer cover is a synthetic material having the tradename of Ceconite.

This material has the advantage over cotton cloth in that the material can be

made taught by the application of heat, thus requiring fewer finish coats of

dope.

To prevent fluttering of the outer cover and to reduce the tensile stresses

in the fabric and the bending stresses in the longitudinals, the outer cover is

supported at intervals by outer cover wire stretched between the intersection

points of the longitudinals and intermediate frames (see Figure 4).
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The purpose of the outer cover is to form a smooth aerodynamic surface

and to transmit the aerodynamic pressure loads to the shell structure.

Gas Cells and Gas Cell Wires

The gas cells consist of coated dacron fabric. They are placed between the

main frames and are free to expand or contract with changes in temperature and

altitude. To keep the stresses in the gas cell fabric to a minimum, the cells

are supported at frequent intervals by a network of gas wires and netting {see

Figure 4).

Empennage and Cruciform

The empennage is of conventional construction and consists of aluminum

trussed frames and longitudinals covered with a coated fabric (see Figure 4).

To reduce high bending loads in the supporting rings, a cruciform construction

will be used.

Pressurized Metalclad

General

The pressurized metalclad airship combines some structural features of

the non-rigid airship and some of the rigid airship. The metalclad obtains its

bending and shear strength through the pressurization of a metal hull. The

empennage structure is similar to that of the rigid airship.

The metalclad transfers the car structure loads into the metal hull skin

through the use of frames rather than an internal and external catenary system.

Any concentrated loads such as those that would result from engine and out-

rigger loads also are transferred to the metal hull skin through the use of

frames.
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The frames are similar in construction to those employed on the rigid air-

ships. The metal skin is assumed to be made from 7050 alclad aluminum

sheet.

Three types of metalclad airships were considered:

I. A pressurized and compartmented airship has the safety

feature that permits the airship to operate if one compart-

ment is damaged and loses pressure.

Z. A pressurized metalclad with ballonets. This type is

basically a metal "non-rigid" airship. While it has main

frames to transmit loads, it is not compartmented. Con-

sequently, the main frames do not have to be designed for

a deflated cell condition.

3. A pressurized metalclad with gas cells is similar to Type

2 except that it eliminates the ballonets and substitutes gas

cells.

Metalclad 1

Main Frames - The main frames of the metalclad serve the same function

as the main frames of the rigid airship. They will be of the same construction

as used in the rigid airships (a wire-braced ring). Compartmentalization will

be obtained by covering the main ring with a fabric diaphragm.

Intermediate Frames - These frames are of the same construction as that

used on the rigid airship. Their function is to maintain the shape of the hull

during construction and to act as vertical stiffeners in the tension field beam

condition that occurs in the deflated compartment condition.

Longitudinal - The longitudinals are of the same construction as that used

on the rigid airship. The function of the longitudinals is to help maintain the

shape of the hull during construction and to provide bending strength in a de-

flated compartment condition.

Ballonets The ballonets will be of coated cloth construction. Since the

airship is compartmented by the main frames, the ballonets will have to be
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located between the main frames. They will be of cylindrical construction and

attached to some solid structure in the airship such as the keel.

Outer Cover - The outer cover will be of 7050 aluminum alclad sheet. No

minimum gage constraints are included in the metalclad weight equations.

Empennage - The empennage will be the same type of construction as that

used in the rigid airships.

Metalclad 2

Metalclad 2 will use the same type of construction as that used for Metal-

clad 1 except that since compartmentalization is not required the fabric dia-

phragms on the main frames will be eliminated. As a result the main frames,

the longitudinals, and the intermediate frames will not have to be designed for

the deflated cell condition.

Metalclad 3

Metalclad 3 will use the same type of construction as that used for

Metalclad 2 except that the ballonets will be eliminated and the gas cells

substituted.

Non-rigid Airship (See Figure 6)

The non-rigid hull obtains its bending and shear strength through the pres-

surization of a fabric envelope; the car loads are transferred to the envelope

through an internal and external suspension system.

The internal suspension system (see Figure 6) consists of a series of

steel cables extending from the car structure to a catenary cable, which in

turn is attached to a fabric catenary curtain that distributes its load to the

envelope through a double Y seam. The principal function of the internal sus-

pension system is to transmit the vertical component of the car loads into the

envelope.
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Figure 6 - Typical Non-rigid Airship Design

The external suspension system attaches to the outside of the envelope.

Its principal function is to transfer the longitudinal components of the car loads

into the envelope structure. These components arise principally from pitched

flight, propeller thrust, and landing gear drag loads. It also supports a por-

tion of the vertical component of the car loads. The construction of the external

is similar to that of the internal system except that the cables are much shorter

in length and there is no need for a double Y seam.

The envelope of existing non-rigid airships is generally a two-ply neoprene

coated fabric consisting of one straight ply and one bias ply. The seams are

cemented and sewn. The envelope is pressurized to where it can resist all

design flight conditions without wrinkling.

The mooring loads are transferred to the envelope through a nose cone

and a system of battens (see Figure 6); the battens are aluminum tubing. The

nose cone is of typical aircraft construction. The battens serve the additional

function of preventing the nose from caving in during high-velocity flight.
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The empennage consists of aluminum trussed frames and longitudinals

covered with coated Ceconite fabric. The fins are attached to the envelope at

their base and are supported by brace wires that extend from the outer portion

of the fin to a tangent point on the envelope cross-section, where they attach

to a catenary curtain that distributes their concentrated load into the envelope.

The car structure is of conventional aircraft construction.

CONVENTIONAL AIRSHIP AERODYNAMICS ANALYSIS

Aerodynamic drag characteristics for conventional airships utilized in the

GASP are based on Goodyear's data base of airship drag data, both model scale

and full scale. The basic drag area expression for a complete airship is

(CDoS)total = (C D S)hull + (C D S)fins + (C D S) engines &
o o o

outrigger

+ (C D S)ca r + (C D S)misc
o o

where (C D S)hull _- Cf + 1.5 t- 7 S W,
o

and

d/l = the inverse of the vehicle fineness ratio, length/
diameter,

S W = total hull wetted area

The component drag area contributions generally are expressed as percent-

age contributions of (C D S}hul I with the K factors based on experimental and
o

full-scale data of past airships as discussed in Reference Z. Cf is the Schoenherr

frictional resistance coefficient. Vehicle volume to the 2/3 power is utilized for

the aerodynamic reference area.

Aerodynamic lift estimates are based on the data of Reference 5. Tabulated

values of angle of attack, alpha versus lift coefficient, C L, are used due to

the highly nonlinear characteristics of airship lift.
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Drag due to lift also is based on the data of Reference 5, which is approx-

imated with sufficient accuracy as

2

CDi = 0.9 C L

GASP also calculates the aerodynamic bending moment, MA, based on the

input gust velocity (35 ft/sec unless otherwise defined) and the bending moment

coefficient formulation discussed in Reference 2.

Fin area requirements are calculated as a function of fineness ratio to

satisfy a stability index criteria utilized in a broad spectrum of successful rigid

and non-rigid airships.

Further details of the conventional airship aerodynamics methodology em-

ployed in the GASP are presented in Reference 2.

PROPULSION ANALYSIS (PERFORMANCE)

The propulsion analysis used in the GASP for both the conventional airships

and hybrid vehicles is based on momentum theory and is modified by the use of

propeller efficiency. The propeller efficiencies are based on data supplied by

Hamilton Standard (Appendix F of Reference 2).

Horsepower required for the desired cruise velocity, at altitude, is first

calculated. Sea level installed horsepower is determined assuming normal

cruise power is 80 percent of the installed power.

If VTOL is required, the propulsion requirements are calculated from the

lift thrust requirement. A vertical thrust 20 percent in excess of the gross

weight minus static lift is used for VTOL engine sizing. Based on an examination

of vehicle characteristics in Reference 6 combined with expected engine-out

takeoff safety requirements, a minimum of four engines is allowed for VTOL

vehicles. Based on the 20 percent takeoff thrust-to-weight factor, four-engine

minimum, and expected degree of partial buoyancy of the VTOL vehicles, engine

cross-shafting should not be required and was not assumed in the Phase 1

parametric study.
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The maximum sea level installed horsepower requirement (cruise or

VTOL) dictates the engine power requirements. Turboprop engines were used

throughout the bulk of the parametric study. Engine specific fuel consumption

was based on data for the General Electric T64 turboprop. Propulsion perform-

ance estimates were coordinated with the Hamilton Standard Division of United

Aircraft Corporation.

PROPULSION SYSTEM WEIGHTS ANALYSIS

Bare engine weight estimates were derived from Reference 7. In the

3000 horsepower and greater range, this data is some 25 percent higher than

weight-per-horsepower data for the GE T64-S4DIS turboprop Model Ell76,

and therefore may be slightly conservative.

Shaft torque is calculated at takeoff and is used to calculate gear box weight

based on the data of Reference 8. Propeller weights are based on data supplied

by Hamilton Standard.

Engine installation, accessories, nacelle weight, and an outrigger weight

penalty are estimated to arrive at the total propulsion system weight estimate.

Further details of the propulsion system performance and weights analysis used

in the GASP are presented in Appendix F of Reference 2.

STRUCTURAL WEIGHTS ANALYSIS

No other single technology or perhaps even combination of technologies is

of greater significance to the design and performance of airships than structural

efficiency: adequate strength at minimum weight. Burgess in Reference 9 states:

"The design of airships, particularly of the rigid type, is mainly a structural

problem; and theoretical aerodynamics has nothing like the relative importance

which it bears in airplane design."

Total vehicle empty weight or empty weight-to-gross weight ratio, EW/GW,

is one of the most important factors in modern airship performance, either con-

ventional or hybrid. Indeed, as will be shown in the parametric analysis results,

it is the dominant factor in the configuration/performance optimization study.
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With the current propulsion technology representing almost an order of

magnitude improvement since the last rigids, the total vehicle nonpropulsive

empty weight or structural weight becomes the driving factor in vehicle empty

weight and hence performance.

Goodyear fully appreciates the importance of structural design and struc-

tural weight to the success of modern airships. Structural weight estimating

equations for each type of conventional airship were updated using current mater-

ials technology plus the information gained during the last several decades in

company-sponsored efforts on airship R&D and operations. The objective was

twofold: First, to update the structural design data base to provide a starting

point or baseline for furtherinvestigations of the cost effectiveness of more ad-

vanced structural design concepts (such as composite structures) and, second,

to parameterize the resulting structural design and weight characteristics into

a detailed set of weight estimating equations for the GASP during the Phase I

study.

Much of the original structural weight estimating relationships were derived

by Mr. K. Bauch (Reference 10) with the direction and consultation of Dr. K.

Arnstein. Because of the overwhelming importance of the structural weight

characteristics and structural weight estimating relationships to the configura-

tion/performance optimization and tradeoff study results, this technology area

was emphasized during the Phase I study.

The complete derivation of the weight estimating relationships (WER's) for

each type airship is presented in Appendix D of Reference 2 and summarized

in Tables I through V.

TABLE I - WEIGHT ESTIIVIATING RELATIONSHIP, WER SUMMARY:

RIGID AIRSHIPS

Main frames

Intermediate frames

Diagonal wires

W 1 = {a + bpv)V4/3(L/D)-4/3

W 2 = [CMA{L/D)-2/3V -1/3 + dV +

pvl/3(L/D)- l/3] [6. 2762V1/3 ( L/D )Z/3-11 ]

W 3 = K1M A + KzV4/3(L/D)2/3
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TABLE I - WEIGHT ESTIMATING RELATIONSHIP, WER SUMMARY:

Longitudinals

Outer cover

Outer cover wires

RIGID AIRSHIPS (CONT'D)

W4 : K3MA(L/D 7 + K4V4/3(L/D)Z/3

W 5 = K5VZ/3(L/D)I/3pl/2v

W 6 = K6VZ/3(L/DTI/3pv 2

Gas bag wires and

netting

Gas cells

W 7 = K7V

W 8 = VZ/3[Ks(L//D 71/3
+ K9{L/D ) -2/3 ]

Gas valves
W 9 = K10V

Stern and bow
W10 = KllV

Misc gas cells,
valve s Wt 1 = KIzV

Misc hull weight W1Z

Empennage and WI3
cruciform

Corridors, control W14 =
car, crew quarters

KI3V

K 14uvpV 1/3( L/D )- ltt3A

K15V1/3(L/D 72/3

-Z4 -

Mooring and handlingW15

Effect of flight heaviness

Main frames WI6

Intermediate frames W 17

Diagonal shear W18
wires

= K16V

= K17H

= KlsHV1/3{L/D 7-1/3

6. 2762VI/3(L/D )2/3_

= K19HV1/3(L/D 7Z/3

ill



TABLE I - WEIGHT ESTIMATING RELATIONSHIP, WER SUMMARY:

whe r e*

Longitudinal

Misc hull weight

RIGID AIRSHIPS (CONT'D)

WI 9 = K20HVI/3(L/D). 5/3

W20 = K21H

V = volume

L/D = length/maximum diameter

M A = aerodynamic moment

p = mass air density

v = airship velocity

u = gust velocity

H = airship heaviness

a,b, c,d = constants

K I-K21 = proprietary constants

TABLE II - NON-RIGID AIRSHIP WER SUMMARY

Envelope

Suspension system

Bow stiffening

Ballonets and air

line s

Miscellaneous

envelope

W 1 = KTVZ/3(L/D)I/3{K8VI/3(L/D)-I/3

K9V-I(L/D)MA + KIoVI/3(L/D)-I/3 +

Kll pvz + K12] + K13 }

W z = Kl4PV + KI5PVVZ/3(L/D)I/3

W 3 = KI6V

W 4 = KI7V

W 5 = KI8V

*Nomenclature also applies to Tables II through V.
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TABLE II - NON-RIGID AIRSHIP WER SUMMARY (CONT'D 1

Empennage W 6 = K 19AuvpVI/3(L/D}-I/3

Pressure system W 7 = KzoV

Car structure and W 8 = KzIPV + KzzpvVZ/3(L/D) I/3
outriggers

Landing gear W 9 = KV

Effect of heavy W H = Kz9H [KgoV1/g{L/D}5/3 + 1]
flight

TABLE III - METALCLAD i WER SUMMARY

Main frames W _"

Intermediate frames W =

( a + bpv)V4/3{L/D) -4/3

[cM40(L/D )-2/3V1/3 + dV]

[6.

