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ABSTRACT
Lr

In part I of this paper, a minimum principle was found for the finite -

i
state, finite - memory (FSFM) stochastic control problem. In part II, conditions

for'the sufficiency of the minimum principle are stated in terns of the

informational properties of the problem. This is accomplished by introducing

the notion of a signaling strategy. Then a min-H algorithm based on the FSFM

minimum principle is presented. This algorithm converges, after a finite number

of steps, to a person - by - person extremal solution.
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I. INTRODUCTION

In this part of the paper, the development of t*ne theory of the f  ite -

state, finite - memory (FSFM) stochastic control probl,!m initiated in P,rt I

[1) is continued.

Specifically, the sufficiency of th,! FSFM minimum prin Aple (which is

in general only a necessary condition) i:; investigated. By introducing ^a

notion of a signaling strategy as d,Ained. in the literature or, games in

extensive form [2), conditions under which the FSFM minimurr principle is

sufficient arc! determined. This result is interesting since it explicitly

interconnects the information structure of the FSFM p.obler with its

optimality conditions.

The paper closes with a discussion of the min-H algorithm for the FSFM

problem. It is demonstrated that a version of the algorithm always converges

to a particular type of local minimum teim ,2d a person - by — person ex*_renal.
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II. SIGNALING AND SUFFICIENCY

The notion of a signaling strategy arises in the the , ry of Kuhn -

type extensive games. According to Kahnl an extensive gam: is game

tree with

(i) a t.3artition of the vertices with alternatives into the

chance moves P  and player moves P1,	
P 

(ii) a partition of the moves of P i into i nformation sets

(iii) a probability distribution on the alternatLVes of the

information sets of PO

(iv) an n-tuple of real numbers for each terminal ver-ex.

An example of a Kuhr,-type extensive game is sheen in Fiqure 1.

There is one chance move in P^ wi di four alternatives. E ich alternative 	 i

consists of the choice of an outco,;- of tossing two >ennias. Thus

each outcome occurs with probability 4. There are four moves ii. P11

and player one's information set is equal to P 1 . T'7-;s player one doe:

not know the outcome of the first chance move. h 	 _ to guess if th(

pennies match or don't match. If he guesses correctly, he gets to kee

his crwn penny and player two's penny (th- iayoff is (+1, -1)). If

he guesses incorrectly, he loses his penny to player two (the payoff is

(-1 1 +1)) .

I.

i I

1See (.31 for a complete exposition.
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Every FSFM problem can be reduced to a Kuhn extensive game. It might

be thought that the reduction is accomplishes by identifying the player'-

alternatives with the controller's inputs, but this is not always

possible. Suppose, for exarple, that X0 = {1 , 2 }, U, = {0, 11, and

i 1 = {11 , Y1 }, where Yl (1)	 1, 
r1 
(2) = 0 and Yl - 1-Y1.1 Clearly,

the game true for this problem must have its first .;even nodes as

in Figure 2, with vertices 1 and 2 in the set of moves of player one

( the only player ). Howevet, it is not possible to partition

P. into information sets so that the restriction that the same alternative
1

must be chosen for each ver • ex in a given information set s equivalent

to the restriction that the control law must lie in r l . The point is

that restricting th y, control laws to lie in an arbitrary subset of

Xt_i

U 
	 is a more general restriction than one based on information.

Thus., it is in ycneral necessary to identify the player's alternatives

with the set of control laws. This is undesirable since the game does

not exhibit the information. F,roperties of the FSFM problem. However,

it will be shown next that the first reduction (identifying

alternatives with controller inputs) is possible for FSFN. problems with

simple information, constraint.

The choice of r l seems unnatural, but has appeared in the liter.:ture

[ 4 1.	 The control laws in r l are the closed-loop control laws those

in L' 1 0 - r l are the open-loop control laws.

