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INTRODUCTION

The Grant NGR-06-002-147, "Theoretical Investigations of Plasma
Processes in the Ion Bombardment Thruster," is concerned with 1) the
sputtering of the accelerating grid, and the cathodes of the hollow
cathode and neutralizer discharges, ii) the deposition of the sputtered
atoms on system components such as the solar energy collectors, and
1ii) the analysis of the thruster discharge. The progress made on
these subject in the period from 7.1.74 to 8.30.75 is communicated herein.

A physical model for a thruster discharge is developed consisting
of spatially diverging plasma sustained electrically between a small
ring cathode and a larger ring anode in a cylindrical chamber with an
axial magnetic field. The associated boundary-value problem for the
coupled partial differential equations with mixed boundary conditions
is solved in closed form for the electric potential, the electric
field, current density, and velocity distribution., As a result of the
Lorentz forces, the plasma rotates with speeds of the order 106 cm/sec
around the chamber axis. It is shown that at sufficiently large Hall
coefficients and/or Hartmann numbers 1) the radial spreading of the
discharge is reduced by the external magnetic field, and ii) the dis-
charge fields exhibit an oscillatory spatial structure off the discharge
axis, e.g., current flows in alternating axial directioms.

By means of quantum-mechanical perturbation theory, a formula for
the number S(E) of atoms sputtered on the average by an ion of
energy E is derived from first principles. The theory agrees with
experimental sputtering data in the low energy region above the thres-
hold, and leads to the correct sputtering thresholds. As an appli-

cation mercury-metal atom scattering cross sections are deternined




by quantitative comparison of the theortetical and experimental S(E)-values
for sputtering mercury ions and polycrystalline target materials, such
as Ag, Au, Co, Cu, Fe, Mo,Nb,Pt, Ta, Ti, W, and Zr.

The boundary-value problem describing the diffusion of the sputtered
atoms through the surrounding rarefied electron-ion plasma of ion pro-
pulsion systems to the system surfaces is formulated and treated
analytically. It is shown that outer boundary-value problems of this
type lead to a complicated integral equation. Numerical results can
be obtained by a considerable computer effort.

The investigations reported herein represent preliminary
communications. The final version of this work will be communicated

in form of publications at a later date,




THEORY OF ROTATING DISCHARGE IN MAGNETIC FIELD

ABSTRACT

A physical model for a thruster discharge is developed consisting
of a spatially diverging plasma sustained electrically between a small
ring cathode and a larger ring anode in a cylindrical chamber with an
axial magnetic field. The associated boundary-value problem for the
coupled partial differential equations with mixed boundary conditions,
which describe the electric potential and the plasma velocity fields,
is solved in closed form. The electric field, current density, and
velocity distributions are discussed in terms of the Hartmann number H
and the Hall coefficient wt. It is shown that the plasma fields
exhibit an oscillatory radial structure at sufficiently large magnetic
interaction parameters H and wt. As 8 result of the Lorentz forces,
the plasma rotates with speeds as high as 106 cm/sec around its axis of

symmetry at typical conditions.




FIG. 0: Geometry of Spatially Diverging Discharge Between
Cathode (Rl) and Anode (Rz) in a Cylinder (Ro)
with Axial Magnetic Fleld B (R,»R)).



In the ion thruster, the plasma is produced by means of a diffuse,
spatially diverging electrical discharge between a hollow cathode of
small radius R; and a circular anode of considerably larger radius Ro
(at the cylindrical chamber wall).l) The field lines of the electric
current density ] and of the confining magnetic field B cross under
a nonvanishing angle (except at the chamber axis)z) so that the resultant
Lorentz force j x B rotates the discharge around its axis of symmetry.
In steady state, the magnetic body forces in azimuthal directions are
balanced by viscous forces (boundary layers at the chamber walls).
Schematically, this is illustrated in Fig. O for a much simpler model
of a discharge between a cathode (R;) and an anode (R;) in a homogeneous
magnetic field §° (R >> R;, rotation in direction 3).

In view of the complicated geometry of actual thruster discharges

and their inhomogeneous magnetic confinement fields.l’z)

the steady
state rotation of a spatially diverging discharge in an external
magnetic field is analyzed by means of the electrical discharge model
in a homogeneous axial magnetic field 30 depicted in Fig. 0. The
analysis is based on the magnetogasdynamic approximation, in which two
characteristic nondimensional parameters occur, the Hartman number H

and the Hall coefficient wurt,

/2

He= (o/w)} BR,, wt = (lelBoln)t .

The symbols introduced designate the electrical conductivity (o), the
viscosity (u), the electron gyration frequency (w), and the electron
momentum relaxation time (1). H and wt are a measure for the strength
of the Lorentz force relative to the viscous friction force and for the

reduction of the current flow IL transverse to the zagnetic field io'
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respectively. Very little is known about the irsnsport coefficients
o, u, and t for low pressure discharges, except the qualitative
experimental results that ¢ is anomalously small, u is anomalously
large, and 1t is anomalously lﬂlll.a)
For the above reasons, the dynamics of the rotating discharge in
an axial magnetic field will be discussed in terms of the nondimensional
parameters H and wtr which are treated as variables within their
value domain of practical interest, H 21 and wr 2 1. H and wr

represent phenomenological parameters since o, u, and T have to be

obtained by measurements.




THEORETICAL FORMULATION

For a purely azimuthal flow field, Ve {0, v(r,z),0}, the plasma
behaves incompressible, V - V = 0. From the continuity equation,
9 (93) -7 Vo = 0, it follows then that the density gradient Vp
is everywhere perpendicular to the flow field ;. These simple conditions
are only approximately realized since the intensity of the secondary
- - 4)

flows increases with increasing Reynolds number R = pu\rkolu.

absence of secondary flows, momentum cannot be balanced completely in

In

the z~direction, since

ap/az = 0, for V= {0, v(r,z),0},
in accordance with the z-component of the magnetogasdynamic equation of
motion. A strictly z-independent pressure field is physically not
possible, since the axial pressure gradient across the boundary layers
at the end plates z = ic 1is nonzero, although generally small,
3p/3z & 0 (boundary-layer aprroximation for "transverse" pressure
gradient).a)

5)

In accordance with the magnetogasdynamic equations,”’ Om's law

with Hall effect,S)

and the conservation equation for the electric
charge density (V - 3 = 0), the rotating discharge in a homogeneous
magnetic field 30 is described by the following boundary-value
problem for the azimuthal velocity v(r,z) and electric potential

¢(r,z) fields (Fig. 0; secondary flows neglected):