Longitudinals W = KIM40{L/D }

Outer cover

Gas diaphragm

Gas valves

Stern and bow

W _-"

W _.

W =

W =

V [K 5 V - 1(L/D }M A

KTPV 2 + K8]

K Z V2/3( L/D )-2/3

K10V

KIIV

+ K6VI/3( L/D )-l/B

Misc gas cells,
valve s

W = KIzV

Misc hull weight W =

Empennage and W =
c rucifo rm

Control car, corridors W =

K13V

K 14uvpV 1/3( L/D )- 1/3A

K15V1/3(L/D )2/3

w

N
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TABLE III - METALCLAD I WER SUMMARY (CONT'D 1

Mooring and handling

Pressure system

Ballonets and air

lines

Effect of flight
heaviness

W = KI6V

W = KZ0 V

W = KI7 V

W H : H[K4V1/3( L/D)S/3 + Ks]

TABLE IV - METALCLAD 2 WER SUMMARY

Main frames W =

Intermediate frames W =

Longitudinal

Outer cover

l/Z(a + bpv)V4/3(L/D) -4/3

1/4(a + bpv)V4/3(L/D) -4/3

[6.z76zvl/3(L/D)z/3- l]

W = K,M40(L/D)

W = V[K 5V-I(L/D)M A

+

K6V1/3(L/D)- I/3

Gas valves W = KI0 V

Stern and bow W = KI1V

Misc gas cells,
valves

Misc hull height

Empennage and
c rucifo rm

Control car, W =
corridors

Mooring and handling W =

Ballonets, air lines W =

Pressure system W =

Effect of flight W H =
he avine s s

W = K12 V

W = K13V

W = K14uvpV1/3(L/D)-I/3A

KI5VI/3(L/D )Z/3

KI6V

KI9V

K 2 0V

H[K4V1/3(L/D)5/3 + K5]
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TABLE V - METALCLAD 3 WER SUMM_/kRY

Main frames W =

Intermediate frames W =

Longitudinals W =

Outer cover W =

Gas cells W =

Gas valves W =

Stern and bow W =

Misc gas cells, W =
valve s

Misc hull weight W =

Empennage and W =
cruciform

Control car W =

Mooring and W =

handling

Pressure system W =

Effect of flight W H =
he avine s s

1/2(a + bpv)V4/3(L/D)-4/3

1/4(a + bpv)V4/3(L/D) -4/3

[6.
K1M40{L/D)

V [K 5 V - l(L/D )MA

K7Pv2 + K8]

+

K 1 0 V

KllV

KI2V

Kl3 V

Kl4UVpVl/3(L/D )- I/3 A

KI 5V I/3{ L/D )2//3

KI6V

K 2 0 V

H[K4V1/3(L/D)5/3 + K5]

+ K6V1/3(L/D)-I/3 +

CONVENTIONAL AIRSHIP PARAMETRIC ANALYSIS

Introduction

The parametric performance analysis and configuration optimization study of

conventional airships is basedon the geometrical, aerostatic, aerodynamic, propul-

sion, and structural weights analyses of the preceding subsections and Reference Z.

The results of the conventional airship parametric analysis provide not only a basis
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for comparison with the delta planform hybrid vehicle results but also provide

insight into the fundamental interactions of aerodynamics, aerostatics, pro-

pulsion, and structural efficiencies that result in "optimum" airship perform-

ance.

A few words of elaboration are worthwhile at the outset regarding the word

" optimum". Reference is frequently made throughout this section to "optimum"

_, "optimum" Vc, and "optimum" (I/d). At best, the results represent local

rather than global "optimums" and a more accurate description would surely be

"the value of a given parameter (say VC) that maximizes the specified figure of

merit for the specified set of conditions and constraints." A great many fac-

tors influencing the performance of airship vehicles have not been included in

this limited analysis. Admitting these limitations and true implication of

"optimum, " it is nonetheless used frequently throughout this section for the

sake of brevity in discussing the results.

The major portion of the conventional airship parametric analysis dealt

with five primary variables over the following range of values:

i. Type of construction (rigid, non-rigid, pressurized

metalclad)

2. Gross weight, GW (from 2268 kg to Z, 721,600 kg, or

5000 to 6, 000, 000 ib)

3. Static lift-to-gross weight ratio, _(I.0 to 0.2)

4. Cruise velocity, V C (36. 04 m/s to 92.66 m/s, or 70

knots to 180 knots)

5. Fineness ratio, length/diameter, I/d (3 to 8)

Initially, the criteria or figure of merit for the Phase I study was produc-

tivity in terms of useful load times cruise velocity normalized by empty weight

(useful load ton-miles per hour per ton empty weight), UL X Vc/EW. This

figure of merit was chosen as a rough measure of operating income relative

to acquisition cost. Range is not included in this figure of merit. This was

purposely done to eliminate range as an independent variable in the configura-

tion optimization tradeoff study. The configuration performance/optimization

results are strongly dependent on range. Failure to incorporate range (fuel

consumption) into the performance evaluation will result in misleading and/or
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erroneous results. Thus, the bulk of the final parametric study results is pre-

sented in terms of payload ton-miles per hour at specified range values.

The overall approach to the conventional airship parametric study was as
follow s:

I. Optimize vehicle fineness ratio for rigid and non-rigid ve-

hicle over the gross weight range. Figure of merit (FOM)

for fineness ratio optimization study equals (UL X Vc/EW)

2. Determine the best productivity metalclad of the three types

discussed in the structural design description and optimize

the fineness ratio for this vehicle.

3. Determine the"optimum"_ and VC; that is, the _ and V C

for maximum productivity for each of the three vehicle

types over the range of gross weights where the particular

type of construction appears most competitive.

4. Compare the overall performance of the three types of

construction.

The type of construction (rigid, pressurized non-rigid, and pressurized

metalclad) concepts have essentially been included as primary study variables,

rather than as design options as specified in the statement of work. The justi-

fication for this approach is that few questions have created more controversy

during the history of ETA as "which type of LTA construction is best over which

range of gross weights or volumes." The results in this report will not resolve

this question. The complete answer can only be obtained once a specified set

of mission requirements has been defined and all factors considered that ulti-

mately determine the worth of one concept versus another. These factors must

include not only the acquisition cost, operating cost, and total life cycle cost or

return on investment but also all critical problems unique to LTA vehicles;

ground handling, cargo transfer, flight control and handling characteristics; and

adaptability to the many promising advanced technology design options such as

boundary layer control, stern propulsion, and artificial super heat.

Thus, the final answer to which construction concept is best must ulti-

mately be resolved via more detailed economic/mission analysis studies. How-

ever, the performance analysis results that follow offer considerable insight
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into the relative performance capability of the alternative design/construction

approaches described in the preceding subsection. In many cases, distinct re-

gions are indicated where one concept appears superior to the others for the

specified figure of merit. In this respect, the subsequent analysis of the con-

ventional ETA vehicles is possibly unique in ETA history.

The three major construction/design approaches are compared on an equal

basis using comparably derived weight equations, propulsion systems, aero-

dynamic, and aerostatic relationships over a gross weight (volume) range from

virtually the smallest manned vehicle, to sizes with gross lift approximately

equal to the Saturn V launch vehicle. In the critical technology area of struc-

tural weight estimating relationships, the equations used in the analysis prob-

ably are the most detailed and comprehensive ever assembled for a "head-to-

head" comparison based on equal design assumptions and constraints. The re-

sults offer a uniform and unbiased starting point for further evaluation in the

detailed mission/economic analysis in Phase IIand subsequent studies.

There is an additional purpose to the detail of the analysis and results pre-

sented on the rigid airship. The modified delta planform hybrid discussion fol-

lowing the conventional airship discussion has many structural design simi-

larities to the conventional rigid airship. Thus, the results of the rigid air-

ship heaviness tradeoff studies will be used extensively to interpret the results

of the hybrid optimization study.

Fineness Ratio Tradeoff Study

The first parameter considered in the conventional airship configuration

optimization study was vehicle length-to-diameter or fineness ratio, 1/d. Base-

line assumptions for this perfor_nance evaluation are listed below:

I. Neutrally buoyant airships

2. Turboprop propulsion

3. Design altitude, h D = 1524m (5000 ft)

4. Unit gas lift Ap = 0.9932 kg/cu m {0. 062 Ib/cu ft): helium at

94 percent purity

5. Wind velocity, V W = 0
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.

7.

8.

Conventional propellers

Propeller efficiency _p =

Hull efficiency, _]H

a. Rigid, _?H = 0.94

b. Metalclad, _H =

c. Pressure fabric,

0.9

lifting gas volume
external hull volume

0.97

= 1.0
_H

9. Neutrally buoyant flight maintained whenever static lift

equals vehicle gross weight by consumption of internal

lifting gas

Initially, it was felt that some computer expense could be saved by running

the basic data at zero wind speed, AV w = 0, and "hand" calculating the cor-

rection to the FOM as a function of wind speed. This proved much to time

consuming, and the design wind speed was changed to 7. 722 m/s (15 knots) for

all performance evaluations subsequent to the conventional airship fineness

ratio study.

Initial results of the (l/d) runs indicated that the pressurized airship (l/d)

range of interest should be limited to 3 to 4.5 and for the rigid about 4 to 8.

At the low fineness ratios, horizontal and vertical tail size must be increased to

achieve acceptable stability. Lack of inclusion of the increased tail area require-

ments would result in erroneous vehicle empty weight data and possibly affect

the optimum fineness ratio results. Tail area requirements are calculated in

the GASP to maintain a constant stability index as discussed in Appendix E of

Reference 2.

The results of the I/d tradeoff study for the rigid and pressurized fabric

analysis are shown in Figures 7 and 8, respectively. The following conclu-

sions can be drawn from these figures;

I. The optimum I/d for rigid airships is primarily a function

of gross weight or volume.

2. The optimum I/d for pressurized (dacron) fabric airships

is very insensitive to either volume or velocity.
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Figure 7 - Conventional Rigid Airship Fineness Ratio Study Results

3. In the region of I/d optimum for any given gross weight,

UL X VC/EVV is relatively insensitive to changes of I/d on

the order of +0. 5

For the non-rigid pressurized fabric, UL X VC/EW continues to increase

over the study gross weight range with only a slightly reduced rate at the largest

gross weights. As discussed in the structural weights section, a new seaming

approach is required for pressurized fabric airships above approximately

339, 840 cu m (IZ X 106 cu ft), or about 272, 160 kg (600, 000 Ib).

The "optimized" UL'Vc/EVV for the rigid and pressurized non-rigid fabric

is compared in Figure 9 as a function of gross weight. In terms of UL'Vc/EW,

the rigid becomes superior at 45, 360 kg (i X I05 ib). At larger gross weights

equal to or greater than Z7Z, 160 kg (600, 000 ib), the non-rigid will require a
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Figure 8 - Pressurized Fabric Airship Fineness Ratio Study Results

J

new seaming technology and hence is shown only as a dashed line subject to

further fabrication technology development.

At the larger gross weights, the rigid airship unit performance begins to

degrade somewhat due to the dependence of several major structural weight

categories on volume to the 4/3 power.

Metalclads, I/d Optimization Study

The three metalclad construction airships were analyzed on the same

basis as the rigid and pressurized fabric airships. The results for Metalclad 2

are shown in Figure i0, which shows that the optimum I//d is again primarily

dependent on volume and independent of velocity. The clear superiority (in

terms of UL'Vc/EW ) of the construction approach in Metalclad 2 is shown in

Figure 11.
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Comparison of the metalclad UL'Vc/EW with the rigid and non-rigid re-

sults also indicates that Metalclad Z appears very promising, in terms of the

UL'Vc/EW figure of merit, in the intermediate gross weight range.

The final resulting "optimum" (i/d) for conventional rigid (R), pressurized

dacron non-rigid (D-NR), and pressurized metalclad (Metalclad 2) is presented

in Figure iZ. For the D-NR, (I/d) optimum is 3.25+0.2.5 for all volumes.

For the rigids, (I/d) optimum increases considerably with volume, and Metal-

clad 2 displays a combination of both vehicle characteristics based on the struc-

tural design description of the preceding subsection.

Figure

10

_}

0
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12 - Optimum Fineness Ratio for Neutrally Buoyant Airships as a

Function of Gross Weight

-36-



The basic pressurized non-rigid weight equation was modified for the mater-

ial characteristics of a Kevlar envelope. The (I/d) values from the dacron en-

velope results were used to calculate the UL'Vc/EW performance capability of

the Kevlar non-rigid. The final optimized UL'Vc/EW for the rigid, dacron, and
Kevlar non-rigids and Metalclad Z are compared in Figure 13 as a function of

GW. ro clearly illustrate the relative structural efficiency of the basic construc-

tion types, the vehicle structural weight-to=gross weight characteristics are com-
pared in Figure 14.