5
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Definition 1

The FSFM problem defined by equations (1) and (2) of art I is said tc

have a simple information constraint if

rt 
W (Yt 

E:
	 Y t -1 ( Ut) 

C_ 
t-1 }	 (1l

cor t = 1,2,...,T, where U  = P(Ut ) and Ft-1 is a subfield of Kt-1 = P(Xt

The reason for restricting attention to FSFM orol)l.ems with simple

information constraints is chat these problems can Dc readily identified

with a corresponding Kuhn rr)del of an extensive gamy

Suppose that a FSFM problem with simple information constraint is

given. Let the sets 
X0' Q1' Ulf Q20	

UT have n 0 , n i t ml , n 2 ,	 mT

elements, respectively. The rank 0 move l of the corresponding game

tree has n0 alternatives. For 1 < t < T, the rank 2t-1 move has n 

alternatives and the rank 2t move has m  alternatives. Thus every play

has rank 2T + i (Figure 3).

1A move is a vertex of the game tree with alternatives; a play is a
(terminal) vertex without alternatives. The rank of a move or play is
the number of moves that preceed it. See Kuhn ( 31 for details.

7
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The chance moves PO are the move:; with rank 0, 1, 3, ...,

2T-1, and the moves P 1 of player 1 (the only player) are the moves

with rank 2, 4, ..., 2T,	 Each alternative of the initial (rank 0)

move of the game tree corresponds to an element of X 0 . Similarly, the

alternatives of mo%-as with rank 2t-1 correspond to elements of Q t , and

moves with rank 2t correspond to elements of Ut.

Each information subset of PO contains a single point of P0 . The

information sets of P 1 are defined by the atoms  of Ft as follows. Notict

that the system equations of the FSFM problem define a map

St : X0 x Q1 x U1 x ... x Qt x U  -* X 	 (2)

which takes an initial state and a sequence of inputs and gives

corresponding state. Each atom F of Ft defines a set

{ (x(0) , q(1) , u(1) ,	 q(t) , u(t)) : S t. WO), q(1) , u(1) , ... ,

qi t ), u(t)) E F) C X0 x Q1 x U1 x ... x Qt x Ut .	 (3)

Since there is a cne-to-one correspondence between the set X 0 x Q1 x U1 x

... x Qt x U* and the moves of order 2t + 1 of the game, tha partition

induced on X0 x Q 1 x U 1 x ... x Q t x U  by the atoms of F t induces a

partition on the correspondinq set of moves. Thus each atom F e F gives

rise to a single information set for player 1 containing moves o. player

1. As a consequence, all the moves of given information set aio o' the

An atom of a field F is a set F E F such that if E E r and E C F then
either E = ^ or E = F. The atoms of a finite field always exist ind form
a partition [ 5)



same rank. This is not surprising, since the prol,lem is sequential 16

To finish the specification of the gdme, the probabilities of the

chance moves must be defined and the termirAl cost specified. If an

informatior. set of P O contains a move of rank 2t-I, its alternative

correspondiny to q c Qt is chosen witt Y,robabilit^ p t (q). The terminal

cost is determined by the fact that the 1.1ays are in one-to-one

correspondence with X0 x Q 1 x U 1 x ... x 
QT 

x UT . Thus each play deterrrunes

a cor.plete state-control trajectory for which J can he evaluated. This

value of J is the cost associated %ith the play.

In game tl ry, a strategy for player 1 is the zssignment of a single

alter,ativ- to each information set. For FSFL" problems with simple

lnforrv- r _J1, constraint, a control law is the assignment of a point in

U  to each atom of	 t-1 (since y  is constrained to be F t-1 mt3surable).

Because of the man • ar in which the infermatiori sets have been constructed

above, there is clearly a one-to-one correspondence between the control

laws of a FSFM problem with simple information constraint and the strategieb

of its corresponding ext ensive game fcrrr:. Thus the same notation y will be

used to describe either i control law sequence or a strategy for the

equivalent extensive game.

Since an equivalence has been estahli.shed between FSFM models with

simple information constraint and Kuhn extensive game models, the notions

10
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of :signaling strategy dnd perfect recall can now be precisell defined.

The following definitions and propositions are stat.Pd for 1-player games,

but can be easily extended to n-person games.

Definition 2 [3) .

