$\qquad$

# REMOTELY SENSING WHEAT MATURATION WITH RADAR 

Remore Sensing Laborafory
RSL Technical Report 177-5:

Thomas F. Bush
Fawwaz T. Ulaby
(NASA-CR-144507) REMOTELY SENSING WHEAT
N75-33483
MATURATION WITH RADAR (Kansas Univ. Center
for Research. Inc.) 126 p HC $\$ 5.75$ CSCL 02C
Onclas
G3/43. 42349
May, 1975

Sponsored by:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lyndon B. Johnson Space Center Houston, Texas 77058

CONTRACT NAS 9-10261

## THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER Raymond Nichols Hall CENTER FOR RESEARCH, INC. <br> 2291 Irving Hill Drive-Campus West Lawrence, Kansas 66045

Telephone:

Thomas F. Bush<br>Fawwaz T. Ulaby

May, 1975

Sponsored by:
NATIONAL AERONAUTICS :AND SPACE ADMINISTRATION
Lyndon B. Johnson Space Center
Houston, Texas. 77058
CONTRACT NAS 9-1020I

## TABLE OF CONTENTS

Page
ABSTRACT ..... i
1.0 INTRODUCTION ..... 1
2.0 MEASUREMENT PROCEDURE ..... 1
2.1 The MAS 8-18 ..... 1
2.2 Data Collection ..... 2
3.0 .GROUND TRUTH ..... 4
3.1 Soil Moisture ..... 4
3.2 Plant Moisture ..... 6
4.0 DISCUSSION OF RESULTS ..... 7
4.1 Temporal Variations of $\sigma^{0}$ ..... 7
4.2 Rate of Change of $\sigma^{\circ}$ ..... 10
4.3 Variations of $\sigma^{\circ}$ with Plant Moisture ..... 12
4.4 A Further Regression Analys is of $\sigma^{\circ}$ on Plant Moisture ..... 14
$4.5 \sigma^{\circ}$ Dependence on Soil Moisture ..... 15
4.6 Spectral Response of $\sigma$ ..... 15
4.7 Angular Variations of $\sigma^{\circ}$ ..... 17
5.0 CONCLUDING REMARKS ..... 18
REFERENCES ..... 19
FIGURES ..... 21-110
APPENDIX A: Ground Truth Summary for 1974 Wheat Scattering Experiment ..... 111
APPENDIX B: Wheat Scattering Coefficients, 1974 ..... 112

## LIST OF FIGURES

Figure 1. Record of soil moisture, plant moisture, plant height and precipitation during the observation period.

Figure 2. Diagram showing field locations of soil samples. 22
Figure 3a-d $\begin{aligned} & \text { Temporal variations of } \sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB}) \text { and } \sigma_{\bar{V}}{ }^{\circ}(\mathrm{dB}) \text { as } \\ & \text { measured at } 0^{\circ}\end{aligned}$ measured at $0^{\circ}$ a) 8.6 GHz, b) 9.4 GHz, c) 13.0 GHz , and 23-26
d) 17.0 GHz .

Figure 3e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. 27
Figure 4. Diagram indicating the relationship between the electric field of a horizontally polarized signal and the wheat row direction for various incidence angles.28

Figure 5a-d. Temporal variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}(\mathrm{dB})$ as
a) 8.6 GHz , b) 9.4 GHz , c) 13.0 GHz , and
d) 17.0 GHz .
29-32

Figure 5e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. 33
Figure 6a-d. Temporal variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}(\mathrm{dB})$ as
a) 8.6 GHz , b) 9.4 GHz ,
c) 13.0 GHz , and
d) 17.0 GHz .

34-37
Figure 6e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. 38
Figure $7 \mathrm{a}-\mathrm{d}$. Temporal variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}(\mathrm{dB})$ as measured at $70^{\circ}$,
a) 8.6 GHz , b) 9.4 GHz ,
c) 13.0 GHz , and
d) 17.0 GHz .

Figure 7e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. 43

Figure 8a-1. .Variations of S (defined in section 4.2 ) with time.
a) $9.4 \mathrm{GHz}, 0^{\circ}$;
b) $9.4 \mathrm{GHz}, 10^{\circ}$;
c) $9.4 \mathrm{GHz}, 20^{\circ}$;
d) $9.4 \mathrm{GHz}, 30^{\circ}$ i. e e $, 13.0 \mathrm{GHz}, 0^{\circ}$; f) $13.0 \mathrm{GHz}, 10^{\circ}$;
gof $13.0 \mathrm{GHz}, 20^{\circ}$; h) $13.0 \mathrm{GHz}, 30^{\circ}$; i) $17: 0 \mathrm{GHz}$,
$0^{\circ}$, j) $17.0 \mathrm{GHz}, 10^{\circ}$; k) $17.0 \mathrm{GHz}, 20^{\circ}$; and
l) $17.0 \mathrm{GHz}, 30^{\circ} \ldots:$
44-55

Figure $\dot{9} a-d . \quad V a r i a t i o n s$ of $\sigma_{\bar{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}$ (dB) with plant moisture.
a) $8.6 \mathrm{GHz}, 0^{\circ}$; b) $.9 .4 \mathrm{GHz}, 0^{\circ}$; c) $13.0 \mathrm{GHz}, 0^{\circ}$; and d) $17.0 \mathrm{GHz} ; 0^{\circ}$.
Figure 9e. Variations of $M_{H}{ }^{\mathrm{P}}, M_{V}{ }^{\mathrm{P}}, \mathrm{r}_{H}{ }^{\mathrm{P}}$, and $\mathrm{r}_{V}{ }^{\mathrm{P}}$ with frequency. 60
Figure. 10ard. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}$ (dB) with plant .
moisłure.
a) $8.6 \mathrm{GHz}, 30^{\circ}$; b) $9.4 \mathrm{GHz}, 30^{\circ}$; c) 13.0 GHz , $30^{\circ}$; and d) $17.0 \mathrm{GHz}, 30^{\circ}$. 61-64
Figure 10e. Variations of $M_{H}{ }^{\mathrm{p}}, M_{V}{ }^{\mathrm{P}}, \mathrm{r}_{H} \hat{\mathrm{p}}^{-}$, and $\mathrm{r}_{\mathrm{V}}{ }^{\mathrm{p}}$ with frequency. 65
Figure Ila-d. Variations of $\sigma_{H}^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant m moisture:
a) $8.6 \mathrm{GHz}, 50^{\circ}$;
b) $9.4 \mathrm{GHz}, 50^{\circ}$;
c) 13.0 GHz ,
$50^{\circ}$; and d) $17.0 \mathrm{GHz}, 50^{\circ}$.
66-69

Figure 1le. Variations of $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r V^{p}$ with frequency: 70
Figure $12 \mathrm{a}-\mathrm{d}$. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}(\mathrm{dB})$ with plant moisture.
a) $8.6 \mathrm{GHz}, 70^{\circ}$;
b) $9.4 \mathrm{GHz}, 70^{\circ}$;
c) 13.0 GHz , $70^{\circ}$; and d) $17.0 \mathrm{GHz}, 70^{\circ}$.
Figure 12e. Variations of $M_{H}{ }^{\mathrm{P}}, \mathrm{M}_{V}{ }^{\mathrm{P}}, r_{H}{ }^{\mathrm{P}}$, and $\mathrm{r}_{V}{ }^{\mathrm{P}}$ with frequency. 75
Figure 13a-d. Variations of $\sigma_{H}^{o}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant
moisture.
a) $8.6 \mathrm{GHz}, 0^{\circ}$; b) $8.6 \mathrm{GHz}, 30^{\circ}$;
c) 8.6 GHz , $50^{\circ}$; and d) $8.6 \mathrm{GHz}, 70^{\circ}$.

Figure $14 \mathrm{a}-\mathrm{d}$. Variations of $\sigma_{H}^{\circ}$ and $\sigma_{\mathrm{V}}{ }^{\circ}$ (real units) with plant moisture.
a) $9.4 \mathrm{GHz}, 0^{\circ}$; b) $9.4 \mathrm{GHz}, 30^{\circ}$; c). 9.4 GHz , $50^{\circ}$; and d) $9.4 \mathrm{GHz}, 70^{\circ}$.
Figure $15 \mathrm{a}-\mathrm{d}$. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}$ and $\sigma_{\mathrm{V}}^{0}$ (real units) with plant oisture $13.0 \mathrm{GHz}, 0^{\circ}$; b) $13.0 \mathrm{GHz}, 30^{\circ}$; c) 13.0 GHz , $\jmath^{\circ}$; and d) $13.0 \mathrm{GHz}, 70^{\circ}$.

Figure 16a-d. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}$ and $\sigma^{\circ}{ }^{\circ}$ (real units) with plant

> moisture.
> a) $17.0 \mathrm{GHz}, 0^{\circ}$; b) $17.0 \mathrm{GHz}, 30^{\circ}$; c) 17.0 GHz ,
> $50^{\circ}$; and d) $17.0 \mathrm{GHz}, 70^{\circ}$. 88-91

Figure 17. Measured scattering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content by volume at 8.6 GHz for angles of a) $0^{\circ}$, b) $10^{\circ}$, and c) $20^{\circ}$.
Figure 18. Measured scattering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content by volyme at 13.0 GHz for angles of a) $0^{\circ}$, b) $10^{\circ}$, and c) $20^{\circ}$.
Figure 19. Measured scatfering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content by colume at 17.0 GHz for angles of a) $0^{\circ}$, b) $10^{\circ}$, and c) $20^{\circ}$. 96
Figure 20. $\quad 8-18 \mathrm{GHz}$ spectral response of $\sigma^{\circ}$ and $\sigma^{\circ}(\mathrm{dB})$ for May 21,1974 at angles at a) $0^{\circ} \mathrm{H}$, b) $30^{\circ}$, c) $50^{\circ}$, and d) $70^{\circ}$.

Figure 21. $\quad 8-18 \mathrm{GHz}$ spectral response of $\sigma^{\circ}{ }^{\circ}$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})_{\mathrm{o}}$ for June 6,1974 at angles of a) $0^{\circ}$, b) $30^{\circ}$, c) $50^{\circ}$, and d) $70^{\circ}$.

Figure 22. $\quad 8-18 \mathrm{GHz}$ spectral response of $\sigma^{\circ}{ }^{\circ}$ and $\sigma^{\circ}{ }^{\circ}(d B)$ for June 12, 1974 at angles of a) $0^{\circ}$, b) $30^{\circ}$, c) $50^{\circ}$, and 102
d) $70^{\circ}$.
Figure 23. $\quad 8-18 \mathrm{GHz}$ spectral response of $\sigma^{\circ}{ }^{\circ}$ and $\sigma^{\circ}{ }^{\circ}$ (dB) for June 21, 1974 at angles of a) $0^{\circ} \stackrel{H 1}{\prime 2}$ b) $\left.30^{\circ}, ~ c\right) ~ 50^{\circ}$, and d) $70^{\circ}$.

104
Figure 24. Angular response of a) $\sigma_{H}{ }^{\circ}$ and b) $\sigma_{V}{ }^{\circ}$ at 8.6 GHz at various stages of development.

Figure 25. $\begin{aligned} & \text { Angular response of a) } \sigma^{\circ}{ }^{\circ} \text { and barious stages of development. } \sigma_{V}{ }^{\circ} \text { at } 13.0 \mathrm{GHz}, ~\end{aligned}$
Figure 26. Angular response of a) $\sigma^{\circ}{ }^{\circ}$ and b) $\sigma_{\bar{V}}{ }^{\circ}$ at 17.0 GHz 108

Figure 27a. Variations of $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$ with angle for three
Figure 27b. Variations of $M_{H}^{p}$ and $M_{V}^{p}$ with angle for three frequencies.


#### Abstract

An experiment was conducted during the late spring of 1974 to study the scattering properties of wheat in the $8-18 \mathrm{GHz}$ band as a function of frequency, polarization, incidence angle and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicates that $\sigma^{\circ}$, the radar backscattering coefficient, is sensitive to both radar system parameters and crop characteristics particularly at incidence angles near nadir. Linear regression analyses of $\sigma^{\circ}(\mathrm{dB})$ on both time and plant moisture content result in rather good correlation, as high as 0.9 , with the slope of these regression lines being $0.55 \mathrm{~dB} /$ day and -0.275 $\mathrm{dB} / \%$ plant moisture at 9.4 GHz at nadir. Furthermore, by calculating the average time rate of change of $\sigma^{0}$ (real units) it is found that $\sigma^{\circ}$ undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.


