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ABSTRACT 

A characterization of quantum measurements by operator-valued meaSUres is 
presented. The 'generalized' measurements Include simultaneous approximate mea­
surement of noncommuting observables. This characterization is suitable for solving 
problems in quantum communication. 

Two realizations of such measurements are discussed. The first is by adjoining 
an apparatus to the system under observation and performing a measurement cor­
responding to a self-adjoint operator in the tensor-product Hilbert space of the system 
and apparatus spaces. The second realization is by performing, on the system alone, 
sequential measurements that correspond to self-adjoint operators, basing the choice 
of each measurement on the outcomes of previous measurements. 

Simultaneous generalized measurements are found to be equivalent to a single 
'finer grain' generalized measurement, and hence it is sufficient to consider the set 
of single measurements. 

An alternative characterization of generalized measurement is proposed. It is 
shown to be equivalent to the characterization by operator-valued measures, but it is 
potentially more suitable for the treatment of estimation problems. 

Finally, a study of the interaction between the information-carrying system and a 
measuring apparatus pru.ides clues for the physical realizations of abstractly char­
acterized quantum measurements. 
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Part 1. Characterization of Quantum Measurements 

1. GENERAL INTRODUCTION AND SUMMARY OF PART I 

I. I Motivation for This Research 

Recent developments in coherent and inlloherent light sources, optical processors, 

detectors, and optical fibers have sparked wide interest in optical communication sys­

tems and optical radars. At optical frequencies quantum effects can be very significant 

in the detection of signals. In fact, there are many cases where quantum noise Com­

pletely dominates other noise sources in limiting the performance of optical systems. 

It is essential to have a good understanding of the properties of qu'mtum measurements 

in order to design and evaluate quantum optical systems. We present a characteriza­

tion of quantum measur.ements which communication engineers will find convenient to 

use. ThE' study of the interaction between the information-carrying system and a mea­

suring apparatus provides a suggestion for the physical realization of abstractly charac­

terized quantum measurements. 

I. Z Characterization of Quantum Measurements 

It is a general assumption in quantum mechanics that a measurement on a quantum 

system is characterized by a self-adjoint operator, also known as an observable. Usu­

ally the Hilbert space in which this self-adjoint operator acts is not well defined and 

sometimes it is not even mentioned. Frequently it is assumed that the Hilbert space is 

the one that includes all (but only) the acceE~ible states of the system. That is, it is 

possible to put the system in any given state in i!lis Hilbert space. Occasionally we can 

make use of a priori k1)owledge of how the quantum system has been prepared, and spec-
\ 

ify the Hilbert space as\the one that is spanned by the set of states that occur with non-

zero a priori probabilities. Rarely is the Hilbert space considered as anyone that 

includes the set of accessible states as a proper subspace. It is only with such a defi­

nition of the Hilbert space that every measurE'ment is characterized by a self-adjoint 

operator. This definition of the space is often unacceptable, however, because we are 

seldom sure how big the Hilbert space has to be befc,r., a particular measurement can 

be characterized by a self-adjoint operator within the space. It is particularly clumsy 

for the communication engineer when he tries to find the optima', measurement by opti­

mizing oVer a set of sueh loosely and poorly defined measurelT.e:.lts. Therefore the com­

munication engineer is interested in characterizing the set of all quantum measurements 

by operators acting in more well-defined Hilbert spaces, such as the space spanned 

by all accessibl.e states or by the set of states with nonzero a priori probabilities. When 

d"fined on such spaces, not every measurement can be characterized by a self-adjoint 

operator. For example, Louisell and Gordon, I and recently Helstrom and KennedyZ 

and Holev03 have noted that if the system under observation is adjoined wit!. an appa­

ratus, and a subsequent measurement is performed on both systems, the scope of 
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measurement can be extended to at least simultaneous approximate measurements of 

noncommuting observables. This particular type of measurement is important because 

it has been shown2 that minimum Bayes cost in communication problems may sometimes 

be achieved by such measurements. It has been suggestedl - 3 that the characterization 

of quantum measurements by operator-valued measurements is appropriate for quantum 

communication. Yuen4 and Holev03 have derived necessary and sufficient conditions on 

the operator-valued measures for optimal performances in detection problems. It seems 

that this characterization of measurement is useful at least in calculating optimal 

performances of quantum receivers. But such an essentially abstract mathematical 

characterization does not suggest how the measurement can be realized physically, 

Furthermore. it does not explain what happens to the system as a result of the measure­

ment. This is in contradiction to the self-adjoint observable view of quantum measure­

ment. where the observable Can be expressed as a function of a set of generalized 

coordinates of the system and one can see what coordinates of the system the measure­

ment should measure in some fashion. The von Neumann projection postulate gives the 

final state of a system after a self-adjoint measurement. So there are nice properties 

about a self-adjoint observable that are better than the operator-valued measure 

approach. particularly when the interest is in physical realization of quantum meaFure­

ments. An observable is usually considered to be physically measurable. in principle 

at least. while there has been no indication that any measurement characterized by an 

operator-valued measure can be meailurable. even in principle. But it is very important 

for a communication engineer to optimize his receiver performances on a set of 

measurements that is at least physically implementable in principle. Recently Holev03 

has noted that for every operator-valued measure. one can always find an adjoining 
apparatus and a self-adjoint observable on the composite system such that the measure­

ment statistics will be the same as t"ose given by the operator-valued measure. In 

Part I. given the operator-valued measure. we show how the apparatus Hilbert space 

can be found and what the corresponding observable is. This constructive procedure 

we call our 'first realization of generalized measurements.' 

The method described here is not the only way to realize a generalized measure­

ment. If we consider a sequence of self-adjoint measurements performed on the system 

alone. the statistics of the outcome sometimes correspond to those given by an operator­

valued measure. We call this our 'second realization.' 

Since considerations of simultaneous measurement of noncommuting observables 

lead to the operator-valued measure characterization. we shall consider the simulta­

neous measurement of two or more measurements characterized by operator-vaLled 

measures. 
Finally. we propose an alternative (but equiv.uent) characterization of generaliZld 

measurements. This characterization is potentially useful in considering estimation 

problems. 
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I. 3 Summary of Part I 

We address the mathemathlal problem of the extension of operator-valued measures 

to projf'ctor-valued measure ou an extended space in Sections III and IV, (The results 

ar<: used in the proofs of theorems in subsequent sections, For a general appreciation 

of the results of this report. Section IV may be skipped.) The first realization of 

generalized measurement by adjoining an apparatus is described in Section V. Several 

properties of the extended space alid the resulting measure are discussed in Section VI. 

In Section VII the dimensionality results are used to determine the dimensionality of the 

apparatus Hilbert space which is required for the first realization .. These results are 

also used in the second realization of several classes of generalized measurements by 

sequential measurements. which is developed in Sections VIII and IX with the main 

results given in Section X. Although not every operator-valued measure corresponds 

to a sequential mea,,"rement. in Sections XI and XII we have been able to show that a 

large class of measurements in quantum communication Can be realized by sequential 

measurempntR with the same or arbitrarily close performances. In Section XIII we 

show that a simUltaneous measurement of two or more generalized measurements corre­

sponds to a single generalized measurement; hence. consideration of such measure­

ments will not give improved performance. 

An alternative characterization of generalized measu.·ements is offered in Sec­

tion XIV. 

1.4 Relation to Previous Work 

Holevo suggested3 the realization by adjoining an apparatus when he noted that 

NaTmark's theorem provides an extension of operator-valued measures to projector­

valued measures on an extended space. The method of embedding the extended space 

in the tensor product space of the system and apparatus was found by the author. 

p. A. Benioff was wurking in the area of sequential measurements. 5 -7 at the same 

tIme that I was doing the thesis research for this report. His characterization of 

sequential measurement is similar to that given in Part I. Section VIII. 

Although self-adjoint observables in principle Can be measured. very few of them 

correspond to known implementable measurements. In Part II. by means of an inter­

action between the system under observation and an apparatus. we shall show how the 

relevant information may be transformed in such a way that by measuring a measurable 

observable we can obtain the same outcome statistics of the abstractly characterized 

measurement. The type of transformation that is required and the means of finding the 

required interaction Hamiltonian are shown. Inferences are driwn about which coordi­

nates of the system and apparatus should be coupled together. and in what fashion. The 

constraints of physical law on the 'allowable' set of interactions are discussed. 
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II. GENERALIZATION OF QUANTUM MEASUREMENTS 

In quanttm mechanics it is generally assumed that an observable of a quantum sys­

tem is characterized by a self-adjoint operator defined on the Hilbert space describing 
the state of the system. Let us call this operator K. and assume that it has a complete 

set of orthonormal eigenvectors {J ki >} ie," associated with distinct eigenvalues 

{ki}ie.l' where.l is some countable index set. and 

(I) 

Each commuting and orthogonal projection operator {ni ,. Jki > (kiJ}ie.l projects an 

arbitrary vector of the Hilbert space into the subspace spanned by Jki> and together they 

form a complete resolution of the identity; that is. 

l: n.=I. 
ie.l 1 

where I is the identity operator. 

When the measurement characterized by the operator K is performed. 

eigenvalues ki will be the outcome. and the probability of getting ki is 

if the system is described by a pure state J s>. or 

if the system is described by the density operator Ps' 

(4) 

This formulation of the measurement problem does not include all possible measure­

ments. For example. it does not encompass a simultaneous measurement of noncom­

muting observables. Louisell and Gordonl and recently Helstrom and Kennedl and 

Holev03 have noted that if the system S is made to interact with an apparatus A and 

subsequent measurements performed on S+A or A alone. the scope of meaFl1rement can 

be extended to at least simultaneous approximate measurements of noncommuting 

observables of S. In particular. we can perform measurements corresponding to a set 

of noncommuting. nonorthogonal. self-adjoint operators {Qi}ie.l defined on ;reS' the 
system Hilbert space. which forms a resolution of the identity in ;reS' 

l: Q. = I. 
ie;re t 

(5) 

T" illustrate this possibility. we consider the interaction of the system S with an 

apparatus A. BE'~ore interaction the joint state of S+A can be represented by the den,?ity 
.. 
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operator 

t t t o _ 0"" 0 
PS+A - Ps "" PA (6) 

defined on the Tensor Product Hilbert Space :reS ® :reA = :res+A, where ® denotes tensor 

product. The result of the interaction is a unitary transformation on the joint state. At 

any arbitrary time t later than to' the density operator of the combined system and appa­

ratus is 

(7 ) 

where U(t, to) is the unitary transformation. 

Let {ni(t)} ie.f be a set of commuting, orthogonal projectors in :reS ® :reA at the 

time t. If we perform a measurement characterized by the "i' the probability of getting 

the eigenvalue ki corresponding to the subspace into which "i projects is 

(8) 

Let 

".(t ) = ut(t, t ) "i(t) U(t, t ). (9) 
1 0 0 0 

The {n i(tO)}iE.f again form a commuting, orthogonal, projector-valued resolution of 

the identity In :reS ® :reA' and 

Defining 
_ { to } 

Q. - TrA PA n .(t ) , (II) 
1 1 0 

where Tr A indicates taking partial trace over :reA' we obtain 

(I2) 

where Tr S indicates taking trace over :reS' 
The set{ Qi}ie.f is again a resolution of the identity but in general the Q i are not 

orthogonal nor commuting; furthermore, they only have to be nonnegative-definite self­

ad.ioint operators. It can be shown that if the Qi arc projectors it Is necessary and 

sufficient that they be orthogonal (see Appendix A for a statement of the theorem that 
is due to Halmos). This particular form of measurement is important because it has 

been shownB that minimum Bayes cost in communication problems may sometimes be 

achieved by such measurements. 
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III. THEORY OF GENERALIZED QUANTUM MEASUREMENTS 

We shall now specify a genero.lized theory of quantum measurements that does not 

correspond necessarily to measurements characterized by self-adjoint operp.tors on 

the Hilbert space that describes the system under observation. 

As we have noted, an observable is characterized by a self-adjoint operator K that 

possesses a set of orthogonal projection operators {nil such that:!; n i = 1. The set of 
1 

projection operators is said to form a commuting resolution of the identity, and defines 

a projector-valued measure on the index set {i}. 
This characterization of quantum measurements does not conveniently take into 

account the simultaneous approximate measurement of noncommuting observables, and 

it is necessary to consider more genera;~"ed measurements characterized by 'gen<:.::­

alized' resolutions of the identity. (See refs. 9-11 for more detailed motivation and 

discus sion. ) 

The requirement that the n. be projection operators is relaxed by replacing the n. 
1 1 

with nonnegative-definite operators Q. having norms'" 1, so that:!; Q. = I. Now the 'mea-
IiI 

surement operators' Qi no longer have to pairwise commute, nor are they orthogonal 

to each other in general. The Qi then define an operator-valued measure on the 

index i. 

Sometimes the resolution of the identity does not have to be defined on countable 

index sets s,!ch as the integers. For example. the index set can be the whole real line. 

We shall now discuss more general definitions of resolutions of the identity. Some of 

the terminology will be required for the discussion of estimation problems. although the 

foregoing is generally adequate for detection problems 

DEFINITION 1. A resolution of the identity is a one-parameter family of projections 

{E},.} _oo<},.<+oo which satisfies the follOWing conditions: 

(i) E E = E . (' ) },. fl. mm "'. fl. 

Iii) E_ oo = O. 

where 

with x being an element in the space 3C. (13 ) 
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Such a family of operators defines a projector-valued measure on the real line (ft. 

For an interval ~ '" (>"1' >"2]' where >"1 < >"2' the measure E(~) '" L>.. - E)" is a projec-
2 I 

tion operator. It follows from condition (i) that for two disjoint intervals ~I' ~2 on the 

real line 

( 14\ 

In fad, this orthogonal relation is true for two arbiti'ary disjoint subsets of th~ real line 

(see Appendix A). In this sense the resolution of the identity E>.. is also called an orthog­

onal resolution of the identity. 

For a small differential element d>", the corresponding measure is dE)" = E(d>") = 
E>"+d>" - E>... 

The integral 

A = roO<) >.. dE>.. (15) 

converges in strong operator topology, and defines a self-adjoint operator in the Hilbert 

space 3C. Conversely, by t"e spectral theorem for self-adjoint operators (see Appen­

dix B), every self-adjoint operator possesses such integral representation. The 

family {EJ i. called the spectral family for the operator A. 

Sometimes the projector-valued measure is defined on a finite number of dlscrete 
points (for example, the points may be the integers I = I, ••• , M), and it is often more 

convenient to write the measure II. corresponding to each point i expliciUy. The mea­
l 

sures {IIi} are projection operators and they sum to the identity operator 

!:IIi=I. 
i 

The orthogonality condition in Eq. 13 ~)ecomes 

IIiIl j = 6ipj' 

where 6ij is the Kronecker delta, 6ij = {~ 
To reconstruct the resolution of the identity given in the definition, we define 

E>.. = !: II. 
i~~ 1 

and {E>..} will have all desired properties of a resolution of the identity. 

EX\MPLE I 

( 16) 

(17) 

(18) 

If a self-adjoint operator A has a set of eigenvectors {I ai ) }f:!1 that forms a com­

plete orthonormal basis for the Hilbert space 3C, then A can be written 

1-- "'-"~ 
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where the a. are the real eigenvalues of A. 
1 

The oet "f projection operators 

forms a projector-valued measure on the integers. i = I ••••• M, and they sum to the 

identity operator 

M 
!: nt = I. 

i=1 
(2.1 ) 

DEFINITION 2.. A generalized resolution of the identity is a one-parameter family 

of operators {F~} _00 <~<+oo that satisfy the following conditions: 

(i) If ~2 > ~I' F~ -F~ is a bounded nonnegative-definite operator (which also 
2. 1 

implies that it is self-adjoint) 

(ii) F HO = F~ 

(22) 

Such a family of operators defines an operator-valued measure on the real line. For 

example •. , we have an interval ~ = (~I' ~2]' where ~l < ~2' the measure is F(~) = 
F ~ - F ~ For a small differential element d~. the corresponding measure is 

2. 1 
dF~ = F(d~) = F~+d~ - F~. Whenever the integral A = t: ~dF~ converges in strong 

operator topology. it defines a symmetric operator A in the Hilbert space :Je (i. e .• its 

domain DA is dense in :Je: and for f. g E DA• (M.g) = (f. Ag)) and the family {F~} is 

called the generalized spectral family for the operator A. 

A projector-valued measure is a special type of operator-valued measure. but 

operator-valued measures are more general in the sense that the measures are 

nonnegative-definite self-adjoint operators instead of bemg restricted to projection 

operators. as in projector-valued measures. One of the consequences of this defini­

tion of measure is that the measures of two disjoint subsets of the index set do not have 

to be orthogonal as in projector-vnlued measures. 

EXAMPLE 2 

An example of an operat r-valued measure that is not a projector-valued measure 

is when {E~}. {E~} are two projector-valued measures that do not commute for at least 

one value of ~. and we form the generalized resolution of the identity 

(23) 
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where a is a real parameter in the interval (0,1). Specifically, F" defines an operator­

valued measure, but not a projector-valued measure, on the real line. 

As in a projector-valued measure, sometimes an operator-valued measure is defined 

on a finite number of discrete points (for example, the points may be the integers, 

i = I, .•• ,M) and it is more convenient to write the measure Qi corresponding to each 

point i explicitly. The measures Qi are nonnegative-definite self-adjoint operators with 

norm '" 1. To reconstruct the resolution of the identity given in the definition, we 

define 

F" = :!; Q., 
i~X. 1 

(24) 

and {F,,} has all of the desired properties of a resolution of the identity. 

EXAMPLE 3 

Figure 1 shows three vectors lSi)' i = 1,2,3 with the symmetry 

We define 

Then 

and 

3 

L 
i=1 

Q. = I 
1 

M i". j. (25) 

i = I, 2, 3. 