2
oy L= -Pruro B -3V . W
2
0= Wi [f o (0] + SR -0 (- gV, 2)
13 .3 g 22 19
Wt Wt Y - “’




where
v(r.z)r_R =0, -c<z <+ ’ (4)
o
V(r”)z-tc =0, 0<r <R , (5)
and
-o[d¢(r,2)/02),_, .= T6(r- Ry,2)/2%r , (6)
[3¢(r,2)/0r]__p =0, -c<z <+ . ¢))
o

The boundary conditions (4), (5), and (7) consider that the plasma
does not slip at the walls r = Ro and 2z = #c, and that no current
flows into the cylinder wall r = Ro' respectively. The bouniary
conditions in Eq. (6) imply that the cathode (R;) and anode (R;) are
ring electrodes of vanishing radial width, Ar + 0[&(r - Ry ,)/27r =
radial Dirac function]. The net current flowing through the discharge

1s by Eq. (6)

Ro Ro
-2no I 32&535—:—551 dr = I I §(r-Ry ) dr = I <0 ,
0 2 0 ’

since the positive current (I < 0) flows from the anode to the cathode
(Fig. 0). 1In Eqs. (1) - (3), the transverse conductivity is given by

ol.- o/ (1 + w?t?) . (8)

Owing to the disregard of secondary flows, the boundary-value
problem is linear since v(r,z) and ¢(r,z) are described by the
linear equations (2) - (7). The nonlinear equation (1) determines the
pressure field p(r,z) which does not occur in Eqs. (2) - (3). It
should be noted that the induced magnetic field has been disregarded

under the assumption that the magnetic Reynolds number is small,

l‘ - uooly Ro <«< ] .




ANALYTICAL SOLUTION

The characteristic nondimensional parameters of the magnetogasdynamic
discharge problem under consideration are obtained by introducing the

nondimensional independent and dependent variables,

p=t/R , 0<pcl - R 9)

C'Z/C ’ '1£¢1"'1 » (10)
and

V(p,g) = V(t.z)/vo. ¢(ps2) = ¢(r.z)/0° R (1)
vhere

v =4 /RB , 6 = xc/zmtg . (12)

In terms of the nondimensional space variables and fields, the
boundary-value problem defined in Eqs. (2) - (7) assumes for V(p,%)
and %(p,;) the form:

1 . 2 232 |13
PTG TR T2 i (V) . (13)
313 2 3%V _ oy o y2 3¢
vhere
V(p.c)p_1 =0, -l<g<+l ’ (15)
V(D.C);_!l =0, O £p L 1 » (16)
and
-[30(p,8)/32) ., = 8(p=p2,1)/p , (17)
[30(o.¢)laolp_1 =0 ’ (18)

vith 02 1 2 32,1/39- The nondimensional constants M, N, and ul. are
defined by
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M2 = (L +wt)R J)2, N2 (R /0)?, (19)
ai.- (o) /uBZR2 = H2/(L + w2t2) . (20)

In view of the similarity of the left sides of Eqs. (13) - (14)
with Bessel's differential equation, z; + p'lz; + (k% - p‘zmz)zm = 0,
for cylinder functions Zm(kvp). partial solutions of the coupled

inhomogeneous equations are sought in the form,
¢,(p,8) = J (kp)ECT) (21)
V,(,5) = J1(kp)8(@) , (22)

where J;(kvp) = -Jl(kvp) and Ji(kvp) + (kvp)'lJl(kvp) = Jo(kvp)’

Substitution of Egs. (21) - (22) into Eqs. (13) - (14) yields

d2£v 2 M2 2
dag? -~ ky ¥ £, =k M° 8, ' (23)

a%g
- 2+ HhNg, = k, aiyzfv . (24)

where the eigen-values kv > 0 are determined by the boundary conditions
(15) and (18) as the real roots of the transcendental equation,
Jl(kv) = 0 » v = 1.2,3..000 (25)

Thus, the general solution of the coupled equations (13) - (14) obtains

by linesr superposition as:

*(0,2) = »21 3 (k0 (©) (26)
¥(e,8) = I Jilk ) (8) - (27)
vsl

By decoupling Eqs. (23) - (24) one finds for f (7) and 8,(c) the

differential equations of 4th order,
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d*f dzfv
o - (20 + N2 + Nz“i] T tE =0, (28)
d*g, d?g
o - (k202 + W) + nzuil T ts, "0, (29)
with

- - 2

(A () /de] ,) = 23 (kP2 , 1)/ (k)2 (30)
8(8) o4y = 0 ’ (31)

as brundary conditions by Eqs. (16) - (17). 1In deriving Eq. (30), the
Dirac function in Eq. (17) has been expanded,
[
- - 2
8(p - 02,1)/p = 2 vzl (3, (k02,10 /32(k )1T (k p) . (32)
In addition to Eqs (28) - (31), fv(C) and gv(c) have to satisfy also

the uncoupled Eqs. (23) - (24). With

Wy T Wy Wy Zw s 0y L, 0, F (33)
L2 M2 + N2 2,2 2 (M2 2 24212
W, '[7{“‘\)(" + N2) + N HL] t {[kv(u + N) + N4H4)
- 4k:H2N2};’}] I (34)

wg

the general solutions for fv(c) ~ e and gv(:) - W of Eqs. (28) -

(29), can be written as:

ginh ulvc

cosh ulv:
fv(c) - Alv sinh wyy

+B ——
l1v cosh “lv

+ AZv ’::hhwzvc + BZv c:::hmzv‘ ’ (35)
R Wy Yav
8,(8) = ¢, .1:hhwwc +Dy, cz::hwh,c
v v sinh o, Wy
sinh w, ¢ cosh w, ©§
+C 2y 2v_ (36)

——— [ —
2v sinh uzv 2v cosh “2v
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Only four of the eight integration constants Alv""’ D2v for any
v > 1 are independent; by Eqs (23) - (24),
2 o p2M2 - 2
(wlv kvM )Alv ka Clv
2 . n2M2 - 2
(w5, = kHDA,, = k M°C,,
2 2M2 2 (37
(w2, - k24%)B, = k M?D
2 o 2M2 - 2
(wzv kvM )BZV kvM DZv
and
lw2 - (k2 + ni)uzlcw - kaZHZAw
2 . (2 2\n2 - 242
[wzv (kv + Hl?N ]CZv ka Bl§2v
(38)
2
[w?, - (&2 + HL)Nzlnlv = kvnzuznw
2 _ (2 2\\2 - 242
[mzv (kv + Hl?N ]DZv ka H BZv

where the coefficient determinants of the pairs of corresponding
equations in Eqs. (37) and (38) vanish owing to Eqs. (33) - (34).

