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I. Introduction;

To gain information about the distribution, from statistics of

a sample from that distri\pution, remains one of the important goals of

investigation in Mathematical Statistics.

The investigation initiated here is concerned with drawing con-

4 elusions	 about the characteristics of the unknown part of a certain

collection, from knowledge of some characteristics of a suitable selected

part of the collection of elements.

We note here in general discussion	 classical results obtained in

4 ,, the area in which we are concerned without giving precise and due credit

'tl to those great scholars whose products we use.	 This is done mainly because

the contributions to a basic idea are numerous and it is difficult to either

list all of them fora specific idea or to list the principal person re-s

sponsible.

We are interested in different characteristics of the elements

of the population under investigation.

When we say that the population has the distribution F(x), we
{t

mean that we are investigating a characteristic X of elements of this 	 I

population and that this characteristic X is a random variable with the

distribution function F(x).

Let the characteristic 'X of elements z_F Za population be a random

variable with the distribution function F(x).	 This suggests a need for the

definitions that are essential in what follows.	 We use the classical cor.-

cept of Fisz.

l In general, let e denote an elementary 	 event of a set F of ele-

mentary events.	 On set F we define a single-valuee: .real function X(e)

r.,
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such that the probability that this function will assume certain values

is defined.

For a precise formulation of the conditions which are to be

s	 satisfied by X(e) we introduce the notion of inverse image.

r	 Let X(e) be a single-valued real function defined on the set E

of elementary events. The set A of all elementary events to which the

function X(e) assigns values in a given set S of real numbers is called

the inverse image of the set S.

It is clear that the inverse image of the set R of all real

4	 numbers is the whole set E.

A single-valued real function X(e) defined on the set E of ele

mentary events is called a random variable if the inverse image of every

interval I on the real axis of the form (- oo, x) is a random event.

We shall set the probability P (x)(I) that the random variable

•	 _	 X(e) takes on a value in the interval I equal to the probability P(A) of

the inverse image A of I.

(The notion of a random variable corresponds in the theory of

real functions to the notion of a function measurable with respect to the

field of sets being considered.)
I

It follows that if a random event A is the inverse image of a point 	 j

X, the probability that the random variable X takes on the 'value x equals

the probability of the eventA, 	 P 	 x) = P(A).

The function P^ x ')(S) giving the probability that a random variable X

takes on a value belonging to S, where S is an arbitrary Borel set on t.e I

real axis, is called the probability function of X.	 P(x)(S) P(x)c" r-- S).

The function F(x) = P(X 	 x) is entitled the distribution func-

tion of the random variable X. It iow follows that the probability distri-

bution of a random variable X is determined by its distribution function.

(We note that a random variable is a function and not a variable

in the sense w;iich is usually understocd in mathematical analysis.)
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II. Characteristic function: (Ch. fu.)

• For X a random variable and. F(x) its distribution function, the

function.
f(t) = E (eitX)9

where t is a real number and i is fhe imaginary unit, is called the charac-

teristic function of the random variable X.
e
itX

f(t) =e	 dF(x).
—av

We list without discussion some classical theorems about ch. fu.

(a) If the j 
th

moment of a random variable exists, it is expressed

by

	

	 ,
mJ = f(J)(0)

f

Where fJ(0) is the j th derivative of the ch. fu. of this random variable

att-0.

(b) If f(t, u), f l (t) and f2(AO dero''_^e the ch. fu. of the ran-

dom variables (X,Y), X and Y, respectively, then the random variables X

and Y are independent iff the equation

f(t,u) = fl(t) f
2	 i

holds for all real t and A.

(c) Convergence of ch. fu. implies convergence of the correspond -

ing distribution functions, i.e., distribution functions "depend continu -

ously" on their ch. fu.

(d) Two distribution functions F1 (x)and F2
 (x)are identical if,

and only if, their ch. fu. f1(t) and f (t) are identical.2

(e) Zf a ch. fu, f(t) is absolutely integrable over (-oo, oo)

then the corresponding distribution function r(x) is absolutely continuous	 1_, a

and
1(r.,) =	 1	 e-itx f(t) dt

2 71"
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i (f) Let f(t) be an arbitrary ch. fu. For every real x the limit

r
P = lim

	

1	 e-itxf(t)dt exists
x	 7-->" 2 'T .r

and is equal to the saltus of the distribution function of f(t) @ the point x,

(g) Let ^fn(t)} be a sequence of characteristic functions and

suppose that this sequence converges for all values of t to a limit function.

f(t). Assume that f(t) is continuous @ t = 0; then NO is also a ch.fu.-

(h) A complex-valued function of a real variable t is a ch. fu.

if, and only if, O f(t) is non-negative definite and (ii) f(0) = 1.