In calculating these vehicle performance values, two changes were incorpor-

ated in the baseline performance assumptions:

i. Wind speed, V W = 7.722 m/s (15 knots)

2. Design speed, V D = I. 08 (cruise speed)

When a cruise speed such as V C is defined, it is the relative groundspeed

into a head wind of VW.

The importance of structural efficiency, Wstr/Wgross , to airship perfor-

mance was discussed earlier. In addition, several key observations can be

made from Figure 14.
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Figure 13 - Neutrally Buoyant A!rship UL-Vc/EW
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Figure 14 - Neutrally Buoyant Airship Structural Efficiency Comparison

1. Vehicle structural weight-to-gross weight ratios of 0.4

or less can be achieved over a very large gross weight

range.

2. Vehicle structural efficiency definitely improves as

gross weight is increased up to some "optimum" gross

weight and then slightly decreases as gross weight is

increased. The reduction in structural efficiency (in-

crease in Wstr//GW) is not extreme of the study gross

weights range.

3. Each type of airship construction appears to be "opti-

mum" from a UL'Vc//EW or structural efficiency stand-

point over some gross weight range.
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The increase in the metalclad EW/GW at the intermediate gross weights can

possibly be explained by the nature of the structural design concept assumed

and the "optimum" (I/d) found for Metalclad 2. Per the structural design de-

scription, Metalclad 2 is a pressurized airship similar to a non-rigid (optimum

l/d_3. Z5) incorporating several structural components of a rigid airship whose

optimum (l/d) increased significantly with gross weight. At low (1/d)'s, on the

order of 3 to 4, and large gross weights, the rigid airship components are

considerably "off optimum" as shown in Figure 7. Several important qualifica-

tions must be added to the above conclusions.

First, a best or optimum construction approach cannot be defined on the

basis of structural efficiency alone or on the basis of any "performance only"

figure of merit.

The true "best" vehicle must be defined on the basis of cost effectiveness,

cost benefit, or rate of return on investment considering all aspects of the
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vehicle life cycle or total cost, R&D cost, and performance capability for a

specified mission or spectrum of mission and operational requirements. Fur-

ther considerations, such as ground handling, manufacturing and assembly con-

siderations, and safety, must be considered in the ultimate selection of one type

of construction versus another.

Second, the data of Figures 12 and 14 should not be considered as the best

achievable technological capability for future airships. Fhese data are intended

to represent a reasonable update of airship technology based on rather conven-

tional structural design and materials concepts. As such, they become a point

of departure or baseline from which to evaluate more advanced structural de-

sign/material applications such as advanced composites and filament structures.

One such approach, a sandwich monocoque rigid airship, was briefly analyzed

near the end of Phase I and is discussed at the end of this subsection. Regarding

some of the more exotic structural design and material concepts, however, these

technologies can only be thoroughly evaluated on a cost effectiveness basis rela-

tive to the more conventional construction for a specified set of mission require-

ments and economic figures of merit.

Finally, no minimum gage constraints have been included in the WER's and

will change the rigid and metalclad results at the low gross weights.

Conventional Airship Heaviness Tradeoff Studies Based

on UL" Vc/EW

The original plan for the heaviness tradeoff study for conventional airships

was to consider static lift-to-gross weight ratios, _, of 0.9 to 0.8. Preliminary

results in Figure 15 for the rigid airship over this range indicated that continued

improvements might result in the UL. Vc/EW figure of merit if lower _'s were

considered for rigids of gross weight less than 907, 200 kg {2 × 106 Ib). For the

larger rigids, heavy flight reduced the performance. Typical results of reducing

to 0.65, 0.5, and 0. 3 are shown in Figure 16.

The results of Figure 16 were somewhat unexpected: optimum /3's of approx-

imately 0. 3 or less for an Akron gross weight airship and optimum cruise

velocities of approximately 77.22 m/s {150 knots). Similar trends were being
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obtained for some of the early hybrid WER checkout runs that were just getting

underway. Several possible reasons for these results were considered:

i. Improved horsepower per unit weight of turboprop propul-

sion reducing the importance of propulsion system re-

quired horsepower, hence vehicle drag, hence cruise

speed.

2. Higher cruise speeds allowing more efficient use of aero-

dynamic lift (lower cruise lift coefficient and drag due to

lift) for a given heaviness.

3. A transportation productivity figure of merit much different

from measures of worth traditionally used in airship de-

sign.

4. A transportation productivity figure of merit independent

of range.

A few calculations of the payload ton-miles per hour at given range incre-

ments for the Akron size airship clearly demonstrated the importance of range

of the "optimum" /3 and V C. Therefore, range was a parameter in the final /3

and V C optimization runs.

The first three reasons appear, however, to be quite valid.

Conventional Airship Heaviness Optimization Study Based on Payload

Ton-Miles Per Hour as a Function of Range

Recognizing the sensitivity of the optimum /3 and V C to range, the range

capabilities as a function of gross weight for neutrally buoyant, /3 = I. 0, air-

ships were reviewed in conjunction with the expected mission-related perfor-

mance requirements. This resultedinthe"design" range values for figure of

merit evaluation shown on the next page.
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Gross Weight Design Range for FOM Evaluation

kg l___b ( statute mile sl*

z, 268 5, 000 o, 100

18, 144 40,000 O, 500, 1500

181,440 400,000 O, 1500, 5000

907,200 2 X 106 O, 3000, 5000

2,721,600 6 × 106 O, 3000, 5000

Vertical takeoff was assumed for all heavy airships via tilting turboprops.

The complete set of baseline design and performance assumptions for the "final"

/3and V C optimization study are listed below:

I. Tilting turboprop engines for VTOL

2. Conventional propellers using Hamilton Standard propeller

.

4.

.

performance data

Propeller efficiency, T]p

Hull efficiency:

De sign altitude

= 0.90

NR; _7H = I. 0

MC; _H = 0.97

R; _ H = 0.94

= 1524 m (5000 ft)

6. Wind velocity = 7. 72 m/s (15 knots)

7. Propulsion sized for maximum sea level installed horse-

power required for cruise or for VTOL requirements,

whichever is greater

8. Thrust to weight (weight heaviness = (I-/3) × gross weight) =

I. 2 at takeoff

9. Neutrally buoyant flight maintained if achieved during flight

by consumption of internally stored buoyancy control gas

(see Appendix H of Reference 2)

10. Vcruise - Ground speed into 7. 72-m/s (15-knot) headwind

II. Vdesig n = Design speed for structural weight calculations =

I. 08 N cruise velocity {V C + VW)

km/SM equivalents are i00 SM =

2413.5 kin, 3000 SM = 4827 kin,

160.9 km,

5000 SM =
500 SM = 804.5 kin,
8045 kin.

1500 SM =
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12. Optimum fineness ratio as defined in fineness ratio tradeoff
studie s

13. All nonstatic lift required for cruise supplied by aerody-

namic lift; no propulsive lift component during cruise

Rigid Airships

Typical results for a 18, 144-kg (40, 000-1b) gross weight conventional rigid

are presented in Figure 17 and are summarized in Figure 18 in terms of payload

ton-miles per hour as a function of cruise velocity at specified values of range
and beta. The trend of FOM with respect to /3 is not changed by including range as

a parameter although the optimum cruise velocity is reduced. Specifically, for

this "low" gross weight airship, productivity in payload ton-miles per hour or

useful load ton-miles per hour per ton empty weight increases significantly as

is reduced.

As shown in Figure 18, for this "small" airship, even to ranges of 1500

miles, the optimum ;3trend is to zero; that is, the optimum productivity FOM

vehicle configuration is converging to all propulsive lift for VTOL and all aero-

dynamic lift for cruise.

As will be discussed at the conclusion of this subsection, this trend is pre-

cisely what should be expected. In fact, this result is one of the most interesting

interactions of aerodynamic, acrostatic, structural, and propulsive efficiencies

identified as a result of the parametric study.

Figure 19 presents representative results of the variation of payload ton-

miles per hour for a large gross weight rigid airship as a function of range, VC,

and /3. Two observations should be made from this figure. First, at range = 0,

the FOM trend with ;3 is the same as for a small airship. However, this trend

is rapidly reversed at larger ranges and further substantiates the require-

ment for a range-dependent FOM. At reasonable ranges for an airship of

this size, heavy flight does not improve productivity but rather reduces it. This

fact is clearly indicated in Figure 20, where the maximum productivity for two

large gross weight airships is presented as a function of range and _. Heaviness

offers no FOM improvement at 2, 721,600 kg (6 X 1061b). At 907,200 kg
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(2 X 106 Ib), only at approximately zero range does FOM increase with heaviness.

In general, for the large airships, heaviness only reduces the productivity. This

result can again be traced to the comparative interactions or structural, aero-

dynamic, and aerostatic efficiencies.

Thus, in going from small to large rigid airships, the optimum trend of the

productivity FOM with /3reverses. At small gross weights, _ pays at all ranges;

at large gross weights, /3 pays only at 0 range. The crossover is clearly

illustrated in Figure 21 for a 181,440-kg (400, 000-1b) gross weight airship. As

shown, at any finite range, a /3will exist that will maximize productivity. Of

further interest is that for this medium size (Akron gross weight) rigid airship,

some degree of initial heaviness is desirable for even extremely long ranges.

Figure 22 summarizes the optimized productivity capability, including the effects

of heaviness and range, for rigid airships over the study gross weight range.

For some of the parametric results, particularly for the pressurized metal-

clad and rigid airships, minimum gauge constraints may modify the results pre-

sented - particularly at the low gross weight, low beta combinations. These con-

siderations will be explored more fully in Phase II.

Pressurized Airships

Fabric Airships. - Representative results of the parametric analysis of the

effects of /3and V C and range on FOM for pressurized fabric airships (both

dacron and Kevlar envelopes) are presented in Figures 23 and Z3A for low gross

weight vehicles. The data trends are similar to those for the rigid vehicles.

Again, the potential of the Kevlar envelope is illustrated. A productivity

figure of merit is probably not pertinent to the extremely low gross weight air-

ships. Probable missions for these small vehicles will likely be of a surveillance

or platform nature and, as such, an endurance figure of merit is most appro-

priate. This is discussed further under the alternative FOM subsection.

Metalclad. A similar sample of the V C, /3, and range FOM data is pre-

sented in Figures 24 and 25 for a pressurized metalclad at 18, 144-kg (40, 000 Ib)
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gross weight. Again, the data trends are quite similar to those for both the
rigid and pressurized fabric airships.

Figures 26 and 27 present the optimum V C and optimized productivity of

the three different pressurized vehicles at 2268 kg, 18, 144 kg and 181,440 kg

(5000, 40, 000 and 400, 000 Ib) gross weights.

Possibly the most reasonable conclusion to be drawn from these two figures

is the general similarity of the behavior between the three types of vehicles.

Cruise velocities for maximum productivity are very nearly the same at any

given range and _ indicating that neither type is particularly more sensitive to

velocity than any other. At 18, 144 kg (40, 000 ib) gross weight, the metalclad

is slightly superior to the Kevlar non-rigid. At low gross weight, only a very

slight difference exists between the Kevlar and dacron non-rigids in productivity

FOM. At 181,440 kg (400, 000 Ib) gross weight, the I<evlar NR is superior to

the metalclad at all _'s greater than 0. 35. For range = 0, _ optimum tends to

zero but at a range of 2413 km (1500 mi), _ optimum is approximately 0.6.

A final comparison of rigid, pressurized fabric {Kevlar envelope), and pres-

surized metalclad is presented in Figure 28 in terms of useful load ton-miles

per hour as a function of gross weight at _ = 1.0 and at _ = 0. Z. This data is

for optimized vehicles in terms of (I/d) and V C at zero range. At /3 = 0. Z, the

three airship types are essentially equal in productivity with the metalclad being

a mild optimum in the 18, 144 kg to 181,440 kg (40, 000 to 400, 000 ib) gross weight

range. At _ = l {neutrally buoyant vehicles), the metalclad and Kevlar non-

rigid are approximately equal up to approximately 68, 040 kg (150, 000 Ib). Above

this gross weight, the Kevlar non-rigid is superiorup to the limits of seaming

technology of approximately Z7Z,160 kg (600, 000 Ib). Above this gross weight,

the neutrally buoyant conventional rigid is the superior construction choice.

In Figure 28, the UL-Vc/GWis approximately constant as a function of GW

for the three types of airship construction, both at _ = 1.0 and at _ = 0.2.

Conventional Airship Heaviness Tradeoff Study Results

Improved productivity potential results from aerodynamic lift augmented

cruise for small gross weight airships. At large gross weights, heaviness
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appears to offer no improvement in productivity. The following discussion

offers a brief explanation of the origin of these results.

At small vehicle gross weights, aerostatic lift is doubly inefficient, in

terms of productivity, compared witheither aerodynamic lift (for cruise) or

propulsive lift {for VTOL). That is, in terms of useful lift per unit gross lift

(i.e., 1 - Wstr/GW ) and in terms of lift per unit drag, (L/D). Useful lift is

simply defined as lift available for propulsion, fuel, and payload after the

structural weight required to provide the static lift has been subtracted from
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the gross lift. Figure4 shows the useful static lift (I - Wstr/GW ) is low for

small airships. Figure 29 further illustrates the useful lift efficiency as a

function of volume.