Upon application of the four relations in Eq. (38), which are
equivalen’ to Eq. (37) by Eqs. (33) -~ (34), and the boundary conditions

(31), which give

“Cw =656, Dy, =D, =D, (39)
Equations (35) - (36) become:
c ‘ sinh w, sinh w, [
lv 2v
£ () = “'g'i' N,  — - ] -——-—-——-—;
v kN HL l v “einh o, 2v “sinh o,
Dv cosh “lv‘ cosh w vz z
+ 2 ———— - (] » (l‘o)
kazHi- lv cosh Wy 2v cosh Wy
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f @) =C [sinh w8 ) sinh w2vc]
\ v sinh wlv sinh sz

cosh mlv: cosh szC
+D, | <osh w.. ~ “cosh w ’ (41)
v 2v
where
= e - 2 2yN2 =
niv = wy, (kv + Hl?N , 1=1,2, (42)
The boundary conditions (30) applied to Eq. (40) yield
24,2
P [3 (k py) + J_(k p,)]
v - 2 (43)
Jo(kv) [”1v“1v°th“ w2v92vcthm ]
2.2
b oa, ONH [3,Ckpy) = I (kp,))
v 2(k ) T tghe tgho, 1 ° (44)
Jo( v wlv v g v Zv 2v g
Substitution of Eqs. (43) - (44) into Eqs. (40) - (41) gives as
solutions for fv(c) and gv(c):
£ @ 200 ) (3, (k1) + 3 (kp2)]
)+ J2(k) = -
v o'V [ulvﬂlvcthw mZvﬂzvcthm ]
!'h sinh w, T - sinh v, &7 . [J (k °1 -J (k 92)]
| '1v sinh ®1y 2v  sinh w,,, [mlv l\,l:ghml\’ 2v02vt8hm291
1 cosh wlvc cosh wZch
1y cosh @ - 8y osh & ' (45)
. iv 2y ~

and
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(3 (kp,) + 3 (kp,)]

J2(k )
gv(c) ’ vz = (w, &, cthe, -w, & cthw ] 8
kaZEL vy v Y292y 2v
[sinh w5 _ sinh wzv; ] [Jo(kv°1) - Jo(kvpz)] .
sinh @, sinh w, [ulvﬂlvtghwlv-mQOthghmzv]
cosh “lv‘ cosh mzv;
*| cosh w,  _ cosh * (46)
lv 2v

Equations (45) - (46) form, together with Eqs. (26) - (27), the closed
form solution of the problem of the rotating gas discharge in an axial

magnetic field io:

@ J (kp) { (I (kp)) + J (k,py)]

- °(99C) - -
vl J2(k ) fw, B, ctho, | = w, @) ctho, ]
[n sinh u‘!i._ 0 sinh wzch
lv sinh w5y 2v sinh Wpy
) [Jo(kvpl) - Jo(kaZ)] ;2 cosh w5 a cosh w2vc ]'
[wlvﬂlvtghmlv-mzvnzvtghwzv] ["1v cosh w 2v cosh w, ‘

(47)

and

@ k J) (k) { [3,(k0,) + I (kp,)]
(w

- V(p,5) = N2u2 > -
L v Jg(kv) TR LY wQOZthhNZVI

x[sinh wlvc sinh wZv;]

sinh @y sinh wzv

[, (k2y) = Jolk,0p)] [°°°“ G1f _ o8 “’ZV‘H . 48

[“1v91v‘3h”1v - wZvQthgthv] cosh Wiy cosh w,,

The remaining nondimensional discharge fields .- Ve/E, and

3 - '5/.1° are given in terms of the solutions for &(p,;) and V(p,g):

® * *
Et = =N 3¢/% , Ee =0, Ez - =30/7 _ v (49)
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Jr'N(--g%+V), Je-Nrﬁz?r(—g%+v), Jz--%
(50)

where E_ = ¢°/c . Jo - a¢°/c ,and N = cIR° [Eq. (12)].

1f the cathode is in the plane 2 = -c ({ = -1) and the anode is
in the plane z = +c ({ = +1), then the reference fields v, and ¢°
[Eq. (12)] are negative, since I1<0. The results are also applicable
to the case where the anode is in the plane z = -c (g = -1) and the
cathode is in the plane z = +¢ ({ = +1). In the latter situation, the
reference fields v, and ¢° [Eq. (12)] are positive, since 1>0,

These explanations hold for magnetic fields pointing in the positive

z- direction, Bo>0; v, changes its sign if B°<0 [Bq. (12)].
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NUMERICAL ILLUSTRATIONS

As an illustration, the radial (p) dependence of the nondimensional
discharge fields V(p,%), ¢(p,%), Er(p,c), Ez(p.c), and Jr(p,c) has
been calculated for I < 0 in the cross sectional planes f = -0.9
(cathode region), = 0 (central region), and { = +0.9 (anode region)
based on Eqs. (47)-(50). The remaining fields Je(p,c) and Jz(D.C)
are simply proportional to Jr(D.C) and Ez(p.;), respectively
[Eq. (50)]. The characteristic (nondimensional) magnetic interaction
numbers are treated as parameters:

wt = 1, 10, 100; H =1, 10, 100.

The geometry parameter N is taken to be N =1 so that M-z =1 +w212,
corresponding to Ro = ¢ [Eq. (20)]. The radial positions of the
cathode and anode are assumed to be:

= 0.01 (R1 = 0.01 Ro) H = 0.9 (R2 = 0.9 Ro)

°1 P2
The dimensional fields are negative everywhere where the nondimensional
fields are positive, and vice-versa [Eq. (11)] since v, < 0 and

¢, < 0 for I <O [Eq. (12)].

Central Region, § = 0: 1In Figs. 1-9, the potential ¢, the radial

electric field Er' and the azimuthal flow field V are represented

versus p for =0 and wr =1, 10, 100; H = 1, 10, 100. The

extrema of V and Er* move towards the center p = 0 as wt and/or

H are increased. ¢ always decreases from a maximum at o *© 0 to a minimum at
pwl [Er(p =1, ) = 0], It is remarkable that at certain values of

wt and H the fields ¢, !r and V exhibit an "oscillatory" radial
distribution (Er :O, V < 0; the oscillation amplitudes of ¢ are

generally too small to be visible in the ¢ curves).
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The Figs. 10-12 show the axial electric field El versus o
for ¢ =0 and wr =1, 10, 100; H = 1, 10, 100. It is seen that Ez
is particularly strong in the center, p - 0, and changes repeatedly its
sign at larger p values, e.g. in an oscillatory manner for larger
wt and/or H values. This means that the bulk axial current flows in
a narrow region, p # 0, in the direction anode+cathode, outside of
which the axial current density Jz changes periodically its sign. The
pronounced maximum of Ez at p # 0.9, is due to the effect of the
anode at o = 0.9, L = +1 on Ez in the plane [ = 0.