(i) Let f(t) be a real-valued and continuous function which is

defined for all real t and which satisfies the following conditions:
d

(i) f(o)	 1

-	 (ii) f(-t) = f(t)
(iii) f(t) convex fxor t 	 0, i.e. f(tl + t 2 ) G f(t) + f(t2)

2	 2
a

for all t 70,t2 > 0. i
(iv) lim f(t) = 0.

t 4 oo

Then f(t) is the ch. fu, of an absolutely continuous distribution r(x).
7FF

1

III. The Quadratic Regression Problem

The concern is with two random variables X and Y with the condi

<tional expectation of Y given X is given by

(1) E(Y IX) = B0 + B  x•+---+ BkXk holding almost everywhere.
i

We say that Y has polynomial regression of order K on S.

We make assumptions that the first moment of Y and the :rnment of ;.; , cr

of X exist.

It follows from the d#finition of expected vali..;:'-^ and (l) that

a
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E(Y) = B	 + B	 E(X) + _-- + B E(xk)1	 k
f

0

i.e.	 E(E(Y/X)) = EM.

f
For the proper values of BA and K. we use the terms quadratic

regression and linear regression.	 +

i We use the term constant regression of Y on X if E(Y/X) = E(Y). a.e.

jNow, for an n-sample of independently and identically distributed

} random variable from population with distribution function 	 F(x) -- we

symbolize the statistics

I A =	 X^= n X
Ls/

S = S(X1 --- xn ) some other statistic.

i

We are concerned with the task of finding a statistic which has con-

stant regression on A.	 And conversely, this property will'sometime determines

the population.

Consider,

=	 Ai. Xi X	 +	 b^ X(2)	 Q
•j x

' and some population which 	 has the property that 	 Q has quadratic regression

j on A.

We mustnecessarily distinguish cases defined in terms of relations
f

between coefficientsand b, of Q and the regression coefficient B..
I j 	 ;

The Demonstration is that the population is characterized by the

' property indicated.

We need

Lemma: A	 if

i) X, Y are random variables

ii) E(X), E(Xk ) exist for K %	 D	 (K is an integer),

then Y has polynomial regression of order K on X if, and only if,
f q

(3)	 E(Yeitx) _	 B E(Xseitx)

hold for all real t.
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Proof: of

Necessity:

Assume Y has polynomial regression of order K on X. i.e.

E(Y/X) = B0 t B 1 
x t --- BkYk .	 a.e.

multiply (l) by eitx

eitxE(YfX) = e'tx
	

B0 t B  X + --- tkXkj

Take Expectation of both sides:
K

E f eitx E(Y f X) = E I e 'tx
	
BsXs

G^K
E(eitx) E 

L
E(Y jX)J _ E ei

tx ZBs Xs

5:-Q

E(eitx) E (Y) = 5'.Bs E JX'eitx,

K S =o

E(Ye itx) _ 2, Bs  Txse'tXl
S=c

To prove Sufficiency: Assume that (3) is valid for all t.

7
Then:	 E eit% 

Y -\> BsXs - 0's=o	 J

This may be written as:
ca	 ^

(4) ,,Zreitx E(Y - B 
s
X^) X d Fl(x) = 0f

where F (x) is the marginal di§tribution of X.
1

Let P (A) be the probability function of the random variable X. This is a
X

set function defined on all borel sets of R1. Then we can write for c-qua
i

tion (4): a

eitx E Y -, B xS x) d P1	 s_o s	 x

>n
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Let	 (A) = 
A 

E<Y - ^BsXs 1 x) dPx . This is a function of
-s

bounded variation which is defined on all Borel sets A of Rl. We see that

eitxd
A

= C

Since the uniqueness theorem for ch. functions is valid for the Fourier

•transforms of functions of bounded variation we conclude that

i

a!

A (A) = 16 (Rl ) = O for all Aorel sets A.

This is only possible if
k

E(Y -	 BsXs	 x) = 0	 a.e.
5 3r

IV. The Differential Equation for the Ch. Fu.

To return to the tone of the introduction, here we add these comments:

Characterizations of both discrete and continuous distributions

are obtainable in a variety of ways. As an example of this for a discrete

distribution, it is known that the relationship of e quality of mean and

variance characterizes the Poisson distribution.