### 1.0 INTRODUCTION

For many years the problem of feeding the worlds expanding population has concerned both the government and civilian populace. As an aid in managing our food resources certain remote sensing techniques have been implemenfed. At the present time most of the civilian global sensors operate in the visible or infrared portion of the electromagnetic spectrum. While these sensors have displayed many capabilities, their use is limited to cloud free weather conditions. In studies other than remote sensing of cropland this dependence on clear weather may be tolerable, but for dynamic targets like agricultural crops the dependence on cloud free condi-tions is in most cases intolerable. Because it is nearly weather independent, radar is being investigated as a sensor for agricultural land-use mapping.

Earlier papers [1-8] have dealt with the backscattering properties of certain agricultural targets as a function of both radar parameters and target characteristics in tiopes of using $\sigma^{\circ}$, the radar scattering coefficient, as a target identifier and as an aid in estimating pertinent target properties. For a discussion of the relationship between target properties, system parameters and the measured backscatter the reader is referred to Ulaby [3].

Nearly 2.15 million hectares of the world's cultivated land (representing about $16 \%$ ) are planted in wheat [9]. Radar studies of wheat, however, do not seem to represent a proportionate part of the domestic research in the remote sensing of croplands. During the late spring of 1974 (May 21 through June 25) an experiment was conducted to study the backscattering properties of wheat as a function of system parameters and target properties. This report presents the results of the experiment which indicate a promising future for monitoring wheat growth with radar.

### 2.0 MEASUREMENT PROCEDURE

### 2.1 The MAS 8-18

The radar used in this study, the MAS 8-18 (Microwave Active Spectrometer, $8-18 \mathrm{GHz}$ ), is a modified version of the mobile truck-mounted spectrometer described by Bush and Ulaby [10]. The modifications include minor antenna changes, improved

IF filtering and the use of isolators for reflection reduction. All modifications were made to provide an increased signal to noise ratio. Major system parameters remained unchanged with the exception of an increase in RF signal bandwidth from 400 MHz to 800 MHz . Table i presents the pertinent system parameters.

### 2.2 Data Collection

Backscattering measurements were made during the period of May 21 through July 25, 1974. Data was collected for both the like polarized (HH and VV) configurations at angles ranging from $0^{\circ}$ (nadir) to $70^{\circ}$ in $10^{\circ}$ increments. These measurements were made at 11 frequencies in the $8-18 \mathrm{GHz}$ range of the instrument.

Because of its FM character, the system inherently provided fading reduction by averaging in the frequency domain [11-14]. However, due to its limited resolution cell size it was felt that spatial averaging was also necessary. Thus, an average of 17 spatially independent measurements were made at $0^{\circ}$ with the number of spatial measurements decreasing to 12 at $70^{\circ}$. The criterion for reducing the number of spatial measurements made at the larger angles was based on the fact that with a panchromatic system, return power variance decreases with incidence angle [1214].

The amount of variance reduction provided by frequency averaging is a direct function of target extent (measured radially from the antenna). Target extent, however, is not necessarily the physical extent of the target but may be reduced by the range resolution of the system or by the skin depth of the target. In the case of wheat it is not possible, as will be discussed later, to experimentally estimate the degree to which penetration occurs. For lack of this type of information the following approach was taken to estimate depth of penetration.

The dielectric properties of several vegetation types have been measured as a function of plant moisture content by Carlson [15] at X-band. His results indicate that vegetation with $40 \%$ moisture content, (the average wheat moisture over the observation period) has a relative complex dielectric constant of approximately $\epsilon_{\mathrm{w}}=12.5-\mathrm{j} 5.0$. A wheat field however is a mixture of dielectrics (air and vegetation) so that the effective dielectric constant of the mixture is less than that of wheat alone. Ground measurements show that the volume of wheat occupying

## TABLE 1.

MAS 8-18 System Specifications

| Type | FM-CW |
| :---: | :---: |
| Modulating Waveform | Triangular |
| Frequency Range | $8-18 \mathrm{GHz}$ |
| FM sweep: $\Delta f$ | 800 MHz , |
| Transmitter Power | $10 \mathrm{dBm}(10 \mathrm{~mW})$. |
| Intermediate Frequency | 50 kHz |
| IF Bandwidth | 10.0 kHz |
| Antennas |  |
| Height above ground | 26 m |
| Reflector diameter | 61 cm |
| Feeds | Cavity backed; log-periodic |
| Polarization | Horizontal transmit-Horizontal receive (HH) |
|  | Vertical transmit-Vertical receive (VV) |
| Incidence Angle Range | $0^{\circ}$ (nadir)- $80^{\circ}$ |
| Calibration: - |  |
| Internal | Delay Line |
| External | Luneberg Lens |

$1.0 \mathrm{~m}^{3}$ of free space is approximately $0.1 \mathrm{~m}^{3}$. Thus as a very crude approximation the average effective dielectric constant of the wheat-free space mixture was taken to be

$$
\begin{aligned}
\epsilon_{\mathrm{eff}} & =0.1 \epsilon_{\mathrm{w}}+0.9 \\
& =2.15-\mathrm{j} 0.5
\end{aligned}
$$

where $\epsilon_{w}$ is the relative dielectric constant of wheat and the relative dielectric constant of free space is taken as 1.0. Making use of $\epsilon_{\text {eff }}$ the average skin depth of the target was calculated to be 2.17 cm at 13.0 GHz , the center of the $8-18 \mathrm{GHz}$ band. Knowing the skin depth and the range resolution of the system it is possible to estimate the frequency spacing between two independent samples of the radar return [12] according to the equation:

$$
\Delta f_{d}=\frac{150}{D} \mathrm{MHz}
$$

where $D$ is the target extent measured radially from the radar antenna. By dividing the system RF bandwidth, 800 MHz , by $\Delta f_{d}$, the decorrelation bandwidth, it is possible to determine the number of independent samples, $N$, averaged by the system each time a measurement was made. Multiplying $N$ by the number of spatially independent measurements provides the total number of independent samples of the radar return after averaging. Table 2 presents $90 \%$ confidence intervals for the backscattering coefficient $\sigma^{\circ}$ calculated using this approach.

### 3.0 GROUND TRUTH

Although described by Cihlor [16], the method of collecting and processing the ground truth presented herein will be reviewed. Soil moisture, plant moisture, plant height and precipitation data are presented in Figure 1.

### 3.1 Soil Moisture

To determine the effects of soil moisture on $\sigma^{\circ}$, six soil samples were taken from the wheat field while scattering measurements were made. Their locations are shown in Figure 2. Locations 1 approximately correspond to scatterins mancuramante

TABLE 2.
Number of Spatially Discrete Measurements with $90 \%$ Confidence Intervals of $\sigma^{\circ}(\mathrm{db})$ of Wheat

| Incidence Angle | Number of Spatially Independent Measurements | 90\% Confidence <br> Intervals (dB) |
| :---: | :---: | :---: |
| $0^{\circ}$ | 17 | +1.8 |
|  |  | -2.0 |
| $10^{\circ}$ | 16 | +1.8 |
|  |  | -2.0 |
| $20^{\circ}$ | 15 | +1.1 |
|  |  | -1.3 |
| $30^{\circ}$ | 14 | +.93 |
|  |  | -1.1 |
| $40^{\circ}$ | 13 | $\underline{+0.774}$ |
|  |  | -0.774 |
| $50^{\circ}$ | 12 | +0.622 |
|  | . | -0.622 |
| $60^{\circ}$ | 12 | +0.457 |
|  |  | -0.457 |
| $70^{\circ}$ | 12 | $\overline{+0.403}$ |
|  |  | -0.403 |

made at $0^{\circ}, 10^{\circ}$ and $20^{\circ}$, locations 2 correspond to $30^{\circ}, 40^{\circ}$ and $50^{\circ}$ while locations 3 correspond to $60^{\circ}$ and $70^{\circ}$. At each location samples were taken at various depths $(0-1 \mathrm{~cm}, 1-2 \mathrm{~cm}, 2-5 \mathrm{~cm}, 5-9 \mathrm{~cm}$ and $9-15 \mathrm{~cm}$ ) to determine the soil moisture profile. Because of skin depth considerations [4] only the data from the top two centimeters were used in analysis. These 0-2 centimeter values were then averaged for each pair of locations. To convert from percent moisture by weight to moisture by volume, bulk density measurements were also taken. All soil moisture data presented herein are on a volumetric basis having units of $\mathrm{gm} / \mathrm{cm}^{3}$. It should be noted that the measurement period (May 21-June 25) was characterized by a high mean soil moisture ( $0.317 \mathrm{gm} / \mathrm{cm}^{3}$ ) with extrame valnoe heing $0.40 \mathrm{gm} / \mathrm{cm}^{3}$ and $0.20 \mathrm{gm} / \mathrm{cm}^{3}$.

### 3.2 Plant Moisture

As with soils, the water content of vegetation has a direct influence on its dielectric properties [15] . For this reason it was necessary to collect such data. During each measurement period, wheat samples were obtained and processed to determine the plant moisture content on a wet weight basis, a measure of the fraction of plant weight consisting of water. While it is recognized that the effects of moisture on the dielectric properties of both soil and vegetation will be influenced by the manner in which it is chemically bound with the plant or soil molecules, such data is not generally available. Thus, the plant moisture on a wet weight basis will be used in the discussions of the data presented.

Of particular interest is the range of variation in plant moisture during the measurement period. From Figure 1, we see that the plant moisture curve, while monotonically decreasing an average of $1.66 \%$ per day, had two regions during which the plant moisture remained somewhat constant with time (May 21-31 and June 6-12). The second "plateau" in the plant moisture curve may have been caused by the heavy precipitation recorded during the noted period.

Perhaps of more importance is the ripening process, the mechanism responsible for this consistent decrease in plant moisture. Although decreasing plant moisture is one measurable consequence of the ripening of the wheat, there are certainly other changes occurring which may not be readily measured. Thus we should bear in mind that while consistently decreasing plant moisture may be indicative of the maturation process, there are certainly other physiological and morphological processes occurring.

### 4.0 DISCUSSION Ö RESULTS

Because of the quantity of multi-dimensional data gathered during the course of the experiment it is not at this time possible to discuss all of it. Rather, only a representative portion will be presented in the body of this report with the remainder of the data made available in the appendices.

### 4.1 Temporal Variations of $\sigma^{\circ}$

$\sigma^{\circ}$, the radar scattering coetficient, is generally a function of the geometric and dielectric properties of the target of interest. Any variation of these target properties will normally be reflected as a change in $\sigma^{\circ}$. Thus, if radar is to be useful as a tool in estimating, crop maturity it must somehow respond with a reasonable degree of sensitivity to the geometrical and electrical variations a plant undergoes during its maturation process. Among the geometric changes in wheat may be variations in plant height, leaf structure and the appearance of the wheat head. The most obvious dielectric variation is that of changing. plant moisture which is quite dramatic in the case of wheat during the final month of its maturity. Thus, while it is recognized that the variations we may observe in $\sigma^{\circ}$ are a function of crop characteristics, we should also bear in mind that these plant characteristics are in turn dependent on the passage of time. Therefore, this first section on temporal variations of $\sigma^{\circ}$ will serve, among other purposes, to introduce the reader to the general trends in the variations of the scattering data.

Figures 3 a through 3 d present the variations of $\sigma^{\circ}$ with time at an incidence angle of.$^{\circ}$ for four frequencies, $8.6,9.4,13.0$ and 17.0 GHz . The abscissa identifies the date on which each data set was recorded. Figure 3 e presents the results of a linear regression analysis of $\sigma_{H}^{O}$ and $\frac{O}{V}$ on time with the number of days after May 21 being the independent variable. Shown are the estimated correlation coefficients, $r_{H}^{\dagger}$ and $r_{V}^{\dagger}$, and the slopes of the regression lines $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$, (having units of $\mathrm{dB} /$ day). The abscissascale is frequency in GHz . It should be noted that all regression analyses presented in this report exclude the data set taken on June 25 since it was taken after harvest.