A move Z of player 1 ( n=1) is called possible when playing y if it Ias

non-zero probability of occurring when the strategy y is used. An

information set I for player 1 is called relevant when playing y if

some Z E I is possible when playing y.

Proposit..on 1.

A move Z for slayer 1 is p.:sible when playing y if and only if y

chooses all alternatives on the path W  from the origin to Z which are

incident at moves of player 1.1

Proof

See reference [ 3 ], page 201.

Definition 3 [3).

A game G is said to have perfect recall if I is relevant when playing.;

y and Z E I implies that Z is possible when playing y for all I

and Y.

Definition 4 [2].

Let I be an information set for player 1, and let I  = {moves following

some move in I by alternative u}. Then I is a signaling information set

1All ch<nce moves are assumed to occur with non-zero probability.



for player 1

I  r1J # ¢an

Proposition 2

A game G

information s

Proof

see reference (2), page 268.

The following proposition is not valid for general games, but is a

special property of 1-per-an (stochastic control) problem-r.

Proposition 3.

Let G Le a 1-person game with perfect recall, and '_et I be an

arbitrary information set of the player. If I is not reljvant when

playing Y, then the probability of any move in I is zero under Y. I

I is relevant when playing Y, then the probability of any move in ! is

positive under Y• Moreover, if I is relevant under any other strategy

Y, then the probabilities of any move of I under Y and Y are the same.

Proof

If I is not relevant when playing Y, then by definition no move of

I is possible when playing Y. Thus the probability of any such move is

zero when Y is used.

If I is relevant when playing Y, then every move of I is possible

when playing Y since G has perfect. recall. Thus the probability of any

such move is positive when y is used.
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If Z E I is possible when playing y, by Proposition 3.3.1 y must

ch( ,ose all alternatives on the path W  from the origin to Z which are

incident at moves of player 1. All other alternatives on W  are incident

at chance moves, and the probability of Z under y is simply the product

of the probabilities of these alternatives. But this probability is the

same for y , since Y likewise chooses all altfl)7natives on the path W 

incident at moves of player 1.

At this point, the preceeding definitions and propositions are applied

tc, the FSFM problem.

Definition 5.

A FSFM stochastic control problem is said to have perfect recall if

it has a simple information constraint and the corresponding extensive

game has perfect recall.

Definition 6.

A control law y  for a FSFM problem with simple information constraint

is said to be a sign=aling control law if an atom of F t_1 gives rise to

a signaling information set in the corresponding extensive game.

Corollary 4.

A FSFM stochastic control problem with simple information constraint

has perfect recall if and only if it has no signaling control laws.

Proof

This is a direct consequence of the definitions, the construction o

the equivalent extensive game, and Proposition 2.

1.
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Theorem 5.

Suppose that a FSFM stochastic control problem with perfect recall

is given. Let A be an atom of Ft-l . Then, for any control sequence,

either the probability of all states in A is zero, or the probability of

each state is a positive constant Oidependent of Y.

Proof

By construction, the probability of a state x(t-1) c A under Y is	 Ij
equal to the probability of the corresponding set of moves in the

information set Z generated by A. Therefore, the theorem follows

immediately from Proposition 3.

The property of FSFM problems with perfect recall expressed by Theorem 	 'I
5 makes it possible to strengthen the minimum principle to achieve a

sufficient condition for optima Lity.

Definition 7.

Let the set of state probability vectors reachable at time t,

1< t<— T, when the initial state probability vector is 
110 be denoted

rt ( IT0 ) = { Tr
0 P

Y1 (1) P Y2 (2) ... P Yt (t) : Y  c rl ► Y2 c r2.

... , YtErt}.
	 (4)

r  (n0 ) is called the reachable set (r 0  ( no ) = {no })

Definition 6.