(27) 

(28) 

Thus {QJi=1 is an operator-valued measure but not a projector-valued measure on 

the space spanned by the {I si)}' The operator-valued measure {QJ above is defined 

Figure 1. Possible states of S. 

on the real line (IL We can also define operator­

valued measures on general measurable spaces. 

If (X, $I) is a measureable space, where X 

is the space, and $I a collection of subsets of X 

on which an appropriate measure can be defined 

(for example, $I can be a IT-algebra, IT-ring, 

IT-field, etc.), a map F(.) can be defined as 

follows. 

For all sub 3ets A E $I, A - F(A), where 
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(l) F(A) is a bounded nonnegative-definite self-adjoint operator. 

(ii) The map r.( • ) is countably additive, i. e., for any countable number of pairwise 

disjoint subsets in .!if, {AJ, ~ay, 

F(U A.) = '\ F(A.). 
. 1 i.; 1 
1 i 

(iii) F(X) = I, the identity operator in :JC, so F( . ) is a resolution of the identity. 

(iv) For the null set ¢, F( ¢) = o. / 

EXAMPLE 4 

(29) 

The output of a laser well above threshold is in a coherent state. 1 2 A coherent state 

I a) is labeled by a complex number a, where the modulus corresponds to the amplitude 

of the output field, and the phase of a corresponds to the phase of the field. The inner 

product between two coherent states I a), I j3) is given by 

The coherent states can be expressed as a linear combination of the photon states 

In), n = 0, 1, •... where the integer n indicates the number of photons in the field 

co 

L (31) 

n=,O 

The Hilbert space :JC that describes the field is spanned by the set of photon states 

{I n)} :=0 and 

co 

I: In) (nl = I:JC' 
n=O 

(32) 

If we define 

(33) 

then the set of projectorA {fin} is a projector-valued measure defined on the positive 

integers of the real line. 

The set of coherent states also spans :JC, and the Integral 

(34) 

where C is the complex plane, and d2
a '" dlm(a) dRe(a). If we define 
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(35) 

we have an operator-valued measure {Qa} defined on the complex plane C instead of on 

the real line and 

(36) 

so it is not an orthogonal resolution of the identity. 

A measurement on a physical system can be characterized by an operator-valued 

measure, with the outcome of the measorement having values in (or labeled by elements 
in) X. The probability of the outcome falling within a subset A E.fII, is given by 

Tr {pF(A)}, where p is the density operator for the system under observation. When 

a measurement is characterized by a single self-adjoint operator, sometimes called an 

observable, the measures are all projector-valued. Here the measures are generalized 

to nonnegative self-adjoint operators with norms"; 1. A natural question arises, How 

do we realize such generalized measurements? Does every operator-valued measure 

correspond to some physical measuring process? In the sequel we shall prove the fol­

lowing major theorem, which will be restated in more precise mathematical language 

in Section V. 

Theorem 1 

Every operator-valued measure can be realized as corresponding to some physical 

measurement on the quantum system in question in the following sense. 

(a) It can always be realized as a measurement corresponding to a self-adjoint oper­

ator on a composite system formed by the system under observation and some adjoining 

system that we call the apparatus. 

(b) Under suitable conditions that will be specified later, it can be realized as a 

sequence of self-adjoint measurements on the system alone. / 

We shall give a simple example showing when an observ9.~le cannot provide the 

information that we desire and hence generalized measurements have to be used. 

Consider the situation in which the information to be transmitted is being stored in 

the orientation of the spin of an electron. The electron is in one of three possible states. 

just as those described in Example 3. A spin measurement performed on the electron 

(that is. a Stern-Gerlach experiment) can have only one of two possible outcomes. This 

measurement is clearly unacceptable for distinguishing among three possibilities. and 

it is necessary to bring in an apparatus to interact with the electron. The sul>sequent 

measurement on the composite system will give the desired outcome statistics. 
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IV. EXTENSION OF AN ARBITRARY OPERATOR-VALUED MEASURE 

TO A PROJECTOR-VALUED MEASURE ON AN EXTENDED SPACE 

We are now concerned with the proof of Theorem I and We provide two construction 

procedures for the extension space and extended projector-valued measure. For readers 

who are interested neither in the proof nor in the construction. this section may be 

skipped without inhibiting understanding the rest of the report. Reading Example 5. how­

ever. may be very instructive. 

In order to prove Theorem I we need some preliminary mathematical results. First. 

We want to investigate the extension of an arbitrary operator-valued measure to a 

projector-valued measure on an extended space. TWo slightly different methods of exten­

sion will be offered. since each has its own merits. 

Holev0 3 has noted that Narmark's theorem provides such an extension. 

Theorem 2 (Narmark's Theorem) 

Let F t be an arbitrary resolution of the identity for the space JC. Then there exists 

a Hilbert space JCt containing JC as a subspace. and there exists an orthogonal resolu­

tion of the identity E; for the space JC+, such that Ftf = PJCE;f. for all f E JC. where PJC 

is the projection operator into JC./ 

The proof. which provides an actual construction. is given in Appendix C. 

The second method of extension is related to the unitary representations of 

':' - semigroups. 

DEFINITION 3. Let G be a group. A function T(s) on G whose values are bounded 

operators on a Hilbert space JC is called positive semidefinite if T(s-I) = T(s)t. for 

every s E G and 

l l {T(t-Is)h(s).h(t)} ~o 
sEG tEG 

(37 ) 

for e\'ery finitely nonzero function hIs) from G to JC (that is. hIs) has values different 

from zero only on a finite subset of G)./ 

DEFINITION 4. A unitary representation of the group G is a function U(s) on G. 

whose values arc unitary operators On a Hilbert space JC. which satisfies the conditions 

U(e) = I (e being the identity element of G). and U(s)U(t) = U(st). for s. t E G./ 

The following theorem is due to Sz ._Nagy.13 

Theorem 3 

(al If e(s) is a unitary representation of the: group G in the Hilbert space JCt • and 

if JC is a subspace of Je+. then T(s) = PJCU(s)/~tC is a positive-definite function on G such 
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that T(e) = !;JC' Moreover. if G has a topology and U(s) is a continuous function of s 

(weakly or strongly. which amounts to the same thing because U(s) is unitary). then T(s) 

is also a continuous function of s. 

(b) Conversely. for every positive-definite fUnction T(s) on G. whose values are 

operators on JC. with T(e) = lJe' there exists a unitary representation of G on a space 

Je+ containing Je as a subspace such that ' 

T(s) = PJeU(s)/Je for s EO G. 

and the minimality condition for the smallest possible Je+ is iven by 

Je+ = V U(s) Je 
sEG 

(minimality condition). 

(38) 

(39) 

This unitAry representation of G is determined by the function T(s) up to an isomorphism 

so that it is called "the minimal unitary dilation" of the function T(s). :\10reover. if the 

group G has a topology and T(s) is a (weakly) con, ;nuous function ot s. then U(s) is also 

a (weaklY. hence also strongly) continuous function of s.1 

[Notes. In (a) the solidus indicates that the operator is restricted to operation on 

elements in Je. In (b) U(s)Je means the eet of all elements U(s)f. Mf E JC. V ..II . 
. i .I 

is defined as the least subspace containing the family of subspaces {..Il
j
}. An isomor-

phism between two normed linear spaces Je l and Je2 is a one-to-one continuous lin­

ear map M : Je _ Je with ..IIJe = JC .J 
I 2 1 2 

The proof. which also provides a construction. is given in Appendix D. 

Given Theorem 3. we arrive at the following theorem for the extension of arbitrary 

operator-valued meaSUres. 

Theorem 4 

Let {F)) 'oe an operator-valued measure on the interval 0 )" 211. then there exists 

a pro,lucto1'-valued measure {E),,} in some extended space .JC+ ~ Je luch that F)" = PJCE,/JC 

for all )"'1 
The proof is given in Appendix E. 

Note that the r'1inimality condition of Theorem 3 

00 

Je+ = V U(n) JC 
n=O 

is equivalent to 

(40) 

(41) 

and the system (Je.JC+.{E),,}) is determined up to an isomorphism. Also. the int(,1'\'(11 

of variation of the parameter \. (0.211) can be extended to any finite Ot' infinite interval 

by using a continuous n,onotonic transformation of the parameter \. 
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EXAMPLE 5 (see Chan l4 ) 

In Example 3 we gave an operator-valued measure that is not a projector-valued 

measure. Three vectors {I si) }i=1 have the structure shown in Fig. 1. We derine 

Then 

Q.=23Is.)(s.l, i=I,2,3. 
1 1 1 

3 
!: Q.=IJC , 

i= 1 1 

(42) 

(43) 

where IJC denotes the identity operator of the two-dimensional Hilbert space JC epanncd 

by the three vectors {I si) }i= I' Pick any extra dimension orthogonal to JC to form ,JC+ 

together with JC. Let {t <l>i) }i= I be an orthonormal basis for the three-dimcnsional spacc 

JC+ as shown in Fig. 2. By symmetry considerations, we adjust the axis of the 

coordinate system made up of the {I<I>i)}i=1 to be perpendicular to the plane JC spanned 

by the {I si)}' The projections of the l<I>i) on the plane of the I si) along the axis are 

adjusted so that they coincide with their respective lSi)' so that I (<I>i I si) I = constant 

for all i is maximized (see Fig. 2). By straightforward geometric calculations, 

(44) 

and 

(45) 

Hence 

p.~I<I>.) (<I>.IPJC = 23 Is.) (s.1 = Q. 
t1\.. 1 1 1 1 1 

(46) 

14 

j 

.j 

1 
i 
J 
1 



p--"'---" l' 
, 
, , 

! 
" 

,. 
',I 
I 

, 

I' 
I 

\ 
, , 

'"," ¥ 1 

wheren,= 1<1>,)(<1>,\ Mi. and 
1 1 1 

3 , 

\' n = I ' LJ i JC+ 
i= I 

(47) 

Therefore {n) is the projector-valu.,d extension of {Qi} on the extended space 3C+. 
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V. FIRST REALIZATION OF GENERALIZED MEASUREMENTS: 

FORMING A COMPOSITE SYSTEM WITH AN APPARATUS 

Given Theorems Z and 4, we can prove immediately part (a) of Theorem I. First, 

we must define some mathematical quantities in order to state the theorem more pre­

cisely. We follow the procedure suggested by Holevo,3 although he did not give a detailed 

development. 

We combine two systems, say S and A, to form a composite system and if 3CS and 

3C A are the Hilbert spaces that previously describe their individual states, then the jOint 

state of S+A can be described by the Tensor Product Hilbert Space 3CS ® 3C A formed by 

the tensor product of the two spaces 3CS and 3C A' Thus if the state of S is Is) and 

the state of A is I a), in the absence of any interaction between S and A the joint state 

of S+A is denoted by I s)1 a) (Dirac notation is used for states). Moreover, everyele­

ment in 3CS ® 3C A is of the form ~ ci I si) I ai ), where the ci are complex numbers such 

that ~ I c.1 Z < 00, and the Is.) and the I a.) are elements in 3CS and 3C A' respectively. 
ill 1 

The inner rroduct on 3CS ® 3C A is induced in a unique way by the inner products on 

the constituent spaces 3CS and 3C A' so that 

(48) 

It is an immediate consequence of this structure that if we have a set of complete 

orthonormal basis for e«ch of the two spaces 3CS and 3C A' then the set of tensor products 

of the elements in these two sets, taken two at a time. one from each set. forms a com­

plete orthonormal basis for 3CS ® 3C A' That is. if {I si >}iE,J' and {I a j >}jE/ are sets 

of complete orthonormal basis for 3CS and 3C A, then the set {I s. > I a. >}'E d( .~ iF forms 
, J '-..T'J"'o" 

a complete orthonormal basis for the space :J<~S ® 3C A the elements of which cannot be 

separated into the tensor product of an element in 3CS and an dement in 3C A' but it is 

possible to express every element in 3CS ® 3C A as a linear combination of elements that 

are separable. 

Given this definition of the space 3CS ® 3C A' the operators in this space can be defined 

easily, If TS and T A are bounded linear operators in 3CS and 3C A' then there is a unique 

bounded linear operator T S ® T A in 3CS ® 3C A with the property that 

(49) 

for aU Is> E 3CS and all la> E 3C A, 

T S ® T A is called the tensor product of the operators T Sand T A' Thus if the state 

of S is described by the density operator Ps and tile state of A by P A' we can show that 

in the absence of interactions the joint state is given by the operator Ps ® P A' By lin­

earity, the operation of the operator T S ® T A can be extended to arbitrary elements 

in 3CS ® 3C A' Again. the most general operator on 3CS ® 3C A cannot be written in the 

16 

, 

I 
" 

'j 
I .! 

,~ 
i 
1 
1 
1 
1 
; 

1 
1 

I 
,j 
I 
j 

I 

1 

J 



l 
; 
,I 
I 

. .. 

\ 

r 
I 
I 
[ 

t 

I 

form of the teneor product of two operators as above, but can be expressed as a linear 

combination of such product operators, and lill!'arity defines the operations uniquely on 

elements in 3CS ® 3C A' 

It is obvious that this description may be extended to describe a composite system 

with arbitrarily many (but finite) component systems, instead of two. 

For the moment, this concludes the characterization of composite quantum systems. 

We shall discuss the dynamics of such systems when we talk about interactions 

(Sec. XVII). 

Now we are able to state part (a) of Theorem I more precisely. 

Theorem I 

(a) Given an arbitrary operator-valued measure {Q"}"EA' where A is one index 

set on which the measure is defined, we can always find an apparatus with a Hilbert 

space 3C A' a density operator P A' and a projector-valued measure {n"}"EA corre­
sponding to some self-adjoint operator 0 = :E q n on 3CS ® 3C A such that the proba-

"eA " " 
bility of getting a certain value q" corresponding to Q" as the outcome of the 

measurement is given by 

P(q,,) = TrS {PSQ) 

(50) 

for all density operators Ps In 3CS' where TrS is the trace over 3CS and TrS+A is the 

trace over 3CS ® 3C A'/ 

[Note. The trace of an ope-ator 0 over a space 3C is defined as Tr{O} =:E (ei l 01 f,), 
i 1 

where {I fi )} is any complete orthonormal basis of 3C. This quantity is independent 

of the particular choice of basis.) 

Proof: We know from Theorems 2 and 4 that an arbitrary operator-valued measure 

{Qa}"EA with operator-values on the space 3CS can be extended to a projector-valued 

measure {na}aEA with operator-values on an extended space 3C+ that contains 3Cs as a 

subspace. 3C+ can be embedded in a tensor product space 3CS ® 3C A for some apparatus 

Hilbert space with enough dimensions. The question of how many dlmensionll are 

required will be addressed later. For the moment, assume that 3C A has enough dimen­

sions that the dimensionality of the space 3CS ® 3C A is greater than or equal to that of 

3C+, If the state of the apparatus is set initially at some pure state I a). then the joint 

state of S+A can be described as the tensor product Ps ® I a) (a I of a density operator Ps 

in JC s • and the density operator P A = I a) (a I in 3C A' Thus for every element Is) in JC S 
it can be identified as the element Is)la) in 3CS ® 3C A' And the whole space 3CS can 

be identified as the space 3CS ® ..KI a)' where ..KI a) is the one-dimensional subspace 

of JC A spanned by the element I a), Now 3C = 3CS ® ..K I a) is a proper subspace of 
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:res ® :JC A' The projection operator into the subspace :JC can be identified as P:JC = 

1:JC ® la)(al, where the set{lsi )} is anyorthonormalbasisin:JCS' We can form an 
S 

operator-valued measure {Q ® I a) (a I} €A with values in the space :JC. By Theorems 2 
a a {} + and 4, there exists a projector-valued measure na a€A on an extended space:JC that 

We can take as :reS ® :JC A' since we have assumed that :JC A has enough dimensions, so 

that 

),I. a € A. 

Now for an arbitrary density operator Ps in :reS' 

TrS{PSQa} = TrS+A{(ps ® fa) (al)(Qa ® fa) (al)} 

= TrS+A {CPS ® I a) (al JP:renaP:JC}' 

With the relation Tr {Be} '" Tr {CB}. 

Trs{psQa}= TrS+A{p:JC(pS ® la) (al)p:JCn). 

But Ps ® I a) (al is an operator in:re. Hence 

P:JC(PS ® I a) (a['p:JC = Ps ® I a) (al. 

Therefore 

for any arbitrary density operator PS' Note that 

Qa = (al(Qa ® fa) (al)la) 

= TrA{(Qa ® la)(al)(1:re
s 

® fa) (al)} 

= Tr A {(p:JCnaP:JC)p:JC} 

= Tr A {P:renaP:JC} 

= Tr A {P:rena} 

= Tr A {(I:JC
S 

® ! a) (al )na} 

= Tr A {(I:JC ® P A)na}, 
s 

(51 ) 

(52) 

(53) 

(54) 

(55) 

(56) 

where Tr A denotes partial trace over the space :JC A' The partial trace of an operator 0 

in :reS ® :JC A over the apparatus Hilbert space :JC A is defined as the operation 

:E Is.) (a.l(s.lols.,)lai) (s.,I, ... , J 1 J J J 
1, J, J 
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where {I Sj)},{lai )} are complete orthonormal bases in 3CS and 3C A' respectively. 

EXAMPLE 6 

We shall make use of the operator-valued measure described in Examples 1 and S. 