It is possible also to characterize distributions by reason of one

linear statistics. And the independence of two statistics can be used to

characterize distributions.

Also, various populations have been characterized by using the property

that one suitably chosen statistic has constant or quadratic regr=ession on

another. Much work in this field has been done by Lukacs and by Laha.

We are here concerned with a case of quadratic on linear.

Let x1 x2 --- x  be a sample of size n from a population with distri-

bution function F(x). Assume that the second moment of F(x) exists.
a

j	 f (t) _	
eitxdF(x)

is the ch. fu. of F(x).
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consider the quadratic statistic:

laijx . x . +	 bQ =

	

x,

K'
and suppose that Q has quadratic regression on A = Xji.

4

i.e. (5)	 E(Q/A ) = BO + BIA t B2A2 J-D

If we multiply both sides of (S) by e1tA 
and recall this step in the proof

E	
of the Lemma, we have

i

(6)	 E(QeitA) o B0E(eitA) + BIE(Ae itA ) + B2E(A2eitA)

To simplify computati,on ,ee let

al =	 Qyi

a2	 ai	 j

"	 b	 =	 b, ; thus changing the symbols for coefficients

in the value of Q.	 We also note for convenience:

f(t)	 =	
E(eitx)

f l (t) =	 i E(xeitx^
1

f ill (t) _ - i E(X3eitx)

E(Xeitx)	 -	
L

	 fl(t)

E(X2eitx )	 -"(t)
1

1
I

E (X3eitx ) 	(t)
1

1

From a well-known property of ch. fu., in some neighborhood of the origin

f(t) is different from zero so that wr_ can write

/(t) = In f(t)

t`

t
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We then have

(7)	 fl(t) = 11(t) and f"(t) _ ^1"(t) + r^l(ta2

f(t)	 fit)	 L

The left-hand side of (6) is:

	

k	 K
A	 /	 itA

	

E(Qelt )=E C^	 a X,X +f bX)e

he 2	 k st	 K

,

	

E ^ A,X. +^z	 ai• XG X	 + ^ b 	
eitA

l: f	 t-^ Si r  

2 tx	 it k XL
Set the result El + E2 + E3 6 Then El =	 a E(X^ e j ) E(e

.	

1	 K K	 ^ X x)^ ^^ t 
f 

^, ^^^

_	
_ t2 (- 

r
"(' r `^^^ 7- 

r
^ rte`= ^^^^

Thus: the left-hand side of (6) is El	 2+ E + E3

- f(t) n a	 f"(t) + a rf (t) 2 + Lb fl(t
ti

	

f(t)	 ^f(t)j2	 f(t)
r

and this expression by (7) is

4	
^I

f(S)	 -
(C)jn
	 al /"(tl	 (al + a2 )	 1(t)' 2 + L b ^'^-(t)t	 J

i

t



The right•=hand side of (6):

'	
Bo 

E(eitA) + Bl E(Ae itA) + B2E(A2 eitA)

Pc

Recalling that A =	 xi,
L. xi

Bo E(eltA) = BO 
Lf (tJ nJ

[X,,B 	 E(Ae itPj) = B1 E(Aei.t 	 x^) = Bl	 E  eitxy elt^ x^
4 #

=- iB1nfl(t) If (t )] n - 1

BZ(A2eitA) = B2 E (	 X2 ettX`	 e Lt	 xjJ +
t L	 ^

B2 E	 X. Xj eitXt, e"I'0' L^ y

e. Via-	 T
- B2	 - n f"(t)	 [f(t)! n - 1 + n(n - IN	 ^.F i Fl(t J) 2

	
f(t) (n- 2)

- - n	 -f(t)^ Y32 	 fn(t)fl(t^2	 + 212
[11 2fi (t)

2f(t)	 [f(t)J f(t)

= - B2 [f(t)~n 	n {^n(t) + n2 ^gjl( 't )7 2

So the right-hand side is:

- rf(t)1 n fn B2 ^" (t) t n2 B2 	 l(t)	 2 + nL Bl ^,,11 (t) - Boj
The equation (6) is now:

l	 +Lb11(t)al p("(t)+ ( a +a2 )	 l(t)^2

n "B	 !	 (t) + n	 B2 ^^^	 2	
2(tj 2

	
+ L n	 B1 l(t) - B Di

We can solve for Bo a

Bo = (n B2 - al ) / 4 (t) + (n2B2 - a	 - a2 ) 	 [/l(t)j 2 + L
i

(nBl _ b) /'(t)	 a1

r ,

z

- 
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And if we substitute convenient symbols for the coefficients--we have:

(9) , f(t) +c pi(t)] 2 + i	 l(t) = Bo

Introduce the function:

s(t)	 .` ^ (t)

Equation (9) above becomes:

i k Sl(t) - 42 (s(t))2 c13 s(t) = Bo or

(10) d
t
s =	 S2+ di S+BO

1 d 	 2	 3

So our function S(t) is such that

S(0) = i (0) /rt and

(]1)	 ds	 1 0"(0) = :L 2

	

at	 L
t=o

Here,
/,

and	 are the mean and variance respectively^ .fit	 ^	 P	 Y of the distribution

NO.

Now, from equation (10),

We get, by substituting the values above gotten by putting t = 0, an, equation

(1) a relation between the coefficients of Q and the regression coefficient;i,"',

1
(12)	

i J.- 
01 //,( + CA	 + Bo

We see, from (12) that if C),^ = 0, while at least one of o ll. and ,^ is dif-

ferent from 0 then S(t) and (t) are constants so that we obtain a degenerate

distribution. Sle, thus, may assume without loss of generality that C;	 0.

Let o; 2
	 0, ^ 1 # 0,
	 3 = 0.

These conditions will support this -theorem:

Let xl x ---xn be a sample of size n taken from a population which h,s a
2 :

finite variance j' 	 Now consider the quadratic statistics;

y	 ^,



Q =	
aiJ X

` X.. t	 bj Xj 	with
^.	 _ i

a = a1(n-1)-a2#0
a

	

al = ej ^	 a2 5_ tee.

Let Bl and B2 be two real constants:

B1 _	 b^

B2 - 2 (al + a2).

n
The relation:

E(QA)=B0 tB
1
A+B2A2

holds a.e. iff the following conditions hold:

2
(1) Bo = n a,(n - 1) - a2

	

1	 ,1

(2) The population is normal.

The relations: (i) al (n - 1) - a 2	 0

(ii) B1 = 
n.^	 i

(iii) B2 = n-, (al + a2)

are equivalent to the conditions:
i

1 ¢ 0 2 = 0 9 ^r3 = 0.

l'13)	 Ls
L 	 dt	 azS2 +	 S +, Bo reduces to	 n

(14)^ d ds B_	 Put t = 0 and use

ds	 _ ^^1^^ (0)-id_ 2

dtt=	
^0

`  ?and we have:	 Bo -	 1 6" 

.sK



and since	 d^ = n B2 - al

Bo = (al - n B2 ) 6 2 and since B2 = al f• a2n_

Bo (al 	 al + a2 
P"2 = G^ 1 1(a1 (n - 1) - a2]

n	 n

,Aral this is condition (1) above.

We integrate: (14)

ds(15)	 Al	 = Bo

for t = 09 ds = i 6 2
dt

So Bo - ^} 6" 2
{

la ds-	 2
l d -	 Bo

ds	 ^2
TF

i

2
i S(t)	 t + k

1(t) _ -	 2t + i

n ^(t) _'_	 ^2t2 + it	 a

2t2 + i/^ t.
2

and this is the ch. fu. of a normal distribution. We next prove sufficiency

of the assumption.

We continue this technique of assigning different relationships be -

tween the coefficients of Q and the regression coefficients; we get

distribut ion S.

r
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Two upper level mathematics students in the College were

research assistants on the project. The students are:

Ms. Mary Murray

Mr. Kendrick Henderson

'

	

	 The students were assigned to ascertain definitions and

properties of the following transforms:

Fourier Cosine

I	 Fourier Sine

Laplace
I Inverse Laplace

Mel,lins

Inve^se Mellins

Stielties

Hilbert
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In my opinion, the investigation should be continued. The

subject is quite broad and the many items of reference articles

gathered to support the inquiry have not been utilized so far to

any appreciable degree.

We view the next step in a broad investigation to be that

of extending Quadratic regression to cubic to quartic, etc.

The number of relations, as utilized here, will necessarily

increase.

The size of the sample, as demonstrated here, can be in-

creased with the computational format make use of a computer

p; rogram.
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