As a general observation it is immediately apparent that the radar is responding to the phyșiological and morphological changes which occurred during the final month of ripening of the wheat. At 8.6 and $9.4 \mathrm{GHz} \sigma^{\circ}$ and $\sigma^{\circ} \frac{\mathrm{V}}{\mathrm{V}}$ both show an almost linear variation with time. At 13.0 and 17.0 GHz however this linear response is not quite as
apparent although data at these higher frequencies still exhibit a dependence on the passage of time. Figure $3 e$ presents a more complete and quantifiable representation of these trends. We note that, $\mathrm{r}_{\mathrm{H}}^{\dagger}$ and $\mathrm{r}_{V}^{\dagger}$, the estimated correlation coefficients of $\sigma_{H}^{0}$ and $\sigma^{0}{ }_{V}$ on time show a decreasing trend with frequency from approximately 0.95 at 8.6 GHz to about 0.85 at 17.0 GHz . "Th is is in agreement" with our earlier, more general observation, that the "linearity" of the variations of $\sigma^{\circ}$ with time undergo a certain amount of degradation as frequency is increased. Certainly, however, $\mathrm{r}_{\mathrm{H}}^{\dagger}$ and $r_{V}^{\dagger}$ remain quite high across the $8-18 \mathrm{GHz}$ band.

Of equal importance to $r_{H}^{\dagger}$ and $r_{V}^{\dagger}$ are $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$. These values represent the slope of the regression lines and may be interpreted as a measure of the sensitivity of $\sigma^{\circ}$ to the passage of time. Obviously a very high correlation coefficient is useless in a practical sense if the sensitivity of $\sigma^{\circ}$ to temporal changes is small. The response of of $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$ to frequency (Figure 3e) shows a very inferesting phenomenon near 9.4. GHz . At th is frequency $M^{\dagger}$ behaves in a somewhat "resonant" manner with $M_{V}^{\dagger}$ being more pronounced than $M_{H}^{\dagger}$. This suggests that at $9: 4 \mathrm{GHz}$ there exists a certain characteristic or combination of wheat characteristics to which the radar is particularlysensitive. Whether these characteristics are of a molecular or geometric nature is not known but it certainly appears to merit a considerable amount of future thought and investigation. At frequencies above 11.8 GHz the curves depicting $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$ appear to be practically frequency and polarization independent.

Aside from the."resonant" phenomenon occurring at 9.4 GHz , the general increasing trend of $\sigma^{\circ}$ is also quite difficult to explain adequately. If the regression lines exhibited a negative slope it would be possible to argue that the phenomenon observed is due to a decreasing moisture content and thus, decreasing dielectric constant of the target. Since the slope is positive, such an explanation can be discarded. A decreasing dielectric constant does, however, imply decreasing attenuation within the vegetation canopy. This decrease in attenuation within the vegetation canopy would then allow the radar to "see" more of the generally wet underlying soil causing an increasing $\sigma^{\circ}$. Although this may be a partial explanation of the phenomenon it does not seem to be entirely consistent with the observed data or with the approximated skin depth (section 2.2). Consider, for example, the increase in $\sigma^{\circ}$ by about 1.8 dB between June 12 and June 17 during which the soil moisture decreased from $\dot{0} .35$ to 0.18 which clearly indicates no response to soil moisture variations. Furthermore, it does not seem likely that either the "resonance" phenomenon; or polarization dependence at 9.4 GHz would result from soil conditions alone. Also, the difference in
$M_{H}$ and $M^{\prime} V^{\text {indicates 'a preferred target geometry. Visüal inspection of the soil }}$ surface indicates none while the wheat itself does. The wheat was sown in rows spaced 25 cm apart such that at $0^{\circ}$ incidence the wheat rows were oriented parallel to the E field'öf a horizontally polarized'signal (see Figure 4a). At a ground range of $5: 3$ meters (corresponding approximately to $10^{\circ}$ incidence) the direction of the wheat rows changed by $90^{\circ}$ such that the row $-E$ field orientation was similar to that shown in Figure 4 b . At incidence angles greater than $10^{\circ}$ the rows were perpendicular to the E field of $a$ horizontally polarized signal (Figure 4c). .

Figures 5a-e present data collected in a manner identical to that presented in Figures 3are except the incidence angle is now $30^{\circ}$. It is immediately obvious that this data contrasts sharply with the data collected at nadir. We begin by noting the lack of any peaking in the $M^{\dagger}$ (Figure 5 e ) curves although it does appear that $\mathrm{M}_{\mathrm{V}}^{\dagger}$ and $M_{H}^{\dagger}$ trade roles with $M_{H}^{\dagger}$ being generally higher than $M_{V}^{\dagger}$. Perhaps more striking, however, is the response of the correlation coefficients $r_{H}^{\dagger}$ and $r_{V}^{\dagger}$. At 8.6 GHz we note that $r_{H}^{t}$ indicates nearly no consistent trends of $\sigma_{\mathrm{H}}^{0}$ with time although $\mathrm{r}_{\mathrm{H}}^{\dagger}$ has a
value of 0.675 . However, a small increase in frequency to 9.4 GHz causes $\mathrm{r}_{\mathrm{H}}^{\text {to }}$ increase to 0.65 while $r_{V}^{\dagger}$ remains nearly constant. This again suggests that the choice of frequency in a rather small band around 9.4 GHz may be critical in studying the temporal variations of the scattering pröperties of wheat. As we further increase frequency to valües above 9.4 GHz we note a marked separation in $r_{H}^{\dagger}$ and $r_{V}^{\dagger}$ with $r_{H}^{\dagger}$ being consistently higher. This is in contrast to the $0^{\circ}$ correlation coefficients which showed practically no polarization dependence at frequencies higher than $11.8 \mathrm{GHz}^{2}$.

Again it is very difficult to even qualitatively explain this behavior adequately although it should be restated that the row $-\bar{E}$ field orientation has now, at $30^{\circ}$, changed from that of the $0^{\circ}$ data. Let us, however, reconsider the argument that the radar is responding to changes in plant attenuation. As a rough estimate of the amount of loss expected through the wheat we might use the measured value of de Loor [17] whose data.indicate: that approximately 12.5 dB total attenuation should be expected at 9.3 GHz . If we are to expect this much loss at 9.3 GHz certainly the loss will increase with frequency (assuming the dielectric constant of wheat does not vary drástically with frequency) with a resulting decrease in sensitivity. Although the sensitivity factor
$M^{\dagger}$ is less at $30^{\circ}$ than at $0^{\circ}$ we see practically no dependence of $M^{\dagger}$ on frequency above 11.0 GHz . These data also seem consistent with data presented by Lundien [18] who measured wheat at $X$-band for various plant heights. His data indicate a large degree of plant canopy attenuation at $0^{\circ}$. For a 8.9 cm stand of wheat he measured a scattering coefficient of 1.9 dB in contrast to -15.6 dB for a 73.7 cm stand. Soil moisture ranged from 15.2 to 27.7 per cent by weight. A study of wheat at other frequencies prompted his statement that "this (data) suggests that the $\mathrm{Ka}-, \mathrm{X}$ - and C -band results could be used to measure vegetation parameter's (height, thickness, moisture content, etc.) and that P-band frequencies may still be used for soil interrogation directly or with simple correcting factors." His statement implies that plant attenuation at higher frequencies results in a masking of underlying soil effects.

Figures 6a-e and 7a-e present the variations of $\sigma^{\circ}$ with time along with linear regression results for $50^{\circ}$ and $70^{\circ}$ data. At both angles we note that neither $r^{\dagger}{ }_{H}$, $r_{V}^{\dagger}$ or $M_{H}^{\dagger}, M_{V}^{\dagger}$ show much frequency dependence although there still seems to be some polarization dependence. This can be observed by the relative values of the correlation curves at $50^{\circ}$ and $70^{\circ}$. At $50^{\circ}$ we can see that $r^{\dagger}{ }_{H}$ is consistently highe while at $70^{\circ}$ they are generally close to one anorher across the $8-18 \mathrm{GHz}$ band.

Again it can be argued that af $50^{\circ}$ and $70^{\circ}$ we expect a considerable amount of signal attenuation through the canopy simply due to increased path length. Thus if we are indeed effectively measuring variations in path loss we expect a marked reductior in the absolute values of the $M^{\dagger}$ curves. Although we do observe a small decrease in $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$ as the incidence angle increases from $50^{\circ}$ to $70^{\circ}$ it is certainly not as great as one might-expect, even at the upper end of the frequency band. Another possible mechanism responsible for the general increasing trend of $\sigma^{\circ}$ with time is that of changing target geometry as the plants matured. A discussion of this mechanism will be deferred, however, to a later section.

### 4.2 Rate of Change of $\sigma^{\circ}$

In the preceding section it was noted that the ability to monitor the ripening process of wheat was greatly influenced by the choice of radar parameters; namely frequency, polarization and incidence angle. In this section a second approach to monitoring wheat growth will be discussed. While this approach appears to be less sensitive to system parameters it is not intended to replace that of section 4.1 but rather to complement the earlier observations.

As noted in section 3.2, the rate of change of plant moisture (one indicator. of wheat maturity) did not remain constant throughout the observation period. Rather," the plant moisture sometimes remained nearly constant while at other times is decreased rapidly within a few days. Thus the question may be raised as to how the rate of change of $\sigma^{\circ}$ varied during the observation period.

To answer this question the following procedure was followed. For each two consecutive data sets the average rate of change of $\sigma^{\circ}$ between those sets was calculated. To increase the sensitivity of these calculations all values of $\sigma^{\circ}$ were converted from $d B$ to real values. Thus as an example the rate of change of $\sigma^{\circ}$ between May 21 and May 27 was calculated as follows. At $9.4 \mathrm{GHz}, 0^{\circ}$, HH polarization

$$
S_{H}=\frac{\sigma_{\mathrm{H}_{2}}^{\circ}-\sigma_{\mathrm{H}_{1}}^{\circ}}{6 \text { days }}=-0.04 / \text { day }
$$

Some results of this analysis are shown below in Figures 8a-81. Different ordinate scales were used in these figures ( $8 a-81$ ) so that the relative variations of $S$ can be seen more clearly. The abscissa values represent the date midway between the dates on which the two data sets of interest were taken. Fior example the value plotted as point May 24 represents the slopes of the line between sets taken on May 22 and May 27. To conserve space, only a representarive set of curves is shown.' Three frequencies and four angles were chosen; $9.4,13.0$ and 17.0 GHz and $0^{\circ}, 10^{\circ}, 20^{\circ}$ and $30^{\circ}$ respectively. These curves seem'representative of all frequencies from $8-18 \mathrm{GHz}$ and all angles from $0^{\circ}$ to $30^{\circ}$. They are not necessarily representative of all data at angles greater than $30^{\circ}$ although the trends observed between $0^{\circ}$ and $30^{\circ}$ usually persisted to $40^{\circ}$ or $50^{\circ}$.

Figures $8 \mathrm{a}-\mathrm{d}$ present S curves at 9.4 GHz . At $0^{\circ}$ (Figure 8a) we note that S shows a consistent, slow increase between May 24 and June 11. Points at June 14, 19 and 23 however depart from this behavior. Of particular interest are June 19 and 23, for these represent the rate of change of $\sigma^{\circ}$ shortly before and shortly after harvest. Before harvest (June 19) S increases sharply from its value on June 14. while S decreases even more markedly after harvest (June 23). It is also noted that these changes in $S$ are greater for vertical polarization. Similar trends are observed at $10^{\circ}, 20^{\circ}$ and $30^{\circ}$ (Figures $8 \mathrm{~b}-\mathrm{d}$ ) although $\mathrm{S}_{\mathrm{H}}$ shows a sharper increase at $20^{\circ}$ on June 19 than $\mathrm{S}_{\mathrm{V}}$.

This effect is much more apparent in the 13.0 GHz data (Figures $8 \mathrm{e}-\mathrm{h}$ ), particularly at $0^{\circ}$ incidence. From this figure it is seen that the variation of $\sigma^{\circ}$ from day to day was apparently quite small until it was ready for harvest. During. . the days shortly prior to harvest, $\sigma^{0}$ shows an extreme dependence on the passage of time, particularly $\sigma^{\circ} V$. The effect of harvest can again be clearly seen in these figures. It is noted that this trend is not quite as dramatic at angles away from nadir $\left(10^{\circ}, 20^{\circ}\right.$ and $\left.30^{\circ}\right)$ although the trend is still clearly discernable.