The Figs. 13-15 represent the radial current density Jr versus
p for =0 and wtr =1, 10, 100; K = 1, 10, 100. Jr vanishes
alwvays for o = 0 (symmetry) and o = 1 [Jr(p =1, ) = 0]. The bulk
of the radial current flows in a restricted radial region off the center
p=0 (= 0!). The extremum of Jr at p % 0.85 reflects the
influence of the anode at o = 0.9, L = +1 on Jr in the plane = O.
At sufficiently large values of wt and/or K, Jr flows periodically
forward and back radially in accordance with the oscillatory radial
structures of Et and the induced electric fleld - V.

Cathode Region, ¢ = -0.9: In Figs. 16-24, the fields ¢, Et’

and V are shown versus o for { = -0.9 and wtv =1, 10, 100;

H = 1, 10, 100, which exhibit a radial structure qualitatively similar

to that of the corresponding fields in the plane [ = 0. - The Figs. 25-27
show Bz versus p for [ = -0.9 and wr =1, 10, 100; H = 1, 10, 100,
which is qualitatively similar co Ez in the plane { = 0, The Figs. 28~
30 show Jr versus o for { = -0.9 and wr =1, 10, 100; H = 1, 10,
100, which is qualitatively similar to Jr in the plane §{ = 0. - These
comparisons indicate that the bulk discharge remains concentrated

around the axis ¢ = 0 from the cathode region ¢ # -0.9 to the

central region [ # 0. It is remarkable that the discharge does not

L e s b 2

RN
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spread significantly in radial direction with increasing axial distance
¢ within the interval -0.9 s T ¢ 0 although the ratio of anode and
cathode radii is pzlp1 - Rlel = 90.

Ancde Region, ¢ = +0.9: In Figs. 31-39, ¢, Er’ and V are

represzented versus p for [ = +0.9 and wt =1, 10, 100; H = 1, 10,
100. One recognizes that the discharge has spread radially, in
particular at moderate values of wrt and H, in the plane ¢ = +0.9
due to the influence of the anode at p = 0.9 and § = +l. - The
Figs. 40-42 show Ez versus p for [ = +0.9 and wt =1, 10, 100;
H =1, 10, 100. For moderate values of wr and H, Ez is strongest
at p # 0.9, whereas Ez is strongest at p # 0 for large values of
wt and/or H. - The Figs. 43-45 show J = versus p for ¢ = +0.9 and
wt = 1, 10, 100; H = 1, 10, 100. Jr is most intcnse i) at p # 0.9
for moderate values of wt and H and ii) at p & 0 for large values
of wt and/or H. - It is evident that the axial magnetic field
inhibits the radial spreading of the discharge at gsufficiently large
values of wt and/or H. The discharge bends around toward the
circular anode of radius pz»p1 in a thin layer Af{ close to the
anode plane G = +1, where AL is the smaller the larger wt and/or
H are.

Tlie tbove results are readily applicable to ordinary dense
discharges with known transport properties. An application of the
theory presented to the thruster discharge is more difficult, since
the "anomalous" transport properties (u,0,t) of low density discharge
plasmas are not known. Other complications arise from the presence of
the baffle electrode, which bisects the discharge region, and the
inhomogeneity of the external magnetic field. With some confidence,

however, the following qualitative conclusions should hold:
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The torque produced by the Lorentz forces rotates the thruster
discharge around the chamber axis. For |z| = 1 amp, B = 102 tesla,
o= 10% mho m-l, R,=c= 10_1m, one has 0[v°] « 10"!n gec”! and, hence,
by Fig. 6, O[V] = 104m aec-1 for wt =10, H = 102.

The usual assumption of an approximately homogeneous current
distribution throughout the discharge space is most probably inapplicable.
It must rather be assumed that the discharge current is concentrated in a
narrow region around the chamber axis and a thin layer on the cathode
side of the baffle. In the annular gap surrounding the baffle, the
current density should be extremely high and restricted to a thin layer
adjacent to the baffle.

Conductivity estimates based on the assumption of a homogeneous
current density in the annular gap between the baffle and the cylinder
plece will necessarily be too pessimistic. The radial spreading of the
thruster discharge is considerably reduced by the magnetic confinement

field at Hall coefficients wt>>1,

Ftton R b TGS
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FIG. 5: ¢, Er’ and V versus p for § =0,
and wt = 10; H = 10.



26

FIG. 6: ¢, Er' and V versus p for { =0,
and wt = 10; H = 100.
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and wt = 100; H = 1.
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FIG. 17: &, Er, and V versus p for ¢ = -0.9,
and wt = 1; H=10.



20x10¢

-10

-20b

FIG. 18: ¢, E, and V versus p for § = -0.9,
and wr =1, H=100.



7%10%

-2l

FIG. 19: ¢, Et. and V versus p for
“-10

and wt = 10;

wr*I0
Hs=)

= _009'




40

3%10*

FIG. 20: ¢, Er' and V versus p for ¢ * -0.9,
and wt = 10; H = 10.
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FIG. 21: ¢, Er, and V versus p for [ = -0.9,
and ot = 10; H = 100.
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FIG. 22: o, Et' and V versus p for = -0.9,
and wt = 100; H =1,
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FIG., 23: ¢, Er’ and V versus p for ¢ = -0.9,
and wt = 100; H = 10.
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FIG. 27: Ez versus ¢ for [ = -0.9, and wt = 100;
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FIG. 31: ¢, E_, and V versus p for [ = +0.9,
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FIG. 34: &, Et' and V versus p for ¢ = +0.9,
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FIG. 35: ¢, Er' and V versus p for [ = +0.9,
and wt = 10; H = 10.
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FIG. 36: ¢, Er’ and V versus p for [ = +0.9,
and wt = 10; H = 100,
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FIG. 37: ¢, Er’ and V versus p for [ = +0.9,
and wt = 100; H = 1.
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FIG. 39: ¢, Er’ and V versus p for [ = +0.9,
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QUANTUM THEORY OF SPUTTERING:

Application to Cross Section Determination

Abstract

Surface sputtering of polycryeralline metals is explained
theoretically by means of a 3-body sputtering mechanism involving the
impinging ion and two metal atoms. By means of quantum-mechanical
perturbation theory, a formula for the number S(E) of atoms sputtered
on the average by an ion of energy E 1is derived from first principles.
The theory agrees with experimental sputtering data in the low energy
region above the threshold. As an application mercury-metal atom
scattering cross sections are determined by quantitative comparison of
the theoretical and experimental S(E)-values for sputtering mercury

ions and various metals.
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1)