In Example 5 We have already found the projector-valued measure extension {ni};= I in 
the three-dimensional extended space 3C+. If we consider the original two-dimensional 

Hilbert space 3C as the system space 3CS' we only have to find an apparatus whose state 

is described by a Hilbert space 3C A' and then embed 3C+ in the tensor product Hilbert 

space 3C S ® 3C A' Any apparatus Hilbert space of dimensionality ;;'2 will work (dimen­

sionality of 3CS ® 3C A will be;;' 4). Let P A = I a) (ai, where I a) is some pure state in 

3C A' Therefore the three possible joint states of S+A are {I si)1 a)};=I' and they span 

a two-dimensional subspace in a'CS ® 3C A' namely, 3CS ® uK I a)' where uK I a) is the 

subspace spanned by I a). Choose any other one-dimensional subspace uK S+A of 

3CS ® 3C A orthogonal to 3CS ® uKl a)' Then the space 3CS ® uKl a) V uK S+A (=3C+) is 

three-dimensional and includes 3CS ® .III a) (=3C) as a subspace. Hence three orthog­

onal projectors {ni }:= 1 can be found in 3C:, so that they are the extensions of the cor­

responding operator-valued measures {Q)i=1 (see Example 5 for the structure of the nil. 

Let Id be the identity operator of the space 3CS ® 3C A - {3CS ® uKl a) V uK S+ A}' and 

(57) 

Then 

(58) 

and 

= Qi , for i = I, 2, 3./ (59) 
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VI. PROPI:RTIES OF THE EXTENDED SPACE AND THE 

RESULTING PROJECTOR-VALTJED MEASURE 

--- 1'·---

We shall now examine the properties of the extended Hilbert space hIld the resulting 

projector-valued measure. The most important property is the dimensionality of the 

extended space. and it is important for two reasons. First. it will tell us the required 

minimum number of dimensions of the apparatus Hilbert space. In a communications 

context. the apparatus should be considered as a part of the receiver. If the dimension­

ality of the extended space is known. we have some idea of the complexity of the 

receiver. Second. the analysis of the minimum dimensionality of the extended spa-'" 

is absolutely necessary for the discussion of the realization of generalized measurements 

by sequential techniques in Section X. / 

When little is known of the properties of the operator-valued measure, Theorem 4 

is powerful. It provides an upper bound for thf' dimensionality of the extended sl'ace 

whenever the cardinality of the index set, on which the meaSure is defined, is given. 

For example, in the M-ary detection problem, we tI y to decide on one of M different 

signals. The characterization of that receiver is given by an operator-valued measure 

defined on an index set with M elements corresponding to the M possible outcomes of 

the decision process. That is, we have M different 'measurement operators' {Q'}~I 
M l~ 

that form a resolution of the identity I: Q. = 1. If the density operator of the message-
i-I 1 

carrying field is p, the probab!1!ty of ~h;:,,,sing the kth message is Tr {PQk}' The detailed 

properties of the optimum Qi depend he'lvily on the states of the received field and the 

performance criterion that is chosen. Without going into a more detailed analysis of 

the communication problem, all that we know about the quantum measurement for an 

i\l-ary detection problem is that it is characterized by M 'measurement operators' 

{Qi}~~ I' Theorem 5 is useful for this kind of situation. 

Theorem 5 

1\1 M 
For an arbitrary operator-valued measure {Q'}'_I' I: Q. = I, whose index set has 

11- i=11 
a finite cardinality lVI, the dimensionality of the minimal extended Hilbert space, min Je+, 
is less than or equal to 1\1 times the dimensionality of the Hilbert space Je. That is, 

dim {min ~C+} ':1\1 dim {Je}.! (60) 

The proof of Theorem 5 is given in Appendix F. 

We shall show eventually that there exists a general class of {Qi} such that the upper 

bound is actuany achieved. In the absence of further assumptions on the structures of 

the Qj' this is the tightest upper bound. 

If more structures for the operators Qi are given. we can determine exactly how 

large the extension space has to be. Theorems 6 and 7 provide us with that knowledge. 
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Theorem 6 

If the operator-valued measure {Qa}uEA has the property that every Qa is propor­

tional to a corresponding projection operator that projects into a one-dimensional sub­

space S of Je (i. e .• Q = q I q ) (q I. where I ;. q ;. D. and I q ) is a vector with a a aa a a a 
unit norm). then the minimal extended space has dimensionality equal to the cardinality 

of the index set A (card {A}). That is. 

dim {min Je+} = card {A}. I (61 ) 

The proof of Theorem 6 is given in Appendix G. 

Theorem 7 

Given an operator-valued measure {Q)aEA' let <R{Q) denote the range space of 

{Qa}' a E A. Then 

dim{minX+}= ~ dim {<R{Q n.1 (62) 
aE:A a 

The proof is given in Appendix H. 

Given Theorems 6 and 7. we can make some interes';ing observations. 

COROLLARY I. It is an immediate consequence of the proof of Theorem 7 (see 

Appendix H) that the statistics of the outcomes of measurements characterized by some 

operator-valued measure {Q)aEA can be obtained as the 'coarse-grain' statistics of 

the outcomes of a measurement characterized by a set of one-dimensional operator-
K 

valued measures {p~" q~lq~) (q~l} a (see KennedyI5). By considering the 
k=l,aE..n 

associated set of one-dimensional operator-valued measures {pa} instead of {Q } no ,( a 
additional complications will be introduced, since the minimal extensions of the two sets 

K 
of measures are exactly the Same. In this sense the two sets {Q)aEA and {p~} a 
are 'equivalent'. I k= l,aEA 

COROLLARY 2, If all of the operators Qa are invertible (that is. if each of their 

ranges is the whole space Je). then 

dim {min Je+} = card {A}' dim {3C}.1 (63) 

The proof is obvious with Theorem 7 , 

Note that the upper bound of Theorem 5 is exactly achieved when all the Q a are 

invertible. 

COROLLARY 3. The construction of thc projector-valued measure and the cxte"ded 

space provided by Nal'mark's theorem (Theorem 2) is always the minimal extension.! 
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The proof is given in Appendix I. 

EXAMPLE 7 

In Example 5. the operator-valued measure {Qi =; lSi> (si I }~= I has the property 
that each operator Q. is proportional to a one-dimensional projector. Hence. either by 

1 
Theorem 6 or Theorem 7. the dimensionality of the minimal extended space should be 

equal to the cardinality of the index set which is three. Therefore the extension giv<;n 

in Example 5 is minimal. It is clear from Example 5 that the projector-valued ex,ension 

has to be defined at least on a three-dimensional space. / 

DISCUSSION. Theorems 5. 6. and 7 hold when the dimensionality of t:le Hilbert 

space X is countably infinite (=K
O
)' but we must be careful in interpreting the results. 

The following rules are useful for cardinality multiplication: 

Finite cardinality is indicated by an integer. 

Countably infinite cardinality is indicated by KO' 

Uncountably infinite (or continuum) cardinality is indicated by K I . 

integer . integer = integer. 

integer . K = K • o 0 

K integer = K , 
.0 0 

In Theorem 5. the dimensionality of the minimal extended space min xt is given by 

dim {min xt} ""M dim {X}. Thus if dim {X} = K • then dim {min xt} = M • K = K also. 
tOO 0 

This does not mean min X = X. If we examine the proof of that theorem closely. the 

minimality statllment really means 

dim {min xt - X} = K • o (64) 

The r'eason is that with the space X we need (M-I) dim {X} = (M-I)K
O 

= KO number of 

dimensions for the extension. (This holds even if M goes to infinity because K • K = ~ .) o 0 0 
This is also true for the result of Theorem 6 which states dim {min xt} = card {A}. 

In the event that card {A} = KO' the result should be interpreted very carefully. Let A' 

be a subset of the i.ndex set A such that for all a e: A'. I > qa' This means for all the 

a e: A-A'. qa = I '- . .:1 Qa is already a projector that requires no extension. Hence all 

the 'extra' dimensions required in min xt are for those Qa with a e: A'. Thus we hav.! 

the following interpretation of the result of Theorem 6. 

dim {min xt -X} = card {A'} - dim {IR{ ~ Q}}. 
ae:A' a 
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where <R{ .} indicates the range space of the operator in braces. Obviously card {A'} 

can be finite or infinite. Accordingly the 'extra' dimensions needed to form min :Je+ 

from :Je are finite or infinite. 

Similar interpretations should be made for the result of Theorem 7. In Corollary 1 

we note that the extension in Theorem 7 is structurally similar to that in Theorem 6. so 

the same interpretation applies. If we follow the proof of Theorem 7. we arrive at the 
following result (which We shall not derive in detail). 

dim {min:Je+ -:Je} = :!; dim {<R{lim (Qa -Q~)}} 
aE:A n-oo 

(66) 

The result for Theorem 6 is a special case of this one. / 
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VII. APPARATUS HILBERT SPACE DIMENSIONALITY 

We are now in a position to make some general comments about the complexity of 

the apparatus at the receiver of a quantum communication system. Bear in mind that 

the dimensionality of a tensor product Hilbert space JCS ® Je A is given by 

dim {JeS ® Je A} = dim {JeS} . dim {Je.J. (67) 

We may state the following theorem for the minimum dimensionality of the apparatus 

Hilbert space. 

Theorem 8 

If the system Hilbert space JeS is extended first to the space Jet :2 Je
S 

and Jet is a 

minimal extension, then the minimum number of ch:nensions of the apparatus Hilbert 

space Je A required for a realization of the measurement described in the sense of 

part (a) of Theorem 1 is given by the smallest cardinal N such that 

The proof is obvious. 

In the absence of detailed knowledge of the nature of the operator-valued measure, 

Theorem 5 gives the following theorem. 

Theorem 9 

For an arbitrary operator-valued measure {Qi~ I' I: Q, = IJe , whose index set has 
i 1 

a finite cardinality M, the minimal dimensionality of the apparatus Hilbert space Je A 

required to guarantee an extension of the measure to a projector-valued measure in the 

tensor ,lroduct space JeS ® Je A' is equal to M. / 

Proof: The inequality in Theorem 5 asserts 

dim {min Jet} ";M dim {Jes}. 

If we make dim {Je A} = 1\1, 

dim {Jes ® Je A} = dim {JeS} . dim {Je A} 

= M dim {JCs} :;, dim {min Jet}. (69) 

Hence we can always guarantee an extension. Since we show in Corollary 2 that the 

bound can be achieved for some classes of measures, 1\1 is the minimum dimensionality 

that will always guarantee an extension. / 

The implications of the theorem are very interesting. One of the main reasons for 

our investigation of measurements characterized by generalized operator-valued 
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measures is that we hope to improve receiver performances by optimizing over an 

extended class of measurements that are not completely characterized by self-adjoint 

operators. Theorem 5 tells us that if we are interested in the M-ary detection problem. 

all we have to do is to adjoin an apparatus with an M-dimensional Hilbert space 3C A and 

consider only measurements characterized by self-adjoint operators in the tensor prod­

uct Hilbert space 3CS ® 3C A' 

The following theorems are immediate consequences of Theorems 6. 7. and 8. 

Theorem 10 

If the operator-valued measure {Q)aEA has the property that every Qa is propor­

tional to a corresponding projection operator that projects into a one-dimensional sub­

space Sa of 3C (that is. Qa = qa I qa) (qa I. where 1 ;. qa > O. and I qa) is a vector with 

unit norm). then the minimum number of dimensions of the apparatus Hilbert space 

required for a realization of the measurement described in the sense of part (a) of The­

orem 1 is given by the smallest cardinal N such that 

(70) 

Theorem 11 

Given an operator-valued measure {Q)aEA' let <R{Q) denote the range space of Qa • 

a E A. Then the minimum number of dimensions of the apparatus Hilbert space required 

for a realization of the measurement described in the sense of part (a) of Theorem 1 is 

given by the smallest cardinal N such that 

Ndim{3CS};' !: dim{<R{Qa}}'/ 
aEA 

The proof is obvious. 

EXAMPLE 8 

(71) 

In Example 6 we showed how the extended space in Example 5 can be embedded in 

a tensor product Hilbert space of 3CS and an apparatus Hilbert space 3C A' We noted that 

the space 3C A must be two-dimensional or bigger. The results in this section confirm 

that the dimensionality for 3C A must be at least two. 

DISCUSSION. We must be careful in interpreting the results of this section when 

the dimensionality of the Hilbert space 3CS is infinite. 

In Theorem 8 when both dim {3CS} = dim {min 3C+} = KO (countably infinite). the dimen­

sionality of the apparatus space will be "" integer (in fact. either 1 or 2). It will be 1 

when the measure is already projector-valued and does not need an extension; it will 

be 2 when the measure is not a projector-valued measure. Hence. if the Hilbert space 3C 

in Theorem 9 is infinite dimensional (K
O

)' the minimal extended space is also infinite 
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dimensional (M • KO = K
O

)' The 'extra' dimensionality required for the most general 

measure is at most (M-l) • KO = KO' Hence. if the apparatus space is two-dimensional. 

we can guarantee an extension of any measure on the tensor product space JCs ® JC A' 

For Theorems 10 and 11. if both dim {JCSJ = dim {JC+} = K • then the dimensionality 
• 0 

of the apparatus spa'oe required is two. / 
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VIII. SEQUENTIAL MEASUREMENTS 

We shall now discuss the second realization of generalized quantum measurements 

as stated in part (b) of Theorem I. Our interests in sequential measurements originate 

from the investigations of the interaction of a system un,ier observation with an appara­

tus. and sequential measurements being performed separately on the system and appa­

ratus. with the structure of the second measurement optimized depending on the outcome 

of the first measurement. In order to illustrate how a sequential measurement may 

actually be performed. we give an example of a simple binary detection problem. (See 

Appendix J for a more general problem.) We also analyze sequential measurements 

more mathematically. 

8. I Sequential Detection of Signals Transmitted by a 

Quantum System (see Chanl6) 

Suppose we want to transmit a binary signal with a quantum system S that is not cor_ 

rupted by noise. The system is in state I so) when digit zero is sent. and in state lSi} 

when the digit one is sent. (Let Po and PI be the a priori probabilities that the digits 

zero and one are sent. Po + PI = I.) The task is to observe the system S and decide 

whether a "0" or a "I" is sent. The performance of detection is given by the probability 

of error. Helstroml7 has solved this problem for a single observation of the system S 

that can be characterized by a self-adjoint operator. The probability of error obtained 

for one simple measurement is 

(72) 

We try to consider the performance of a sequential detection scheme by bringing an 

apparatus A to interact with the system S and then performing a measurement on S 

and subsequently on A. or vice versa. The structure of the second measurement is 

optimized as a consequence of the outcome of the first measurement. 

Suppose we Can find an apparatus A that can interact with the system S so that after 

the interaction different states of system S will induce different states of system A. 

Suppose the initial state of the apparatus is known to be I a }. and the final state is I a f } 

if S is in state Iso). and la~} if S is in state lSI)' and I~~) *' la~}. It is shown in 0 

Part II of this report that the inner product of the state that describes the system S+A 

when digit "0" is sent and that which describes it when digit" I" is sent is invariant under 

any interaction that can be described by an interaction Hamiltonian HAS that is self­

adjoint. That is. 

(s lSI) = (s lSI) (a la ) = (ilsfl}(afllaf ). o 000 0 0 
(73) 

where I s~} and I s~ ) are final states of S after interaction if a "0 n -or a "I" is sent. 
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Now suppose 

(74) 

which implies also 

(75) 

We wish to observe S first in an optimal way. The process is similar to Helstrom's 

in that we choose a measurement that is characterized by a self-adjoint operator Os in 

the Hilbert space 3CS so that the probability of error Pr[£ sl is minimized. and it is given 

by 

(76) 

and the probability of correct detection is 

(77) 

Suppose the outcome is "1". The a priori probabilities Pl' P of apparatus A for states 

I f I f 0 a l > and a o > have been updated to Pr[Csl and Pr[£sl, respectively. 

Now we perform a similar second measurement on A. characterized by an operator 

0A in the Hilbert space 3CA ' A new set of a priori probabilities pi = Pr[csl. P~ = Pr[£sl 

is used for the stat"~ I a~ > and I a~>. Assuming that we already have all available infor­

mation from the outcome of the first measurement in the updated a priori probabilities 

for A, we base our decision entirely on the second measurement. The optimal self­

adjoint operator ° A is chosen to minimize the probability of error of detection Pr[£ 1 in 

a process similar to the first measurement, and the performance is 

Pr[£l= ~ [1 - jl -4 pr[cslpr[£sll(a~la~>12 J. 
But pr[csl pr[€sl = PI Po l (si Is;> 1

2
, and (si I s~> (ai I a;> = ( s l l So>, 

Pr[£l= ~ [1 - j4PIPol(Sllso>12} 

which gives 

This is exactly the same performance obtained by Helstrom in one simple measurement. 

When the first measurement characterized by the operator Os is performed and one of 

two outcomes will result, we decide (temporarily) that either the digit "0" or the digit "I" 
is sent. Since Os is a self-adjoint operator, it possesses an orthogonal resolution of 

the identity (and hence defines a projector-valued meaSure on the digits "0" and "1 "). 

Let 11 be the corresponding projector-valued meaSUre for the outcome "0". Then 1-11 o 0 
is the measure for the outcome "1 ". The probability of getting outcome "0" is P = 

( s I 110 Is>. where Is) is the final state of S (either I s~) or I s~ ) ). and the probability 
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of getting outcome "I" is I-P. We represent this first measurement diagramatically 

in Fig. 3 by a tree with two branches. The transition probabilities are given by P for 

Temporarily decide on "0" 

Tempororily decide on "I N 

Figure 3 

the branch zero, "0", and I-P for the branch one, "I". Ifthe outcome is "I", we shall 

perform a second measurement on A characterized by the self-adjoint operator ° A' 

Associated with ° A are the projector-valued measure II 1 and 1 -II I' for outcome "I" 
and "0", respectively. If, however, the first outcome is "0", we perform a different 

measurement corresponding to Oil.' with associated projector-valued measures II z and 

I -IIz for "I" and "0", respectively. ° A and 011. do not have to commute; in fact, they 

do not for the optimum detection scheme (which minimizes the probability of error) in 

this example. Both measurements are represented diagramatically in Fig. 4. The 

probabilities of the different outcome sequences are 

Pr{"O", "O"} = (sIIIols)Hl-(aIIIZla» 

= (al(sliio ® (l-IIZ)ls)la) 

Pr{"O", "I"} = (sIIIols)H(aIIIZla» 

= (al(sliio ® IIzl s)la) 

Pr{"l","O"}= (l-(sIIIols)Hl-(aIIIlla» 

= (a I ( s I (I -II oHl -II 1 ) Is) I a) 

Z9 

(78) 

(79) 

(80) 
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Pr{"I"."I"}= (I-(slnols»)(alnlla» 

= (al(sl (I-no) ® nil s)1 a). (SI ) 

When the last outcome is "0" ("1"). the receiver will decide that "0" ("I") was sent. 
It is surprising that an optimum 'Tleasurement for the binary detection problem can 

be realized as a sequential measurement. Appendix J gl,ves another realization for the 

optimum measurement for a more general binary detection problem. Naturally. we are 

interested in characterizing the general class of measurements that can be provided by 

sequential measurements. 