Data at 17 GHz (Figures $8 \mathrm{i}-\mathrm{I}$ ) again exhibit similar trends. In general, data at all frequencies from $8-18 \mathrm{GHz}$ and at angles between $0^{\circ}$ and $30^{\circ}$ indicate. that the variations of $S_{V}$ are much more pronounced than $S_{H}$ before and after harvest Thus, it appears if wheat fields are monitored by, radar on a regular basis, that the . time rate of change of $\sigma^{\circ}$ will show a sharp increase prior to harvest followed by a sharp decrease immediately after harvest.

If this is indeed the case, this type of analysis may prove to be an effective means for 1) estimating the proper time of wheat harvest and 2) following the progress of harvest. If harvest progress can be monitored then the problem of properly distributing fuel supplies for harvesting machinery and. properly distributing truck and rail transportation for the harvested grain can be reduced considerably.

Another appealing aspect of this method of interpretation is that this method is independent of absolute levels of $\sigma^{\circ}$. Thus it would not be necessary to calibrate (on an absolute scale) any of the existing uncalibrated imaging systems presently in operation nor would it be necessary to have a high degree of confidence in the absolute calibration of a calibrated system if such a system is used.

### 4.3 Variations of $\sigma^{-}$With Plant Moisture

In section 4.1 we considered two possible causes of the increasing trend of $\sigma^{\circ}$ with time. The first consideration was that the changes in plant water content (and thus dielectric constant) are directly responsible for the variations in $\sigma^{\circ}$. This argument has been discarded since $\sigma^{\circ}$ increases as plant moisture decreases which does not seem at all plausible. The second consideration is that $\sigma^{\circ}$ is increasing as the radar signals are better able to penetrate the vegetation canopy as the plant moisture decreases. This argument has not yet been discarded although apparent inconsistencies have been discussed.

Variations of $\sigma^{\breve{ }}$ with plant moisture seem to provide additional information. The reader should bear in mind that the variables, time and plant moisture, are by no means independent as can be seen from Figure 1. A consideration of plant moisture as a variable can however, provide some insight into the phenomena being observed.

Consider first Figures $\bar{q}^{-} \sigma^{-d}$ where $\sigma^{\circ}$ has been plotted versus plant moisture for an incidence angle of $0^{\circ}$ at four frequencies, $8.6,9.4,13.0$ and 17.0 GHz . Again the data set taken after harvest has been excluded from all regression analysis although the point is shown with the rest of the data. Figure 9 e presents results of a linear regression analysis of $\sigma^{\circ}$ on plant moisture. It is interesting to compare the correlation coefficients obtained by regressing $\sigma^{\circ}$ on plant moisture to those obtained by regressing $\sigma^{\circ}$ on time. Comparing Figures 9 e and 3e we see that $\left|\mathrm{r}^{\mathrm{P}}\right| \geqslant\left|\mathrm{r}^{\mathrm{t}}\right|$ as a general rule. This is certainly not surprising since the passage of time does not necessarily imply that the wheat is maturing whereas consistently decreasing plant moisture usually does imply a maturing crop. It should be noted, however, that the trends of $\mathrm{r}^{\dagger}$ and $\mathrm{r}^{\mathrm{P}}, \mathrm{M}^{\dagger}$ and $\mathrm{M}^{\mathrm{P}}$ with frequency are very comparable at $0^{\circ}$ which again implies a strong dependence of plant moisture on time.

Again after harvest, (plant moisture $=11 \%$ ), $\sigma^{\circ}$ shows an interesting trend as noted in section 4.2. We can see that at $0^{\circ}, \sigma^{\circ}$ is generally lower after harvest than before harvest even though the plant moisture decreased by only an insignificant amount. This implies that this consistent variation of $\sigma^{\circ}$ is probably not due to changes in plant moisture but rather to the dramatic change in vegetation geometry caused by the harvest. Since harvesting wheat, and thus altering plant geometry, is manifested as a change in $\sigma^{\circ}$, we should certainly consider the normal morphological changes the wheat undergoes during its ripening stages. Certainly these variations will not be as rapid and gross as those caused by harvest but they bear consideration. We begin by noting (Figure I) that from, June 6 through June 1.2 neither plant nor soil moisture varied to a significant degree. Plant moisture varied only 3.5 units (around $50 \%$ ) 'while soil-moisture varied $0.02 \mathrm{gm} /$ $\mathrm{cm}^{3}$. Thus, for all practical purposes we can consider both plant and soil moisture constant during this time. Since the electrical properties of the target were fairly constant over this period, a change in $\sigma^{\circ}$ would probably imply a change in plant geometry. At $0^{\circ}$ (Figure $9 a-\mathrm{d}$ ), data at the four frequencies under consideration all show variations in this region. The 9.4 GHz dara, however, is the only frequency where a consistent increase in $\sigma^{\circ}$ is noted during the period from June 6 through June 12, the period where plant and soil moisture were fairly constant. Similarly at large angles of incidence
(Figures 10-12) a general trend for $\sigma^{\circ}$ to increase during the June 6-12 period is noted. Thus it may be the case that these variations are due to a changing plant configuration. Certainly the most obvious geometrical change that occurred during the observation period was the appearance of the wheat heads as the plant went from a stage of vegetation growth to the reproductive stage. Of particular note is the fact that the heads appear at the tops of the plants where they are most "visible" to the scatterometer. These heads continue to develop until harvest. A second effect that may occur is the withering process the leaves undergo as they lose moisture. Since geometry plays a significant role in determining the scattering properties of a particular target, this effect should also be considered. Furthermore, the reader should bear in mind that even though the linear regressions of $\sigma^{\circ}$ on plant moisture alone yielded reasonable correlations it is not necessarily plant moisture to which the radar is directly responding. This was discussed earlier in section 3.2 where it was noted that although consistently decreasing plant moisture can be indicative of a ripening crop it is only one of a host of processes simultaneously occurring during maturation. Changes in plant morphology should certainly be included as one of these processes although it is more difficult to quantify than plant moisture.

### 4.4 A Further Regression Analysis of $\sigma^{\circ}$ on Plant Moisture

The customary choice of dB units to express $\sigma^{\circ}$, is usually for convenience since. $\sigma^{\circ}$ in real units can offen vary by one or more orders of magnitude between nadir and large angles of incidence. Because plant moisture seems to be an adequate descriptor of plant maturity and because of the difficulty in quantifying plant geometry, an empirical model has been constructed describing $\sigma^{0}$ (real units) purely in terms of plant moisture. Our discussion in the previous section indicated that linear regression analysis of $\sigma^{\circ}(\mathrm{dB})$ on plant moisture generally provided quite satisfactory results. Hence, it was decided to express the dependence of $\sigma^{\circ}$ (real units) on plant moisture in the form of an exponential:

$$
\left.\hat{\sigma}^{0}=A \exp \left(B \cdot M_{p}\right) \quad \text { [real inits }\right]
$$

where. $A$ and $B$ are constants (for a given frequency-angle-polarization combination) and $M_{p}$ is plant moisture in \% by wet weight. Using the measured $\sigma^{\circ}$ (real units) and $M_{p}$ values, an exponential regression equation was generated for each combination of sensor parameters. Again because of space considerations, only a portion of the results of this analysis will be shown.

In Figure 13 the measured data is compared to the regression curves at 8.6 GHz for $0^{\circ}, 30^{\circ}, 50^{\circ}$ and $70^{\circ}$. At $0^{\circ}$ we note that $\dot{B}$, the coefficient of $M_{p}$, has approximately the same value for both polarizations, whereas at the orher incidence angles $B_{V}$ is always larger (in magnitude) than $B_{H}$ implying that $\dot{\sigma}_{V}^{\circ}$ is more sensitive to $M_{p}$ variations than $\sigma^{\circ} H^{*}$

Similar observations can be made at other frequencies as illustrated in Figures 14,15 and 16 corresponding to $9.4,13.3$ and 17.0 GHz , respectively. Based on a subjective judgment of the "goodness of fit" of the generated exponential curves. there does appear to be an exponential trend relating $\sigma^{\circ}$ to $M_{p}$.

## 4.5 $\sigma^{\circ}$ Dependence on Soil Moisture

Figures 17, 18 and 19 present the variations of $\sigma^{\circ}$ versus soil moisture measurements corresponding to the particular angle shown (see section 3.1). Only $0^{\circ}$ through $20^{\circ}$ data are shown because it is felt that this is where the sensitivity of $\sigma^{\circ}$ to soil moisture would be:maximum. The apparent lack of dependence of $\sigma^{0}$ onsoil moisture seen in these figures is not surprising in light of previous discussions which cast doubt on the abilify of radar to penetrate 96 cm of wheat in the $8-18 \mathrm{GHz}$ band. Note that even over this somewhat limited range of soil moistures (approximately 0.20 to 0.40 $\mathrm{gms} / \mathrm{cm}^{3}$ ) there are variations in $\sigma^{\circ}$ from about -1.7 dB to 10.0 dB at $0^{\circ}, 8.6 \mathrm{GHz}$, . indicating that a mechanism other than the direct influence of soil moisture may be responsible for the variations shown. While it is true that the attenuation of the signal introduced by the plant canopy is varying with time it is expected that it would vary in a consistent monotonic fashion as the plant moisture varied. In other words the attenuation would insert monotonic bias in any data used to extract soil moisture information. Attempts were:made to extract such a bias with no definitive results obtained. The lack of a wide range of soil moisture variations hindered the analysis to a significant degree.

### 4.6 Spectral Response of $\sigma^{\circ}$

Again because of the quantity of data collected only a general discussion of the spectral properties of wheat will be presented. Figures 20 through 23 present spectral curves of wheat between 8 GHz and 18 GHz . Four representative data sets were chosen
for presentation. The first set of curves, Figures 20a through 20d represent data taken on May 21 and are plotred at angles of $0^{\circ}, 30^{\circ}, 50^{\circ}$ and $70^{\circ}$. As previously noted there seems to be a preferred target orientation as $\sigma \frac{0}{V}$ tends to be, on the average, lower than $\sigma_{\mathrm{H}}^{\circ}$ at $0^{\circ}$. We can also note a somewhat greater frequency dependence near 9.4 GHz where a noticeable minimum occurs in the response. Simiarly we note a frequency an polarization dependence at $30^{\circ}$ (Figure 20b) although the polarization effects become more pronounced. There is, however, a small tendency for $\sigma_{V}^{\circ}$ to increase to values somewhat greater than those of $\sigma_{\mathrm{H}}{ }^{\circ}$ near 13.8 GHz after being significantly lower at $8.6 \mathrm{GHz} . \because$ This is particularly noticeable at $50^{\circ}$ where $\sigma_{\mathrm{H}}^{\circ}$ and $\sigma_{\mathrm{V}}^{\circ}$ do not vary much on absolute basis but definitely exhibit the crossing effect near 12.5 GHz . Finally at $70^{\circ}$ we note that $\sigma_{V}{ }^{\circ}$, while sometimes practically equal to $\sigma_{\mathrm{H}} \mathrm{O}$, is generally a small amount greater than $\sigma_{H}^{\circ}$. Thus, as a general observation it seems that as frequency and angle increase $\sigma_{H_{0}}^{\circ}$ and $\sigma^{\circ}{ }_{V}{ }^{\circ}$ tend to approach, cross and finally separate with $\sigma{ }_{V}{ }_{V}$ being higher than $\sigma_{\mathrm{H}}^{\circ}$ at $70^{\circ}$.

Data taken more than two weeks further into the maturation of the wheat is presented in Figure 21. At zero degrees we note a somewhat constant response of $\sigma^{\circ}$ to frequency although around $13.8, \mathrm{GHz} \sigma_{\mathrm{H}}{ }^{\circ}$ exhibits a pronounced minimum. At $30^{\circ}$, (Figure 2 lb ) a sensitivity of $\sigma^{\circ}$ to frequency near the lower frequencies is noted with $\sigma_{V}{ }^{\circ}$ being 5.6 dB lower than $\sigma_{\mathrm{H}}^{0}$ at 9.4 GHz . With increasing frequency however $\sigma_{\mathrm{H}}^{0}$ and $\sigma_{V}{ }^{\circ}$ tend to approach one another. At $50^{\circ}$ (Figure 21c) the same effect is noticeable to a somewhat lesser degree and at $70^{\circ} \sigma^{\circ}{ }^{\circ}$ is always greater than ${ }^{\circ}{ }^{\circ} \mathrm{H}$ (Figure 21 d ).