In terms of lift to drag, the basic volume/volume to the 2/3 power relation-

ship, combined with the reduced friction drag at large Reynolds numbers, clearly

dictates large vehicle sizes for efficient use of aerostatic lift. This fundamental

relationship is also clearly shown in Figure 29. Conversely, at low gross weights

(small volumes for neutrally buoyant airships), aerostatic lift is comparatively

inefficient, yielding lift to drag ratios of only 3 to 6 for volumes under 28, 320

cu m (one million cubic feet) and speeds of 51.48 m/s (I00 knots).

Thus, at low gross weights, the_ trend for optimum productivity is toward

zero as indicated in Figures 16 and 18. Some degree of buoyant lift may be de-

sirable, however, if other factors such as noise and fuel consumption are considered.

The results illustrate the fundamental interactions of aerostatic, aerody-

namic, propulsive, and structural efficiencies for a productivity related figure of

merit. The driving factor in these results is structural weight and the variation

of structural weight with _. The following discussion illustrates the interactions

of the various efficiencies.

First, in order to understand the origin of the productivity-beta trend over

the study gross weight range, recall the study methodology.

The most important ground rule of the methodology in the Phase I tradeoff

study is that vehicle performance or produdtivity is compared on an equal gross

weight basis; not an equal volume or equal payload, etc. Thus, for a given ve-

hicle gross weight, as _ is reduced the vehicle size (volume) is reduced.

Figure 30 shows the interactions between structural, aerodynamic, and pro-

pulsive efficiencies for a 18, 144-kg (40, 000-1b) gross weight conventional rigid

airship at a constant V C of 51.48 m/s (I00 knots).

Figure 30A shows the relationship between payload ton-miles per hour and

at 500-mi range. The FOM increases steadily as _ is reduced and the optimum

V C tends to higher values (V C optimum) inversely proportional to _. This trend

continues even to large ranges as presented in Figure 18.

J
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Figure 30B shows the structural weight variation with /3. Figure 30C illus-

trates the linear reduction of volume with /3 and the 2/3 power reduction in

wetted area. Figure 30D presents various normalizations of structural weight

as a function of _. As shown, the structural weight-to-gross weight ratio is

decreasing significantly. This variation is the most dominant effect in the para-

metric study, not only of "conventional airships" but also the hybrid vehicles
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W

discussed in the following subsection. One further observation should be made

in Figure 30D: the structural weight per unit hull volume increases significantly

as 13is reduced. That is, the structural density is increasing significantly and,

in fact, the airship becomes heavier than air even without the engine weight.

Figure 31A shows that total lift-to-drag ratio is actually increased by flying

heavy down to a j3 _0.65. Below this point, total L/D is reduced. Nonetheless,

productivity continues to increase. The two data points in Figure 31A indicating

the total drag decrease as a cruise velocity is increased from 51.48 m/s (I00

knots) to 72 m/s (140 knots). Fhe reason for this is shown in Figure 31B. At
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51.48 m/s (I00 knots), the vehicle must fly (initially) at 15 deg angle of attack to

provide the aero lift required for cruise. At 72 m/s (140 knots), the (initial) 0/

required is only =I0 deg (a value very close to the aerodynamic maximum L/I),

0/_ II deg) with a corresponding reduction in drag due to lift since drag due to

lift is a C L squared function which, at constant aerodynamic lift, varies with

the fourth power of velocity ratio.

Figure 31C shows the initial fuel consumption rate as a function of _3, corre-

lating as expected with the total drag in Figure 31A. Figure 31D illustrates the

true promise of heaviness for the small airship size: Payload to EW ratios of

l. Z5 at 804.5-km (500 mi) range with a VTOL vehicle with a 8150-kg (18, 000-1b)

payload capability.
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From the above discussion and the data presented in Figures 30 and 31, the

following conclusions seem justified for "small airships":

I. Structural efficiency is by far one of the most important

driving functions for optimum productivity.
2. Total lift to drag and fuel consumption rate are of much

lesser importance.

3. Several factors interact positively to favor low _'s for
small semibuoyant vehicles:

a. Their aerostatic lift-to-drag ratio is poor at low
volumes due to the large wetted area-to-volume
ratios.

b. Their structural efficiency {Wstr/Wgross) can be
significantly improved (reduced) by reductions in
volume, even though the structural weight per unit
volume is increased.

An alternate way to summarize the tradeoff study results of the use of aero-
dynamic lift versus neutrally buoyant flight for small gross weight airships is as
follows.

Aerostatic lift at small volumes is relatively inefficient. Aerodynamic lift-

to-drag ratios comparable to the aerostatic lift-to-drag capability can be ob-
tained, at extremely low _@'s,even with the relatively inefficient aerodynamic

shape of the ellipsoidal airships. Even at _ = 0.2, the airship remains of con-

siderable size, with a projected planform area of 2220 sq m (24, 000 sq ft) for

the 18, 144-kg (40,000-1b) gross weight airship. Hence, a pseudo-wing loading,

aerodynamic lift over projected plan area, is extremely low: 8. Z kg/sq m

(_i. 33 ib per square foot) of projected plan area.

The size of the vehicle is, however, small compared with a neutrally buoyant
vehicle of the same gross weight. In essence, small vehicles weigh less than

large vehicles. Although the weight per unit volume approximately doubles as

is reduced from 1.0 to 0.2, the volume has been reduced by a factor of 5. Hence,

the total structural weight is reduced by approximately 2. 5 at a constant gross

we ight.

At the opposite extreme of the study gross weight range, aerodynamic lift

or heaviness was in general shown to offer no improvement in productivity. This
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result can again be traced to interactions of the fundamental structural, aero-

dynamic, and aerostatic efficiencies. Consider a 907, 200 kg (Z X 106 ib) gross

weight vehicle of approximately 113, I00 cu m (40 X 106cu ft): at this volume,

aerostatic lift is close to its optimum efficiency in terms of useful lift as shown

in Figure 29. Furthermore, the aerostatic lift to drag ratio is on the order of

30 to 50 for velocities on the order of 51.48 to 36.04 m/s (I00 to 70 knots), re-

spectively.

The maximum aerodynamic lift to drag at 51.48 m/s (i00 knots) would be on

the order of 4 + (depending on /3), a small percentage improvement.

Structurally, however, the structural weight penalty due to heavy flight in-

creases significantly with vehicle size (volume and length). Figure 32 compares

this weight penalty as a function of volume for conventional rigid airships.
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Figure 32 - Conventional Airship Structural Weight Sensitivity to 13
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Representative values are:

Volume

cum cuft

5,664 200,000

28,320 1,000,000

283,200 I0,000,000

% increase in structural weight

for /3decrease from I. 0 to 0.2

40

II0

350

The trends are noted from the figure to be essentially the same for each

of the three types of airships, with the rigid being slightly less sensitive to aero-

dynamically heavy flight.

Thus, in going from small to large airships, the optimum trend of the pro-

ductivity FOM with /3 reverses. At small gross weights, a low value of 13pays

at all ranges; at large gross weights, _'s less than 1.0 improve productivity only

at 0 range. The crossover, for intermediate gross weights, is clearly illus-

trated in Figure 21 as a strongly range-dependent phenomenon. At any finite

range, a /3 will exist that will maximize productivity.

Advanced Ellipsoidal Airship Concepts

The promise of the pressurized metalclad airship, particularly when com-

bined with modern materials technology, has been briefly discussed in References

II, 12, and 13. This, plus the parametric analysis results of the more conven-

tional airship structural design concepts, led to the conceptual design evaluation

of a honeycomb sandwich airship concept near the end of Phase I. This effort

was virtually a competitive design study - self-contained and separate from the

major parametric analysis. The analysis and results are presented in their

entirety in Appendix G of Reference 2.
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The purpose of the analysis was to establish the range of parameters in

terms of airship size, design speed, and fineness ratio that lead to an acceptable

hull weight fraction for a sandwich monocoque design. A representative value

for the hull and empennage weight for a 2, 832, 000 cum (i00, 000, 000 cu ft) air-

ship is 929, 000 kg (2, 054, 000 ib).

The following components need to be added to arrive at a total structural

weight figure:

I.

2.

3.

Pressure control system - 206, 500 kg (455, 000 ib)

Control car, crew quarters, etc. - 13,600 kg (30, 000 ib 1

Wstrtot = I, 148, 000 kg (2,539,000 Ib)

4. WstrJWgross = 0.48

The structural weight-to-gross weight ratio of 0.48 is comparable to 0.43

for a conventional rigid airship at the same gross weight or volume. However,

these values are not exactly comparable due to different (higherl empennage

weight estimate used in the monocoque airship analysis. In addition, several

conservative assumptions, discussed in Appendix G of Reference 2, could result

in a lower structural weight fraction upon further analysis.

The conclusions resulting from the analysis indicate that a large rigid airship

constructed as a monocoque sandwich shell exhibits a (structural) weight empty

fraction comparable to small airships of conventional construction. Minimum

gage considerations tend to limit this approach to very large airships.

The sandwich shell of the 2,830, 000 cu m (100, 000, 000 cu ft) airship ex-

hibits a bending stiffness equivalent to an oak plank 1.64 in. thick. Even at

the minimum gage limit, the plank thickness for equal stiffness is 0.82 in. In

addition, the airship shell is the dominant weight term of the three major com-

ponents studied.

In summary, this approach warrants further consideration than was possible

within the constraints of this study, particularly for very large airships. The

analysis of this concept and preliminary results are presented in Appendix G of

Reference 2.
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PARAMETRIC ANALYSIS OF HYBRID VEHICLES

Ove rview

The parametric analysis of the hybrid vehicles began with a review of many

hybrid configurations proposed or under study by various investigators. These

configurations could be broadly grouped into two classes: winged airships and

lifting body vehicles of the general type originally developed for the NASA/DOD

space and re-entry efforts. In order to select one or more promising configura-

tions for the detailed structural design and empty weight analysis required for

realistic evaluation of the concept, an initial configuration screening and evalua-

tion study was performed. This screening broadly dealt with the two classes of

hybrid vehicles: lifting bodies and winged airships.

This exercise resulted in the selection of a modified delta planform lifting

body for the baseline point design and structural weight parameterization.

Critical structural design conditions were defined and detailed pressure dis-

tributions were developed for the vehicle. A design layout was developed, and

preliminary airloads, shear, and moment distributions were defined. The

resulting structural design and weight characteristics were parameterized into

weight estimating relationships for use in the Goodyear airship synthesis

program (GASP).

The parametric analysis of the modified delta planform hybrid was con-

ducted to optimize the configuration characteristics in terms of payload-ton

miles per hour over the study gross weight range. The results of the para-

metric analysis include the optimized configuration characteristics, aspect

ratio (AR), thickness ratio (t/c), and optimized cruise velocity (V C) as a

function of gross weight, _, and range.

Details of the above efforts are described in this subsection.
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Preliminary Configuration Evaluation

The structural efficiency (structural weight-to-gross weight ratio) was

known to be one of the most significant factors in the relative productivity of the

hybrid vehicle concepts vis avis conventional airships. Another factor of

possible equal or greater importance was the area of stability and control char-

acteristics of semibuoyant vehicles. Detailed stability and control investigations

were beyond the scope of the Phase I study. Indeed, they might not influence the

productivity figure of merit results to any great extent. However, it was ap-

parent that some consideration must be given to this critical area in the Phase I

study.

During the configuration evaluation of the lifting body vehicles, the static

stability requirements and the relationship between aerodynamic center of

pressure (CP) and center of buoyancy (CB) were examined as an indicator. The

desirability of a delta-type planform on the basis of low CP-CB separation was

identified. Circular and rectangular planforms may potentially require large

horizontal tail areas for acceptable stability characteristics (see References 14

and 15) due to the forward CP and midbody CB. Although stability and control

problems could possibly be adequately solved with current technology flight

control systems, the selection of a configuration that would minimize potential

problems was desirable.

Further investigations of the relationship between AR and _ indicated that

an inverse relationship existed. That is, for low _, relatively large AR (1 to 2

possibly) might be used. At large _, however, only small AR (0.5 to 0.75)

would be required due to the large surface area associated with large _ vehicles.

Several different configuration concepts were evaluated on a preliminary struc-

tural design concept basis and "quicky" weight estimates defined. The exer-

cises generally confirmed the requirement for more detailed structural design

and weight evaluation to arrive at reliable structural weight comparisons.

The configuration screening exercise of lifting body vehicles resulted in the

selection of the modified delta planform hybrid as discussed in the following

subsection.
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The other class of hybrid concepts consisted of winged airships. Initial

expectations were that some promising configurations might result in combining

the high structural efficiency basic airship shape with more aerodynamically

efficient wing structures. This effort was continued on a low level during the

last part of the study as the analysis of the hybrid lifting body vehicle was

pursued. Although the effort was not taken to a final conclusion (but could be

finalized during Phase II), the conclusions that appear valid based on the results

obtained, including the parametric analysis of conventional airship aerodynamic

lift utilization, are as follows:

1. Empirical wing weight estimating relationships are of

questionable validity for the low wing loadings and large

sizes considered for application to the airship combina-

tions.

2. For such wings, nonoptimum weight contributions - mem-

bers whose weight is independent of the load applied -

contribute substantially to the wing and hull carry through

weights.

3. On the basis of the combined structural and aerodynamic

efficiency of the basic ellipsoidal airship at small gross

weights, application of winged combinations does not

appear productive in terms of combined structural and

aerodynamic lift requirements. Other considerations,

such as improved controllability, utilization of deflected

slipstream for VTOL rather than tilting propellers, etc.,

might change this conclusion. However, such considera-

tions were beyond the scope of the Phase I study.