S.2 Projection Postulate of Quantum Measurements 

In order to characterize sequential measurements. it is necessary to characterize 

the behavior of a quantum system after a measurement has been performed on it. 

Von Neumann has provided a rather mathematical and concise yet complete characteri­

zation. IS We shall summarize only the essentials for characterizing sequential mea­

surements. 
When a measurement corresponding to a self-adjoint operator A is performed on 

a quantum system S. the outcome of the measurement will be one of the eigenvalues of 

the operator A. and the resulting state of the system S will lie in the eigenspace cor­

responding to that eigenvalue. More precisely. let {Pi}~1 be the orthogonal resolution 
of the identity given by A. such that 

M 
~ p, = I 

i= I 1 

and (S2) 

M 
A = ~ aiPi• 

i= I 

where each a i is a real eigenvalue of A corresponding to the projector Pi' The proba­

bility of getting the eigenvalue ai as the outcome is 

P(ai)=(sIPils) (S3) 

if S is in the pure sta,e Is). or 

P(ai ) = Tr{pPi} (S4) 

if S is a statistical mixture described by the density operator p. 

Given that the outcome is the value ai • the postulate states that the system will be 

left in the state Is'): 

p,1 s) 
Is') - _-,-l_~ 

- (slp,ls)I/2 
1 

(S5) 
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if S is in the pure state Is). The factor (sIPils)I/2 in the denominator is fr,J,' normal­

ization. If S is described by the density operator p. it will be left in the state described 

by the density operator 

PiPPi p' = , 
Tr{PiP} 

(86) 

where the factor Tr{p.p} is for normalization./ 

Julian Schwinger g~ves a more general statement on the Projection Postulate.19 He 

asserts: Given that the eigenvalue ai is the outcome. the system can result in a state 

that is not entirely in the eigenspace corresponding to the projector P.. This does not 
1 

contradict the view of von Neumann. If a transformation characterized by a unitary 

operator which is due to an interaction with some other quantum system is allowed 

after the measurement has been performed. the system can result in a state that does 

not lie in the eigenspace into which Pi projects. In this sense the von Neumann postulate 

can adequately take care of all physically possible situations. The Schwinger formula­

tion does not add new dimensions to our problem. and we shall not give a precise state­

ment of his views here. nor prove its equivalence to von Neumann's views. 

8.3 Mathematical Characterization of Sequential Measurements 

In this section we shall characterize sequential measurements mathematically in 

terms of the statistics of the outcomes of the measuring process. The basic concept in 

the characterization is simple. given the projection postulate of von Neumann. although 

the mathematics for the most general characterization sometimes seems very compli­

cated and formidable. P. A. Benioff has recently written three papersS- 7 on the detailed 

characterization of each sequential measurement. That characterization is too compli­

cated and involved for our purposes. We shall outline a simple characterization based 

on von Neumann's projection postulate. For our areaS of concern. in effect it will have 

all of the generality of Benioff's characterization. 

It is important to note that the type of sequential measurements we are considering 

involves a decision procedure at each step of the measurement. To start the measuring 

process. a measurement corresponding to a self-adjoint operator is performed. Then. 

depending on the outcome of the first measurement. a decision is made about what the 

second measurement should be. The form of each subsequent measurement is decided 

on the knowledge of the outcome of each previouEl measurement. The decision proce­

dures can be predetermined. That is. before the start of the measuring process we can 

prescribe the measurements that should be performed contingent on the various possible 

outcomes. This enables us to represent the measuring process in the form of a tree as 

in Fig. 4. 

Figure 5 is an example of a typical tree. Each vel'tex is labeled by a let­

ter with numerical subscript (for example. cz)' At each vertex (with the exception 
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of the terminal vertices such as Cz and d l ) 

a measurement corresponding to a self­

adjoint operator is performed. English 

letters are used to label the chronologi­

cal order of the various measurements 

performed in the process. Thus the mea­

surement at any vertex labeled by the 

alphabet 'c' follows the measurement at 

a vertex labeled b. and the measuring 

process evolves chronologically from 

left to right in the manner in which the 

tree is drawn. 

Let the self-adjoint operator corre-

sponding to the measurement at an arbi­

trary vertex a i (where a is an alphabet. i an integer) be labeled as a . Without ai 
loss of generality. the number of different outcomes of each measurement is assumed 

to be finite (the infinite case will be considered later). so that at each vertex the forward 

progress of the tree representing all possible outcomes of the measurement is described 

by a finite number of branches. When the measurement at a vertex. say ai' is per­

formed. one of several outcomes may result with certain probabilities. and they are 

represented by all of the vertices on the right of the vertex a i that are directly connected 

to it (by directly we mean that the connection does not go through any other vertex or 

vertices). Each of these vertices labels an outcome. For example. the measurement 

at vertex bo in Fig. 5 has three possible outcomes. co' c I and c
2

. The self-adjoint 

operator a corresponding to the vertex a. defines a projector-valued measure on the a i 1 

set of all possible outcomes that is labeled by the corresponding vertices. If the vertices 

are [3 .• j=N .N +1'" •• 1\1 _1.1\1 • where N "'1\1 are both integers. let the projector_ J a. a. a. a. a. a. 
. 1 1 !VIl 1 1 1 

a. 
valued meaSures be {p" } '=~ . Of course. 

"JJ a. 
1 

and 

1\1 a. 
1 

~ P" = I. the identity operator 
j=N "j a i 

where the '[3. are the distinct real eigenvalues of the operator 0a.-
J 1 
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When the sequential measuring process takes place. the state of the system will fol­

Iowa certain 'path' of the tree. At each measurement only ~ of several outcomes can 

occur: therefore. each of the possible paths the system may follow is well-ordered in 

the sense that all vertices in the path are connected in the chronological order of the 

English letters that label them. Each path starts at the initial vertex ao and ends at a 

terminal vertex. Thus in Fig. 5 (ao ' b l • c4 • dS) is a path and (ao ' b l • c2) is not. We USe 

the labels of the vertices of a path to label the path. Since different measurements can 

be performed at different vertices. the sequential measuring process may be said to 

involve a decision procedure. The operators 0a. can be predetermined. but a measure-
1 

ment corresponding to one ° is chosen. depending on the previous outcomtl which is a i 
probabilistic. In order to characterize this sequential process. we must specify the 

statistics of the outcomes. Specifically. if the system is in some initial state. we want 

to know the probability of it following a certain path. A straightforward application of 

von Neumann's projection postulate provides the answer • 

Let the system be in the pure state I s) originally. We will determine the probability 

of it following the path. say (ao ' bi • cj • dk •••.• 13£). where i. j. k. £ are some integers and 

13£ is the terminal vertex. When the measurement ° is performed. the probability of 
ao 

the system branching to the vertex b. is (s I P b Is). where Pb is the projector-valued 
1 i i 

measure of the outcome bi . By the von Neumann projection postulate. when the out-

come bi occurs the system is left in the state 

Pb.1 s) 
I s(b.» = _--"'---_ 

1 (sIP
b
.ls)I/2 
1 

(SS) 

In general. given that the system is in the state Is') at a vertex aj' the probability of 

branching to the vertex 13 k is (s"IP
13 

Is"). and as a result the system will be left in 
the state k 

pis") 
13k 

Hence the probability of following a path (ao ' bi • cj' dk •...• 13£) is given by 

Pda .b .• c .• dk ..... 13£lls)}= (slPb Is) (S(bi)lp Is(b.» o 1 J i C j 1 

(s(c.)IPd Is(c.» .... 
J k J 

For arbitrary vertices a .13 with 13 immediately following a • 
n m m n 
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(s'lp Is') (s'(an)lp" Is'(a) 
an t"m n 

(90) 

Therefore. by induction. 

Pr{a .b .• c .• dk ... ·.~£lls)}=(sipbPCPd .•. P" "'Pd PcPb Is). 
o 1 J i j k t'£ k j i 

(91 ) 

Define the operators 

R(a • bi • c .• dk• .••• ~ n) '" P b P P d ... P" • 
o J ~ i c j k t'£ 

(92) 

and 

Q(a .b .• c .• dk • ..•• ~n) '" R(a .bi • .... ~n) R+(a .b ...... ~.). 
01J ~ 0 ~ 01 ~ 

(93) 

Then 

Pda .bi.c .•.•.• ~.lls} = pr{pathlls)} o J .< 

= (sIQ(a .b .• c ...... ~.)Is) o 1 J ~ 

= (sIQ(path)1 s). (94) 

It can be shown that I: Q(path) = I. the identity operator. and Q(path) ;. O. for all 
all paths 

paths. So the set of nonnegative-definite operators {Q(path)}all paths forms an operator-
valued measure for the set of all outcome paths of the sequential measurement. And 

Ule meaSures adequately characterize the statistical properties of the sequential mea­

suring process. 

Note that we have discussed the case when the system is in a pure state. When it 

is described by a density operator. in general the mathematical arguments are essen­

tially the same but the notation is more complicated. The derivation is omitted here. 
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IX. SOME PROPERTIES OF SEQUENTIAL MEASUREMENTS 

A sequential measurement does not correspond in general to a measurement char­

acterized by a self-adjoint operator in the original Hilbert space of the system because 

the operator-valued measure for a path does not have to be a projector. 

the sequential measurement represented by the tree in Fig. 6. 

Figure 6 

The operator-valued measures for the path (ao ' bo' co) is 

Q(a.b ,co)=Pb P P b . 
o 0 0 Co 0 

If P b and Pc' do not commute. 
o 0 

An example is 

(95r·· 

(96) 

(97) 

Hence Q is not a projector-valued measure, and the sequential measurement does not 

correspond to any single self-adjoint measurement on the system alone. 

1'heorem 12 gives the necessary and sufficient condition that a sequential measure­

ment must satisfy so that there is a single self-adjoint measurement on the system that 

would generate the same meas.:rement statistics. 

Theorem 12 

A sequential measurement is equivalent to 8 single measurement characterized by 

a self-adjoint operator on the Hilbert space of the system If and only if the operator­

valued measure of every path is a projection operator./ 

Proof: Since the measure of each path is projector-valt~',d. by the Theorem for the 

Orthogonal Family of Projections (see Appendix A). the measures are also orthogonal 

and thus form an orthogonal resolution of the identity that is the spectral family of some 

self-adjoint operator. Conversely, if the measure Q t of the outcome of a path t is not 

projector-valued, then it is not orthogonal to a11 measures of the other outcome paths. 

Hence the measurement does not correspond to that of a single self-adjoint operator./ 
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Coro11aries 3 and 4 give two sufficient conditions that may be more useful. 

COROLLARY 4. A sequential measurement is equivalent to a single measurement 

characterized by a self-adjoint operator on the Hilbert space of the system if the pro-

jectors {p } of a11 the vertices {a.} of each path pairwise commute. / -ai 1 

Note that two projectors from two different paths do not have to commute. 

Proof: If the projectors for each path pairwise commute among themselves. then 

the operator-valued measure Q for each path can be written 

Q(a • b .• c ...... ~£) = P b P ... P" ... P P b o 1 J i c j "£ c j i 

=PbP ... P", 
i c j "£ 

(98) 

and 

2 
Q = Q. (99) 

Hence the measure Q for each path is a projector-valued measure and corresponds to 

the orthogonal resolution of the identity given by a self-adjoint operate .. defined on the 

Hilbert space of the system. / 

COROLLAR Y 5. A sequential measurement is equivalent to a single measurement 

characterized by a self-adjoint operator cn the Hilbert space of the system if the pro­

jectors {p } of a11 of the vertices {a.} of the whole tree pairwise commute./ a. . 1 
1 

Proof: If all projectors in the tree pairwise commute. then the projectors of all 

vertices of each path pairwise commute. By Corollary 4 the theorem is true. / 

Note that in the examples of binary detection in section 8.2 and in Appendix J. the 

sequential measurements satisfy the conditions of Coro11ary 4 but not those of Corol­

lary 5. 

Fina11y. we should be concerned about the number of individual measurements that 

is necessary in a sequential procedltre to realize certain measurements. Theorem 13 

is obvious but wi11 be useful later. The proof is omitted. 

DEFINITION. The length of a tree is the maximum number of vertices that a single 

path of that tree C'onnects exclusive of the terminal vertices. 

Theorem 13 

Any self-adjoint measuremEnt with a finite number of outcomes M is equivalent to 

some sequential measurement characterized by a binary tree of length N. where N is 

the smallest integer such that 
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x. SECOND REALIZATION OF GENERALIZED MEASUREMENTS: 

SEQUENTIAL MEASUREMENTS 

We have given an example of a two-stage sequential measurement characterized by 

a binary tree of length two (see Fig. 6). The resulting measurement is of a generalized 

form. That is, it is characterized by an operator-valued measure but aot by a projector­

\'clued measure. We shall now characterize several classes of operator-valued mea­

sures that can be realized by sequential measurements, and prove part (b) of Theorem I 

for several classes. It is important to realize that not all operator-valued measures 

can be realized by sequential measurements. For example, the operator-valued mea­

sure given in Example 3 cannot be realized by sequential measurements, since the 

Hilbert space that describes the possible state of that system is two-dimensional. Any 

nontrivial measurement must have at least two possible outcomes. If the operator-valued 

mea,sure can be realized by a sequential measurement, the first nontrivial measurement 

d the sequence will leave the system in one of two known pure states, and subsequen' 

measurements will correspond to randomized strategies and yield no new information 

on the original state of the system. It can be shown that such sequential measurement 

has a different performance from the operator-valued measure described in Example 3. 

m fact, the detection performance of that measure for the three equiprobable states 

{ls;>}~=1 in Example 3 is given by the probability of corre~t detecti~n Pr[c] =~. 
whereas any sequential measurement has performance Pr[ c] < 3"' 

Theorem 14 

If an operator-valued measure {Qi}r:! I is defined on a finite index set, with values 

as operators in a finite dimensional Hilbert space JC, (dim {JC} = N), and the measures 

{Qi} pairwise commute, then it can always be realized by a sequential measurement 

characterized by a tree with self-adjoint measurements at each vertex. In particular, 

if M ,,;; N, the sequential measurement can be characterized by a tree of length two. In 

general, the minimum length of the tree required is the smallest integer i such that 

log M 
i;;'I+ IOgN '/ (10 I) 

NOTE. For a source with alphabet size A and output rate R, the number of output 

~ges in a duration of T seconds is M = ART. Hence, for block detection of M 

signals generated in a duration of T seconds the required number of steps i is 

log M 
i-I +-­

log N 

log A 
= I + RT log N' 

For large T, 

, ,t:-- -'" ,.,.::""".";,,, '" ",,", '-.- .. ,-, " 

(102) 
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R. a: T. (103) 

Therefore the average number of measurements to be performed per second, fj'r, is 

constant for large T, and 

(104) 

If the dimension of the Hilbert space N changes with time, these expressions still hold 

by replacing N = N(T). For N(T) = DT. where D is a constant, 

f . log A 
T",;,RlogD+logT 

and for large T, 

R.. log A 
T 7R log T' 

which approaches zero independent of D. 

(105) 

( 106) 

SIGNIFICANCE. From the construction of the sequential measurement given in 

Theorem 14 (see Appendix K) we can see that measurements given by ope;rator-valued 

measures that pairwise commute are not particularly interesting in communication con­

text. After the first measurement, subsequent measurements do not furnish any more 

information about the system under observation because the first self-adjoint measure­

ment is a complete measurement in the sense that its eigenspaces are all one­

dimensional. After the first measurement is performed the state of the q' lntum syst'om 

is completely determined by the pure state that corresponds to the outcome eige. 'alue. 

It can be seen that there is no mutual information between subsequent measurements 

and the initial unknown state of the system. From the proof in Appendix K it is apparent 

that the second measurement can actually be replaced by a randomized selection of out­

comes, and the randomized strategy will give the same measurement statistics. But 

we know that we cannot gain performance by a randomized strategy. So one single self­

adjoint measurement will perform just as well as the full sequential measurement. Hence 

we have the following corollaries. 

COROLLARY 6. If a quantum measurement is characterized by an operator-valued 

measure, with the measures of all outcomes pairwise commuting. then the measurement 

is equivalent (i" the sense that it has the same outcome statistics) to a single self-adjoint 

measurement followed by a randomized strategy. / 

Corollary 6 gives us the following very important result. 

COROLLARY 7. For a measurement characterized by an operator-valued measure 

to outperform all self-adjoint observables. it is necessary that the measures of the out­

comes do not all pairwise commute. / 
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When the Hilbert space is infinite dimensional but separable, Theorem·14 can be 

extended to handle the situation. In Appendix L we sketch how we can ger,eralize 

Theorem 14. We can then state the following theorem. 