Suppose that the control law sequence Y* = (Y1*, Y2 *.•••. YT*)

satisfies the condition



i1
Y *	 Y *

n(t-1) P t (t) (^* (t) + Tr(t-1) h t (t)

Tr(t-1) P Yt (t) 0* (t) + Tr(t-1) hYt(t)

for all Yt E r* , for all 7r(t-1) E r t-1 (Tr0 ) where

Y *	 Y *
^* (t-1)	 P t (t) (P* (t) + h t (t)	 6)

for t - 1,2,...,T (d*(T) = 0T ). Then Y* is said to be universally

extremal.

Luna 6.

Any universally extremal control law sequence is optimal.

Proof

The proof proceeds by induction on the number of stages T.

Suppose T = 1. Then

Y
l(Yl ) = Tr (0) h 1 (1) + Tr(1) Q,(1)	

{ 7)

7T (0) h Y1 (1) + 7r(0) P Y1 (1) ^(1)

so that any extremal is optimal.

Suppose the lemma is valid for problems with T-1 stages. It must b2

established that the lemma is valid for problems with T stases.

Assume that ( Y1 * , Y2 *, ..., YT*) is universally extremal. It

follows immediately that (Y 2 *, Y 3 * , •••, YT* ) is universally extremal for

t} e problem with cost

TY
	

(8)J(Y2 , •••, YT ; Tr(1)) = t E2 Tr(t -1) h t (t) + 7T (T) 0(T)



^	 iuiF+iaca u.aa.

rl ( 0). Therefore, by the induction hypothesis,

'IT	 n (1) 4 J(Y2 , "" YT ; n(1))	 (9)

r  (7T0) and for all Y2 E r2, ".# YT E rT . Moreover, since

i ,	 YT) - ir(0) h Y1 (1) + J(Y2 ,	 YT; 7r(0) PYl(1))

00)

Z*, ..., YT *) != J(Yl , Y2 , ..., YT)	
(11)

Y2 E r2 ,
 

. . . , YT E T.

ion that (Y1 *, Y2 *, ..., YT* ) is universally extrawL

i
16

Y*	 Y*
J (Y1 *, Y2 *,	 YT*) = n (0)	 h 1 (1) + 71(0) P 1 (1) e(1)

Tr (0) h Y1 (1) + 'r(0) P Y1 (1) ^*(1) = J(Yl , Y2 *, ..., YT*)

(12)

for all Y  E rl . The lemma follows from (12) and (11).

Notice from the proof of Lemma 6	 that the existence of a universally

extremal control law sequence Y* implies the unusual fact that the

problems

min	 J(Yl,	 Yt..l, Yt .	 YT
	 (13)

Yt E rt ,	 YT E F 
for 

Y1 E rl' ..., Yt-1 E r
t_ l have a common solution (Yt*, ..., Y,,,*).

Thus the existence of a universal extremal would seein to be rather uilikely.

1 i



!'rom this viewpoint, the following property of FSFM problems with perfect

recall seems rather remarkable.

Theorem

Every FSFM problem with perfect recall has a universally extremal

control law sequence.

Proof

The proof is constructive. The control laws Y t are defined by

cEoosing their valaes on the atoms of Ft-1'

Consider the case for t=T. Let 
AT-11 

be an atom of FT-1 , i = 1,2,...,

P. For simplicity of notation, suppose that 
AT-11 

contains the first £1

states of XT 1
,
 AT-12 contains states Z  + 1 through Z2 of XT-1 , etc.

Notice that

	

71(T -1) P YT (T) O(T) + Tr(T-1) h YT (T)	 (14

P	 Ri	 n	 u (T)	 v. M 1
E	 E	 Tr. ('^-1 )	 P .	 1	 (T)	 (T) + h .	 (T)^

i 1 J zi-1+,	 k^l )k	 ]	 J

where n is the number of states in X
T-1 ,

 Q0=0, and u i !T) is the value ()f

Y7 on the ith atom of FT-1'

The decomposition ( 14 ) 	 makes the constr etion of 'YT* clear.

By Proposition 5, every vector n(T-1) E r T-1 Oro ) either has Tj(T-1)=0,

j	 Ri + 1, ... , ^i+1' or has Tr y 'T-1) _ i ( T-1) , 3 - Z  + 1, ...