Figures 22 and 23 present data taken on June 12 and June 21; June 21 being . the final data collected before harvest. These data exhibit responses different from one another and different from the previous two shown. At $0^{\circ}$ for example the June 12 data, (Figure 22a) shows a marked tendency for $\sigma_{H}^{\circ}$ to decrease from 4.4 dB to 0.70 dB as we scan from 8.6 GHz to 17.0 GHz . $\sigma^{\circ}$ has a nearly identical response. The June $21,0^{\circ}$ data (Figure 23a) on the other hand, shows practically no consistent decreasing trends although there are small undulations within the band. At $30^{\circ}$ a completely different trend is noted; that being an increasing $\sigma^{\circ}$ for the June 21 data with a relatively constant $\sigma^{\circ}$ for the June 12 data. Note also that the earlier set exhibits significant polarization differences while the latter shows very little. The response at $50^{\circ}$ and $60^{\circ}$ is quite similar to the $30^{\circ}$. data in both cases with the earlier data somewhat constant relative to the increasina trend in the June 21 data.

### 4.7 Angular Variations of $\sigma^{\circ}$

Figures 24-26 show the May 21, June 6, 12 and 21 data plotted versus incidence angle at three frequencies ( $8.6,13.0,17.0 \mathrm{GHz}$ ) for both polarizations. Although it is merely the same data discussed earlier, this viewpoint can be quite helpful.

We can first note that at the larger angles, the difference in the shapes of the $\sigma_{\bar{H}}^{0}$ and $\sigma_{\dot{V}}^{0}$ curves is quite pronounced. $\because$ At all three frequencies, $\sigma_{j}^{-0}$ continues to decrease ${ }^{-}$with angle while $\sigma^{\circ}{ }^{\circ}{ }^{0}$ fis a tendency to increase near the $60^{\circ}-70^{\circ}$ region. This increase in the vertically polarized'scattering coefficient can perhaps be explaned by a consideration of the wheat geometry. Roughly speaking, wheat is a long, cylindrically shaped plant which may be modeled as à dipole. If this model is basically correc then we would expect the coupling between the incident $E$ field vector and the vertical array of dipole whear'planits'to increase with incidence angle.' In other words, the projection of the 'E field vector onto the wheat stem will increase with angle resulting in increased currents in the Wheat and thus increased reradiation by the plants.

A second observation which should be noted is the tendency for the curves shown. in Figures 24 through 26 to crowd one another in the ranges between $10^{\circ}$ and $30^{\circ}$ and between $60^{\circ}$ and $70^{\circ}$. This is particularly noticeablé at 13.0 and 17.0 GHz . At angles other than those mentioned above the values of $\sigma^{\circ}$ seem to be a bit more distinguishable implying a greater sensitivity of $\sigma^{\circ}$ to targef characteristics.

This is shown more clearly in Figúres $27 a$ and $27 b$ where the linear regression results discussed in sections $\ddot{4} .1^{\circ}$ and 4.3 are now plotfed versus incidence angle, $\dot{\theta}$, instead of frequency. Curves are plotted, for three frequencies, $8.6,13.0,17.0 \mathrm{GHz}$, and both polarizations. Because of the dependence of plant moisture on time, these two figures contain basically the same informafion' and nearly identical trends. Consider Figure 27a. At $0^{\circ}$ we see that both $M_{H}^{\dagger}$ and $M_{V}^{\dagger}$ are maximum. The tendency is then to decrease to a minimum in the $10^{\circ}-30^{\circ}$ region, increase to local maximum at $40^{\circ}$ and then to decrease to a minimum at $70^{\circ}$. This is particularly true for the horizontally polarized, 8.6 GHz , data. For the vertical case we again see a tendency towards a maximum at $40^{\circ}$ but in general the sensitivity factor, $M_{V}$; is relatively constant when compared with $M_{H}$. Again this is shown in the curves showing the angular response of $\sigma^{\circ}$ where we note a tendency toward greater separation in the $\sigma_{V}{ }^{0}$ curves at high angles compared to the separation of the $\sigma_{\mathrm{H}}^{\mathrm{O}}$ curves at corresponding angles. On the basis of this data this phenomenon suggests that if an imaging radar is to be used for the observation of wheat fields, if should work either quite near nadir or in the $40^{\circ}$ region of incidence angles with vertically polarized antennas.

### 5.0 CONCLUDING REMARKS

An experiment was conducted to measure the scattering coefficient of wheat during the final month of its growing season. Measurements were made at eleven frequencies in the $8-18 \mathrm{GHz}$ band at angles from $0^{\circ}$ to $70^{\circ}$ from nadir. Results indicate that $\sigma^{\circ}$ is quite dependent on the physiological and morphological processes occurring during the measurement period with $\sigma^{\circ}$ often showing an increase of more than 10.0 dB as the wheat ripened. Particularly notable were variations of $\sigma^{\circ}$ with frequency and polarization.

Because of many unanswered questions it is felt that further studies should include two additional measurements. The first measurement would be an estimate of plant attenuation either by a dielectric analysis of the wheat or by an in situ measurement of the crop attenuation itself. The second measurement would be some sort of quantifiable study of the wheat morphology. Both studies would be made on a regular basis at the time of the scattering measurements.

Throughout the discussion of the data presented herein it was noted that the greater majority of information was obtained from data taken at, or very near nadir. Investigations of the ability of active microwave sensors to estimate soil moisture also indicate that incidence angles near nadir are optimum $[2,4,5,6]$ (although at lower microwave frequencies). This is unfortunate in view of the fact that the state of the art operational side-looking imaging radars perform poorest at nadir due to resolution considerations. A recent investigation by Larson et al., however, indicates "that a microwave hologram imaging radar is realizable for use on an aircraft or space vehicle" [19]. Furthermore it is noted that the best incidence angle for optimum operation of a microwave hologram radar is near nadir. In light of the potential for radar to remotely sense croplands such a system is very appealing.

## ~REFERENCES:

1. Ulaby, F. T. and R. K. Moore, "Radar, Spectral Measurements of vegetation, Proceedings. 1973 ASP-ACSM Joint Fall Convention, Orlando, Florida,
2. Ulaby, F.T. ${ }^{\text {a }}$ "Radar Measurement of Sil Moistưêcontent "IEEE Trans. on Antennas and Propagation, vol: AP" $22, \quad$ no. ${ }^{2}$ "Márch, $197, a_{0}$
3. Ulaby, F.T., "Radar Response to Vegetation, "IEEE Trans. on Antennas and Própagation, vól. AP-23; no: 7 , Jánuary, 1975.
4. Ulaby, F. T., J. Cihlar and R. K. Moore, "Active Microwaye Measurement of Soit Water Content, "1"Remote Sensing of Environment, vol. 3,.pp., 185--203; 1974.
5. Ulaby, F. T, "Vegetation and Soil Backscatter Over the $4-18 \mathrm{GHz}$ Region," Proceedings of the URSI Specialist Meeting, September; 1974, Bern; Switzerland.
6. Ülaby, $F: T$, $T$. Bush and $P$. Batlivala, "Radar Response to Vegetátion II: $8-18 \mathrm{GHz}$ Band, " accepted for publication in IEEE Trans. on Antennas and Propagation, September, 1975.
7. de Loor, G. P. "Radar Ground Returns Part III: Further Measurements on the Radar Backscatter of Vegetation and Soils," Physics Laboratory TNO, Report No. PHL-974-05, The Hague, The Netherlands, March, 1974.
8. de Loor, G. P. and A. A. Jurriens, "The Radar Backscatter of Vegetation," AGARD Conf. Proc. No. 90 on Propagation Limitations of Remote Sensing, NATO, 1971.
9. Food and Agriculture Organization of the United Narions, 1972, 1972 FAO Production Yearbook, Rome.
10. Bush, T. F. and F. T. Ulaby, " $8-18 \mathrm{GHz}$ Radar Spectrometer," University of Kansas Center for Research, Inc., CRES Technical Report 177-43, Lawrence, Kansas, September, 1973.
11. Birkemeir, W. P. and N. D. Wallace, "Radar Tracking Accuracy Improvement by Means of Pulse to Pulse Frequency Modulation," IEEE Trans, on Communications and Electronics, pp. 571-575, January, 1963.
12. Bush, T. F. and F. T. Ulaby, "Fading Characteristics of Radar Backscatter from Selected Agricultural Targets," CRES Technical Report 177-48, University of Kansas Center for Research, Inc., Lawrence, Kansas, December, 1973.
13. Ray, H. K., "Improving Radar Range and Angle Detectiorı with Frequency Agility," Microwave Journal, pp. 63-68, May, 1966.
14. Waite, W. P., Broad-Spectrum Electromagnetic Backscatter," CRES Technical Report 133-17, University of Kansas Center for Research, Inc., Lawrence, Kansas, August, 1970.
15. Carlson, N. L., "Dielectric Constant of Vegetation at 8.5 GHz " Ohio State University, Electro Science Lab., Tech. Report 1903-5, 1967.
16. Cihlar, J., "Ground Data Acquisition Procedure for Microwave (MAPS) - Measurements," CRES Technical Memorandum 177-42, University of Kansas Center for Research, Inc., Lawrence, Kansas, July, 1973.
17. de Loor, G. P., "Measurement of Radar Ground Returns," Proceedings of the URSI Specialist Meeting, Bern, Switzerland, September 23-26, 1974.
18. Lundien, J. R., "Terrain Analysis by Electromagnetic Means," Technical Report No. 3-693, Report 2, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, p. 55, 1966.
19. Larson, R. W., R. W. Bayma, J. E. Ferris, M. B. Evans, J. S. Zelenka and H. W. Doss, "Investigation of Microwave Hologram Techniques for Application to Earth Resources," Proceedings Fifth Symposium on Remote Sensing of Environment, University of Michigan, Ann Arbor, pp. 1521-1569, April, 1974.


Figure 1. Record of soil moisture, plant moisture, plant height and precipitation during the observation period.


Figure 2. Diagram showing field locations of soil samples.


Figure 3a. Temporal variations of $\sigma_{\mathrm{H}}{ }^{\mathrm{O}}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ as measured at $0^{\circ}, 8.6 \mathrm{GHz}$.


Figure 3b. Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ as measured at $0^{\circ}, 9.4 \mathrm{GHz}$.

igure 3c. Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}(\mathrm{dB})$ as measured of $0^{\circ}, 13.0 \mathrm{GHz}$.



Figure 3d. Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ as measured at $0^{\circ}$, $17.0^{\circ} \mathrm{GHz}$.


Figure 3e. Variations of $M_{H}{ }^{\dagger}, M V^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r^{\dagger}{ }^{\dagger}$ are the slopes (dB/day) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on time (days). The incidence angle is $0^{\circ}$.


Figure 4. Diagram indicating the relationship between the electric field of a horizontally polarized signal and the wheat row direction for various incidence angles. Note the change of row direction which occurred at a range corresponding to an incidence angle of $10^{\circ}$.


rigure oa. lemporal variations of $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ as measured at $30^{\circ}, 8.6 \mathrm{GHz}$.


Figure 5 b . Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ as measured at $30^{\circ}, 9.4 \mathrm{GHz}$.



Figure 5c. Temporal variations of ${ }^{\circ} \mathrm{O}^{\circ}{ }^{\circ}(\mathrm{dB})$ and ${ }^{\circ}{ }^{\circ} \mathrm{V}{ }^{\circ}(\mathrm{dB})$ as measured at $30^{\circ}, 13.0 \mathrm{GHz}$.


Frequency: 17.0 GHz


Figure 5d. Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}(\mathrm{dB})$ as measured at $30^{\circ}, 17.0 \mathrm{GHz}$.

Incidence Angle: $30^{\circ}$


Figure 5e. Variations of $M_{H^{\dagger}}{ }^{\dagger}, \dot{M}_{V}{ }^{\dagger},{ }^{r}{ }_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r^{r} H^{\dagger}$, and $r_{V}{ }^{\dagger}$ are the slopes ( $d B /$ day) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on time (days). The incidence angle is $30^{\circ}$. . :



Figure 6a. Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ as measured at $50^{\circ}, 8.6 \mathrm{GHz}$.