4. If combined wing/airship configurations do have promise,

it is undoubtedly for large airships (gross weight greater

than 226,800 kg, or 500,000 Ib), where the structural

weight penalty and aerodynamic L/D versus aerostatic

L/D do not favor heavy flight of the basic ellipsoidal air-

ship. More effort could be directed to this area in the

future with greater consideration given low speed control

rather than simply productivity-related figures of merit.
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Further details of the configuration evaluation and screening efforts are

presented in Appendix I of Reference Z.

Modified Delta Planform Hybrid ISelection Rationale and

IConfiguration Description I

The lifting body configuration evaluation resulted in the following rationale

and assumptions for the baseline - point design vehicle selection:

I. The cross-sectional area distribution should make it

possible to place the center of buoyancy at or near the

aerodynamic center of pressure in order to minimize

trim drag penalties and tail area requirements possibly

required for dynamic stability of the high-lift capability

vehicles.

2. The chordwise distribution of thicknesses resembling a

subsonic airfoil is desirable from the standpoint of

aerodynamic efficiency.

3. A relatively thick section is required to provide an effi-

cient ratio between surface area (weight, drag) and en-

closed volume, e._z_g=_,high volumetric efficiency.

4. An aspect ratio sufficient to give a lifting performance

considerably in excess of that achievable with a circular

cross section is desirable.

5. If possible, the configuration should be geometrically

applicable from low aspect ratio's (AR's) of 0.5 to 0.75

to rather high AR's (i to 2) in order to cover the beta

range of interest.

These precepts were implemented as follows:

Io The ellipsoid, as representative of traditional airship

shapes, is taken as the starting point.
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,

,

The ellipsoid is transformed into a parabolic planform

while maintaining its cross-sectional area. Elliptical

cross sections are used. This results in an "airfoil"

thickness distribution, described below.

The fineness ratio, F, is carried as a parameter and is

defined as the length-to-diameter ratio of the ellipsoid

having the same cross-sectional area distribution as the

hybrid shape. The fineness ratio and aspect ratio together

with the required volume uniquely define the entire con-

figuration geometry.

The transformation results in the shape function:

Z --

2) 1/z
(AR)I_2

whe re

and x,

involving dimensionless ratios.

x = measured toward trailing edge from the nose,

y = measured laterally from root chord, and

z --measured from planform plane.

y, and z are normalized to the root chord yielding a pure shape function

The volume of such a shape is defined as:

whe re C
o

is the root chord.

V _

C
7r o

6 F2

The planform area is

4Splan = _ (AR) 2/3 .V2/3

The maximum thickness ratio occurs at the 30 percent chord point and is
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The nondimensionalized coordinates of the hybrid vehicle airfoil section

are comparable to the generalized NACA 00XX section shown in Figure 33.

].0
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MODIFIED DELTA

PLANFORM LIFTING

"_/I BODY HYBRID

NACA OOXX _

\

0 .2 .4 .6 .8 l.0

Figure 33 - Comparison of Hybrid Airfoil Coordinates with
Generalized NACA 00XX Section
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The maximum thickness is

t
max

Parameters chosen for the point design study were:

I. V = Z83, ZOO cu m (I0 x 106 cu ft)

2. AR, aspect ratio = 1.5

3. F, fineness ratio = 2.5

This results in a body 149.66 m (491 ft) long, 149.66 m (491 ft) wide, and

36.73 m (120.5 ft) thick at the point of maximum thickness (see Figure 34). Beta

for the point design configuration was 0.33. The structural design concept is

based on conventional rigid construction concept as described below.

Structural Description

Mainframes

The airship volume is divided into more or less cubical compartments by

main frames running chordwise and spanwise at approximately 30.48-rn (100-ft)

centers. The webs of the main frames are designed to provide a shear path

from the upper surface to the lower surface and to resist cell-to-cell gas pres-

sures. No more than I0 percent of the buoyant lift resides in the largest gas

cell.

The webs are designed to be capable of resisting the loads associated with

loss of lifting gas in any one cell. To assist in these loadings, struts tie the

centers of each main frame web to its neighbors, running through the gas cells

with suitable gas-tight joints at the points of cell penetration.
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SEE FIGURE 34A

Figure 34 - Hybrid Configuration Construction
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Figure 34A - Hybrid Configuration Construction Details
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Surface Support

Top and bottom surfaces are supported by a framework on longitudinal

girders placed at 3. 048 m (i0 ft) centers and intermediate transverse girders

placed at 6. l to i0. 15 m (20 to 33.3 ft) centers based on minimum weight trade-

offs. This arrangement results in a 30.48 m by 30.48 m (I00 ft by I00 ft) sur-

face panel to be designed to resist transverse aerodynamic and gas pressure

loads as well as shear and axial stresses associated with overall hull loads.

A fabric covering similar to that used on the historical rigid airships was

found to provide the lightest approach.

The outer cover is supported by wires as necessary to prevent fluttering.

Gas cell pressures are supported by wires and netting in an arrangement simi-

lar to that used on the Akron and Macon airships.

Shear Structure

The shear forces in the hull are resisted by wires or cables running diago-

nally from joints in the longitudinal and transverse framing. Vertical struts in

the main frames form an important part of the shear structure.

Delta Planform Hybrid Aerodynamics Analysis

Detailed aerodynamic pressure distributions were developed by Neilsen

Engineering and Research (NEAR) for use in the airloads calculations required

for the point design structural and weight analysis. Subsequently, the initial

results were confirmed by the results of a modified vortex lattice computer

analysis. A synopsis of the NEAR aerodynamic analysis of the baseline lifting

body is presented in Appendix E of Reference 2.
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GASP Aerodynamics Estimating Procedures

The aerodynamic estimating procedures used in GASP were developed dur-

ing the precontract efforts. Since it was not known what type of configuration(s)

would be selected for further study, the methodology was required to be general-

ly applicable to a broad range of delta and modified delta configurations. The

DATCOM methodology (Reference 16) was selected. It was developed for the

subsonic aerodynamics and landing flare analysis of low aspect ratio lifting body

configurations and has been shown to predict with reasonable accuracy the aero-

dynamic characteristics of a broad range of delta and modified delta configura-

tions.

Aerodynamic characteristics are calculated in the body fixed axis system

based on empirically derived correlations of experimental data. The method

reasonably predicts the nonlinearities associated with the vortex flow charac-

teristic of low aspect ratio delta configurations.

Vehicle center of pressure is based on the theoretical delta planform center

of pressure corrected for thickness and nose blunting. The resulting Cp pre-

diction was in surprisingly good agreement with the NEAR analysis.

Zero normal force axial force is based on the method of Reference 17. In

this reference, an expression is developed that adequately predicts the mini-

mum profile drag characteristics of thick cambered (Clark Y model) airfoil

section delta planform lifting bodies up to thicknesses of 0. 3c.

Vertical tail sizes for the hybrid vehicle are based on an empirical cor-

relation of re-entry body data, corrected for buoyancy by a _ factor but limited

to values no less than those of a conventional airship of the same volume and

finenes s ratio.

A very preliminary investigation of the longitudinal stability characteristics

of the baseline hybrid vehicle was conducted. The entire area of both directional

and longitudinal stability of semibuoyant hybrid vehicles is hampered both by the

lack of a specific stability criteria that would provide acceptable flying qualities

and the uncertainty in the values of the stability derivatives required for evalua-

tion of the vehicle stability. The preliminary effort included a preliminary
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layout of actual and apparent mass and inertia characteristics as well as a best

estimate of the required coefficients. The results, although of the most pre-

liminary nature, indicated that the baseline vehicle would be dynamically stable

despite the small static instability margin for _ greater than or equal to approxi-

mately 0.5. For these _'s, horizontal tail surfaces would be required primarily

f.or control. Between _ = 0.5 and 0, the vehicle might become dynamically un-

stable. Thus, it was decided to use a smooth fairing between a tail size of 2

percent of the planform area at _>0.5 and the tail size required for static stabil-

ity at intermediate _'s<0.5. Even at the lowest _Is, however, the horizontal tail

area required was small due to the small Cp - C B separation. Further investi-

gations into the specifics of the configuration geometry showed that the C B could

be shifted forward of the Cp by leaving a small percentage of the trailing edge

portion of the vehicle empty of lifting gas. This was the final configuration

assumed for the parametric analysis; hence, the horizontal tail area was taken

as 2 percent of the planform for control.

Total vehicle characteristics (CA, CN, CM) are obtained by summing the

component characteristics and transforming them into a wind axis coordinates

system for use in the synthesis program. The result is total vehicle CL, CD,

and Cp as a function of a.

Details of the point design aerodynamics analysis and the GASP aerodynam-

ics methodology are presented in Appendix E of Reference 2.

Propulsion

The propulsion system characteristics (both performance and weight) used

in the hybrid analysis are the same as those in the conventional airship para-

metric analysis (Appendix F of Reference 2).

Structural Analysis and Weights Analysis

Detailed airload shear and moment distributions were calculated for the

point design vehicle. The results, shown in Figure 35, were used to develop

the parametric weight estimating relationships for use in the GASP configura-

tion optimization and performance evaluation of the modified delta planform

lifting body hybrid.

k
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The approach used was to study the point design as representative of one

member of the hybrid configuration family and then to generalize the weight

variation as a function of the parameters of interest.

De sign Loads

Surface Pressures - The design pressure for the 30.48-m (100-ft) square

surface panels is taken as the sum of three components: (1) aerodynamic

pressure associated with the airfoil thickness function at zero angle of attack,

(2) aerodynamic pressures associated with dynamic lift, and (3) gas cell

pressures.

Analysis of data in Reference 18 revealed that (1) above can be taken as a

linear function of the thickness to chord ratio and that (2) can be taken as 70

percent of the lift on the upper surface• The gas pressure is taken as 0.062

times the thickness. From the results of the point design analysis, the weight

of the surface support structure was found to vary with p0.735. Integration of

this pressure-dependent weight term over the entire surface showed an

overall average effective pressure of:

where

Pe = 1 87 (t) q + 0. 70 (nW- B• S )+ 0. 062 t

t/c -- thickness-to-chord ratio at the plane of symmetry,

n = design load factor,

W = design gross weight,

B = buoyancy,

S = planform area, and

q = dynamic pressure.

This equation provides a slightly conservative index to the weight of longi-

tudinal and transverse girders required to support the local pressures.
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Hull Loads - The hull bending and shear loads were derived by (1) estab-

lishing distributions of the gross weight over the planform, (Z) distributing

the buoyant and dynamic lift over the planform, and (3) performing the integra-

tions. The maximum hull bending moment was found to be

M = O. 02-4 nWL
max

and the average shear was found to be 0.087 nW. This value was increased to

0. 10 nW for the weight estimate.

The axial loads in the longitudinal girders are estimated on the basis of a

uniform distribution of the resistance with respect to the projection of the sur-

face on the planform plane and results in a loading of:

nW F 4/3

N = 0.058÷I/3

where N is expressed in pounds per foot and is multiplied by 10 to get the axial

load for the longitudinals spaced at 3. 048 m (i0 ft) center to center.

Surface Support Structure

Preliminary analysis showed that the lateral pressure loading was domi-

nant on these structures. The longitudinal and intermediate transverse girders

were therefore optimized on the basis of bending loads, with additional chord

area added as necessary to carry the overall hull bending loads (N).

In order to provide a clean analytical approach to the girder design, the

following assumptions were made:

1. All girder members are assumed to be equivalent to tubes

of 7075 aluminum alloy with D/t = 50.

2. Lightly loaded members are held to a maximum L/D of

36 (this controls secondary bracing members).

3. Girders are designed as equilateral triangles with a tube

in each corner; all three planes are braced with tubing in

a pattern known as the "warren" truss with verticals.
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. The maximum bending moment is taken as 1/12 w_ 2 over

the supports. The girder is oriented so that two chords

are in compression at the point of maximum moment.

Local reinforcements of the single tension chord at the

point of maximum moment are assumed, but no weight

allowance is made for these reinforcements since the as-

sumption of constant area chord and shear members will

provide enough excess strength to allow redistribution of

areas for local reinforcement.

Assumption of elastic "long column" failure of the girder members leads

to an optimum stress:

for the individual members.

Cro = 14000 (--_-)

llZ

The minimum weight of the girder in bending occurs when the chord mem-

bers are yield limited. The minimum weight design is therefore proportional

so that the (P/L 2) = 25 for the chord members. This provides an elastic al-

lowable stress of 70 ksi, which is reduced to 60 ksi for design purposes as an

allowance for reductions of the Young's modulus in the vicinity of the yield stress.

The loaded diagonals in the lattice planes are designed for elastic failure

at

0"o
= 14, 000 (---_)1/2

L

and the secondary members (verticals and diagonal in unloaded plane) are de-

signed for L/D -- 36, D/t-- 50.

Optimization of the weight of the chords plus web structures for a given de-

sign shear and bending moment results in a complex expression for the opti-

mum bracing geometry. For very high shear loads, the optimum ratio of the

unbraced length of the chords to the side dimension of the triangle (a)is 1.414.

l_or low shears, 0Lop t _- 0.9. The minimum weight is not very sensitive to this

ratio. For simplicity, a -- i. 15 was used throughout.
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Algebraic evaluation yields the following expression for the weight of the

supporting structure required to support the lateral pressure:

Z/3ST4/3 5/6 7/6 pz/3 p5/6P P ST 0.0718 0.01Z7Z
W - 113 + i16 + I13 + 116

6450 SL 16,900SL Sr Sr

where

W

P

S T

S L

It is assumed that the span of the transverse girders 30.48 m (I00 ft)

= structure weight in pounds per square foot of surface,

= design pressure loading in pounds per square foot,

= spacing of transverse girders in feet, and

= spacing of longitudinal girders in feet.