9 i+11 where each i (T-1) is a fixed number independent of Y1" '' 'YT-1'

Therefore, YT takes the value u i (T) on the ith atom of FT-1 , where

1?
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x	 n

min	 E	 Iri (T-1)	 E P jk"(T) ^ (T) + h ju (T)

u e U
T	 i-1J . Q	 +1	 k-1

xi 	 n	 u .' (T)	 u * (T)
^	 E	 'rt (T-1)	 E P 

,k 
1	 (T) ^K (T) + h i	 (T)

j.j
i-1+1 1	 k-1	

j

(15)

The construction of the remaining y t • to completed by applying an

analogous procedure to

n(t- 1) PYt (t) ^*(t) + n(t-1) hYt (t) .	 (:6)

Theorem 7 is primarily of theoretical and conceptual impoz:ance.

Problems with perfect recall are more efficiently handled by (eriving an

equivalent deterministic problem that has a conditional probatility vector

for the deterministic state. (The conditioning is with respect to the

field Ft-l . )Special cases of this procedure are implicit in the usual

stochastic dynamic programming algorithm (7, 8, 9, ) and the

algorithm of Sandell and Athans for the 1-step delay problem (10.].



III. A FSFM MIN-Ei ALGORITHM

A substantial number of nrmerical algorithms have been suggested

for the solution of deterministic optimal control problems. The mo t

natural of these fur the FSFM problem is the min-H algorithm, which is

intimately related to the minimiun principle. The Gran-H algorithm was

initially suggested by Kelley [ 111, Platzman [12] has shown that the

algorithm is equivalent to Howard's policy iteration, method nor Marko^vian

decision processes, and has suggested its application to the imperfe-t

:state information case of that problem.

To simplify the notation, the sets X  and U  are assumed to have

a constant cardinality fcr 0 5 t < T.

Al gorithm (Min-H)

1. Guess Y1 0 , Y2
0 , ..., Yr 	Set j = 0.

2. Compute Q j (T) , Q j (T-1) ,	 Qi (l) using 'Y,I,^, ..., Y ,' in the

adjoint equation (Q 3 (T) = QT). Set t	 1.
Y	 Y	 ,

3. Choose t7+1 to minimize n 3+1 ( t-1) P t (t) Q3 (t) + 7r^^ 1 (t-1) h t tt). 1Y 

(n j+1 (0) = n0)	
+1

4. If t < T, compute -;r3+1 
(t) _ nj+l	

YIt
- 1) P t	 (t).

Set t = t+l, and go to 3.

5. If t = T, test Jj+l < J7 , where

J
Y

JJ _ i	 (t-1) h t (t) + n^ (T),^•
t=1

1	 j+1	 j
If Y 	 is not unique, choose arbitrarily but with preference for )t

if it is in the minimizing set.

I
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If J +l < J j , set j	 j+1, t - 0, and go to 2.

If 
Jj+l = J i , stop.

T) eorem 6

The preceeding algorithm converges in a finite number of steps

to an extremal solution.

Proof

Let s = { J(Y)IYET). Since S is finite, its elements can be arrange  in

d,scending order,

	

S =	 J1,	 J 2 ,..., J	 1.	 > J	 (17)
^ ^	 1	 i+ i .

Consider the set of positive numbers

R = ( J 1 - J 2 ,..., i t-1 - J^ )
	

(18)

and let E = inf R. Note that E > 0.

Consider the difference Jj - 1 
j+1 

defined in the algorithm. Clearly, either

	

J 3 -Jj+1 = 0, or	 J i - Jj+l > e. By induction, if the algorithm has lot

converged by step j, then

j	 oJ < J	 - jE.	 (19)



.1

Therefore, eventually J j+l = 1 3 , since inf S is finite. But J j - Jj
+1

implies that Iy j ,...,y i 1is extremal.

Although the FSFM Min-H algo:ithm is guaranteed to convezge in a finit-

number of steFs, the amount of computation per stet , may be pr<hibitive, evet

if full advantage of the special structure of the prublc ,.m is n;de (see (13) for

a discussion and estimates of computation time). Thus modifications to the

basic algorithm for special cases are of interest.