Theorem 15 

If an operator-valued measure {Q)~1 is defined on an infinite index set. with values 

as operators in an infinite dimensional separable Hilbert space, and the measures {QJ 

pairwise commute, then it can always be realized by a sequential measurement charac­

terized by a tree with self-adjoint measurements at each vertex. Sometimes the length 

of the tree is infinite. 

Theorem 16 discusses the realization by sequential measurements of a particular 

class of operator-valued measure. The conditions that characterize this class appear 

rather stringent and it can be argued that the realization of such a narrow class of 

operator-valued measures is not very useful. It turns out, however. that a large class 

of quantum communication problems satisfies these conditions. Exactly how this theo­

rem can be applied to almost all quantum communication problems will be apparent after 

the discussion of equivalent and essentially equivalent measurements. 

Theorem 16 

If an operator-valued measure {Qi}~1 is defined on a finite index set (i = 1 •.•• , M) 

with operator values in the HUbert space :Ie, and the measures Qi are projector-valued 

except on a subspace .-II C:Ie such that M dim {.-II} .,,; {X}, then it can always be real­

ized by a sequential measurement characterized by a tree with self-adjoint measurement 

at each vert ex. / 

Proof: Let 

¥i= 1",",M, 

where n is a positive integer. The II. are projection operators. and 
1 

Let 

i=lt ... ,M. 

Then 
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where P../I is the projection operator into the subspace ../I, and 1../1 is the identity 

operator on the subspace../l. The set of projection operators {P../I ' {ITJ~I} forms 

an orthogonal resolution of the identity in the space 3e. 

That is, 

M 
P t l: IT,' = L",. 
../I i= I "" 

(Ill) 

Let the first measurement on the system under observation be 

characterized by the projector-valued measures {p ../I' {fiiii':! I i. 
This measurement can have one of Mtl outcomes. Symbol­

ically, it can be represented by the tree in Fig. 7. If the 

outcome is represented by a vertex corresponding to one of 

Figure 7 the fii' the measurement can stop. If the outcome ends in 

the vertex corresponding to the projector P../I' a second 

measurement is required to complete the sequential measurement process. 

ThE' set of operators {Ri}i':!1 sums to the identity operator 1../1 in the subspace ../I, 
and each of the operators Ri is nonnegative-definite. Hence they form an operator-valued 

measure on the subspace ..II. By Theorems 2 and 4, there exi)3ts on an extended space 

3e t ::2 ../I, a projector-valued measure {Pi}f:!l such that 

M 
l: P. = 1 t' 

i= I 1 3e 

where 1 t is the identity operator on JC t, and 
3e 

( 112) 

(113) 

By Theorem 5, the minimum dimensionality of this extended space JC t that is required 

is less than or equal to M times the dimensionality of the vriginal space ",/1. That is, 

min {dim {3e t }}.; M dim {../I}. ( 114) 

By assumption, 

dim {3e}" M dim {..J'/}. (115) 

Hence 

( 116) 

and 

../IC3e. (117) 

Therefore it is possible to find a projector-valued measure {pJ~'!1 in 3e such 
that 
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and 

M 
~ Pi = I:re' 

i=1 

i = 1, ... , M (118) 

(119) 

If the outcome is in the vertex corresponding to P JI' after the first measurement 

we can perform a second self-adjoint measurement given by the projector-valued mea­

sure {P;J~1 as represented by the tree in Fig. 8. By a previous result (see Sec. VIII), 

~ 

!4 '2 
Figure 8 

p. 
I 

PM 

the operator-valued measure for the path ending in the vertex correspondinr; to the pro­
jector Pi is 

i=l, ... ,M. (120) 

Hence the operator-valued measure Qi is the sum uf the measures of two paths, one 

ending in the vertex corresponding to Pi' the other in the vertex corresponding to IIi' 

The whole sequential measurement is represented in the tree in Fig. 9. Therefore 

Figure 9 

41 

'" 

.! 

I 
1 

., ~ 



.... '. "~.' ----I' =,;0,.." --'----~;...., II'" _. 
-"=.'''",~~ .... "",~,..,,~.,, ..,.".-,_.,-,,' -

-, 

\ , 

~ 

" .' ,\ 
" I 

, 

l ...... 

" 

\ 

I 

I 

·1 \, 

.. 

.. 

.ti 
./ 

we have a realization of the given operator-valuE,d measure by sequential measurement. 
Thus we have proved a case in part (b) of Th'aorern 1. I 
NOTE. The condition that M dim {..A'} :;; dim {JC} can be relaxed if more structures 
on the Qi are given. If we have 

M 
~ dim {<R{Ri}} :;; dim {JC}, 

i=1 ( 121) 

where <R {Ri} is the range space of Ri' then by Theorem 7 we can always find a projector­
valued extension in JC. (Remember that in dealing with infinite dimensional spaces 
caution should be taken in interpreting the results.) 

Corollary 8, which is a useful consequence of Th<lorem 16, will be needed in Sec­
tion XU. 

COROLLARY 8. If an operator-valued measure {Qi}~1 is defined on a finite index 
set (i = I, .•• , M), with operator values in an infinite dimensional Hilbert space JC. and 
the measures are projector-valued except on a finite dimensional subspace ..A'. then it 
can always be realized by a sequential measurement characterized by a tree with self­
adjoint measurement at each vertex. I 

~: 

M dim {..A'} < 00 = dim {JC}. (122) 

Therefore Theorem 16 applies. I 
In Theorem 16 we exploited the property of a special class of operator-valued mea-

sures that are projector-valued except in a finite dimensional subspace. In fact. this 
finite dimensional subspace is an 'invariant subspace' for the operator-valued mea­
sure. If we explore the proportions d i nvarip_'lt subspaces for an operator-valued mea­
sure, we can realize a larger class of measures as ~equential measurements. These 
results are very important because we shall show in s..~ction XII that there are com­
munication problems that fall within such a class. 

DEFINITION 5. A closed subspace ..A' in a Hilbert space JC is called an invariant 
subspace for the operator A if Ax e..A' whenever x e ..A' (that is. A..A' S ..A'). I 

DEFINITION 6. A closed linear subspace..A' in a Hilbert space JC reduces a 
bounded self-adjoint operator A if both ..A' and j(! '" JC-..A' are invariant subspaces 
for A.I 

Lemma 1 

If A is a bounded self-adjoint operator, the subspace ..A' reduces A if and only 
if ..A' is invariant for A. 
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Proof: 

(i) If.A reduces A, by definition .A is invariant for A. 

(ii) If x E JI, y E JlL, Ax E JI . 

Hence 

(Ax, y) = (x, Ay) = O. (123) 

Therefore, Ay E JlL and JlL is also invariant for A. I 
If a subspace .A reduces A, then the prJblem of characterizing the operator A on 

X reduces to the problem on JI and JlL, and A can be written as 

A=P AP tP LAP L' 
.A JI JI JI 

(124) 

where P JI' P JlL are the projection operators projecting into JI and .A L, respectively. 

In general, a self-adjoint operator A can have more than one invariant subspace. 

For example, every eigenspace of a self-adjoint operator is obviously an invariant 

subspace. 

If a set of orthogonal subspaces {JlJ~1 are invariant for a bounded self-adjoint 

M 
operator A, so that JI i 1\ Jlj = 0, 

direct sum, then A can be written 

for i '" j, and ED JI. = X, where ED indicates 
i=1 1 

and 

N 
A=:!:: PJlAPJI.' 

i=1 1 1 

N 
:!:: P u. = IX' 

i=1 .... 1 

where P is the projection operator into the subspace JI .. 
JI i 1 

(125) 

(126) 

For a bounded self-adjoint operator, a useful set of invariant subspaces is the set 

of eigehspaces. 

DEFINITION 7. A closed linear subspace JI is a simultaneous invariant subspace 

of a set of bounded self -adjoint operators {Ai} ~ 1 if JI is invariant for each operator 

Ai' i = 1, ... , M.I 
Later we shall show how to find a set of simultaneous invariant subspaces for a 

set of bounded self-adjoint operators. Assume for the moment that given a set of 

bounded self-adjoint operators, we know how to find the simultaneous invariant sub­

spaces. 

If a generalized measurement given by a set of operator-valued measures {Qi}~l 
is given, we can try to find the simultaneous invariant subspaces of the Qi' Let a set 
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of orthogonal subspaces {..K .}ro: l be simultaneously invariant for the set of operators 
M J J-

{Q) i= I • Then 

N 
Q. = ~ 

1 j=1 

N 
= ~ 

j=1 

where 

Q .. " P ..K Q.P vii ' 
lJ j 1 j 

and 

N 
~ P vii. = I:re' 

j=1 J 

i=l, ... ,M 

(127) 

for all i, j (128) 

(129) 

Since {p H }ro: l is an orthogonal resolution of the identity, it corresponds to some 
"" . J­.1 • 

self-adjoint mea,mrement. Let the first measurement be characterized by this 

projector-valued measure. Then it can be represented symbolically as in Fig. 10 by 

the initial segment of a tree. 

Figure 10 

Each of the N sets of nonnegative-definite operators {Qij}~~j forms an operator-valued 

measure with values as operators in their corresponding subspace ..K f That is, 

1\1 
:l:: Q .. = P // = I H' 

i=1 1.1 .... j ... J 
j=l, ... ,N, 

where I -II . is the identity operator in the subspace .AI f 
.1 

If the first measurement given by the projector-valned 
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performed, the outcome will be in one of the vertices in Fig. 10. Suppose the outcome 

is represented by the vertex corresponding to the projector P .A! then the second mea-
J M 

surement should be characterized by the operator-valued measure {Qij}i=I' Since the 

operator-valued measure is defined only on the subspace J( j and we can choose for the 

second measurement any self-adjoint measurement defined on the entire space X. under 

suitable conditions the second generalized measurement {Qij}l';!1 can be realized by a 

self-adjoint measurement defined on X that includes J( j as a subspace and acts as an 

extension space of.Aj' Specifically, if the operator-valued measures satisfy one of 

the following conditions: 

(1) M dim {.A.} "'dim {X} 
J 

(132) 

M 
(ii) I: dim {<R{Q .. }} '" dim {X}. (133) 

i=1 1J 

then it is possible to find a projector-valued measure {Pij}l';!l with operator values 

defined on the entire space X such that when restricted to the subspace J( j will give 

operator-valued measure {Qij}l';!I' That is. 

P .. , P .. P N = Q ..• 
.... j 1J .... j 1.1 

i=l, ... ,lVI 
j = I, .... N 

M 
I: P .. = IX' 

i=1 1.] 
for all j. 

(134) 

( 135) 

This means that if the outcome is given by the vertex corresponJing to P .-II! the rest 
.] 

of the measuring process can be realized by a second self-adjoint measurement on the 

systcm. If indeed each of the N operator-valued measures {Qi)~;I' J = I •...• N satis­

fies either condition (i) or condition (ii), then we can guarantee. whatever the outcome 

of the first measurement. that the subsequent and final measurement will be a 

self-adjoint measurement. Condition (i) is from Theorem 5 and condition (ii) from 

Theorem 7. 

The two-stage sequential self-adjoint measurement is represented by the tree in 

Fig. II. The event corresponding to the operator-valued measure Q
j 

is then the N 

possible outcome paths label"(] by the projectors {p N ; P . .}. j = I ..... N as shown in 
..... 1J 

Fig. II. and J 

N 
Q. = ;!; P u Q.P N 

1 j=1 .... j 1 .... .i 

N 
= ;!; 

j=1 
P.A P .. P J('/ 

j IJ j 
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Figure II 

Hence we have the following theorem. 

Theorem 17 

If an operator-valued measure {Qi}~1 has a set of mutually orthogonal simultaneous 

invariant subspaces {--"'} ~ I such that 

and 

where 

N 
V --'" . = JC 
j=1 . J 

Q. " P --'" Q.P --'" • 
1 j 1 j 

( 137) 

alli;<j (138) 

( 139) 

all i and j (140) 

and if each of the N sets of operators fQ'}~I' j = I ••••• N satisfies either one or both __ t 1 1-

of the two conditions (Eqs. 13Z and 133). then the operator-valued measure can be real­

ized as a sequential measurement characterized by a tree of length two with self-adjoint 

measurements at each vertex. / 

EXAMPLE 9 

(I) If the Q, pairwise commute as in Theorems 14 and 15. then they can be diagonal-
1 

ized simultaneously by their eigenvectors. These eigenvectors are then one-dimensional 

46 

.- ".,-~ ''''--'1- 7 ' ... 

"-

I 
I 
~ 

I 
I. 

Ii 
" j: 

., , 
, 

I' :1 
.1 ., 
'1 

" 
" 

il 
" 
11 
il 
I 

I 



,.-- -- -

• 

I 

'. 
, , 

r 

L .~ 

j 

simultaneous invariant subspaces. Such operator-valued measures satisfy the conditions 

of Theorem 17 and therefore they permit a realization by sequential measurements. 

(2) The measure in Theorem 16 also satisfies the conditions of Theorem 17. The 

finite dimensional subspace .AI on which the Qi are not projector-valued is a simulta­

neous invariant subspace for the set of measures {QJ~I' The projector-valued part 

of the measures can be realized by a single self-adjoint measurement. The non 

projector-valued part is separated out because it is within a finite dimensional simul­

taneous invariant subspace. This, in turn, permits a sequential measurement realiza­

tion, as given in Theorem 16. / 

A natural question to ask is, "Do most operator-valued measur<'s encountered in 

quantum communication possess simultaneous invariant subspaces?" If the answer is 

negative, then sequential measurement will be of limited use in the realization of mea­

surements in quantum communication. We are not yet in a position to answer this 

question fully. In Sections XI and XII, we shall consider' equivalent classes' of mea­

surements. In quantum communication problems most of the generalized measurements 

have equivalent measurements that possess simultaneous equivalent subspaces, and 

almost all quantum measurements of interest can be done sequentially. This issue will 

be discussed in detail in Section XII. 

In lieu of conditions (i) and (ii), we want to find in some sense the '~' decompo­

~ of the Hilbert space 3C into simultaneous invariant subspaces. The reaSon for 

a' finest decomposition' (by which we mean that the dimensionalities of the subspaces 

are as small as possible) is simple. If the dimensionality of each of the subspaces .AI j 
is made as small as pOSSible, in a loose sense we have more available dimensions in JC 

for an extension. It is possible to show that there is a construction procedure to find 

a' finest decomposition' and this decomposition is unique. The main statement is given 

in Theorem 18 and an outline of the proof is given in Appendix M. 

Theorem 18 

For a set of self-adjoint operators {T a} a E A' it is possible to find a unique' finest' 

set of simultaneous invariant subspaces {sJf: I that are pairwise orthogonal and 

T = a 

EXAMPLE 10 

allaEA. (141 ) 

We make use of the measure in Example 5, except that we use a Hilbert space JC 1 

with one extra dimension spal'ned by the vector If). Let {I s;) }~=I span a two-dimensional 

subspace of 3C I orthogonal to I f). Define 

i = I, 2 (142) 
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The measurement {Qi}~=1 can be realized by the sequential measurement 

Fig. lZ. / 
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XI. EQUIVALENT MEASUREMENTS 

Very often in quantum communication two measurements characterized by different 

operator-valued measures will yield the same performance. For any given quantum com­

munication problem (whether it be a detection or an estimation problem) it is possiblt' to 

categorize the set of all generalized measurements into 'equivalent classes' of measure­

ment, so that every measurement of the same equivalent class will give the same per­

formance. 

Let the received information-carrying quantum system be described by the set of 

d"nsity operators {p } EA' and assume that there exists a set of simultaneous invariant 
N a a 

subqpaces {Si}i=l such that 

and 

N 
p = l: Ps p P s ' a i=l i a i 

N 
l: P S. = I:re' 

i=l 1 

"" a E A, (144) 

(145 ) 

Let {Q~} j3EB be an operator-valued measure corresponding to some generalized 

measurement under consideration, wherc B is some index set for the outcome. 

Given that the received quantum system is in an arbitrary state given by the density 

operator p , the probability of getting the outcome 13 when the measurement is per­
a 

formed is given by 

where 

Pr[~lal = Tr {PaQ j3} 

N 
= Tr {.l:l PS.PaPS.Q,,} 

1= 1 1 ~ 

A N 
l: 

i=l 

all p E B, 

""~EB. 

(146) 

(147 ) 

, 
f In (146) the identity Tr {AB} = Tr {BA} has been used. 
)il. 
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The set of ope,'ators {Qj3} j3e:B has the following properties, 

all j3 e: B. 

~ 

l: Q = l: 
j3e:B j3 j3e:B 

(148) 

(149 ) 

1\ 

There the set of operators {Q j3} j3 e:B forms an operator-valued measure corresponding 

to a generalized measurement which will give the same performance as the measure­

ment characterized by the measure {Qj3} j3e:B' In this sense the two opprator-valued 

measures correspond to 'equivalent measurements,' and they belong to the same equiv­

alent class of measurements. Note that equivalence 1s established only with respect to 

the given structure of the density operators {p } e:A' • a a 
The measurement corresponding to {Q j3} j3e:B may have an advantage over the mea-

surement corresponding to {Qj3} j3e:B' since it may have a 'finer' decomposition into 

invariant subspaces, and this would facilitate realization by sequential measurements. 