The above expression was evaluated for p = Z0, 40, 60, 100, Z00, and 500:

S T = 16.67, 20, 33. 3, 50

S = I0
L

with the result that minimum weights occur with S T = I0. I or 15.24 m (33. 3 ft

or 50 ft) over the entire range of pressures with minor weight penalties for ST =

25 ft. Analysis of the data provides a much simpler expression

0. 735
_P__

w =(138)

which exhibits a maximum error of 2 percent over the range of pressures eval-

uated and is used for the weight estimates.

Proportioning of the longitudinal girders for minimum weight for carrying

the pressure (p) results in an L/p of:

i/3
114 S T

L/p -
(PSL)1/3

The additional chord area required to carry the axial compression is pro-

vided by an added weight of:

AW

ST 2/3

N (_L)

6280
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The total weight of the surface support structure is a combination of the

above with additional assumptions:

I. The shape of the hull bending moment envelope is the same
as the hull section modulus with constant surface areas so

that N is constant over the entire surface.

Z. The lower surface weight is 80 percent of the upper surface

weight.

Thus :

where

_(i. 50pe_0" 735
w I = 1.80s / + i. 50N }

2830 (l.5Pe)Z/3

S = plan form area_

Pe = average effective design pressure, and

N = surface compression from hull bending.

Main Frames

Since overall hull bending loads are resisted primarily by the surface sup-

port framework, the chord members of the main longitudinal and transverse

frames are taken as the same as the intermediate transverse girders. Basing

the weight on a transverse girder spacing of 7.62 m (25 ft) gives:

l )z/3
WE - 25 (I. 5Pc S

Shear Structures

Based on the analysis of the point design airship, the average transverse

shear on transverse and longitudinal sections is taken as

V = O. 10nW
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Assuming that the shear flow splits into four paths typically, a shear flow

over an area of approximately 3S and of an intensity of (1/40) (nW/t) is taken

as representative.

Assuming shears are resisted by steel wires or cables working to 200 ksi,

with 100 percent counterwires and with vertical struts and other reinforcements

having a weight equal to the brace weight provides an estimated shear structure

weight including a 1.5 safety factor of

nWS -6
W 3 = 16.2 t × 10

Gas Cells, Outer Cover, Supporting Wires

The weight of the gas cells, outer cover and supporting wires, and netting

are derived from data on the Macon airship and are estimated to be:

and

where

W 4 = 0.208S for gas cells, wires,

2

(v/W 5 = O. 066S _

netting

S is the planform area

V is the design forward speed in feet per second.

The weight of the landing gears is defined as a function of _ between a value

representative of slightly heavy airships (_=0.9} and conventional commercial

aircraft (taken conservatively as six percent of the vehicle gross weight):

W 6 = [0.01 + (1-_)0. 05] Wgross(landing gears)

Tail area requirements as calculated in the aerodynamics subsection are

used to calculate tail and control system weights:

(1.33 (AI_V) I/Z )W7 = 382 + 3 Afi n (tail and controls)

Control car and furnishings are assumed to be a constant percentage of the

gross weight:
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The final

the hybrid parametric analysis

W8 = 0. 008 WG (control car and furnishings)

parametric weight estimating relationships used in GASP for

W __

B =

-V-=

F =

AR =

S =

A F =

U --

V D =

are summarized below.

gross weight

buoyant lift

hull volume

fineness ratio

aspect ratio

planform area

total tail area

design gust velocity

design forward velocity

= cruise angle of attack
c

O/G = gust induced angle of attack

Z.86_ I/3 t Z.31 I pvZ

t- /3 c - F g q = --(AR)F g (AR) 2

ACN G = incremental gust induced normal force

= CNl{ac + aG) - CNla c

1 [pUVDACNG_ limited in the parametric study

n = 1 + _-\ W/S / to > 3.0

N _.

nWF4/3

o.  1/3

pe = 1.87(t)q + 0.70 (nW - B) + 0'062ts

W 1 = 1.80S 0. 735

/l.50Pe 1 50N

i + •138
2830 (I. 5Pe )2/3

surface

s uppo rt
structure
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I )2/3S for chord members of main frames
w z = _-_ (l.5Pe

nWS
W 3 = 16. Z t

× 10 -6 for shear structure

W 4 = 0.208 S for gas cells, wires, netting

2

W5 = 0.066 S (_D_for outer cover

W 6 = [0. 01 + (I-_) O. 05]W for landing gears

W7 = O. O08W for furnishings, control car, etc.

W8 = 1.33_AFV D _ +3 A F for tail and controls
382

WNPW E = W 1 + W z + W 3 + W 4 + W 5 + W 6 + W 7 + W 8 for non

propulsive empty weight

Hybrid Parametric Analysis

The parametric performance analysis and configuration optimization of the

modified delta planformhybrid vehicle is based on the geometrical, aerodyna-

mic, propulsion, and structural and weights analyses of the preceding subsec-

tions. The major portion of the hybrid analysis dealt with six major variables:

I. Gross weight

2. Static lift-to gross-weight ratio,

3. Cruise velocity, V C

4. Aspect ratio, AR

5. Thickness ratio (t/c)

6. Range

Range was by necessity included in the parametric analysis as an indepen-

dent variable. The optimum vehicle characteristics AR and t/c, which result
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in maximum payload ton-miles per hour, in general are strongly dependent on

design range as well as I% Inclusion of range as an independent variable (rather

than simply using useful load ton-miles per hour) required approximately three

times as much data reduction and analysis as had been originally planned. Be-

cause of this, considerably less time was available to analyze and interpret the

results and define their origin than had been originally planned. Thus, the in-

terpretation and discussion of the results is somewhat more abbreviated than

might be considered desirable. However, by drawing on the results of the con-

ventional airship heaviness tradeoff study, combined with the summary level

analysis of the hybrid results, a fundamental understanding of the performance

characteristics of the semibuoyant lifting body hybrid can be obtained.

The objective of the hybrid parametric study was to determine the vehicle

aspect ratio, thickness ratio, and cruise velocity, which maximize productivity

as a function of range, _, and gross weight (FOM = payload ton-miles per

hour at the given range).

The "o_timum" degree of partial buoyancy or heaviness (_) was the para-

meter of first-order interest in the hybrid study. The general approach is illus-

trated in Figures 36 through 39. At a given gross weight and _, the FOM was

evaluated at four aspect ratios (generally 0.6, 0.75, 1.0, and 1.5) and three

thickness ratios (generally 0. 15, 0.225, and 0.3) as a function of velocity.

Typical results, shown in Figure 36, allow determination of the optimum V C as

a function of aspect ratio and thickness ratio. Cross-plots of the optimum FOM

and optimum V C as a function of aspect ratio at constant thickness ratio were

constructed to indicate the aspect ratio that maximized the FOM, as shown in

Figure 37. This data was used to select the optimum aspect ratio. Cross-plots

of the FOM and V C at the optimum aspect ratio as a function of thickness ratio

were constructed to obtain the optimum thickness ratio as shown in Figure 38

and Figure 39.

The entire process was then repeated as a function of range and _ to obtain

the final desired data: (1) maximum productivity is a function of _ and range and

(2) the AR, t/c, and V C that produce the maximum. Repeating the entire process

at the other study gross weight values produced the final optimized productivity/

performance results and optimized vehicle characteristics presented below.
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The lack of an "optimizer" capability as employed in NASA-Ames synthesis

programs (References 3 and 4 )was a definite handicap _'_in completing the

parametric study. This can be appreciated more fully by considering the shear

quantity of data and analysis required to obtain a given optimum. At a given

gross weight and _, a minimum of 27 (typically 36) performance points were

generated for a given range (3to4 ARts, 3 to 4 VC'S, and 3(t/c)'s, or 2.7 to 36 per-

formance points). Analysis of the resulting data is used to define maximum

FOM and maximum V C for plotting as a function of aspect ratio. Analysis of

these data is used for cross-plotting as a function of (t/c)to obtain the optimum

data at this range value. Repeating the entire process at one or two "design"

range values gives the final results for one /3and gross weight.

Incorporation of an optional "optimizer" capability such as CONMIN or AESOP

is being considered for Phase II and subsequent parametric study efforts.
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The purpose of this discussion is merely to indicate that, although fewer

final data charts are presented in the hybrid parametric subsection than in the

conventional airship parametric subsection, a considerably larger amount of

time and analysis was required to obtain the hybrid results.

Hybrid Parametric Performance Results

The true scope of the hybrid investigation is even more significant in terms

of the spectrum of optimized configuration characteristics - from aspect ratios

of 0.6 and thickness ratios of 0.3 to aspect ratios of 1.8 and thickness ratios of

0.2 (that is from configurations converging to circular cross-sections or even

elliptical sections whose major axis is normal to the wing planform and is

forward of the maximum (t/c) location to rather thin and high aspect ratio

"flying wings"). The final optimized configuration characteristics and optimum

cruise velocity are presented in Figure 40, which clearly illustrates the spec-

trums of configuration characteristics and the dependence of these character-

istics with range, _, and gross weight.

Attempts to analyze a 4536-kg (10,000-1b) gross weight hybrid configura-

tion were unsuccessful. The total empty weight exceeded the gross weight in

all cases. This result is not surprising for the type of rigid construction used

in the hybrid point design. As shown in Figure 4, even a conventional rigid

airship at 4536-kg (10,000- lb) gross weight has a structural weight-to-gross

weight ratio of 0.7. The lower structural efficiency resulting from the trans-

formation from the rather simple, symmetrical cylindrical shape to the rather

complex hybrid configuration geometry is not surprising. If hybrid configura-

tions are desirable at these extremely low gross weights, some alternate form

of construction must be employed.

The lowest gross weight analyzed in the hybrid study was 18, 144 kg

(40,000 lb). The optimized configuration characteristics were introduced in

Figure 40. The optimized productivity is presented in Figure 41 as a function

of _ and range for the 40,000-1b gross weight vehicles. Also shown in Figure

41 is the optimized productivity of a conventional rigid airship over the same
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and range values obtained in the preceding subsection. As shown, the conven-

tional airship has higher productivity than the hybrid configuration at any given

with both configurations indicating a trend to _ = 0 for maximized productivity.

Referring to interactions and relative efficiencies of aerostatic/aerodynamic/

structural and propulsive efficiencies at the conclusion of the conventional air-

strip parametric analyses subsection, the _ trend is as expected. The lower

productivity of the hybrid can be traced primarily to the lower structural effi-

ciency of the lifting body shape relative to the conventional airship. The rela-

tive structural efficiency is compared in Figure 42 as a function of _.

Several observations should be made from this figure. First, the varia-

tion of the nonpropulsive structural weight as a function of _ demonstrates the

same trend for both the hybrid and conventional airships.

Second, as noted by the weight per unit planform area in Figure 42, the

hybrid vehicle structural configuration is fairly efficient. However, the hybrid

Wstr//Wgross is about twice that of the airship at the same 13 due to the configura-

tion's complexity. When it is realized that the hybrid configuration structural

design incorporates gas cells, netting, and one-cell out design capability, the

resulting structural weight estimates probably are optimistic and certainly are

not as detailed as the conventional rigid airship structural weight data.

b--

NOTE: 500 S.MI.=804.5 KM

i i

H_
R'500 S.H!

I
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.I .2 .3 .4 .5 .6 .7
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i

I k:5,_
E

.8 .9 1.0

Figure 41 - 18, 144-kg (40, 000-Lb)
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Finally, as shown in the top portion of Figure 42, high aspect ratios are

not desirable even at the lowest 13considered and are particularly undesirable

at the higher _'s. At low gross weight (small volumes), the low volumetric

efficiency of static lifting vehicles (volume to volume to the 2/3 power relation-

ship) results in such large surface areas that appreciable amounts of aero-

dynamic lift (very low _'s) can be provided by relatively inefficient aerodynamic

shapes such as a conventional ellipsoidal airship hull. These conclusions re-

garding the relationship of aerodynamic and aerostatic efficiencies basically

are dominated by the structural efficiencies of low gross weight semibuoyant

vehicles when evaluated in terms of a productivity figure of merit.

Thus, optimized aspect ratios tend to the lowest value considered (0.6)

and tend to stay relatively thick in order to minimize structural weight.

Figure 43 compares the optimized productivity hybrid vehicle with a con-

ventional rigid airship as a function of range and _ for 181,440-kg (400,000-Ib)

GW. Several conclusions can be drawn from these results plus trlose of Figure 40.

First, at zero range (R = 0), FOM continues to increase as _ is reduced.

This is true for both the hybrid and the conventional airship. The discontinuity

in the conventional airship curve results from the transition from cruise engine

3°F_

' zo _ COL _ --

NOTE: 1500 S.MI. = 2413.5 KM

o 1 1 1
D .I .2 .3 .4 .5 .6 .7

GW= 181440 Kg
(4oo,oooLB)

VW = 15 KNOTS

#

CO_;V
RIGID
VTOL

R:1500

.8 .9 1.0

Figure 43 - 181,440-kg (400,000-Lb) Gross Weight

Optimized Vehicle Productivity versus
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sizing at _0.65 to VTOL sizing at _< 0.65. Thus, at R = 0, the optimum hy-

brid appears to be converging to a nonbuoyant vehicle, such as an airplane.