Frequency: 9.4 GHz



Figure 6b. Temporal variations of $\sigma_{H}{ }^{0}(\mathrm{~dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ as measured at $50^{\circ}, 9.4 \mathrm{GHz}$.


Frequency: 13.0 GHz


Figure 6 c . Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$. as measured at $50^{\circ}, 13.0 \mathrm{GHz}$.


Figure 6d. Temporal variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma \pi^{\circ}(\mathrm{dB})$ as measured at $50^{\circ}, 17.0 \mathrm{GHz}$.


Figure 6e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r^{\dagger}{ }^{\dagger}$ with frequency. $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ are the slopes (dB/day) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}$ (dB) on time (days). The incidence angle is $50^{\circ}$.


Frequency: 8.6 GHz


Figure $7 a$. Temporal variations of $\sigma_{H}{ }^{\circ}(d B)$ and $\sigma_{V}{ }^{\circ}(d B)$ as measured at $70^{\circ}, 8.6 \mathrm{GHz}$.



Figure 7 b . Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ as measured at $70^{\circ}, 9.4 \mathrm{GHz}$.


Frequency: 13.0 GHz


Figure 7 c . Temporal variations of $\sigma \mathrm{H}^{\circ}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{\mathrm{V}}{ }^{\circ}(\mathrm{dB})$ as measured at $70^{\circ}, 13.0 \mathrm{GHz}$.


Frequency: 17.0 GHz


Figure 7 d . Temporal variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ as measured at $70^{\circ}, 17.0 \mathrm{GHz}$.


Figure 7e. Variations of $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ with frequency. $M_{H}{ }^{\dagger}, M_{V}{ }^{\dagger}, r_{H}{ }^{\dagger}$, and $r_{V}{ }^{\dagger}$ are the slopes (dB/day) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on time (days). The incidence angle is $70^{\circ}$.


Figure 8a. Variations of $S$ (defined in section 4.2) with time. Frequency $=9.4 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 8b. Variations of $S$ (detined in section 4.2) with time.
Frequency $=9.4 \mathrm{GHz}$, incidence angle $=10^{\circ}$


Figure 8c. Variations of $S$ (defined in section 4.2) with time. Frequency $=9.4 \mathrm{GHz}$, incidence angle $=20^{\circ}$.


Figure 8d. Variations of $S$ (defined in section 4.2) with time.
Frequency $=9.4 \mathrm{GHz}$, incidence angle $=30^{\circ}$.


Figure 8e. Variations of $S$ (defined in section 4.2) with time.
Frequency $=13.0 \mathrm{GHz}$, incidence angle $=0^{\circ}$.

rigure bt .. Variations of $S$ (defined in section 4.2) with time.
Frequency $=13.0 \mathrm{GHz}$, incidence angle $=10^{\circ}$.


Figure 8 g . Variations of S (defined in section 4.2) with time. Frequency $=13.0 \mathrm{GHz}$, incidence angle $=20^{\circ}$.


Figure 8h. Variations of $S$ (defined in section 4.2) with time.
Frequency $=13.0 \mathrm{GHz}$, incidence angle $=30^{\circ}$.


Figure 8i. Variations of $S$ (defined in section 4.2) with time. Frequency $=17.0 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 8 j . Variations of S (defined in section 4.2 ) with time.
Frequency $=17.0 \mathrm{GHz}$, incidence angle $=10^{\circ}$.


Figure 8 k . Variations of S (defined in section 4.2) with time.
Frequency $=17.0 \mathrm{GHz}$, incidence angle $=20^{\circ}$.


Figure 81. Variations of $S$ (defined in section 4.2) with time. Frequency $=17.0 \mathrm{GHz}$, incidence angle $=30^{\circ}$.


Figure 9a. Variations of $\sigma^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=8.6 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 9b. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=9.4 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 9c. Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=13.0 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 9d. Variations of $\sigma_{H}^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=17.0 \mathrm{GHz}$, incidence angle $=0^{\circ}$.


Figure 9 e . Variations of $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r_{V}{ }^{p}$ with frequency. $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r_{V}{ }^{p}$ are the slopes ( $d B /$ percent plant moisture) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on plant moisture. The incidence angle is $0^{\circ}$.


Figure 10a. Variation's of $\sigma_{H}^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. ${ }^{5}$ requency $=8.6 \mathrm{GHz}$, Incidence angle $=30^{\circ}$.
Frequency: 9.4 GHz


| $6 / 25 \times 6 / 21$ |  | $5 / 27 \times 5 / 21$ |
| :---: | :---: | :---: |
|  | 6/10 |  |
|  | Time (Month/Day) |  |

Frequency: 9.4 GHz


Figure 10 b . Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=9.4 \mathrm{GHz}$, incidence angle $=30^{\circ}$.


Figure 10 c . Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}$ (dB) with plant moisture. Frequency $=13,0 \mathrm{GHz}$ incidence angle $=30^{\circ}$.


Figure 10 d . Variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plänt moisture. Frequency $=17.0 \mathrm{GHz}$, incidence angle $=30^{\circ}$.


Figure 10e: Variations of $M_{H}{ }^{P}, M_{V}{ }^{P}$, $r_{H}{ }^{P}$, and $r_{V}{ }^{P}$ with frequency. $M_{H}{ }^{P}, M_{V}{ }^{P}, r_{H}{ }^{P}$, and $r_{V}{ }^{P}$ are the slopes ( $d B /$ percent plant moisture) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on plant moisture. The incidence angle is $30^{\circ}$.


Figure 1 la. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}$ (dB) and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=8.6 \mathrm{GHz}$, incideñce angle $=50^{\circ}$.


Figure 1lb. Variations of $\sigma_{H}^{\circ}(\mathrm{dB})$ and $\sigma_{V}^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $\dot{y}_{j}=9.4 \mathrm{GHz}$, incidence angle $=50^{\circ}$.


Figure llc. Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\dot{\sigma}_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=13.0 \mathrm{GHz}$, incidence angle $=50^{\circ}$.



Figure 11d. Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. 'Fŕequency $\fallingdotseq ' 17.0 \mathrm{GHz}$, incidence angle $=50^{\circ}$.


Figure lle. Variations of $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r_{V}{ }^{p}$ with frequency. $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r_{V}{ }^{p}$ are the slopes (dB/percent plant moisture) and estimated correlation coefficients respectively, obtained by a linear rearession of $\sigma^{\circ} \cdot(\mathrm{dB})$ on plant moisture. The.incidence angle is $50^{\circ}$.


Frequency: 8.6 GHz


Time (Month/Day)
Figure 12a. Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Freauencv $=8.6 \mathrm{GHz}$, incidencè àngle $=70^{\circ}$.


Frequency: 9.4 GHz


Figure 12b. Variations of $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ with riu........avic. Frequency $=9.4 \mathrm{GHz}$, incidence angle $=70^{\circ}$.


Figure ILC. variations:ot $\sigma_{\mathrm{H}}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}{ }^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=13.0 \mathrm{GHz}$; incidence angle $=70^{\circ}$.


Figure 12d. Variations of $\sigma_{H}{ }^{\circ}(\mathrm{dB})$ and $\sigma^{\circ}(\mathrm{dB})$ with plant moisture. Frequency $=17.0 \mathrm{GHz}$, incidence angle $=70^{\circ}$.


Figure 12e. Variations of $M_{H}{ }^{P}, M_{V}{ }^{P}, r_{H}{ }^{p}$, and $r_{V}{ }^{P}$ with frequency. $M_{H}{ }^{p}, M_{V}{ }^{p}, r_{H}{ }^{p}$, and $r_{V}{ }^{p}$ are the slopes ( $d B /$ percent plant moisture) and estimated correlation coefficients respectively, obtained by a linear regression of $\sigma^{\circ}(\mathrm{dB})$ on plant moisture. The incidence angle is $70^{\circ}$.



Figure 13a. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 8.6 GHz and the incidence angle is $0^{\circ}$.



Figure 13b. Variations of $\sigma_{H}^{\circ}$ and $\sigma_{V}^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression cürve corresponding to the equation shown with the figure. The frequency is 8.6 GHz and the incidēnce angle is $30^{\circ}$.


Figure 13c. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}^{0}$ (real units) with plant moisture. The-solid lines represent the nonlinear regression curve :orresponding to the equation shown with the figure. The requency is 8.6 GHz and the incidence angle is $50^{\circ}$.



Figure 13d. Variations of $\sigma_{H}{ }^{\circ}$ and ${ }^{\circ} \sigma_{V}{ }^{\circ}$ (reál'units) wifh' plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 8.6 GHz and the incidence angle is $70^{\circ}$.



Figure 14a. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 9.4 GHz and the incidence angle is $0^{\circ}$.


Figure 14b. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with, the figure. The frequency is 9.4 GHz and the incidence angle is $30^{\circ}$.



Figure 14c. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 9.4 GHz and the incidence angle is $50^{\circ}$.



Figure 14d. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is $9.4 . \mathrm{GHz}$ and the incidence angle is $70^{\circ}$.



Finure 15a. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 13.0 GHz and the incidence angle is $0^{\circ}$.



Figure 15b. Yariations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 13.0 GHz and the incidence angle is $30^{\circ}$.


Figure 15 c . Variations of $\sigma_{\mathrm{H}}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 13.0 GHz and the incidence angle is $50^{\circ}$.



Figure 15 d . Variations of $\cdot \sigma_{H}{ }^{\circ}$ and $\sigma^{\circ}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The fréquency. is $13: 0 \cdot \mathrm{GHz}$ and the incidence angle is $70^{\circ}$.


Figure 16a. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 17.0 GHz and the incidence angle is $0^{\circ}$.


.Figure 16b. Variations of $\sigma_{H}^{\circ}$ and ${ }^{\sigma}{ }_{V}{ }^{\circ}$ (real- units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shownwith the figure. The frequency is 17.0 GHz and the incidence angle is $30^{\circ}$.



Figure 16c. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisfure. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 17.0 GHz and the incidence angle is $50^{\circ}$.



Figure 16d. Variations of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (real units) with plant moisture. The solid lines represent the nonlinear regression curve corresponding to the equation shown with the figure. The frequency is 17.0 GHz and the incidence angle is $70^{\circ}$.


Figure 17. Measured scattering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content by volume at 8.6 GHz for angles of (a) $0^{\circ}$, (b) $10^{\circ}$, and (c) $20^{\circ}$.


(a)

(b)

Figure 18. Measured scattering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content by volume at 13.0 GHz for angles of (a) $0^{\circ}$, (b) $10^{\circ}$, and (c) $20^{\circ}$



Figure 19. Measured scattering coefficient, $\sigma^{\circ}(\mathrm{dB})$, as a function of soil moisture content $b$; volume at 17.0 GHz for angles of (a) $0^{\circ}$, (b) $10^{\circ}$, (and (c) $20^{\circ}$.



Figure 20. $8-18 \mathrm{GHz}$ spectral response of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (dB) for May 21, 1974 at angles of (a) $0^{\circ}$, (b) $30^{\circ}$, (c) $50^{\circ}$, and (d) $70^{\circ}$.




Figure 21. 8-18 GHz spectral response of $\sigma_{H}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}(\mathrm{dB})$ for June 6, 1974 at angles of (a) $0^{\circ}$, (b) $30^{\circ}$, (c) $50^{\circ}$, and (d) $70^{\circ}$

Date: 6/6/74
Incidence Angle: $50^{\circ}$
Crop Height (cm): 96


Date: 6/6/74
Incidence Angle: $70^{\circ}$
Crop Height (cm): 96
$\longrightarrow H H$ Polarization

(21d)

(a)

(b)

Figure 22. $8-18 \mathrm{GHz}$ spectral response of $\sigma_{\mathrm{H}}{ }^{\circ}$ and $\sigma_{V}{ }^{\circ}$ (dB) for June 12, 1974 at angles of (a) $0^{\circ}$, (b) $30^{\circ}$, (c) $50^{\circ}$, and (d) $70^{\circ}$.



Figure 23. 8-18 GHz spectral response of $\sigma_{\mathrm{H}}{ }^{\circ}$ and $\sigma^{\circ}(\mathrm{dB})$ for June 21, 1974 at angles of (a) $0^{\circ}$, (b) $30^{\circ}$, (c) $50^{\circ}$, and (d) $70^{\circ}$.