By means of quantum-mechanical perturbation theory,= the
probability S(E) for an atom sputtered by an ion of energy E
incident on a polycrystalline metal is calculated for low ion energies,
E 2 Eo’ where Eo is the apparent sputtering threshold. Whereas the
previous classical approaches to the analysis of sputteringg:lg)
contain phenomenological parameters (usually determined by fitting the
experimented S(E)-curves), the quantum-mechanical sputtering theory
is based on first principles. The theory presented agrees with exper-
imental sputtering data for low ion energies.ll‘lg) As an application,
the formula derived for the sputtering ratio S(E) is used for the
determination of the total scattering cross gection for mercury atoms
(recombined Hg-ions) interacting with atoms of various metallic solids
from the corresponding experimental sputtering data.ll’lz)

A binary collision between a surface atom of the solid and an ion
incident normal to the surface can evidently not lead to sputtering
since the atom does not acquire a momentum component in the direction
of the external ncrmal of the surface. Similarly, sputtering is not
likely to occur for smaller angles of ion incidence if its energy 1is
not large compared to the threshold energy for sputtering. It is evi-
dent that sputtering, at ion energies of the order of the threshold
energy, is a 3-body process involving one ion and two surface atoms of
the solid. At higher ion energies, however, sputtering will result
mainly from higher order many-body interactions.

By restricting the theoretical considerations to ion energies E

of the order of the threshold energy, E 2 E, sputtering is regarded

as the result of an ion-atom-atom interaction. Furthermore, it is
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assumed that the solid is polycrystalline and has a sublimation energy

which is on the average Es =< Esijk

>, where the average is taken
over the randomly distributed surfaces (ijk) of the crystallites.

In this case, the sublimation energy Es represents the average bind-
ing energy of a surface atom of the polycrystalline solid.

In the 3-body sputtering process, the incident ion transfers, on
the average, the energy Es (as well as kinetic energy) to the atom
which is expelled and the energy a) ZES or B) 4Es to the other atom
depending on whether the latter is pushed to an a) unstable or

g) stable interstitial lattice position. Accordingly, the threshold

energies for the 3-body interactions a) and B8) are:
Ea =E; + 2 = 3E_ ,

EB = Es + 4Es = 5E

Depending on whether the process a) or B) occurs with dominant prob-
ability, the apparent threshold (obtained by extrapolation of the

experimental S(E)-curve, E+ E) will be E =E or E %= E If
o o a

(o} B*
the cases a) and B) have equal probability one might introduce an

average threshold by

= 1
E, =3 (E) + Ey) = 4E_ .

»12
Indeed, some of the experimentally found thresholds Eo(exr)er)-]'-l 12)

can be explained by the theoretical formula Eﬁ = 4Es. In other cases,

the formulae Eu = 3. and E, = 5E_ have to be used to explain the

8 B 8
measured thresholds. This is demonstrated in Table I which com-
pares the expetimentalll'll) and theoretical threshold energies

(Ea’ EB’ E;) for different metals. Sputtering is in general not a




69

simple threshold process which can be defined by means of a single

threshold value. This will be shown in detail through the following

quantum-statistical considerations.

TABLE I: Comparison of experimental and
theoretical sputtering thresholds.

Target Crystal Eo(theor)[eV] Eo(exper)[eV]

Element Structure
Ag fecc 5Eg = 16.75 17
Au fce 3Eg = 11.70 18
Co hep SES = 22,00 22
Cu fcc 5Eg = 17.65 17
Fe bee SES = 20.60 20
Mo bece 4ES = 24.80 24
Nb bec AES = 30.84 32
Pt fce 3Es = 16.80 22
Ta bce 3Es = 24,00 25
Ti hep SES = 24,20 25
W bece AES = 35,20 35
Zr hep 3Es = 18,42 18

In Table I, the exper imental thresholds have been taken from
Stuart and Wehnerll). These authors concluded from their experi-
mental data that the threshold is independent from the mass
ratio between the incident ion and target atom,ll) and is, in
first approximation, equal to Eo = AES, the average displacement
threshold in radiation damage.ll) It is seen that the agreesent
between the theoretical thresholds (Ea,B,Eo) and the experiment:l
values Eo(expet) {s excellent, except in the cases Au and W.

wWwhether the a-process or the -process is dominant or both are

(about) equally probable is apparently not dependent on the

respective crystal system (fce, bec, hcp).
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PERTURBATION THEORY

In general, a sputtering ion recombines with an electron into an

9)

atom as soon as it approaches the surface of a metal.~ This means
that the incident ion interacts actually like a neutral atom with the
atoms of the solid. This neutralized ion is always referred to as
"fon", in order to distinguish it from the "atoms" of the solid.
Experiments indicate that also the atom sputtered from the metal sur-
face is electrically neutral.g)
When an ion of low energy as defined above hits the surface of
a solid, one of the following processes may occur: 1) the ion is
reflected without energy loss by the bound surface atom it encounters;
2) the ion collides with a surface atom and quasi-simultaneously with

a second atom so that 3-body sputtering results. The total probability

for the ion to interact in either of the two ways with the solid is

p = N2/3

N o (E) 1)

where N is the number density of atoms in the solid and o(E) 1is

the total (energy dependent) cross section for ion-atom scattering.

Let wl(E) and wz(E) be the transition probability rates for the
processes 1) and 2), respectively. The relative probability with which
sputtering occurs is then

v, (E) . W, (E)
wl(E) + wz(E) wl(E) ’

WS(E) = wz(E) << wl(E). (2)

Combining of Eqs. (1) and (2) yields for the sputtering rate, i.e., the

number of atoms expelled on the average by one ion of energy E from

the solid,
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2/3

S(E) = o(E)N W_(E) . 3)

On principle, o(E) can be calculated quantum mechanically, or
determined experimentally.

In the transition processes 1) or 2), the ion interacts with the
surface of the solid within an area of the extension of the de Broglie
wavelength, A = K/Y2mE. For this reason, the spatial part of the phase

space is

3

V= LLd R, R & ﬁ/(zma)l/2 . (4)

3

The transition probability w(E) from a state "i" to a state "f" is

proportional to the matrix element |H in square and the density of

¢
final states dp/dE per unit energy.l)

27w 2 dp
E) = — —
w(e) = 3= Iu, |° = . (5)
where
*. 3>
Mif-»fs{fwfuwidr , (6)
and
dp f n d®E)
5= [ 1 n
dE (2"5)3 dE

for a state containing n independent particles with moments

;1, 32....,5; . ®(E) 1is the volume of momentum space corresponding

to the total energy E. H 1s the perturbation (operator) of the
Hamiltonian of the ion-atom system which causes the transition 1i-f,
and wi and wf are the wave functions of the total system before and

after the transition which sre normalized for the volume @, 1 > V.
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Equations (5) through (7) represent the basis for the determination of
the process probabilities wl(E) and wz(E).