At a nominal range, say 24 14km (1500 mi), the conventional airship has an

optimum _. The hybrid, however, begins to show what appears to be a charac-

teristic trend as a function of _. This trend, at least over the range of con-

figurations and variables considered, can be summarized as follows:

At zero ranges, no nonzero optimum /Jappears to exist. At larger

zanges, two distinct trends exist that tend to improve the productivity FOM. At

low _ (less than about 0.3), the productivity continually improves as _ is re-

duced. That is, the optimum hybrid tends toward a nonbuoyant vehicle. Look-

ing at this trend starting from _ = 0 and asking "what improvement in produc-

tivity can be obtained by taking a conventional airplane and increasing its body

or wing volume to contain larger and larger amounts of a static lifting gas?, "

the answer is: no improvement. The increased drag and structural weight only

reduce productivity.

The second distinct trend is the "bucket" in productivity curve as a function

of _. Continuing the above reasoning from the _ = 0 starting point, the reversal

apparently occurs as the volume to _6to the 2/3 ratio begins to increase. Thus,

some productivity improvement does occur from the low point in the _ = 0.3 to

0.4 range as _ is increased to 0.6. If the zero range productivity _i.e. , the

useful load times cruise velocity)of a hybrid of _ less than 0.4 is compared with

a _ = I airship, the hybrid does indeed appear better. Two factors modify this

comparison - comparison at range (hybrid productivity is more strongly de-

graded by range) and allowing the airship to use aerodynamic lift to increase

productivity.

An additional characteristic trend of the hybrid vehicle is shown in Figure

40. At small _, as the design range is increased, the optimum configuration

characteristics tend toward higher aerodynamic efficiency (higher aspect ratios

and lower thickness ratios). Also, V C optimum is reduced. At the larger _,

the optimum characteristics universally tend to low aspect ratios of 0.75 to 0.6

and high thickness ratios of 0.3; the optimum hybrid characteristics become

more like an airship.
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Figure 44 compares the productivity of a 680,400 kg (1.5 x l06 ib) hybrid

with an equal gross weight airship. The FOM trend with _ and range is exactly

as described above. The interesting trend observed in Figure 44 is the simi-

larity between the trend of the conventional airship data and the hybrid data.

One is tempted to "connect the curves," but this would be an error. The hybrid

design if allowed to go to _ > 0.6 wants to have configuration characteristics like

an airship (such as an aspect ratio of<0.6 and thickness ratio of>0.3). For

such a configuration, the design criteria should surely be changed to those

applied to an airship, The structural design concept and associated weight

estimating relationship are probably not valid below an aspect ratio of 0.6 or

above a thickness ratio of 0.3.

One further note should be made from Figure 44. The airships compared

in this section are all capable of VTOL. The hybrid performance is based on

CTOL. Original plans had included a more thorough investigation of STOL

takeoff capability for the hybrids than time permitted; this was due primarily

to the increased data analysis requirements with range as an independent vari-

able plus the more in-depth investigation of heaviness for conventional airships.

This is not considered an overwhelming shortcoming of the present investigation.

150

-I00-

O
_a

?

Ino

50

IOC

8(

6{

\
\

CTOL

I I ,

GW : 680400 Kg (1.5 x lO 6 LB)

NOTE: 1500 S.MI. = 2413.5 KM

3000 S.M[. = 4827 KM

5000 S.M[. = 8045 KM

VW = 15 KNOTS

[

CONV RIGID

AIRSHIP

R:O (VTOL)

R: 1%rio

R= 3000

f
f

R:5000

' .I .9

Figure 44 - 680,400-kg (l. 5-Million-Pound) Gross Weight

Optimized Vehicle Productivity versus



The overriding problem regarding takeoff and landing capability will occur in

landing. Takeoff lengths for the HYBRID can be kept quite low even for extremely

low _'s due to the very low wing loading (large wing area). However, landing/

landing gear and impact loads may present a considerable problem possibly

requiring some type of air cushion system to distribute lending loads more uni-

formly into the extremely lightweight structure. This is certainly an area

requiring more in-depth examination for the CTOL hybrid vehicles.

Figure 45 shows the productivity of the 2.72 16 x 106kg (6 x 106 ib) hybrid

compared with the same gross weight conventional airship. The trends of this

figure, FOM versus _ versus range, are the same as with the smaller gross

weights with one noticeable exception. At ranges below 4827 km (3000 mi), the

hybrid offers rather substantial productivity increases over the conventional

airship over the entire _ range. Thus, the hybrid lifting body vehicle of the

construction assumed in this study shows considerable promise from a produc-

tivity basis at the upper extreme of the gross weight range investigated in the

Phase 1 study. The probable source of this is the following.

The structural weight equations used for conventional airships universally

have an optimum structural efficiency (minimum Wstr/Wgross ) at some volume

due to the volume to the 4/3 power dependent weight components. The hybrid

equations, however, have no such dependence.
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Lifting Body Hybrid/Ellipsoidal Airship

Productivity Comparison

Figure 46 compares the productivity of the _ -- 0. 1 lifting body hybrid

vehicle with that of an ellipsoidal rigid airship as a function of gross weight for

three range values. Figure 47 presents the same comparison for the _ = 0.6

lifting body hybrid. The value of the gross weight at which the optimum produc-

tivity configuration switches from ellipsoidal airships to the lifting body vehicle

is indicated in both figures.

A further comparison of productivity as a function of range of the lifting

body hybrid vehicles and a neutrally buoyant conventional rigid airship at

l, 500,000 ib gross weight is presented in Figure 48. The range sensitivity of

the lifting body vehicle is shown. The lower the value of _ the more sharply

productivity is reduced with range. The source of the productivity/range

sensitivity is the higher power loadings required by the hybrid vehicles com-

pared to the neutrally buoyant airships as shown in Figure 49.

One final comparison of the optimized _ = 0. l lifting body hybrid vehicle

productivity with that of conventional commercial aircraft is shown in Figure 50.

Comparing the productivity of 340, Z00-kg (750, 000 Ib) gross weight lifting body

hybrid at a 4827 km (3000 star mi) range with that of the 747F-200 shows the

hybrid to be lower by approximately a factor of four.

Figure 51 shows representative structural efficiency characteristics of the

hybrid vehicle over the gross weight and configuration range. The hybrid

vehicle investigated in this study is very efficient. In fact, from a structural

weight standpoint, the weight estimates used in this study are probably optimis-

tic. At low _, extrapolating the Wstr/Wgross ratio to zero results in a lower

limit of 0.22, which is comparable to values quoted for the span loader type of

aircraft currently under investigation.

On the basis of aerodynamic efficiency, the lifting body hybrid vehicles

have rather good aerodynamic lift to drag ratios ranging from a value of approx-

imately 6 at AR = 0.6 to approximately IZ at AR = 1.5 for a 680,400 kg

(1.5 x 106 lb) lifting body hybrid at _ : 0.6 and t/c --0.225.
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HEAVY LIFT HYBRID VEHICLE CONCEPT

The third configuration class investigated during Phase I was the short-

haul, heavy-lift vehicle concept. Several of the more exotic configuration

concepts discussed by various sources or currently under consideration were

reviewed. The basic decision regarding the configuration for this vehicle class

was that the functional and performance requirements could be adequately satis-

fied by very simply combining a basic airship hull and conventional helicopters.

A configuration of this type was therefore selected as the baseline for this ve-

hicle class.

The basic concept of the heavy lift hybrid vehicle is to load the airship hull

with helicopters and use the helicopters to lift the useful load. In the basic

concept, the empty weight of the vehicle is balanced by buoyant lift, and the

useful load is equal to the sum of the gross lifting capacity of the mounted heli-

copters. This concept produces several advantages over airships or helicop-

ters acting alone:

I. The basic advantage over a pure airship acting alone is

that large loads can be picked up and set down with no

need for interchanging ballast and payload. The vehicle

is able to fly with a wide range between maximum flying

weight and minimum flying weight.

2. The basic advantages over helicopters working alone are:

a. The helicopters do not need to lift their own dead

weight; the entire gross lift of the helicopter is

available for lifting payload.

b. Several helicopters (or helicopter lift systems) can

be mounted on the airship hull to provide a vehicle

with a very large lift capability.

3. The integrated concept provides a capability for precision

control over the load pickup point in that the helicopters

provide fast response with large forces available to over-

come wind, gust, and incidental unbalanced forces on the

hull of the vehicle. At the same time, the huge mass of

the vehicle produces a steadying effect that slows down the

dynamic response to such perturbing forces.
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4. A degree of immunity to scale effects is achieved since
the weight fraction of the airship hull is relatively in-

sensitive to the size of the hull and the growth of the heli-

copter weight fraction is circumvented by installing mul-

tiple rotors of efficient size to achieve the total lifting

capacity required.

An alternate concept is to provide more buoyant lift than required to bal-

ance the dead weight of the vehicle. In this concept, the helicopter rotors are

required to hold the airship down when the vehicle is empty. Tiedown to mas-

sive anchors would be required before the rotor power is shut down at cessation

of operations. The advantage of this approach is that less helicopter lifting

capacity is required to lift a specified useful load. For example, if the down

thrust is taken as one-half the up thrust, the number of helicopter rotors re-

quired is reduced by one-third. If special rotors were designed so that the

down thrust capability is equal to the up thrust, the number of rotors required
is cut in half.

Another alternate is to provide less buoyancy than required to balance the

empty weight of the vehicle, thus sacrificing some payload lifting capability in
favor of the characteristic of maintaining a substantial heaviness in the empty

weight condition and possibly alleviating ground handling and tiedown problen_s.

The probable missions for the heavy-lift, short-haul vehicle indicate that

the applicable figure of merit should be the useful load-to-empty weight ratio

and not productivity. Thus, the heavy-lift vehicle performance is analyzed in
terms of UL/EW.

The question of how much buoyancy and how much helicopter lift to install

to achieve the basic design concept or the alternates can be answered in a

simple relationship involving the empty weight fractions of the helicopter and

the airship hull.
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Let:

B = buoyant lift

H = helicopter lift
I

H = helicopter down thrust

K 1 = airship hull empty weight fraction

K 2 = helicopter empty weight fraction

K 3 = H/H

Then:

Maximum gross weight (WG) = B + H

Minimum gross weight (WE) = B - H' = K 1

Useful load (Wu) = H + H'

B + KZ H

W U

Helicopter lift required (H) - l + K 3

Buoyant lift required
W U K2 + K 3

(B) = 1 + K 3 1 - K 1

This results in the following payoff factors: If the weight of the inter-

connecting structure and structural weight increases in the airship hull are

neglected as a result of the marriage, the helicopters alone could lift

H

WUA = 1 - KZ

and the payoff for the helicopter in terms of useful load lifted is

I + K 3

1 - K z

The airship hull alone could lift (with ballast/useful load interchange)

B
WU B =

1 - K 1

and the payoff factor for the airship is

i + K 3

K2+ K 3

But the big advantage for the airship is elimination of the requirement to

interchange ballast for payload.
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The design procedure using the simple relationships is to start with the

useful load desired and compute H and B from the above equations using esti-

mated values of K1 and K Z and a chosen value of 1<3 consistent with the concept

desired. Choose the helicopter rotor model and number required to produce the

lift {H) and configure an airship hull of the size required to provide the buoyant

lift (B). Make a preliminary design layout. Compute the resulting weight

{weight fractions) and iterate the procedure.

Several practical considerations combine to make the design cycle less

simple than the above. These considerations are described below.

First, weight fractions K1 and 1<Z must reflect the weight increments asso-

ciated with marrying the helicopters to the airship hull. It doesn't matter

whether this increment is put into 1<i or 1<2 or split between the two. A logical

split might be to increase K Z sufficiently to provide the structure required to

deliver the helicopter lift to the airship hull and let K 1 be increased enough to

allow for internal hull strength requirements in excess of the normal airship

requirements. In any event, these factors will be merely rough estimates at

the initial design step to be refined by further iterations on the design.

Second, a decision must be made on whether to use the basic concept re-

quiring no down thrust to keep the airship from rising in the lightweight con-

dition or to use one of the alternates where the vehicle is designed to be heavy

or light when empty. In essence, choose a value of 1<3.

Third, the question of whether to use complete helicopters or only the

power and lift system must be addressed. Complete helicopters have the ad-

vantage of minimum modification so that these units are still flyable as individ-

ual units. A disadvantage is the installation of unnecessary dead weight. A

compensating advantage is the provision of tail rotors that can be used for

additional control forces.

The question of whether to use existing helicopter systems or to develop an

entirely new system is heavily biased toward existing hardware by development

cost considerations.
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Fifth, the type of airship hull to use is a subject of choice and some trade-

offs. Rigids, semirigids, and non-rigids are all candidates. For large ve-

hicles, the rigid airship hull has the advantage in terms of providing outrigger

support structure as an inherent feature of the hull structure. Increased

strength in such structures can be provided with less weight penalty than would

be required to provide the added strength in a separate and distinct structure.

Sixth, geometric arrangement will be an important consideration. On a

rigid airship, hull minimum structural weight probably will result from mount-

ing the helicopter lift systems near the equator. The problem of access to the

rotors for inspection and maintenance might be alleviated by placing the rotors

close to the ground. Hull bending moments for a vehicle designed to lift heavy

unitary loads on a sling would be less demanding if the lift system were mount-

ed near the center of the hull length. But precision control of the vehicle in

hovering over the payload may require that the rotors be spread out as far as

possible.

Seventh, the choice among existing helicopters will be biased toward those

vehicles having "fly-by-wire" control systems. This feature will simplify the

requirement to install a master control system to coordinate the actions of the

multiple rotors.

In addition, provisions for safe operation in the event of loss of engine

power or loss of buoyant lift will require among other things that excess lifting

capacity be provided.

Heavy Lift Performance versus Gross Weight: Size Limitations and

Scale Effects

Frank Piasecki has shown (Reference 19) that a vehicle of this type (called

the Hell-Star) can be designed to lift a 68,040-kg (75-ton) payload utilizing four

CH-53D helicopters {complete) on an airship hull of 101,952 cum (3,600,000 cu ft).