Date: $6 / 21 / 74$
Incidence Angle: $70^{\circ}$
Crop Height (cm): 82
$\longrightarrow H H$ Polarization

(23d)


Figure 24. Angular response of (a) $\sigma_{H}{ }^{\circ}$ and (b) $\sigma_{V}{ }^{\circ}$ at 8.6 GHz at various stages of development.

(a)
(b)

Figure 25. Angular response of (a) $\sigma_{\mathrm{H}}{ }^{\circ}$ and (b) $\sigma_{V}{ }^{\circ}$ at 13.0 GHz at various stages of deve lopment.

(a)
(b)

Figure 26. Angular 'response of (a) $\sigma_{H}^{\circ}$ and (b) $\sigma^{\circ}$ at 17.0 GHz at various stages of development.


Figure 27a. Variations of $M_{H}{ }^{\dagger}$ and $M_{V}{ }^{\dagger}$ with angle for three frequencies. $M_{H}{ }^{\dagger}$ and $M_{V}{ }^{\dagger}$ are the slopes ( $\mathrm{dB} /$ day) of regression lines obtained by egressing $\sigma^{\circ}(\mathrm{dB})$ on time (days).


Figure 27 b . Variations of $M_{H}{ }^{\mathrm{P}}$ and $M_{V}{ }^{\mathrm{p}}$ with angle for three frequencties. $M_{H}{ }^{\mathrm{P}}$ and $M_{V}{ }^{p}$ are the slopes ( $d B /$ percent plant moisture) of regression lines obtained by regressing $\sigma^{\circ}(\mathrm{dB})$ on plant moisture (wet weight basis).


|  |  | ture | $m^{3}$ ) | \% Plant <br> Moisture | Plant Height (m) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Date | N | M | F |  |  |
| May 21 | 0.37 | 0.37 | 0.36 | 72 | 0.90 |
| May 27 | 0.40 | 0.40 | 0.40 | 70 | 0.96 |
| May 31 | 0.29 | 0.31 | 0.31 | 69 | 0.96 |
| June 6 | 0.31 | 0.32 | 0.35 | 53 | 0.96 |
| June 10 | 0.36 | 0.36 | 0.36 | 52 | 0.96 |
| June 12 | 0.35 | 0.35 | 0.35 | 50 | 0.96 |
| June 17 | 0.18 | 0.19 | 0.20 | $32^{\circ}$ | 0.96 |
| June 21 | 0.32 | 0.33 | 0.31 | 13 | 0.84* |
| June 25 | 0.22 | 0.21 | 0.21 | 11 | 0.32 |
| * $=$ wheat heads nodded |  |  |  |  |  |
| $N=$ near range sample |  |  |  |  |  |
| $M=$ medium range sample |  |  |  |  |  |
| $F=$ far range sample |  |  |  |  |  |

APPENDIX B: Wheat Scattering Coefficients, 1974.


ANTENNA ANGLE 10

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.6 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL HH | -3.9 | -5.4 | -6.0 | -7.1 | -7.6 | $-E .7$ | -7.1 | -7.9 | -4.8 | -7.3 | -9.5 |
| FOL VV | -6.7 | -10.0 | -10.3 | -2.1 | -9.0 | -7.5 | -8.0 | -7.5 | -5.6 | -9.3 | -8.8 |

ANTENNA AACLE 20

| FREO | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | $13.0 ̂$ | 13.8 | 14.6 | 15.4 | 15.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POL HF | . 4 | . 5 | 10.9 | $-8.1$ | -8.9 | -9.5 | -9.6 | 4 | -8.5 | 11.1 | -9.8 |
| FOL VV | 2.7 | 13.6 | 11.2 | 12.1 | 12.1 | 10.7 | 11.3 | 11.5 | -13.4 | 12.4 |  |

ANTENNA ANCLE 30
FREG $\quad 8.6 \quad 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13 . \mathrm{C} \quad 13.814 .815 .4$ 16.2.17.0
POL HM $-8.8-12.4-12.4-11.6-13.5-13.0-14.1-13.5-12.5-14.8-15.2$
FOL YV -15.3-15.3-15.7-14.1-14.5-13.E-13.4-12.9-13.4-14.3-13.0
ANTENNA ANGLE 40

| FREQ | -8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -12.2 | -13.8 | -14, 1 | $-13.9$ | -14.5 | -14.9 | -15.6 | $-14.6$ | -14.4 | -1E. 7 | -16.5 |
| FOL VV | $-15.1$ | $-17.0$ | $=16.0$ | $-1 \varepsilon .1$ | $-15.7$ | -15.4 | -15.2 | $-14.8$ | -15.4 | -16.8 | -15.8 |
| ANTENNA ANGLE 50 |  |  |  |  |  |  |  |  |  |  |  |

FREQ. $8.6 \quad 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13.0 \quad 13.8 \quad 14.6 \quad 15.4 \quad 16.2 \quad 17.0$

| FOL HF | -14.0 | -14.9 | $-14.1-14.2$ | -14.5 | -15.3 | -16.1 | -14.8 | -15.3 | -16.7 | -16.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL VV $-15.7-16.1-15.9-15.9-15.2 ~$ | $-14.7-15.0$ | -14.0 | -15.1 | -15.5 | -14.9 |  |  |  |  |  |

ANTENNA AAGLE 60
FREO $\quad 8.6 \quad 9.410 .2 \quad 11.0 \quad 11.8 \quad 13.613 .814 .615 .416 .217 .0$
FOL HF -14. C -16. 0 -15.4-15.3-15.4-14.E-15.3-14.2-14.3-15.9-16.0 FOL VV $-14.9-16.1-15.9-15.4-15.7-14.9-15.2-13.9-15.1-16.4-15.7$

ANTENNA ANELE 70

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 15.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HF | -14.7 | $5 . E$ | -14. | 14.5 | -15.4 | $\underline{-1+07}$ | -15.5 | -15.0 | 4.8 | -15.1 | -15.7 |
| POL VV | -14.1 | 15.2 | -15.0 | 15.2 | $-14.6$ | -13.9 | -14.1 | $-13.3$ | - 14.5 | -15.9 | -14.1 |

## sNTENNA ANGLE 0

| FPEE | 8.6 | 9.4 | 10.2 | 11. | 11.8 | 13.릉 | - | 1 | - |  | 12. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -2.1 | -5.7 | -2.9 | -1.2 | 0.4 | -0.2 | 1.1 | 1.1 | 0.4 | -0.7 | -1.1 |
| FOL VV | -1.1 | -4.9 | -1.8 | $-1.9$ | 0.3 | 0.6 | 1.2 | 2.0 | O.E | $-0.2$ | 0.1 |

ANTENNA ANELE 10

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FCL Ft | -7.3 | -7. 1 | -7.7 | -7.5 | -8.3 | -8.0 | -9.5 | -8.2 | -7.4 | -9.9 | -9.6 |
| POL UV | -7. $\varepsilon$ | -8.2 | -8.4 | -10.1 | -8.9 | -7.6 | -7.2 | $-8.8$ | -7.0 | -8.0 | 8.6 |

ANIENHA ANGLE 20

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HY | -8.9 | -11.1 | -10.3 | -6. 7 | -10.4 | -1]. 2 | -10.3 | -9.4 | -9.6 | -11. | -11.7 |
| FOL UV | -10.8 | -11.3 | -12.1 | -10.7 | -10.8 | -9.4 | -8.7 | -8.0 | -9.9 | -9. 8 | $-10.0$ |

fNTEHNA ANGLE 30


FOL H $-10.0-11.1-11.5-11.7-12.3-12.2-12.7-11.3-11.0-12.1-12.0$ EOL VV -11.7-12.8-11. $\mathrm{E}-11.2-11.4-11.3-11.1-10.2-10.3-12.3,-11.3$
antenna angle $40^{\circ}$


AATESNA ANGLE 50

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL HK | -15.2 | -15.2 | -15.5 | -15.7 | -15.5 | -16.7 | -17.6 | -15.8 | -15.9 | -16.8 | -15.9 |
| FOL VV | -14.3 | -16.1 | -16.3 | -16.2 | -15.5 | -15.1 | -15.2 | -14.3 | -14.7 | -15.7 | -14.4 |

## ANTENNA ANGLE 60

FREO_8.6 $9.410 .211 .0 \quad 11.813 .0 \quad 13.8 \quad 14 . E \quad 15.4 \quad 16.217 .0$
FOL HR -15.9-17.1-17.1-1E.5-16.7-17.1-17.3-15.7-15.5-17.0-17.2
FOL VV $-15 \cdot 0-16.0-15.4-1 E \cdot 8-15.4-14.2-15.9-14.9-15 \cdot 7-16.4-14.9$
ANTENNA ANGLE 70



ANTENNA ANGLE $\rightarrow 0$


| FREQ | 8.00 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -14.5 | -15.3 | -15.2 | -1E.2 | - | -1 | 18.0 | -17.0 | 16.2 | -18.8 | 18.0 |
| FOL VV | -17.6 | -18.9 | -18.8 | 18.6 | 13.3 | -17 | -18.6 | -17.2 | -18.0 | -19.0 | $-17.6$ |

ANTENNA ANGLE 60

FOL hH -17.1-19.1 -19.3-19.4 -20.2 -19.7 -20.9 -19.4 -19.9 -21.0 - 20.7
fOL VV $-19.0-21.3-20.3-19.8-19.6-19.1-16.6-18.6-19.8-2 J .8-16.0$
ANTENNA ANELE 70

| FREQ | 8.5 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.8 | 15.4 | 16.2 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -18.4 | -19.4 | -19.' | -19.6 | -19. 5 | -19, 7 | -21.0 | -19.7 | -20. | -20 | -17.9 |
| FOL VV | -19.1 | -20.7 | -20.3 | -15.5 | -19.6 | -18.4 | -19.4 | -18.1 | -19.3 | -10.9 | $-18.4$ |

Averaged Sigma0 Wheat, June 6, 1974


ANTENTA ANGLE 40


FOL VV $-15 . \varepsilon-17.2-17.4-17.5-17.1-16.2-17.3-14.5-15.6-17.3-15.5$
ANTENNA ANGLE 50
$\begin{array}{lllllllllllllllllllllllllll}\text { FREO } & 8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.0 & 13.8 & 14 . E & 15.4 & 16.2 & 17.0\end{array}$
fol fr -14. $\mathrm{C}-12.2-15.5-15.5-15 . \epsilon-16.9-17.2-15.4-15.4-16.9-16.8$
FOL VV -15.E-17.5-17.0-16.9-16.9-16.5-17.0 $-15.6-16.7-17.5-16.2$
ANTENNA ANGLE 60

FOL HK $-15.1-15.7-15.2-16.7-15.9-17.3-18.0-17.0-16.1-17.9-17.3$
FOL VV...-14.6-16.7-16.3.-16.9-15.7 -16.3_-14.0 -12.7 -13.2.-17.3-16.1
antenna angle 70

| FREG | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15 | 6.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HL | $-14.7$ | 6.0 | -1 | -16 | -16.5 | -15 | -17.9 | 16.4 | -16 | 16.9 |  |
| FOL VV | -13.9 | 15.5 | -16.1 | -1€.2 | -15.9 | -15.3 | -15.9 | 14.3 | $-14.9$ | 15.9 |  |

## Averaged Sigma0 Wheat, June 10, 1974



ANTENNA ANGLE 10

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL HH | -5.1 | -7.1 | -7.7 | -8.0 | -7.8 | -7.0 | -9.4 | -8.1 | -6.5 | -7.6 | -9.1 |

ANTENNA ANGLE 20

| FREO | $8 \cdot 6$ | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { FOL HF } \\ \text { FOL VV } \end{array}$ | $\begin{array}{r} -8.6 \\ -11.4 \end{array}$ | $\begin{array}{r} -9.5 \\ -11.8 \end{array}$ | $\begin{array}{r} -9.0 \\ -10.9 \end{array}$ | $\begin{array}{r} -8.2 \\ -11.9 \end{array}$ | $\begin{array}{r} -8.8 \\ -11.3 \end{array}$ | $\begin{array}{r} -7.6 \\ -11.3 \end{array}$ | $\begin{array}{r} -8.2 \\ -10.6 \end{array}$ | $\begin{array}{r} -8.5 \\ -10.7 \end{array}$ | $\begin{array}{r} -7.6 \\ -10.4 \end{array}$ | $\begin{array}{r} -9.2 \\ -13.5 \end{array}$ | $\begin{aligned} & -10.1 \\ & -11.4 \end{aligned}$ |  |
| $\square$ | $\begin{array}{r} \text { JA AN } \\ 8.6 \end{array}$ | 130 9.4 | $10.2$ | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |  |
| $\begin{aligned} & \text { FOL HH } \\ & \text { FOL VV } \end{aligned}$ | $\begin{array}{r} -9.4 \\ -13.1 \\ \hline \end{array}$ | $\begin{array}{r}-10.0 \\ -13.8 \\ \hline\end{array}$ | -9.1 -12.9 | -9.4 -12.9 | -12.8 -13.5 | -11.1 -12.9 | -11.1 -13.0 | -10.2 -12.4 | -10.2 -12.3 | -11.7 -13.2 | $\begin{array}{r} -11.1 \\ -13.4 \\ \hline \end{array}$ |  |