1. Reflection State. wl(E) is defined as the probability rate
for the ion to be reflected at the surface of the solic¢ without energy
loss. In the center of mass system, the ion momentum is p = Y2mE in
the final state and the momentum space volume is ¢(E) = 4wp3/3.
According to Eqs. (5) through (7), the transition probability for

reflection is per unit time (n=1)

3/2 E1/2

w (E) = Zn D2 [0/ (278)°] 2n/Zm (8)

where Mi%) is the matrix element of the transition 1).

2. Sputtering State. wg(E) is defined as the probability rate
for the 3-body sputtering state with threshold Eo’ o = a,f

(Ea = 3Es, E8 = SEs)' In the center of mass system, the momenta of

the ion (1), the sputtered atom (8), and the second atom (a) can be

chosen as

-+ + >
pi-p’p B -

-+ -+
s pt+tq , 9)

N
N+

> > >
P-9 Pa-'

-
so that momentum is conserved 2333 = 0. Since the potential energy
Eo is expended in the sputtering interaction of type o = a, 8, the

total kinetic energy of the three particles is

E*=E-E = (—1--0'l“’2+-1-"2

w TP tyd 20 - (10)

Equation (10) represents an ellipsoid with the axes sections

/2 /2

{4[mM/(m + ZM)]E*}1 and (ME*)1 in the six-dimensional space

of the vectors ; and 3. Hence, the volume of the momentum space is
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3 2
0e) » T2 g o630 . an

From Eqs. (5) through (7) and (11) one obtains the transition probability

for the sputtering state with threshold Eo per unit time (n=2)

2
__ (2) oM~ 3/2 2 _
v, (E) /@) 1215 Bt @ - B BE-E) A2
where Mii) is the matrix element of the transition 2) and

H(E - Eo) =1or 0 for E> Eo +0 or E < Eo - 0 (Heaviside).
With the assumption wg(E) << wl(E), one obtains from Eqs. (2),

(8), and (12) for the relative sputtering probability the expressionm,

(2)2 2
M2 15 2 g E-ED

g 1]
ws(E) = 8n2 M (1)|2 (m + ZM) E1/2

H(E - Eo) . (13)

The matrix elements IM(l z)l in square are proportional to the
probabilities for finding the interacting particles in the processes 1)

and 2) in the interaction volume V [Eq. (1)], i.e.,
D12 e wt, w217« v’ e

since these are one and two independent particles in the interactions
1) and 2), respectively. Substitution of Egs. (14) and (4) into

Eq. (13) leads to the following equation for the relative probability
for sputtering with threshold E_ (c = a, B):

2
h 2 (E-E)

2/1 (__(Wm)° 3/2 o) ik -

2% T 204/m) 7 HE-E) . (3)

o
W (E) #

hy/y = ®/v) IM(Z)I / M(l)lz i8 a correction factor of the magnitude
0[h2/1] = 1, which can be determined more accurately by evaluating the
matrix elements if the force potentials of the interactions 1) and 2)

are known.
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SPUTTERING RATIO

In the sputtering of a surface atom by an ion, two fundamental
cases (a) and (B) are distinguished which have the thresholds
Ea = 3Es and EB - SEe’ respectively. Let the probabilities for the
occurrence of the thresholds Ea and E8 be ga and 88’ which are

normalized in the usual way,

g, *8 =1 8 g0 . e

It follows for the relative probability that sputtering occurs with

either of the thresholds Eu and EB’

o
ws = c-g 5 80 ws (17)

Substitution of Eqs. (17) and (15) into Eq. (3) yields for the number

of atoms sputtered on the average by an ion of energy E:

2
2 (E-E)
2/3 _(M/m)”_ 3/2 o
2ol L g, BE-E). (B
o=q,B E

h
2/1 o (E)N

S(E) = 35

For applications, it is suitable to further simplify Eq. (18),
which is strictly v~1id only for ion energies E 2 Ea.B' For
example, if only one threshold Eo e(Ea, EB) is important
(gu << 1 or By << 1) and the total scattering cross section o(E)

varies slowly at E = Eo (absence of resonances), Eq. (18) can be

reduced to
" 2/3 . /m? 32 B "o’2
S(E) & -—L-z,. o(E )N ‘ﬁ‘%’ml — HE -E)  (19)
0
with

2 2
o(E)/E L a(Eo)/Eo » E2E . (20)
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Equation (19) is exactly of the form of the sputtering relation
S(E) = const(E - Eo)2 found phenomonologically by fitting experimental
11)

sputtering data.—’ It is commonly used in the extrapolation E -+ Eo
of experimental data to find the threshold Eo.ll) Recently, also a
relation S(E) = const(E - Eo)3 has been employed in the extrapolatory
determination of the threshold Eo.lg) which appears to be difficult

to justify theoretically. As expected, the thresholds reported in

Refs. 11 and 12 are in general somewhat different.
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APPLICATION

In the literature, measurements of the total scattering cross
sections for Hg-atoms (recombined ion) and target atoms such as Ag, Au,
Co, Cu, Fe, Mo, Nb, Pt, Ta, Ti, W, Zr have apparently not been

13)

reported. Theoretical cross section values are not available yet

owing to the mathematical difficulties associated with the application
of quantum mechanical scattering theory to many-electron atoms.li)

For these reasons, the cross sections under consideration shall be
determined here by comparing the theoretical [Eq. (19)] and experimental
sputtering ratios S(E).

In Figs. 1-12, the dashed curves repre.ent the experimental
sputtering data of Askerov and Senalg) for Hg ions and the (polycristalline)
target materials Ag, Au, Co, Cu, Fe, Mo, Nb, Pt, Ta, Ti, W and Zv
(with the lowest S(E) value measured at E = £ indicated by a dot).
The corresponding theoretical sputtering curves S(E), based on Eq. (19)
and the theoretical thresholds given in Table I, are shown by solid
lines. The cross section values c(Eo) are chosen in such a way that
the experimental and theoretical sputtering curves agree in the low
energy region E & £, since theory and experiment should agree the better
the lower the ion energy is (3-body sputtering model). The mass of Hg
is m = 200.59 a.m.u., and the remaining constants M and N in
Eq. (19) are given in Table I. The latter shows also the details of
the calculation of the cross sections o(Eo)’ftom the experimental
sputtering data by means of Eq. (19). It is seen that the cross

sections o(Eo) for atom-atom scatterings are between 10o to 101 barns

at low energies, i.e. are of the order-of-magnitude expected (hz/1 =1).