From the layout, no crowding of rotors is in evidence. In fact, there would be

plenty of room for four more helicopters.

What happens if the concept is expanded to a payload of 680,400 kg

(750 tons)? If the same helicopters and the same weight fractions are used,
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40 CH-53D's would be needed. The airship volume would increase by a factor

of I0, but the hull length (of the same shape) would increase by a factor of 2. 16.

Finding enough room to mount 40 helicopters will be very difficult and will re-

quire several overlappings of the rotors.

This problem can be alleviated by using more powerful helicopters such as

the CH-53E, which has a 50 percent more lift in a rotor of the same diameter,

and by using an airship hull of higher fineness ratio. The higher fineness ratio

will result in higher design bending moments and a higher structural weight

fraction.

A vehicle consisting of 18 CH-53E lift systems mounted on a 566,400 cu m

(20 million cubic foot) hull would provide a capability for lifting a payload of

453,600 kg (500 tons) with a comfortable margin for power loss considerations.

Take

K 3 -- 0 requiring no thrust to hold down the machine.

Take

K1 = 0.50 and K2 = 0.50

If 45,360 kg (50 tons) of fuel is allowed, the useful load is 498,960 kg

(I, I00,000 Ib). Therefore, the helicopter lift required is:

Hreq, d = 498,960 kg (I, I00,000 Ib)

Eighteen CH-53E's operating at normal gross weight provide:

H = 555,206 kg (i, 224,000 Ib)

100000)  00000  ,Breq 'd = 1 + 1-0.5

Volume required at 89 percent fullness is 566,400 cu m (g0 x l06 cuft)

Mounting 18 rotors at Z4. 384 m (80-ft) spacing on a cylindricaI huI1 center

section requires a center section length of 195.07 m (640 ft)°

Increasing the hull diameter to provide an excess buoyancy equaI to the

maximum down thrust of the rotors might stretch the total payload load of this

vehicle to 680,400 kg (750 tons).
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It might be argued that the above example stretches the concept to ridic-
ulous extremes. Further detailed study would be required to determine if it is

actually feasible and whether there exists a need for a vehicle with this lifting

capacity of sufficient economic importance to justify the cost.

It seems clear, however, that the basic concept can be expanded to meet

very large unitary payload requirements with minimal challenge to the state of

the art. If a heavy lift vehicle is required with capacities much larger than the

biggest current helicopters can provide, this concept would seem to be a viable

approach to meeting such requirements.

The basic performance characteristics of the heavy-lift, short-haul airship/

helicopter combination can be defined from these performance relationships if
specific buoyant lift system and helicopter lift system characteristics are known.

The estimated UL/EW performance for this general concept is estimated to re-

main approximately constant at a value of i. 0 up to gross weights of 907, 200 kg
(2 x 106 Ib) and possibly beyond. The Piasecki Hell-Star concept is representa-

tive of the design and performance characteristics of this vehicle class.

Goodyear Aerospace is currently in the process of a detailed design effort
relative to the Heli-Stat, which Piasecki Aircraft Corporation is defining in

detail under Navy contract. Goodyear is assisting in the definition of the LTA

hull and helicopter support structure, mooring structure and technique, prep-

aration of manufacturing cost information, and providing guidance as required

from the overall LTA aspects of such a vehicle.

The Heli-Stat is a typical member of the baseline short-haul, heavy-lift

vehicle concept. It combines a conventional rigid airship hull that offsets the
total empty weight, fuel, and crew of the Heli-Stat. Four existing conventional

helicopters are attached to the hull by means of a lightweight truss work; these

helicopters provide the vehicle payload lifting and maneuvering capability.

Figure 52 is a preliminary general arrangement prepared by Goodyear for

PAC of a 68,040-kg (75-ton) payload configuration that uses a 82, 128 cu m
(2,900,000-cu ft) helium-filled hull and four CH-54B helicopters. This vehicle's

payload capability, which is 10 times that of a single CH-54B and twice that of

the LTAhull alone, far exceeds that of hovering-type vehicles available or
projected.
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Figure 52 - Preliminary General Arrangement of 68,040-kg

(75-Ton) Hell-Star Heavy Lift Vehicle

Since the heavy lift mission is one of the unique missions isolated for appli-

cation of a modern LTAvehicle, the Hell-Star is of particular interest. The

Heli-Stat offers a near-term, cost-effective, low-risk approach for assessing

the utility of such a vehicle. In addition, such a vehicle would permit general

design requirements, controllability requirements, and operating procedures

to be assimilated so that refined heavy lift vehicles could be developed such

as the configurations investigated during this study.

Alternate Figure of Merit for Conventional Airships

The statement of work specified productivity figure of merit (payload ton-

miles per hour) led to the discovery of the significant potential of small semi-

buoyant airships to achieve tremendous improvements in productivity; potentially
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competitive with existing and proposed VTOL vehicles. However, it does not

demonstrate the total potential and virtue of the airship for which productivity

per se (which essentially demands speed) is often a secondary consideration to

fuel efficiency, endurance, or range with a given payload. Many potential

modern airship missions fall into such categories.

Thus, it is worthwhile to consider the airship performance potential for

alternative figures of merit and to briefly assess the impact of the specified

FOM on the alternatives.

Fuel Efficiency Considerations

Figure 53 compares the performance of 18, 144-kg (40,000-1b) vehicle as a

function of _ and V C in terms of the two figures of merit: payload-ton miles per

hour and payload ton-miles per pound of fuel both at 804.5 km (500-mi) range.

The productivity FOM results have been previously discussed: the optimum

tends to zero, and V C optimum tends to high values of approximately 82.22 m/s

(160 knots). In terms of payload ton-miles per pound of fuel (TM/lb fuel), how-

ever, at any given velocity, the trend is to high _ and low V C as shown in

Figure 53. Figure 54A further illustrates this trend and shows that, for any

velocity below 71.94 m/s (140 knots), _ optimum for maximum ton-miles per

pound fuel to be much greater than _ optimum for maximum payload ton-miles

per hour.

Figure 54B is another way of illustrating the tradeoffs between ton-miles

per hour and ton-miles per pound of fuel. For maximum fuel efficiency (TM/

Ib fuel), optimum vehicle performance would result from moving from left to

right on the curve, i.e____2., reduce velocity at the expense of productivity. For

maximum ton-miles per hour, maximum performance would result from moving

from right to left on the curve and would trade fuel economy for productivity.

The requirement to consider specific mission requirements and operating econ-

omics (with or without an energy efficiency constraint) is obvious from this

illustration. The true performance optimum must be defined for a specific

mission profile where the economic impact of vehicle operation is included in

the optimization process.
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Representative fuel efficiency for productivity optimized neutrally buoyant

airships is presented in Figure 55 in terms of payload ton-miles per pound of
fuel as a function of gross weight.
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Figure 55 - Fuel Efficiency for Productivity Optimized

Neutrally Buoyant Airships

Endurance Capability

One of the unique performance attributes of "pure" LTA vehicles is their

extremely large endurance capability. This capability is unmatched by any

other flight vehicle either in terms of total time on station, the product of pay-

load and total time on station, and time on station per unit of fuel consumption.
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This fundamental characteristic of conventional LTA vehicles was the basic

reason for both their selection and outstanding performance in naval antisub-

marine warfare applications during World War I and World War II.

As has been discussed in Reference I, a multitude of current day missions

are of a platform or surveillance nature (environmental surveillance, law

enforcement surveillance, border patrol, coastal surveillance). The applicable

figure of merit for these missions is endurance or endurance per unit of fuel

consumption. For such missions, LTA capability is unmatched by any other

vehicle as shown in Figure 56.

Range Capability

Another unique performance attribute of LTA vehicles is the extremely

large payload and long range capability. Many modern missions may require

payload range performance capability in excess of that available by existing

aviations systems with speeds in excess of those available by ocean-going sur-

face vehicles. The unique range/payload capability of LTA vehicles is presented

in Figure 57.

Comparison With Historical Results

Figure 58 compares the productivity of historical airships as defined in

Task I with that of the current state-of-the art modern airships defined by the

parametric analysis. The improved productivity can be traced primarily to the

reduced empty weight resulting from the application of modern structures, pro-

pulsion, and materials technologies. A comparison of historical rigid airship

EW and modern airships as investigated during the Phase I study is presented in

Figure 59.
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PARAMETRIC ANALYSIS SUMMARY AND CONCLUSIONS

The parametric analysis was primarily concerned with determining the con-

figuration characteristics that result in "optimized" productivity for MAV's.

The criteria for the optimization study was payload ton-miles per hour and

range. Three basic classes of MAV's were analyzed: conventional ellipsoidal

airships, both neutrally buoyant and semibuoyant; lifting body hybrid airships;

and short-haul, heavy-lift hybrid vehicles. By examination of the basic per-

formance attributes of the three classes, the productivity figure of merit was

judged to be applicable only to the first two classes of vehicles. The applicable

figure of merit for the third class was defined as the useful load-to-empty weight

ratio.
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The bulk of the results are presented parametrically as a function of gross

weight and range to enable synthesis of specific vehicle characteristics to satisfy

mission requirements defined in the mission analysis task (Reference l). The

results emcompass a gross weight range from 1360.8 kg to Z, 7ZI,600 kg (5000

to 6,000, 000 ib) gross lift, heaviness ratios from 0. I to 1.0, and ranges to

8045 km (5000 star mi).

Neutrally buoyant airships employing a rather conservative (1975 state-of-

art proven materials) update of materials and propulsion technology offer signi-

ficant improvements in airship empty weight and performance. Successful adap-

tation of Kevlar fabric for non-rigid airship envelopes offers great potential for

reduced vehicle empty weight and improved performance.

Application of propulsive lift for VTOL and aerodynamic lift for cruise

flight can significantly improve the productivity of low to medium gross weight

"conventional" ellipsoidal airships. For large gross weights, neutrally buoyant

flight maximizes productivity for conventional ellipsoidal airships.

For the modified delta planform lifting body hybrid investigated, no optimum

was found, based on productivity, between the limits of 0. i and 0.6. The

trends that were observed can be summarized as follows:

i.

For all but very large ranges,

that of the _ = 0.6 hybrid.

At short ranges, productivity continuously improves as

is reduced from 0.6 to 0. i.

At larger ranges, two trends were observed that improve

productivity. At all ranges, for _ less than m 0.3 to 0.4,

productivity improves as _ is reduced to 0. I. At larger

ranges, for _ greater than_--- 0.3 to 0.4, productivity im-

proves as _ is increased to 0.6.

the productivity of the _ = 0. 1 hybrid exceeds
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Depending on gross weight and range, semibuoyant lifting body hybrid

vehicles can offer improved productivity relative to conventional neutrally

buoyant airships, particularly at the very large gross weights. However, in

comparison with commercial cargo aircraft at equal gross weight and range,

their productivity is significantly lower. Furthermore, for the CTOL lifting

body hybrid configuration investigated, the degree of partial buoyancy (_) for

maximum productivity appears to converge to zero (no buoyancy) when the con-

figuration characteristics and cruise velocity are allowed to vary as a function

of _.

The optimized ellipsoidal airship productivity is compared with that of

lifting body hybrid vehicles with _'s of 0. 1 and 0.6 in Figures 60 and 61, re-

spectively.

The third class of vehicles, the short-haul, heavy-lift concept, was evalu-

ated in terms of the useful load-to-empty weight ratio as a function of gross

weight. Results indicate this to be a very simple, potentially low-cost, near-

term concept capable of maintaining UL/EW ratios of approximately 1.0 up to

gross weights of 907,200 kg (Z x 106 lb) using existing helicopter componentry.

LIMITATIONS OF CURRENT STUDY

The most overriding limitation of the Phase I parametric study was the

brief four-month time constraint. In such a short period and within the very

limited budget constraints, it is simply not possible to address all of the im-

portant aspects or answer all questions relevant to the performance optimization

of conventional airships, much less the universe of potential hybrid vehicles.

Many assumptions and approximations have been made out of necessity. Alter-

nate assumptions could have been used and possibly should be considered in

future study efforts.

Despite these many limitations, the overall conclusions regarding the re-

lationship between conventional airships and the modified delta planform lifting

body vehicle are believed valid, particularly with respect to the trends for

maximum p roductivity.
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Three particular assumptions could be further investigated during Phase II:

I. For the cruise performance evaluation, no lift component

of propulsive thrust was assumed in determining the ve-

hicle angle of attack required for a given heaviness. This

could possibly make the results somewhat conservative

(further improvements in productivity might be realized

by combining propulsive and aerodynamic lift for cruise

flight).

Z. A more productive cruise velocity profile might be possible

than the constant used in this study, possibly some function

related to the degree of heaviness.

3. The detailed design and weight characteristics of the tilt-

ing proprotor need to be fully evaluated in Phase If.

All design options and secondary study variables introduced in the intro-

ductory sections of this volume were only briefly investigated in order to

concentrate on the primary study variables. Many of the design options are

so strongly dependent on the specific mission and economic factors that an

assessment of their general applicability to modern airship concepts is not

practical. Each design option has been briefly evaluated and the results in-

cluded in Reference Z, Appendix H. These options include: vectored thrust,

stern propulsion, boundary layer control, alternate engine cycles, artificial

superheat, buoyancy management, and alternate lifting gases. A very limited

sensitivity analysis was conducted near the completion of Phase I. This

analysis included the effects of altitude and wind as well as several key design

parameters. The results are also included in Reference Z, Appendix H.
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