COROLLARY 9. In an M-ary detection problem when all of the density operators 

{Pi}f;!l pairwise commute, they can be diagonalized simultaneously. If { /I\>j) }je:,/ is 

their set of orthonormal eigenvectors whicn spans 3C, for any operator-valued measure 

{Qi}f;!l the measure 

{Q." l: /1\>.) (I\>. IQ·/I\>·) (I\>.I}~_\ 
1 j e:,/ J J 1 J J 1-

is an p.quivalent measurement and the Q. pairwise commute. By Corollary r., the mea-
l . 

surement is equivalent to a single self-adjoint measurement followed by a randomized 

strategy. By Corollary 7, this measurement at best is equal in performance to some 

self-adjoint measurement. Hence the optimal measurement for the M-ary detection 

problem with pairwise commuting density operators is a self-adjoint operator. / 

Helstrom 1 7 has proved this result by using a different method. 
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XII. ESSENTIALL Y EQUIVALENT MEASUREMENTS 

We have discussed 'equivalent classes of measurements' in the sense that when two 

measurements belong to the same equivalent class they give exactly the same perfor­

mance. The decomposition into simultaneous invariant subspaceE is u!Jeful in realizing 

generalized measurements by sequential measurements. utilizing the procedure pro­

vided by Theorem 17, But not all generalized me.s .. ,.ements can be realized in this 

fashion. and in some cases we have to use the realization by adjoining an apparatus. If 

the Hilbert space that describes the states of the information-carrying Cjuant!lm system 

is infinite dimensional but separable. then given any arbitrary operator-valued me ... sure 

that is not realizable by a sequential measurement. it is possible to find a sequential 

measurement whose performance Can be arbitrarily close but not equal to that of the 

'unrealizable' measurement. We shall show this result fat' ,he quantum detection prob­

lem and then for the estimation problem, 

Theorem 19 

Given a generalized measurement characterized by an operator-valued measure 

{Qi}~1 for an M-ary quantum detection problem with a probability of correct detection 

Pr[ C J]' if the Hilbert space that describes the state of the Nceived information-carrying 

quantum system is infinite dimensional but separable. then for any arbitrary € > 0 no 

matter how small. there is a sequential meaS'lrement characterized by the operator­

valued measure {Qi}~! that will give a probability of correct detection Pr[C2 ]. such 

that 

(ISO) 

~, Let the received quantum system be in the state described by the density 

operator p. if the ith message is sent with a priori probability p.. The probability of 
1 {}M 1 correct detection for the generalized measurement Qi i= I is 

M 
Pr[c I ] = !: p. Tr {P.Qi}' 

i=1 1 1 
(IS I) 

Since all the p. are trace class operators. they are compact operators. (An operator T 
1 

is said to be compact if it maps bounded sets onto sets whose closures are compact.) 

Hence they each have a set of eigenvalues associated with a set of complote eigenvectors 

(for a proof see Segal and Kunze 20). We want to find a finite-dimensional :.ubspace S. 
1 

such that given a density operator Pi and € > 0 no matter how small. 

I ;;, Tr {PS.PiPS} > I-€. 
1 1 

(152) 

If the range of Pi is finite dimensional. Si can be taken to be the range space so that the 

trace is one. If the r .. nge of Pi is infinite dimensional. we can find Si by exploiting the 

1 
-J 

, '1 
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property of Pi as a compact operator that "the set of eigenvalues of a compact self­

adjoint operator is a sequence converging to zero. 1I20 Let {>-n}n=1 be the eigenvalues 

of Pi' then 

and 

lim >- = 0 
n-oo n 

00 

!: >- = I = Tr {p.}. 
n=1 n 1 

Hence there is a finite set .A" of eigenvalues such that 

'" !: >- >1-E:. 
nE.A" n 

( 153) 

( 154) 

(ISS) 

Let Si be the finite-dimensional subspace spanned by the ei6 "nvectors corresponding to 

this finite set of eigenvalues. Then 

(156) 

Let the set of subspaces {Si~1 be so chosen for the set of density operators {Pi}~~I' It 

is clear that each subspace S. is invariant for the corresponding Pi' since S. is a finite 
1 c 1 

sum of the eigenspaces of Pi' Let 3C - Si = Si' Then 

p. = P s p.PS + P p.P. i = I ..... M (157) 
1 iii S~IS~ 

1 1 

and 

= Tr{P p.P } < L 
s? 1 S~ 

M 
Let S = V S1' Then 

i=1 

M 
dim {S} ,,; !: dim {S.} < 00. 

i= I 1 

Hence S is finite dimensional and 

1 1 

all i = I .... , M. 

(158) 

( 159) 

(160) 

If {Q'~1 is an operator-valued measure with a probability of correct detection Pr[CI1. 
11- A M 

we claim that the operator-valued measure {Q. '" PSQ.Ps + p.P LI has an error per-
l 1 1 SC 1-

formance Pr[ Cz 1 such that 1 Pr[ C 11- Pr[ Cz 11 < E:. Then we have 
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Tr {p.Q.} = Tr {PS p.PS Q.} + Tr {p p.P Q.}. 
11 .1.1 SCl S Cl 

. 1 1 i i 

(161 ) 

But the se cond term on the right is positive. and 

Tr{P cP.P cQ.} '" Tr {p p.P cr.",} = Tr {p cP.P } < Eo 
S. 1 S. 1 s~ 1 Si "" S. 1 s~ 

1 1 1 1 1 

(162) 

Therefore 

Tr {p.Q.} - Tr {PS P.PS Q.} < E. 
11 i l i l 

(163) 

whereas 

= Tr {ps p.PS Q.} + Tr {ps - s p.PS-S Q.} 
i'i' i ' i ' 

+ Tr {PS.PiPS-S.Qi} + Tr {PS-SYiPs.Qi}· 
1 1 1 1 

(164) 

Since S. is invariant for p .• P
s 

commutes with p. and P s P S- S = O. Hence the last two 
IIi 1 i i 

terms in (164) are zero. Since both Pi and Qi are nonnegative-definite. the second term 

is nonnegative. Hence 

o '" Tr {PiQi} - Tr {p SPiP SQi} 

= Tr {p.Q,} - Tr {ps p.PS Q.} - Tr {ps S p.PS SQ·} 
11 il i l -il -il 

Therefore 

< E. >O<i= ~" •.. ,M. 

~ p. (Tr {p.Q.} - Tr {PSP.PsQ·} - Tr {p.p.P }) \ 
i= 1 1 1 1 1 1 1 1 SC 

M 
= :E p.1 Tr {p.Q.} - Tr {PSP.PsQ·} - Tr {p.p.P }I 

i= 1 1 1 , 1 1 1 1 SC 

M 
<:Ep£=£. 

i=1 i 

(165) 

(166) 

The operator-valued measure {Qi}~1 can be realized as a two-step sequential meaSure­

ment. The first measurement will have two branches. The projectors corresponding 

to them are {PS and I - P s = pc}' 
s 
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Given that the outcome ls the vertex corresponding to P S' the second measurement 

has to have the same result as the operator-valued measure {PS~PS}~I. But this mea­

sure is a resolution of the identity of a finite-dimensional space S. and by Theorem 5 it 

permits an extension to a projector-valued measure in any infinite-dimensional space 

that contains S as a subspace. The original Hilbert space JC can be taken to be that 

subspace. so that the second measurement is realizable by a self- adjoint measurement 

associated with the projector-valued meaSure {ni}~ 1 such that 

M 
I: n.=IJC' 

1=1 1 

alll=I •.•.• M. 

(167) 

(168) 

When the outcome is in the vertex corresponding to the projector P (which would occur 
SC 

with very little probability. < €). the second measurement can be done by a random 

selection of one of the M messages with probability Pi' I = I •.•.• M. Or we may con­

sider the whole event to be an outright error and call it an erasure. as in an erasure 

channel. 

The sequential measurement is represented by the tree in Fig. 13.! 

M outcomes 

X erasure probability < t 

Figu.re 13. Sequential measurement modeled as an M-ary erasure channel. 

Thus we have shown that given any arbitrarily small € > O. we can find a sequen'h,.l 

measurement {Qi}~ 1 that will have performance within € of that of a given generalized 

measurement {Qi}~I' In this Sense we call the two measurements {Qi}~1 and {~}~I 
essentially equivalent measurement. 

If we omit the first stage of the sequential measurement and only perform the self­

adjoint measurement {ni}~ I' the performance will not change very much. since the 

resolving power of the first measurement is small. The performance 

(169) 
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has the property 

1 Pr[cll- Pr[c 311 < €. (170) 

Hence the single self-adjoint measurement is also essentially equivalent to the general­

ized measurement; and we have the following theorem. 

Theorem 20 

Given a generalized measurement characterized by an operator-valued measure 

{Qi}~1 for an M-ary detection problem with a probability of correct detection Pr[cil. 

if the Hilbert space that describes the state of the received quantum system is infinite 

dimensional but separable. then for any arbitrarily small € > 0 there is a self-adjoint 

measurement that will give a performance Pr[c31 such that IPr[cll- Pr[C311 < €o/ 
The proof is straightforward and is omitted. 

From the proof of Theorem 19. we can see that the condition that the Hilbert space 3C 

be infinite dimensional is not absolutely necessary. Whenever the dimensionality is big 

enough. Theorem 19 holds. The exact dimensionality depends on the operator-valued 

measure and on the set of possible density operators. in a conc':!ptually straightforward 

but mathematically complicated way. Although it is within the realm of the mathematics 

developed in this report to state this exact dimensionality. the result is omitted because 

of its complexity and dubious usefulness. 

SIGNIFICANCE. From The<:>rem 20. we see that for each generalized measurement 

we can find a conventional observable that gives essentially the same detection perfor­

mance. if the state of the system is described by an infinite-dimen .. ional space. In opti­

cal communication. the natural Hilbert space that should be used is the space spanned 

by the photon number states 1.1 n)}:=o which is infinite dimensional. A very important 

question then arises. "In optical communication should we consider generalized mea­

surements at all? n It may be argued that since conventional observables will do almost 

as well in detection problems. generalized measurements should not be considered. In 

some cases. however. the optimal measurement is a generalized measurement. Although 

there are observables that give performances arbitrarily close to it. none actually 

achieves it. In loose mathematical language. it can be said t.hat if We consider the per­

formance (probability of error) as a form of weak topology on the set of all observables. 

that set is not a closed set. The optimum measurement may not be in the set; hence. 

it will not be feasible sometimes to find an optimum measurement within the set of 

observables. 

We shall now prove the equivalence of Theorems 19 and 20 for the estimation prob­

lem. The conditions in Theorem 21 are suff: cient but not necessary. but they are gen­

eral enough that most problems satisfy these conditions or can be approximated by them. 

ss 

I 

'-

1 
j 
; 

j , 
l 

I , 

j 

1 
1 

1 
1 



,. , 

i 
~ 
,\ 
I 

, 

\ I 
, 

--' 

r I , , , , 
I 

\ 

· . 

Theorem 21 

Given a measurement characterized by a generalized resolution of the identity 

{Fa} aEC for a complex parameter estimation problem with a mean-square error II' if 

the Hilbert space that describes the state of the received quantum system is infinite 

dimensional but separable, then for arbitrarily small £ > I, there is a self-adjoint 

measurement that will give a mean-square error 12, such that 

(17 I) 

if the following sufficient conditions are satisfied: 

(i) The probability density function for the complex parameter a, p(a) has a com­

pact support S So C. (The support of a complex function f on a topological 

space X is the closure of the set {x:f(x) '* O}.) 

(ii) pea) is continuous. 

(iii) The 'modulation' is uniformly continuous, which means that if a sequence {ail 

converges to a, the sequence of density operators {p } also converges to P , a, a 

(iv) 

in trace norm. That is. 1 

(172) 

and if la-a,1 <6, then Tr{lp -p I}<£ forallvaluesofa ES. 
1 a i a 

The generalized resolution of the identity {F)aEC has a (weakly) and uniformly 

continuous first derivative. That is, 

(173) 

has the property that for any operator A with Tr {I A I} < 00 and if a sequence 

{ai } converges to a, 

Tr {AGaJ - Tr {AG), (174) 
1 

and given any € > O. there exists 6 > 0 such !hat I a i -a I < b implies 

ITr{AG }-Tr{AG}I<€, Ma,ai'A./ a i a (175) 

(Note that II = Is I Tr{PaGa ,} la-a'1
2 

pea) d
2
a'd2a.) 

The proof of Theorem 21 is given in Appendix N. 

The performance measure in Theorem 21 does not have to be the mean-square error, 

It can be any measure m(a,a') that is uniformly continuous in both variables a and a' on 

the support S of p(a). 

The uniform continuity conditions make the proof much simpler, but the theorem is 

provable by requiring that the integrand be measurable. The fact that p(a) has compact 

support is used to show that a finite number of the a ,(M) are required to approximate the 
---- 1 
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continuous range of a Ei S. and thus it becomes an M-sry detection problem. Almost 

every density function p(a) has all probability confined to a bounded region. Even if it 

does not have compact support. the tail of the function can be truncated to make the sup­

port compact. 

EXAMPLE II 

W", now give an example of a ternary detection problem where an operator-valued 

measure characterizes the optimal measurement. Although we can find self-adjoint 

measurements that perform arbitrarily close to the optimal performance. none actually 

achieves it. 

Consid,]r an infinite-dimensional Hilbert space .1C that is the union of an infinite num­

ber of two-dimensional orthogonal subspaces {si;1 such that 

00 

.1C = V S., 
j=1 J 

(176) 

. 3 
For each subspace Si' let three vectors {I s~)}i=1 have the same symmetry as those 

in Example 3 (see Fig. I). Consider the three density operators. 

00 1 . . 
p. = I: -. Is~) (sJil. 

1 j=1 2J 1 
i=1,2,3. 

The optimal measurement is given by the operator-valued measure 

00 2 . . 
Q. = I: -3 I s!) (s! I . 

1 j=1 1 1 
i=1,2,3 

which gives a probability of correct detection of 2/3. 

(177) 

(178) 

Since the density operators have nonzero though diminishing eigenvalues for all sub­

spaces. we cannot truncate the density operators by making a first measurement to pro­

ject it into a finite-dimensional subspace without losing some small but nonzero 

performance. 
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XIII. SIl\!ULTANEOUS GENERALIZED MEASUREMENTS 

Thus far. we have extended the notion of quantum measurements to generalized mea­

surements. The conventional view that measurements are observables corresponding 

to self-adjoint operators entertains the concept of simultaneous measurable quantities. 

Two quantities are said to be simultaneously measurable if and only if the self-adjoint 

operators corresponding to them commute. Thus the quantities A. B are simultaneously 

measurable if and only if [A. B]" AB-BA = O. Equivalently. if the projector-valued mea­

sures {nJi€J and {Pj}j€/ are the resolution of the identities of A and B. they are 

simultaneously measurable if and only if there is a third projector-valued measure 

{Rk} k€.a" such that 

(i) n. = l:: Rk• 
1 ke:~. 

1 

Mi e: f. 

and for disjoint subsets {~i}'= ... of K. so that U ~. = ~. 
l~" i€J 1 

(ii) P. = l:: Rk• Iv< j € .I'. 
J ke:~! 

J 

and for disjoint subsets {~;}jE:,/ of ~. so that 

U ~!=~. 
j€/ .1 

( 179) 

(180) 

(181 ) 

Not" that conditions (i) and (ii) are simultaneously satisfied if and only if the mea­

sures {nil. {pi pairwise commute. That is. 

all i. j. (182) 

We must now modify the notion of simultaneous measurements. 

In order to determine if two operator-valued measures correspond to simultaneously 

measurable quantities. we look at their respective projector-valued extensions. On a 

common extended Hilbert space :JC+ if the respective projector-valued measures c~ 
~. then we say that the two operator-valued measures are simultaneously measur­

able. This definition. although basic. is sometimes not very useful. since it requires an 

examination of the projector-valued measures on a comm'")n extension space. Without 

much mathematical difficulty. we can define simultaneous measurability directly on the 

operator-valued measureS themselves. which is the thrust of the following theorem. 

Theorem 22 

Two generalized measurements. characterized by the operator-valued measures 

{Si}iEJ' {Tj}jE.I'· are simultaneously measurable if and only if there is a third 
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generalized measurement. characterized by the measure {Qk}kEf' so that 

¥iEJ 

and disjoint subsets {f'}'E ~ of f. so that 
1 1-..., 

U f. =f. 
iEJ 1 

(ii) T.= I: Q 
J jEf! k 

J 

for all j E .I. and disjoint subsets {fj}.iE,/ of f so that 

U f~ = f./ 
jE/ J 

The proof of Theorem 22 is given in Appendix O. 

(183) 

(184) 

( 185) 

(186) 

As we note in Appendix O. without loss of generality we can require for simultaneous 

measurability that there is a measure {Q"}'E At 'E" such that 
lJ 1-"'J-" 

S. = I: Q!.. all i E J (187) 
1 jE/ J 

T.= I: Q ... 
J iE" lJ 

all j E .I. (188) 

In some sense the measurement {Qij} is a finer grain measurement than both the mea­

surements {S.} and {T.}. and the outcome statistics of both are obtained from the {Q .. } 
1 J lJ 

measurement by coarse-graining over its outcome statistics. 

When the measures {Si}' {Tj} pairwise commute. they are always simultaneously mea­

surable and is easy to find {Qij}' If we define 

all i. j. (189) 

{Qij} 'vill satisfy all necessary conditions for simultaneous measurability. 

In Theorem 23 we give a sufficient but not necessary condition for the simultalleous 

measurability of two operator-valued measures. 

DEFINITION 8. The anticommutator of two operators A. B is defined as 

fA. BJ* = AB+BA./ (190) 

Theorem 23 

Two operator-valued measures {S'}'E .or' {T'}'E , are simultaneously measurable if 
11" J J-" 

all anticommutators of the form Is!. TjJ* are nonnegative-definite. That is. 

all i.j./ (19 1 ) 
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Proof: Define 

I[ ]" Qij ='2 Si' Tj 
;'0 (192) 

!: I Qi' = !: z (S.T.+T.Si ) = I. 
iE.~ J iE.~ 1 J J 

(193) 

jE.,/ jG.,/ 

Then {Q .. } is an operator-valued measure with 
1J 

Si = !: Q .. , 
jE.,/ 1J 

all i (194) 

T. = !: Q .. , 
J iE.~ 1J 

all j. (195) 

Hence {S.}, {T.} are simultaneously measurable./ 
1 J 

It is not easy in general to find the 'finer grain' measurement {Qij}' In Appendix P 

we provide a generally very useful construction for the me, ~ure {Qij}' 

SIGNIFICANCE. We have shown that two simultaneously mea~ul'able generalized 

measurements correspond to a single 'finer grain' generalized measurement. Hence 

we shall not get better performance for quantum communication problems by considering 

simultaneously measurable generalized measurements. It is always sufficient to con­

sider single generalized measurements, since this class also encompasses simultaneous 

generalized measurements. 
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XIV. AN ALTERNATIVE CHARACTERIZATION OF 

GENERALIZED MEASUREMENTS 

I . 