TABLE 1II

e g e AL

Constants of Sputtering Formula and Cross Sections o(Eo) for Various Target Atoms

Target M/m)<.3/% -3 2/3[om-2 2/3 2
Atons M(gr] Tean/a) Nicm™3] N2/3[cm=2) [hzllo(EO)N /24]géper hzllo(Eo)[cn ]
ag 17906 x 10722 5.200 x 1072 5.859 x 10°%  1.509 x 10" 8.700 x 1072 1.384 x 1070
ae 32697 x 10722 1.856 x 101 5.903 x 10?22 1.516 x 10" 2.672 x 1072 4.230 x 10716
co  9.7829 x 10723 1.268 x 102 8.903 x 10%%  1.994 x 10V 9.687 x 107 1.166 x 107
ca  1.0569 x 10722 1.523 x 1072 8.468 x 10°% 1.928 x 10" 1.993 x 107" 2.480 x 107
e 9.2706 x 102> 1.111 x 102 8.478 x 10°2  1.930 x 10" 7.649 x 1072 9.512 x 1076

-22 -2 22 15 -2 -16
Mo  1.5926 x 10 3.998 x 1072 5.657 x 10°%  1.474 x 10 2.248 x 10 3.661 x 10
N L5422 x 10722 3.716 x 1072 5.187 x 1022 1.391 x 107 3.719 x 1072 6.417 x 10726

-22 -1 22 15 -2 -16
pe  3.2385 x 10 1.820 x 10”1 6.599 x 1022 1.633 x 10 2.244 x 10 3.298 x 10
ra  3.0037 x 10°22  1.563 x 1071 5.526 x 102%  1.451 x 10" 9.593 x 107 1.587 x 10716
11 7.9516 x 10723 7.581 x 1073 5.659 x 1022 1.474 x 101 1.786 x 107} 2.908 x 1071
v 3.0519 x 1022 1.615 x 10" 6.324 x 1022 1.587 x 10V 1.344 x 1072 2.032 x 10716
ze L5143 x 10722 3.564 x 1072 4.253 x 102 1.218 x 107 2.658 x 1072 5.236 x 10710

L
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The Figs. 1-12 indicate that the theoretical sputterings formula
in Eq. (19) describes the experimental data rather well in the low
energy region E 2 Eo. The theoretical sputtering curves S(E) are
plotted up to E = 120 eV, in order to show the deviations of Eq. (19)
from the experimental data at larger ion energies, E. The 3-body
sputtering model and the sputtering formula derived from it evidently
represent adequate approximations only up to energies E = ZEO to 3Eo.

It should be noted that the theoretical sputtering curves
[Eq. (19)] are very sensitive towards changes in the thresholds Eo.

It can be shown that an adequate agreement between the experimental

and theoretical sputtering curves S(E) cannot be obtained by choosing
theoretical thresholds Eo noticeably different from those in Table I
and varying the values of the cross sections o(Eo). Experimental or
theoretical cross section values are obviously necessary to demonstrate

the success of the quantum mechanical sputtering theory presented in a

rigorous way.
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DEPOSITION OF SPUTTERING PRODUCTS ON SYSTEM SURFACES

ABSTRACT

An analytical theory is developed describing the deposition of
sputtered atoms on system surfaces which cannot be seen along straight
paths from the emitting surface. The boundary-value problem describing
the diffusion of the sputtered atoms through the surrounding rarefied
electron-ion plasma to the "hidden" system surfaces is formulated and
treated analytically. It is shown that outer boundary-value problems

of this type lead to s complex integral equation, which requires

numerical resclution.
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In an ideal vacuum, sputtered atoms travel undeflected along
straight paths determined by their initial velocities at the point of
emission. Within this free particle flow, a system surface 1is reached
by the sputtered atoms only if it can be seen along a straight line from
the emitting surface. In reality, ion propulsion systems are surrounded
by a very rarefied plasma consisting of escaped beam ions, recombined
ions, and electrons. For this reason, always some of the sputtered
atoms will be deflected out of their initial paths by interacting through
long-range forces (polarization forces) with the plasma particles so that
they can reach system surfaces which are not seen along a straight line
from the emitter.

Figure 1 depicts the geometry of an idealized propulsion system
which exhibits an emitting plane z = 0, 0 < r < a (accelerating grid),
the rocket surfaces r =a, -c <z <0 and z=-c, 0 <r < a, and the
plane z = -d, a<r <b of the solar energy collectors. All these
system surfaces can be reached by the atoms sputtered from the emitter
by diffusion through the rarefied plasma. The diffusion coefficient
D 1is determined by the Vlasov equatioul) for the sputtered atoms inter-
acting through weak long-range forcetl) with the plasma particles. In
view of the mathematical difficulties associated with the solution of
outer boundary-value problems for the geometry in Fig. 1, a somewhat
simpler system is studied here consisting of an emitting plane
(z=0, C<r <a), the upper rocket surface (r = a, -=c < z < 0) and
the plane (z = -c, & < r < =) of the s«idr emergy collectors (Fig. 2).

The latter is assumed to have infinitc radial extension, Toax © b » =
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gsince in general b>>a and b>>c,d (Fig. 1). Within the model of

Fig. 2, particle deposition on system gurfaces in the space z £ -C

cannot be analyzed.
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BOUNDARY-VALUE PROBLEM
In the space 2z >-c, let the density of the sputtered atoms be
designated by N(r,2) [cm-3] and the flux of emitted atoms at the
emitter surface by I(r) [<:1n.3 + cm sec-ll. In steady state, the
spatial distribution N = N(r,z) of sputtered atoms 1is determined by

the boundary-value problem for the Laplace diffusion equation (Fig. 2):

2 2

N 1 9N 3N
—_— ==+ —=0 (1)
ar2 r dr azz
where
i
[3N(r,z)/03z] _, = -I(r)D H(a-r) » (2)
N(r'z)r-a =0, -c<2z2<0 R (3)
N(r,2)__ =0, as<rze . @
and
N(r,z) +0, (2 +25)+o . (5

are the proper and improper boundary conditions, respectively. D
designates the diffusion coefficient of the sputtered atoms in the
rarefied plasma which represents a spatial average, D = < D(r,z) >.

The Heaviside function is defined as
H(a-r) =1, O0O<r<a ’
=0, ac<rg<w .