Consider the case in which

rt = rt x rL x... rt
	

(20;

and rt consists of control laws measurable with respect to a subfield

F t of Xt.

Make the following notational convention:

Yt	
X
t-1 i U t 1 x U t2 x ... x Ut	 (21)

Yt 	(Y t 1. Yt 
2, ... , Y

t 
k ) .	 (22)

J(Yl, Y2 ,	 YT)

= J(Y
1 • 	

Yk	 Y 1
,	k,	 1	 k	 (23)1	 ... ► 	 1	 2	 ... , Y2 , ... , YT	 .... YT l .

Then
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Definition

A sequence

k

	

Y* = (Y 1 • ,	 YT*) _ ( YI 1* , ...,Y1 *,	 YT1*,
	 YT #)

is said to be a persor.-by-person extremal if

J(Yll*, ..., Yt l* , ..., YTk*)

	

1( 1 1* ,	 Ytl, ..., YTk*Y	 )	 for all	 Ytl E rti,

i	 1, ..., k,	 t	 1, ..., T.

Every optimal control law sequence is a person - by - person extremal,

but the converse need not be true. Clearly, the FSFM Min-H algorithm can be

modified to give an algorithm that always converges to a F=erson - by-person

extremal. One possible order of minimization is

1	 1	 1l 	 2	 k	 k	 k
Yl , Y2	 ... , YT , Yl , Y2 ,	 - • , YT ,	 Yl , Y2	 ... , YT .

Thus k forvird ind backward swee ps cf the st&te and costate equations are

required per iteration. The number o c. multiplications required is considerably

reduced. See [13) for details. Clearly, the person -by- person Min-H algorithm

is finitely convergent to a person -by- person extremal solution.

0

(24)



Notice that person-by-person approach is consistent with the minimum

principle approach:

1. both approaches given .iecessary conditions for optimality

2. both approaches are sufficient only under convexity assumptions
that do not hold in general

3. An initial quess is improved, but the improvement may stop
short of optimal.

These facts are consequences of the fact that the person-by-person and

min If algorithms are actually both concrete realizations of orthogonal

search. The Min-H algorithm minimized the cost withcut coordinated choice

of the control laws at different times. The person - by-person Min-H

algorithm minimizes the cost without coordinated choice of the control

laws of the various controllers at a fixed time instant.

"s
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IV. SUMMARY AND CONCLUSIONS

The notion of signaling has been introduced from game theory and

shown to be relevant to the FSFM. problem. In fact, the signaling

phenomena is of general importance in non-classical stochastic control

theory. The presence of signaling makes it necessary for decentralized

controllers to employ oncrol laws with a dual 1urpose: simultaneous

c • ,mmunicatiori and control. The presence of signaling in LQG problems

rr,Gnifests itself in the nonlinear strategies that are optimal for these

problems [1,14]. (Given the )revelance of nonlinear coding and modulation

techniques in communication theory, the existence of nonlinear optimal

st-ategies for nonclassical LQG problems is hardly surpr_sinl.) Moreover,

the absence of signaling in LQG problems (in the LQC; context, equivalent

to the presence of flo-Chu nesting) insures the optimality of linear

strategies [15]. Thus the very special nature of the classical stochastic

control problem is made clear: only the control aspect of th-! dual problE.ns

of corununication and contr t need be considered.

The need to sim4ltar.eously solve a control and cot nication=problem

makes the nonclassical stochastic control problem very difficult to solve,

even in the FSFM case. One approach to solution of the FSFM frobiem is the

person - by - person -in-li algorithm sketched in Section III. Presently,

evaluation of the algorithm is being carried out in the context of a highly

simplified model o :.n ARPA-type packet switching computer c(inmunication

network [161-The primary difficulty is essentially combinatorial, sine: there

is an explosive growth in the number of states with network *ize. Thus

straightforward implementation of an algorithm seekin g ., "noc2-by-node" optimal

routing strategy is possible only for small networks, or l.argar networks with

an aggregated and/or merged [l%] state set.
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