Thus far. we have characterized generallzed measurements with operator-valued 

measures. When the operator-valued measure corresponding to a particular measure­

ment is given. together with the quantum state of a system. the statistics of the outcome 

of that measurement is uniquely specified. in the sense that the probability density func­

tion (or distribution function) for the outcome is given by Eq. 12. But we can equivalently 

specify the measurement statistics "y giving the mean and all higher order moments of 
the outcomes. The probability density can be specified uniquely through tha moment­

generating function (or characteristic function). The specification of moments instead 

of probability densities provides an alternative means of characterizing generalized 
quantum measurements. The operator-valued measure characterization is independent 

of the particular quantum state of the system. It is universal in the sense that Eq. 12 

will give the correct probabilities if we use the correct quantum state for the system. 

To characterize generalized measurements using all order moments of the outcomes. 

the characterization should also be universal. so that the specification will be correct 

for all possible quantum states of a system. We shall now propose such a character­

ization which is equivalent to the characterization by operator-valued measures. We 

suspect that the most likely use for this characterization is in estimation problems. 

since moments are explicitly involved. 

14. I Another Characterization of Generalized Quantum Measurements 

Suppose we have a quantum system in an arbitrary quantum state I s). and a gpner­

alized measurement is to be performed on it. Without loss of generality we assurr.e 

that the outcome is a real number "'. We characterize the generalized measurement by 

a sequence of bounded self-adjoint operators {A } 00_0, where A = I '" identity operator. n n- 0 
and the nth_order moment of the measurement statistics is given by 

n = 0, 1. 2 .... (196) 

where E{'} denotes taking expectations. If the state is described by a density oper­

ator p. 

(197' 

A trivial example is when there is a self-adjoint operator A such that A = An. for 
n 

all n. since the measurement is simply the one characterized by the operator A. 

Not every sequence of self-adjoint operators corresponds to a generalized measure­

ment. For example. when A2 is not nonnegative-definite the second moment of the out­

come can have negative values. which is absurd. So a necessary condition for a sequence 
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of operators to correspond to a generalized measurement is that its even indexed oper­

ators be nonnegative-definite; that is, 

A ~O, 
n n even. (198) 

We shall give a necessary and sufficient condition on the sequence {An} so that it 

characterizes some generalized measurement. It is obvious from the previous discus­

sion of generalized measurements that there must exist on an extended Hilbert space 

:JC+ ;2 :JC, a self-adjoint operator A corresponding to a conventional measurement such 

that 

all n (199) 

if {An} corresponds to a particular generalized measurement. 

Whenever such an operator A exists on some extended space :JC+, we are willing to 

say that {An} characterizes a generalized measurement. Then the necessary and suf­

ficient condition for the sequence {An} to characterize a generalized measurement is 

the same as the condition for {An} to have an extension A that satisfies Eq. 199. When 

we have the observable A defined on an extended Hilbert space :JC+, the measurement 

can be realized by embedding :JC + into a tensor product Hilbert space of :JC and some 

apparatus space (see Sec. V). 

14.2 Necessary and SUfficient Condition for the Existence of an 

Extension to an Observable 

We now give a necessary and sufficient condition for a sequence of self -adjoint oper­

ators to have an extension such as we have just discussed. 

Theorem 24 

Suppose {An}' n = 0,1. 2, ... , is a sequence of bounded self-adjoint operators in a 

Hilbert space :JC satisfying the fe,Howing conditions: 

(i) For every polynomial 

(200) 

with real coefficients assuming nonnegative values in some bounded interval - M .; >.. .; 

M, we have 

(201) 

(ii) Ao = I. (202) 

Then there exists a self-adjoint operator A in an extensiOl' space :JC + such that 

62 

I 

'-

J ., , 
~ 

1 
j 
1 
1 

1 
I 
1 
i 
1 

1 

1 
I 

j 

I 



, 

. ' 

t 
t 

~. , 

t. .' ;to. 
b~ ....... _ .. 

, . 

n=0.1,2, ... (203) 

Furthermore, we require that :Je+ be minimal in the sense that it be spanned by elements 

of the form Anf, where f e:Je and n = 0, 1. 2, . •. . In this case the structure {:Je+, A, 3C} 

is determined to within an isomorphism, and we have 

IIAII ,. M.I (204) 

The proof of this theorem has been given by Riesz and Sz._Nagy.IO We shall outline 

only a particular part of the necessity proof because it correlates this formulation of 

the generalized measurement with the operator-valued measure characterization, which 

We have considered earlier. 

Observe that if A is a self-adjoint operator II A II ,. M on a Hilbert space :Je+ .2 :Je, 

A will have an orthogonal resolution of the identity such that 

- JM A - -M )"dE).., (205) 

where {E)..} is a projector-valued measure and 

n = 0, 1, 2 • ... (206) 

When we project An back into the subspace :Je, we have 

(207) 

where {F).. 5 P:JeE).. P:Je}' in general, is an operator-valued measure. Hence we see that 

if a sequence of bounded self-adjoint operators satisfies the conditions of Theorem 24 

there will always be an operator-valued measure so that the sequence of operators can 

be represented in the form of Eq. 207. 

DISCUSSION. We have provided two essentially equivalent characterizations of 

generalized measurements. It is purely a matter of convenience to choose one partic­

ular characterization rather than the other. Since the moment characterization involves 

the powers of the eigenvalues of the measurement more explicitly, it may be more use­

ful in quantum estimation problems. From the characterization of sequential measure­

ments, however, the operator-valued measure characterization appears to be more 

convenient. 
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XV. CONCLUSION 

We have provided two realizations of generalized measurements. The first realiza­

tion. involving an apparatus. guarantees a realization for every operator-:alued 

measure. The second method of realization. by sequential measurements. provides 

realization only for several restrictive classes of generalized measurements. But we 

have shown that for a large class of detection and estimation problems sequential mea­

surements with performance arbitrarily close to the operator-valued measures can be 

found. A very striking and important result is that in both detection and estimation prob­

lems. under reasonable assumptions. generalized measurements can be replaced by 

self-adjoint observables. with arbitrarily close though sometimes not equal perfor­

mance. 
From the characterization of sequential measurements. we have noted the important 

fact that measurements characterized by commuting operator-valued measures at most 

can perform as well as self-adjoint observables. In general. they correspond to a 

single self-adjoint measurement followed by a randomized decision. 

Simultaneous generalized measurements are shown to be equivalent to a single 'finer 

grain' generalized measurement. Hence there would be no possibility of improving 

performance by considering such measurements. 

A different approach to characterizing generalized measurement" has been proposed. 

It is possible that this characterization will be more useful in estimation problems. 
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Part II. Role of Interactions in Quantum Measurements 

XVI. INTRODUCTION 

In Part I we characterized quantum measurements with a rather abstract mathemat­

ical language. We claimed that every quantum measurement corresponds to some self­

adjoint operator on a Hilbert space that can be larger than the original Hilbert space 

describing the state of the system. Equivalently. we said that quantum measurements 

can be characterized by operator-valued measures defined on the system Hilbert space. 

At various instances. notably in the discussion of sequential measurements. we also 

assumed that the conVerse is true - that every operator-valued measure can, in prin­

ciple be physically realized as a measurement. This view is similar to the popular 

conce!Jt that the set of all measurable quantities forms a von Neumann algebra gener­

ated by the set of all self-adjoint operators corresponding to the conjugate coordinates 

of the system. with each member of the algebra being a bounded function of the not nec­

essarily commuting coordinate operators. For example. the von Neumann algelol'a gen­

e~ated by the positive operator X and momentum operator P is the set of all bounded 

operators on the space of square integrable functions L 2(X, fl). where fl is the Lebesgue 
21 measure. 

There is actually no systematic realization procedure for implementing abstractly 

characterized measurements. For the most part. experimentalists measure physically 

a very small subset of the set of all abstract measurements. In many cases. for example. 

the only known physically measurable quantity is the energy of the system. Some of 

the~e measurements are performed on the system alone. An example is photon 

counting in the direct detection scheme of optical communication. 21 Other measure­

ments are performed with the aid of an apparatus that interacts with the system under 

observation, the final measurement being made on either the apparatus or the composite 

system. An example of this is heterodyne detection in optical communication
21 

where a 

local oscillator field interferes optically with the received field before the combined field 

is detected by means of an energy measurement. Many measurements are in this second 

category. and frequently the final measurement is performed only on the apparatus. and 

the interaction play _ the important role of transferring information from the system to 

the apparatus. 

If we are faced with the problem of trying to realize physically a certain abstract 

measurement that does not correspond to any known implementable measurement. it 

would be fruitful to consider different apparatus t" .. t are compatible with the system 

under observation. (By compatible, we mean that the apparatus can somehow be ~­

pled to the system.) We know how to measure some quantities in these apparatus. and 

by an interaction between the apparatus and the system, brought about by suitable cou­

pling. information about the state of the system is transferred to the apparatus. Thus 

by performing a physically realizable measurement on the app"ratus. we obtain the 
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same information about the system as in the abstract measurement. Hence the task of 

realizing the abstract measurement is now transformed to the task of finding an ~ppro­

priate interaction to transfer the information from the system to the apparatus. While 

we cannot guarantee that any interaction can be brought about by some physically real­

izable coupling. this method is superior potentially to most ad hoc procedures. and is 

well worth considering. 

Thus the role of interactions in quantum measurements is our central theme in 

Part II. The importance of such interactions has been discussed by many authors (for 
18 22 4 . example. von Neumann. d'Espagnat. and Yuen). Scant attention has been pald to 

the problem of implementing arbitrary quantum measurements. although d'Espagnat
22 

and recently Yuen 4 have made some progress along these lines. 

Interactions are also important in sequential measurements. The effectiveness of 

sequential measurements hinges on the very crucial nature of the self-adjoint measure­

ment at each step. In c1;'der for subsequent measurements to add information about the 

original state of the system. previous measurements all must correspond to self-adjoint 

operators that have degenerate eigenspaces. Otherwise. if one of the previous measure­

ments is 'complete' (i. e .• if each of the eigenvalues of its associated self-adjoint oper­

ator corresponds to only a single eigenvector). after that measurement the system will 

be in a known pure state. and the outcome statistics of subsequent measurements will 

depend only on this state rather than on the original state of the system: hence. no fur­

ther information can be gained. Sometimes the dimensionality of the Hilbert space is too 

small for an 'incomplete' measurement. For example. if the system is two-dimensional. 

any measurement on this system must either be a complete measurement or a trivial 

measureme"t that adds no information (e. g .• the measurement corresponding to the 

identity operator). We have encountered such a situation (see sec. 8.1) where an appa­

ratus is brought to interact with the system so that part of the information is transferred 

to the apparatus for the second measurement. Hence via interactions the apparatus (or 

many apparatus) can be used as an information buffer for future measurements. 

In Section XVII we examine sevC'ral classes of measurements with interactions 

involved. Tn particular. we address the problem of the physical realization of an 

abstract measurement. by specifying the interaction that is required to transform the 

joint state of system and apparatus. so that after the interaction. by performing a known 

implementable measurement. the uutcome statistics are identical to the abstract mea­

surement. The interaction will be characterized by specifying the unitary transforma­

tion U which summarizes its effects. In Section XVIII interactions are stud' ~d in 

detail and the unitary operator U is used to find the interaction Hamiltonian HI' which 

can then be expressed in terms of the generalized coordinates of both the system S and 

the apparatus A. This expression will suggest the coordinates of S and A thai. should 

be coupled and how they are to be coupled together. 

Section XIX takes into account the constraints of physical laws and elim .nates inter­

actions that are not 'allowable.' 

66 

I 
'--

I 
I 

I 

i 
1 

\ 
1 

1 
! 



J , 

'I 

I I 
,\ 
~ r 

" 

, 
~.,., 

.. 

. i'-"-~-l:--' _. """"1 
1 

XVII. SPECIFICATION OF THE INTERACTIONS FOR REALIZATION 

OF QUANTUM MEASUREMENTS 

We shall investigate the properties of two familiar classes of measurements. both 

of which involve an adjoining apparatus. By exam) 'ling the interactions that take place 

before the measurements are made, we shall bive specific suggestions for physical real­

ization of abstract measurements. 

Class 1. The system S under observation is brought into interaction with an appara­

tus A. and then a self-adjoint measurement is performed on A alone. I 

Class II. The system S under observation is brought into interaction with an appara­

tus A. and then two self-adjoint measurements are performed. one on S, the other 

on A.I 
We could also consider the class of measurements with the final measurement per­

formed on S alone. but by symmetry that is equivalent to the Class I considered here. 

Whenever there is no known implementation of an abstractly characterized measure­

ment. it is fruitful to consider measurements in Classes I and II. If there is a set of 

quantities that we know how to measure on A (or on both A and S). we shall try to 

implement an interaction between A and S. so th ~t essentially by measuring one (or 

more) of the measurable quantities on A (or on hoth) We shall have measured the desired 

abstract measurement. After finding a compatible apparatus with known measurable 

quantities. the first step is to find the required interaction and decide whether there is 

any coupling between A and S that will bring about that interaction. The following prob­

lem for measurements in Class I is useful for detection problems. A modified prob­

lem for estimation problems will be offered 1;, er. 

PROBLEM I 

Given a measurement abstractly r.naracterized by the operator-valued measure 

{Qi} iEJ' find 

(i) an apparatus with a Hill",rt space JC A' 

(ii) a density operator P A for the apparatus. 

(iil) an interaction between S and A. whose sole effect is summarized by ~ unHary 

t:'ansformation U on the joint state of S+A. 

[The fact that an interaction can be summarized by a '"nitary transformation will be 

discussed in Sec. XVIII.] 

(iv) a measurable observable on A alone that is characterized by the projector­

valued measure {ni}iEJ' which forms a resolution of the identity on the space JC A' that 

is. I: n. = IJC (so the set of measureS {Po " n. ® IJC }.= "" is a resolution of the iden-
iEJ 1 A 1 1 S 1 __ -, 

tity of the space JCs ® JC A such that I: P. = IJC ). and such that 
iEJ 1 S+A 
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(v) Qi = TrA{PAutPiu} 

= TrA{PAUt(lli ® IXS)U}. MiE.J. (208) 

DISCUSSION. We know (see Sec. V) that we can find thp hl"'lratus space :re A and 

the density operator P A' Since the measurement is being perL~ med on the apparatus. 

the apparatus space :reA must have dimensionality greater than or equal to the dimen­

sionality of the minimal extension space :ret of the measure {Q). Let {R)iE.J be the 

projector-valued extension of {Qi} on the space :re S ® :re A' Hence we want to find an 

apparatus U such that 

alliE.J. (209) 

Ri and Pi are then said to be unitary equivalent. (The subject of unitary equivalence 

has been studied extensivelio. ll •23.) A necessary and sufficient condition for the two 

measures {Ri} and {Pi} to be unitary equivalent is 

dim{<R{R)} = dim {<R{Pi}}, all i E. J. (210) 

where <R{'} denotes the range space of the operator in braces. 

If this condition is satisfied. there will be a set of isometric mappings from each 

of the range spaces <R{R) onto the range spaces <R{p i} for all i. and by combining these 

mappings we can specify the unitary operator U. (Note thnt unless all range spaces are 

one-dimensional. the isometries and hence the unitary operator U will not be unique.)! 

We have a similar problem for measurements of Class II. Notice in both classes I 

and II that we assume implicitly that neither the system nor the apparatus is destroyed 

by the interaction; after the interaction. parts of the composite ,ystem can still be iden­

tified as the system and the apparatus. In Class II we hav", a slightly more stringent 

assumption. We assume that S and A in som", sense are uncoupled after interactions. 

and measurements on S will not affect the state of A or vice versa (although the mea­

surement statistics of the two subsystems will be correlated because of the interaction). 

W" present the following problem for measurements in Class II. This is a detection 

probkm. 

PROBLEl\] 2 

Given a measurement abstractly characterized by the operator-valued measure 

{Qi}iE.." find 
(i) an api,~ratus with a Hilbert space 3CA' 

(ii) a density <>perr.mr PA for the apparatus, 

(iii) an interaction between Sand A. whose sole effect is summarized by a unitary 

transformation U on the joint state of StA. 

(iv) two measurable observables. one on S alone and one on A alone. characterized 
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by the respective projector-valued measures {n } E H' {n'} E '/' so that the set of mrn- .... nn vt' 
projectors {p mn '" nm ® n~}mE..II, nE.A/ is a projector-valued measure defined on Xs ® 
X A' That is, 

!: n = T __ 
m m -J(;S 

!: P = l:Jc ® X A' 
mn mn S 

and such that 

(v) ~ = TrA{rAutPmnU} 

= Tr A {p AU t(nm ® n~)u} 

for all i E J and the corresponding m, n./ 

(Z 11) 

(Z lZ) 

(Z 13) 

(ZI4) 

DISCUSSION. Problem 2 is almost identical to'. Problem 1 except in the necessary 

and sufficient condition; the set {p mn} is defined for Problem Z./ 
In the discussion of detection problems the eigenvalues of the observables merely 

serve as labels of the outcomes. But in estimation problems the cost functions also 

depend on the magnitude of the eigenvalues, and both Problems 1 .md Z must be modified, 

PROBLEM la 

We assume by the extension technique described in Part I that we have already found 

an apparatus space X A' the density operator p A' and an observable B on Xs ® X A' 

which is our desired measurement. (If the original measurement is a generalized mea­

surement. we assume that B is found to be its observable extension on Xs ® X A') Given 

a quantity C that we know how to measure on the apparatus, our problem is to see 

whether an interaction can be found such that after the interaction the measurement C 

gives the same statistics as the measurement B without the interaction. Again. the 

necessary and SUfficient condition is for B and IX ® C to be Unitary equivalent. That 
S 

is. there exists a unitary operator U such that 

For two operators to be unitary equivalent. their spectra must be identical, 

that if {E)...} and {E~} are their spectral measures. then 

').1.)..../ 
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[The spectrum of an operator B is the set of all ~ e: C such that the operator (B-~I) 
does not have an inverse. Identical implies that the spectral multiplicities (i. e .• 
the degree of degeneracy of each eigenvalue) must also be identical.] 