The boundary conditions (3)-(4) imply that sputtered atoms
arriving at the system surfaces are deposited there, i.e., do not

return into the diffusion space. This assumption is at least
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approximately correct for nonheated surfaces as long as the number of
atomic layers deposited is not too large. The fluxes ¢ " -D V 1N of
atoms arriving at the system surfaces r = a, =¢c <z < 0 and 2z = -c,

as<r<» are given by

0r(r = a,z) = -D 3N(r = a,2)/3r, =-c <z < 1] , (6)
oz(z = -c,r) = =D 3N(z = -c,r)/3z, a<r<e ¢
Accordingly,
0
Nr-a = - 2n1aD _fc [aN(r = a,z)/3r]dz , (8)
N o= -2" | [3N(r,z = -¢)/d3z]xdr ()
a

are the numbers of sputtered atoms deposited per unit time on the

system surfaces r = a, -c <z <0 and 2z = -c, a Lr < =, respectively.
The above boundary-value problem can not be solved directly, i.e.,
requires a decomposition of the space z > -¢ into appropriate sub-
regions for which the associated boundary-value problems are readily
solvable. In this approach the common boundary value at the decomposi-

tion plane is determined by an integral equation.

DECOMPOSITION BY ONE INTERFACE
In Fig. 2, the space is decomposed into the regions
1(0<r<e 0<z<*) and II(a<r<® =c <z <0). At the
interface, £ = 0, a < r < =, the partial 23N(r,z = 0)/z = v(t)D-l H(r-a)
{s introduced as the common (unknown) boundary value ¥(x) of the

adjacent regions I and II.
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Region I. NI(r,z) is described by Eq. (1), and the boundary

conditions (5), and
N (r,z = 0)/dz = _1(r)p"} H(a - 1) + ¥(r)D T H(xr - a) . Qo)

Accordingly, a solution is sought in form of the Fourier integral

(0 <z <)
! —kz
N (r,2) = [ A@)e ~ J_(kr)dk , (1)
0 o

whence

- [ & AR) T (kr)dk = o7} [ 3 (k) K dk [[-T(2)H(s - @)
0 0 0

+ y(a) H(ax - a)]) Jo(ka)ada 12)

by Eq. (10) in accordance with the Hankel transformation. Substitution
of the Fourier amplitudes A(k) from Eq. (8) imto Eq. (7) gives the

solution:

N (r,2) = o [[1(a)H(a - @) - ¥()H(s - a)] ada x
0

~kz
e Jo(kr) Jo(ku)dk . (13)

o8

NI(r,z) evidently satisfies Eq. (5) since Jo(kr) +0 for r + =,

as well as Eq. (10) since

£ J (kr) 3, (ka) dk = 6(r - a)la .

Region II. NII(t,z) is described by Eqs. (1) and the boundary

conditions (3)-(5), and

A A A
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Ny (r,2 = 0)/3z = y(r)/D,a < T <= « (14)

Accordingly, a solution is sought in form of the Fouriler series

(-c <z < 0):

Ny (£,2) = vZ B, I (A e v [eHivEte) | Av(te), (15)

1
where

Jo(Av a) =0 . (16)

determines the eigenvalues v = 1,2,3,... Equations (14)~-(15) and the

orthogonality relations for Jo(xvr) relate the Fourier coefficients,

o [ e I O o) dr

D a
B B - 2 (17)
v 2 -2A e, ., 2 '

a Av(1+e v )J1 (Ava)

to ¢(r). Equation (15) evidently satisfies the boundary conditions
(3)-(5). |

Integral Equation for r). In the solutions for NI(r.z) and
NII(r.z). the function v(r) is still unknowm (Eqs. (13) and (15)].
Since the z-derivatives of NI(t.z) and Nn(r.z) have already been
matched at the interface, z = 0, a <r < =, v(r) 1is determined by the

remaining continuity condition,

NI(r.z s Q)= Nn(r.z =0), as<r<e= . (18)

Substituion of Eqs.(13) and (15), (17) yields for w(r) the integral

equation:

gﬂﬂﬂh-l)mmﬂdc-ﬂﬂ 19)
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vhere

I » tgh A cJ (A )
QCa,r) = o [ I (kr) I (ka) dk - 2§ o oy
0 3 =1 kva Jl (Ava)

3,09 Q0

o(r) = [ I(a) H(a - a)ada [ J_(kr) J (ka)dk , (1)
0 0 (o] o
2)

are the kernel and the source of Eq. (19), respectively. Since=
o0

2 2
2 1 .0 l .«
é Jo(kr) Jo(ka)dk == [; KC;E) H(r - o) +7 K(;f) H(a - ) , (22)

where K(m = k2) is the complete elliptic integral of the first kind,

Q(a,r) and o(r) become:

2 a a2 a E tgh Avc Jo(Ava)
Q(a,x) = == K3) - 22
Y r2 a o Aya le(kva)

J(Aa), r>a , @3

2
or) =2 [ 1) H@a - o) 2REPda , T 28 . 4)
0 T

L
T
noting that a <a and r 2>a along the interface of the regions I

and II, and, hence, r > @ in Egs. (21)-(22). 1In case the sputtered

atoms are emitted homogeneously, I(x) = Io’ Eq. (24) reduces to

-2 -1 23) - 1 - 53 K Ei) > (25)
o(r) =, I, ¢ [E(:z ( tz) (rzl. r>a ’

where E(m = kz) is the complete elliptic integral of the second kind.

Note that o(r = a) = 0 and o(r =«) =0,
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From the mathematical point of view, Eqs. (13) and (15, 17), which
give the atom density in the space z > -c, and Eq. (19), which deter-
mines the remaining unknown function y(r), represent the formal solution
of the deposition problem.

FURTHER REMARKS

Attempts at solving the integral equation defined by Eqs. (19)
and (23)-(24) in closed form were not successful. Consecutively,
the boundary-value function ¢(z) was determined numerically from
Eq. (19) by an iteration method. Substitution of a finite number of
values wi - w(zi), 0 <z < =, into Eq. (17) gave (approximate)
numerical values for the Fourier expansion coefficients Bv' The
numerical solution N(r,z), obtained by substitution of these Bv
values into the Fourier series in Eq. (15), however, showed insufficient
convergence, in particular at the corners of the system (Fig. 2). This
difficulty is evidently due to (minor) numerical errors in the computation
of Bv' which are added up in the Fourier series.

In order to find a simpler, analytical solution to the deposition
problem, other analytical attempts were made, e.g. by decomposition of
the diffusion space into three simple regions through two interfaces
(Fig. 3). However, this approach results in an infinite system of
algebraic equations and an even more complicated integral equation.

The analysis of the deposition of charged particles, produced by
charge-exchange between sputtered atoms and beam ions, leads to a
similar outer boundary-value problem for coupled, nonlinear partial
differential equations (collision-free electrohydrodynamic equations
and Poisson equation). For the latter reason, first the simpler problem

of the deposition of neutral atoms by diffusion was treated.
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