ANTENNA $A N G L E \quad$ L
FREQ $\quad 8.6 \quad 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13.6$ 13.8 $14.6 \quad 15.4 \quad 16.2 \quad 17.0$
POL HH $-11.0-12.8-12.6-12.0-13.1-12.7-13.2 .-12.3-12.0-14.4-14.6$
FOL VV $-14.3-15.8-15.1-1 E .3-15.6-14.8-15.4-14.0-15.1-16.0-15.0$
ANTENNF ANGLE 50

| FREO | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## ANTENNA ANGLE 60

FREO
$8.6^{\circ} 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13.0 \quad 13.8 \quad 14.6 \quad 15.4 \quad 16.2 \quad 17.0$
FOL HH $-13.1-14.0-14.5-14.3-15.3-15.6-16.6-16.0-14.8-17.1-17.6$
FOL VV $-15.2-17.7-17.3-17.4-17.2-16.9-17.1-16.2-16.5-18.2-17.5$
ANTENNA ANGLE 70
FREQ $\begin{array}{lllllllllllll}8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.0 & 13.8 & 14.6 & 15.4 & 16.2 & 17.0\end{array}$
FOL HK $-12.9-13.8-14.5-14.7-15.5-15.6-16.8-15.7-15.6-17.1-17.6$ FOL VV $-13.4-15.9-15.7-16.1-16.5-15.9-15.8-15.0-15.5-17.1-15.7$


ANTENNA ANGLE 10

| FQEQ | 2.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.1 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | $-4.4$ | -E. 0 | $-4 . E$ | -5.8 | $-7.1$ | -?.E | -8.7 | -7.4 | -3. 7 | -7.6 | -9.1 |
| FOL VV | $-5.4$ | -7.1 | -7.3 | -7.5 | $-6.7$ | -8.2 | $-8.2$ | -7.9 | $-6.9$ | -7.7 | -8.8 |
| - ANTENNA ANGLE_20 |  |  |  |  |  |  |  |  |  |  |  |
| FREO | $8 . \epsilon$ | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 15.2 | 17.0 |
| $\begin{aligned} & \text { FOL HH } \\ & \text { FOL VV } \end{aligned}$ | $\begin{aligned} & -7 . \varepsilon \\ & -9.4 \end{aligned}$ | -7.0 -11.4 | -7.4 -10.1 | -7.6 -11.6 | -7.9 -8.9 | -6.3 -9.5 | -7.8 -9.0 | -8.3 -9.9 | -6.8 -9.4 | -8.3 -9.3 | -8.4 -10.1 |

ANTENNA ANGLE 30


FOL HF $-6.5-9.7-9.1 \quad-0.7-10.9 \quad-9.9-11.2-10.1 \quad-9.3-12.3-12.1$

ANTENNA ANGLE 40


ANTEHNA ANGLE 50
$\left.\begin{array}{lllllllllllllll}\text { FREO } & 8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.6 & 13.8 & 14.6 & 15.4 & 16.2 & 17.3\end{array}\right]$

ANTENNA ANGLE 60
FREQ

FOL ht $-12.5-13.4-13.7-13.9-14 . E-15.0-15.9-14 . \epsilon$ - $14.4 .4-15.6-15.9$
_FOL_VK_-10.9-12.5-12.7-13.5-13.5_12.E-12.9-12.0_-12.?-14.0-12.9

## ANTENNA ANGLE 70



## Averaged'Sigma0 . Whear; June 17, 1974


antenna angle 40


ANTENNA ARGLE 60
FREQ $8.6 \quad 9.4,10.2 \quad 11.0 \quad 11.8 \quad 13.3 \quad 13.8 \quad 14.6 \quad 15.4 \quad 16.2 \quad 17.0$
FOL HK -12.9 -12.5-12.4 -12.1-12.0 $-12.8-14.0-12.9-12.9-14.2-15.0$
FOL VV $-12.4-13.4-12.3-12.6-12.3-11.8-12.11-12.4-12.8-14.2-13.0$
ANTENNA ANGLE 70

| FREQ | 8.5 | 3.4 | 10.2 | 11.0 | .11.8 | 13.8 | 13.8 | 14.6 | 15.4 | 16.2. | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -13.8 | -13.4 | -1.3.'1 | -12.7 | -13.1 | -13.L | -14.9. | -14.2 | -14.1 | -2 | -16. |
| FOL VV | -11.4 | -11.9 | - | -10.9 | -11.4 | -11.4 | -1 |  |  | -13.5 | -12.5 |

## ANTENNA ANELE 0

FREO


| FOL HF | 9.5 | 8.4 | 8.0 | 5.1 | 6.1 | 7.8 | 8.1 | 9.0 | 10.1 | 9.7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| FOL VV | 10.4 | 10.3 | 10.8 | 7.7 | 8.9 | 9.1 | 8.5 | 9.3 | 9.0 | 7.1 |

ANTENNA ANGLE 10

```
FREQ 8.E C 9.4 10.2 11.0 11.8 13.0 13.8 14.6 15.4 16.2 17.0
FOLHF-1.4-1.4 0.2-1.8-1.1 -1.5 0.2 -2.9 1.4.-1.1.-2.2
FOL VV 0. -0.4-1.1 -0.8 0. 1.5 2.3-0.2 0.6 - - 0.1 -0.2
```

AATENNA ANELERO
$\begin{array}{lllllllllllll}\text { FREG } & 8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.0 & 13.8 & 14.6 & 15.4 & 16.2 & 17.0\end{array}$

| FOL HH | -4.9 | -3.0 | -3.1 | -2.3 | -2.5 | -3.7 | -3.6 | -3.6 | -0.7 | -5.5 | -3.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL VV | -8.3 | -6.2 | -3.5 | -3.2 | -3.5 | -3.5 | -3.1 | -2.4 | -2.3 | -3.3 | -4.3 |

## ANTEHNA ANGLE 30


FOL HF $\quad-8.5-8.9 \quad-7.9 \quad-5.6 \quad-6.4 \quad-6.9 \quad-7.0 \quad-5.3-4.7-8.9 \quad-8.4$ FOL $V V=9.3-8.8-8.1 \quad-7.2-6.8 \quad-7.6-7.2 \quad-5.4-5.2-7.4 .-7.2$
antenna angle 40

| FREQ |  | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL H | -11. 3 | -9.4 | -9.4 | -8.8 | . 8.7 | -7.8 | -8.1 | -7.3. | -7.0 | -0.3- | -9.6 |
| FOL VV | -9.8 | -9.9 | -8.8 | -8.9 | -7.8 | -8.0 | -7.2 | -7.6 | -6.5 | -9.1 | -8.1 |
| _ANT | A_GNGL |  |  |  |  |  |  |  |  |  |  |
| FREO | 8.6 | 9,4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16. 2 | 17.0 |
| FOL Fr | -11.4 -10.5 | -11.6 -10.2 | -10.9 -9.3 | -6.9 -10.4 | -10.5 -9.6 | -9.5 -8.9 | -10.5 -9.5 | -9.2 -8.9 | -9.0 -9.9 | -11.1 -10.8 | -11.9 -9.9 |

## ANTENNA ANCLE 60

FREO $\qquad$ 8.6 9.4_10.2_11.0_11.8_13.5_13.8_14.6...15.4_16.2 17.0
fOL $\mathrm{HK}-13.3-13.0-11.8-12.0-11.2-11.8-12.0-10.9-11.4-13.0-12.6$
EOL VV_-11.8-11.8-11. $8 .-11,4-11,2,-10.2-10,5-10,2,-10,4-12,7-10.8$
ANTENNA ANGLE 70
FREQ $\begin{array}{llllllllllllll}8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.0 & 13.8 & 14.6 & 15.4 & 16.2 & 17.0\end{array}$
 FOL VV -12. $5-12.6-11.8-10.8-10.7-9 . E-10.7-8.9-9.9-12.1-9.9$

## Averaged Sigma0 <br> Whear Stưbble, June 25, 1974

ANTENNA ANGLE O
FREQ


| FOL HH | 7.2 | 6.2 | 6.7 | 6.5 | 7.6 | $8.5^{\prime}$ | $7.5^{\circ}$ | 6.4 | 6.8 | 5.3 | 4.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL VV | 8.5 | 7.6 | 7.5 | 7.3 | 8.6 | 9.1 | 8.5 | 7.1 | 6.3 | 4.8 | 5.0 |

ANTENNA ANGLE 10
$\begin{array}{lllllllllllllllll}\text { FREO } & 8.6 & 9.4 & 10.2 & 11.0 & 11.8 & 13.0 & 13.8 & 14.6 & 15.4 & 16.2 & 17.0\end{array}$

AMTENNA ANGLE 20

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.6 | 13.8 | 14.8 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL HH | -4.8 | -8.0 | -6.0 | -6.0 | -6.7 | -5.8 | -6.9 | -6.1 | -5.0 | -5.0 | -5.1 |
| FOL VV | -7.1 | -7.1 | -6.6 | -6.9 | -6.4 | -4.9 | -5.5 | -5.7 | -4.7 | -6.3 | -5.1 |

AATENNA ANGLE 30
FREQ $\qquad$ $8.6 \quad 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13.0 \quad 13.8 \quad 14.6-15.416 .2 \quad 17.0$
 FOL VV $-8.4-9.9-9.3-8.1-7.1 \quad-6.2-4.9 \quad-5.4-6.4-8.0-6.4$

ANTENNA ANGLE 40

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ANTENNA ANGLE 50

| FREQ | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.0 | 13.8 | 14.6 | 15.4 | 16.2 | 17.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FOL HF | $-13 . \varepsilon$ | -12.9 | -12.3 | -10.9 | -10.8 | -11.0 | -11.3 | $-10 . E$ | -10.0 | -11.3 | -12.0 |
| FOL VV | -13.1 | -13.4 | -11.8 | -11.0 | -10.4 | -9.8 | -9.9 | -9.4 | -9.7 | -11.1 | -10.8 |

ANTENNA ANGLE 60
FREQ
$8 . E \quad 9.4 \quad 10.2 \quad 11.0 \quad 11.8 \quad 13.0 \quad 13.8 \quad 14.8 \quad 15.4 \quad 16.2 \quad 17.0$
FOL $\mathrm{HH}-12.8-13.1-12.4-11.6-11 . \varepsilon-11 . \varepsilon-12.6-12.1-11.4-13.2-13.1$
FOL VV $-12.8-13.6-11.8-11.4-10.7-10.5-10.2-10.3-10.3-11.5-10.7$
ANTENNA ANELE 70

| FPEO | 8.6 | 9.4 | 10.2 | 11.0 | 11.8 | 13.C | 13.8 | 14.5 | 15.4 | 15.2 | 17.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FOL HH | -14.9 | -14.9 | -14.1 | -12.4 | -13.2 | $-13.5$ | -14.5 | -13.1 | -12.E | -14.8 | -14.5 |
| FOL VV | -13.1 | $-13.2$ | -12.7 | -12.2 | -10.8 | -10.9 | -10.8 | -10. | -11.9 | -12.4 | -12.0 |

## CRINC LABORATORIES

Chemical Engineering Low Temperature LaboratoryRemote Sensing Laboratory
Flight Research Laboratory
Chemical Engineering Heat Transfer Laboratory
Nuclear Engineering Laboratory
Environmental Health Engineering Laboratory
Information Processing Laboratory
Water Resources Institute
Technical Transfer Laboratory
Air Pollution Laborafory
Satellite Applications Laboratory

CRINC