PROBLEM 2a 

This problem is similar to Problem lao If B is the abstract observable to be mea­

sured. and C and D are the two measurable observables on S and A respectively. the 

problem is to find a unitary operator U such that 

B=Ut(C®D)U (217) 

and the conditions on the spectra are the same. / 

We have now provided a summary of the required interaction by specifying the uni­

tary transformation that results. Next. we shall show how this unitary transformation 

is related to the interaction Hamiltonian. From the structure of the interaction Hamil­

tonian. we should know how to couple S and A to bring about the desired interaction. 
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XVIII. IN'rERACTION HAMILTONIAN 

18. I Characterization of the Dynamics of Quantum Interactions 

When two systems S and A interact. the evolution in time of their joint state is given 

by an interaction Hamiltonian HI' defined on the same tensor product Hilbert space Xs ® 

:K' A on which the unperturbed Hamiltonian Ho '" HS ® IX A t IXs ® HA acts. HS and H A 

are the Hamiltonians of Sand A. To determine the dynamics of the interaction Ho is 

replaced by H = Ho t HI in the SchrBdinger equation for the joint state. 

ill :t I sta» = HI sta». 

The formal solution to this equation is 

where Vet-to) is a unitary operator defined as 

vet-to) "exp{- ~ H(t-to )}' 

It can be verified that 

VeT) VeT') = V(TtT'). 

(218 ) 

(219) 

(220) 

(221 ) 

and hence {veT)} is a one-parameter unitary Abelian group. It "an also be shown that 

VeT) is continuous in the weak topology (i. e •• (xl V( T) I y) is continuous for all t and all 

x. y e: Xs ® X A)' 

The dynamics of the interaction described by Eq. 219 is described in the SchrBdinger 

or S-picture where the state of the system evolves with time. In another description. 

the Heise>1berg or H-picture, the states remain constant in time but every observable A 

evolves as 

A(t) = u t (t) A(O) U(t). (222) 

The S-picture and the H-picture are completely equivalent and win be used interchange­

ably. 

Sometimes when we wish to describe the sole effect of HI' it is convenient to remove 

from the equation the time dependence associated with the free Hamiltonians HS and HA• 

This is accomplished by a unitary transformation on the states. 

(223) 

where the >lubscript I denotes the change of state with time because of the interaction. 

This description is called the interaction. or Dirac. picture. Equation 218 becomes 
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where 

HI(t) " exp {i (HS ® IX + IX ® H A)t} . HI 
A S 

exp{-* (HS ® IX +IX ® H A)t}. 
A S 

(224) 

(225) 

The formal solution to the interaction problem. which is well known in time-dependent 

perturbation theory.24-27 is often used in scattering and quantum field theories: 

where 

with U(t.t ) a unitary operator. and T the time-ordering operator. 
o 

(226) 

(227 ) 

Equations 224. 226. and 227 can be combined to obtain the following differential equa-

tion for the two-parameter unitary transformation U(t. s) 

a i 
at U(t. s) = - If HI(t) U(t. s). (228) 

where 

U(t. s) U(s. u) = U(t. u) 
(229) 

U(t. t) = I. >r/. t. 

Hence {U(t. s)} is a two-parameter unitary group. In general. unlike the c',e-parameter 

unitary group VeT) in the S-picture. U(t. s) does not depend only on the time difference 

T = t-s •. unless HI commutes with Ho' In that case. HI(t) = HI for all t. and U(t. s) = 
exp{-t· HI(t-s)}. 

If the joint state of StA is described by a density operator PS+A' the time evolution 

of P~+A is given by 

t to t 
PS+A = Vet-to) PS+A V (t-to )' (230) 

and' the interaction picture 

t to t 
PI =U(t.t)PI U(t.t). 

S+A 0 S+A 0 
(231 ) 

Heretofore we have considered conservative interactions where the Hamiltonian is 

constant in time. With a little modification of the relevant equations. nonconservative 

interactions can be characterized. Suppose that the interaction Hamiltonian HI(t) is 
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time-variant. then the Schr!)dinger equation that describes the evolution of states can 

be obtained from Eq. 218 by replacing the time-constant Hamiltonian with a time-variant 

one, 

iii it 1 s+a» = H(t) 1 s+a». (232) 

where H(' J '" Ho + HI(t). The solution is of the form of Eq. 226: 

(233) t t 
Ist+at » = W(t.to)ls o+a 0». 

. t 
where W(t. to) = T . exp{-w It H(t') dt'}. In the interaction picture. W(t. to) is replaced 

by 0 

(234) 

~ i . 
where HI(t) = exp{jf' Hot} HI(t) • exp{- *. Hot}. 

Thus we can see that the effects of an interaction for a duration of time can always 

be characterized by a unitary transformation. We shall now see whether we can find 

the interaction Hamiltonian if we are given the unitary transformation. 

18.2 Inverse Problem for Finite Duration of Interaction 

We have attempted to specify the interactions required for the realization of quantum 

measurements. That specification is in the form of a unitary operator acting on the 

tensor product space :leS ® :Ie A' It is very difficult. however. to make suggestions about 

the coupling between S and A that will bring about the interaction by looking at the uni­

tary operator. We sha11 now try to find the interaction Hamiltonian (or Hamiltonians) 

that gives such a unitary transformation. This is the inverse of the problem of finding 

the unitary transformation from the interaction Hamiltonian. At first we sha11 consider 

only finite duration interactions. 

PROBLEM 3 (Schrodinger Picture. Conservative Interactions) 

Sup?ose during the time interval from to to t f that the resulting transformation on 

the joint state of S+A in the S-picture is given by the unitary operator U. The trans­

formatior U deviates from that affected by the free Hamiltonian Ho because of the inter­

action Ha-niltonian HI" We want to find HI" 

SOLUTION AND DISCUSSION. We aSsume that from the time -'" to to S+A is 

evolving according to the free Hamiltonian. The interaction Hamiltonian HI is 'turned 

on' at time to' and continues to affect the system S+A until tf" The turning on of the 

interaction presumably does not affect the states of S+A except in the way predicted by 

the Schrodinger equation. 
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The solution to this problem is well known. Since the one-parameter unitary group 

defined in Eq. 220 is continuous by a theorr:m of Stone 
1 0 (see Appendix Q). there exists 

a self-adjoint group generator H ;, 0 such that 

and V(tf-to ) = U. In fact. H can be written as 

Ii t/(tf-t) 
H = lim rr{U 0 -I}. 

t-O 

Then the interaction Hamiltonian is given by 

If the free Hamiltonian for the apparatus H A is unknown. then 

HI + IJC ® H A = H - HS ® IJC • 
S A 

(235) 

(236) 

(237) 

(238) 

In general. there is no unique decomposition into HI and IJC ® H A' But if we make the 
S 

udditional assumption that HI has finite trace (trace class). then there is a unique HA 

given by 

HA = lim {( s.1 H - HS ® IJC Is.)}. 
i-oo 1 A 1 

(239) 

where {I si )}:l is any orthonormal basis in the space JCs which we assume to be infinite 

dimensionaL This results because HI is of trace class; hence. (si I HII si) must vanish 

as i-co and leave 

HA = lim (8.1 IJC ® HAl 8.) 
i-oo 1 S 1 

= lim (s·1 IJC Is.) HA = HA• 
i-oo 1 S 1 

(240) 

Trace class interaction Hamiltonians are very important. since they form a large 

class wherein time-dependent and time-independent perturbation theories converge. 23
•
28 

PROBLEM 4 (Interaction Picture. Conservative Interactions) 

If we are given the resulting unitary transformation U in the interaction picture. 

there is no known guaranteed procedure for finding HI directly. If Ho is known. we can 

transform the problem into a problem in the S-picture hy specifying the unitary trans­

formation as 

and make Use of the solution of Problem 3. There is a method for working directly 
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within the interaction picture that will probably yield a time constant HI' but that is a 

particular case of the general nonconservative interaction problem which will be dis­

cussed next. / 

We shall work entirely ill the interaction picture for nonconservative interactions. 

The math"",'atics in the S·picture is similar. and the only requirement is to put the cor­

rect quantities in ti.is problem. 

PROBLEM 5 (Nonconservative Interactions) 

Given a unitary operator U which summarizes the effect of a nonconservative inter­

action between S and A in the interaction picture. we want to find an interaction Hamil­

tonian (or a class of interaction Hamiltonians), which can be time-variant so that it will 

give the transformation U in the interval from zero to T. / 

SOLUTION AND DISCUSSION. By the Spectral theorem (Theorem 1. see Appen­

dix B). there exists an L 
2 

-space of functions defined on a domain X with the mea­

sure ~. such that L2(X.~) is isometric to the space JCs ® JC A' and" : U - exp{if(x)} 

where fIx) is a real-valued function defined on X. and " is the isometric mapping. Let 

g(t) be any square-integrable function in the interval (0. T). Let 

f~ I g(t) 12 dt 
for 0 ., t ., T 

hg(t) '" 
II g(t) 112 

0 otherwise 

where II g(t) 112 = f~ I g(t) 12 dt. Then 

Let 

Then 

hg(t) = o. 

hg(t) = 1. 

ug(x. 0) = I 

t ~o 

t ~ T. 

ug(x. T) = exp{if(x)}. 

(242) 

(243) 

(244) 

(245) 

-1 2 -1 
If " is the inverse map from the L -space onto JCs ® JC A' " : ug(x. t) - U g(t) which 
is unitary. with 

U (t) = {I 
g U 

t ., 0 
(246) 

t ;> T. 
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The interaction Hamiltonian in the interactic,ll picture is simply 

(247) 

which satisfies Eq. 234. And in the S-picture 

. i 
Hr(t) = exp{!i-Hot} Hr(t) • exp{-il Hot}. (248) 

In general Hf(t) will not be constant in time. If it " then it is a solution of Problem 4./ 

Note that the upper time limit T can be 00. 

PROBLEM 6 (Impulsive Interaction) 

Let 

Then 

HI(t) = 6(t) exp{~ Hot} HI exp {- ~ Hot} 

= 6(t) HI' 

The unitary transformation occurring around t = 0 is 

{

I 

U(t) = . 
U = exp{- H HI} 

If we are given U. HI can be found by Eq. 236: 

HI = lim ~ {Ut_I}. 
t-o 1 

18.3 Inverse Problem for Infinite Duration of Interaction 

(249) 

(250) 

(251) 

(252) 

Sometimes it is very difficult to turn on an interaction at some time t = to without 

affecting the state of the system. In such a situation it is desirable to provide the 

coupling for the interaction long before the information-carrying part of the system 

arrives. so that interaction starts gently but essentially goes on from the period of time 

-00 < t ";;0. The final measurement is made at time t=G. The resulting transformation 

in the interaction picture for the duration (-00.0) by Eq. 227 is 

U(O. -(0) = ILn U(O. t). (253) 
t--oo 

If I x) is the state of S+A at t= O. exp{- ~ Ht}1 x) is its state at an arbitrary time to After 

removing the depenuence on the free Hamiltonian the state in the interaction picture is 

exp{~ Hot}. exp{- ~ Ht}1 x). In the infinite past. S+A is then in the state 
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(254) 

or 

I x> = lim exp{tHt} exp{- ~ Hot} I x_oo > 
t--oo 

5 nlx_oo >. (255) 

The limit n exists only for certain condHions on Ho and HI (for detailed discussion. 

see refs. 23. 26-28). That issue is not important here. since we are interested in the 

inverse problem. where n is given. 

If the limit 

exists. it is in general an isometric ope "ator and it satisfies the condition 

Hn = nH . o 

This can be shown as follows; 

'tH -itH. -itH 
s!. (e1 e 0) = ie1tH (H-H ) e 0 
dt 0 

(256) 

(257) 

(258) 

If the limit n exists. the derivative in Eq. 258 as t - -00 is zero. which implies as t _. -00 

. -itH 
e 1tH (H-H ) e 0 = 0 

o 
(259) 

or 

itH -itH itH -itHo 
e He 0 = e Hoe (260) 

or 

'tH -itH 'tI~ -itH 
He l e 0 = e 1 ~ ~ 0 H 

o 
(261 ) 

Therefore as t - -00 we ha ITe Hn = n Ho' 

In the inverse problem n is given as the transformation brought about by the inter­

action. and n carries states in the infinite past to states at t = 0 in one-to-one fashion. 

and hence the inverse map can be found. Thus 

(262) 

or 

(263) 
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XIX. CONSTRAINTS OF PHYSICAL LAWS ON THE FORM OF 

THE INTERACTION HAMILTONIAN 

We have described several methods of finding the interaction Hamiltonian from a 

given unitary transformation. Not every interaction Hamiltonian corresponds to a real­

izable interaction. We can narn the classes of Hamiltonians that have to be considered 

by studying constraints imposed by different physical laws. For example, in a collision 

type of interaction an interaction Hamiltonian that does not conserve linear momentum 

is clearly not admissible. 

19. 1 Conservation of Energy 

We consider first the constraints of the law of conservation of energy on the inter­

action Hamiltonian. 29 

Assume at some initial time t = 0 that the system S and the apparatus A are not 

interacting and evolve according to their free Hamiltonian Ho' If I SO + a O » is the joint 

state at this time. the energy of the system at this point is 

o 0 01 I 0 0 EStA = « s + a Ho s t a ». 

After some initial contact time. say \ > O. the systems interact. 

evolves according to the full Hamiltonian H = H + HI' For any t > t o c 

where 

Ut = exp{-t Ht}. 

The energy of the combined systE'm S+A at time t > tc is 

E~+A = « st tat I Hla
t + st» 

= «so+aoluiHUtlat+st». 

(264) 

and the joint state 

(265) 

(266) 

(267) 

Since H is the generator of the unitary group Ut. it commutes with the combined system. 

Hence 

= «so+aoIHolao+so» + «so+aoIHI.lao+so» 

° 0 01 I 0 ° = ES+A+«s +a HI a +s ». (268) 
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Conservation of energy requires 

>v. t. (269) 

Hence this implies 

(270) 

If we allow the joint system S+A to have any state in JC s ® JC A' the fact that HI has 

to be a self-adjoint operator, together with Eq. 270, implies HI" 0 identically. This 

means that if energy has to be conserved, no nontrivial interaction may occur. 

There are several ways to impose conditions on HI so that Eq. 270 will be satisfied. 

Condition 1 

(a) Restrict the interaction to be a 'local' interaction. That is, the interaction takes 

place appreciably only when the physical distance of S and A is within certain bounda­

ries. 

(b) At time t = 0 before any interaction takes place require that the allowable states 

of S+A be within a linear subspace .II S+A S JC s ® JC A' which in sr e sense does not 

fall within the boundaries of the interaction. For a state I SO + aO ») in .II S+A' this means 

that 

(271) 

In this case the interaction will finally take place at some time t = t c ' since S+A will 

evolve according to the free Hamiltonian which eventually carries them into the region 

of interaction. It is clear that .II S+A cannot be an invariant subspace of Ho' otherwise 

the action of Ho could never carry any state in .II S+A outside it. Hence the condition 

for nontrivial interaction to take place is 

[H ,P" } '" 0, 
o oM S+A 

(272) 

where Puis the projection operator into the subspace .II S+A' Figure 14 gives a 
.... S+A 

description of the process. At t = 0, lao + so» E .II S+A' Hence 

«so+aoIP.ll lao+so» = 1. 
S+A 

At t = t > t c = 'contact' time, 

lat+h) ~ exp{-~Hot}'lao+so» 

I 0 0 
=Vt a +s». 
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(273) 

(274) 
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Proboblllty current 
due to Ho 

Figure 14. Condition for nontrivial interaction. 

The probability that S+A will be found in the subspace ..f S+A at time t is 

Therefore the 'probability current' that crosses the boundary BB' is 

a {~ . // } a 0 01 t 1 0 0 -at PrtS+Am .... S+A =-at«s +a VtP..f Vta+s» 
S+A 

(275) 

(276) 

If [H ,P // 1 = 0, no probability current goes into ..f~+A where the interaction takes 
o .... S+A 

place. 

Note that HI '" 0 in ..fS+A' Hence ..fS+A and ..f~+A are invariant subspaces of HI 
but not of Ho' Therefore, for nontrivial interaction to occur, 

(277) 

Condition 2 

If we are willing to consider a time-variant Hamiltonian, we can have an interaction 

Hamiltonian HI(t) sue!' that 

t = 0 

t > O. (278) 

The energy E~+A = «st+atIHo +H/t)! at+st » will not be constant in genera~., and 

energy is either pumped in or out of the combined system S+A. 
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Condition 3 

In discussions of scattering' adiabatic switching' is encountered. The interaction 

Hamiltonian is assumed to have the form 

(279) 

Hence interactions start at some time t - O. There is no interaction as t - _00. But 

as t approaches t = - _1_ , the interaction becomes appreciable. Then the system S+A 

is assumed to be obseJ:Jd at large times (at t - 00). By passing to the limit as E' - 0, 

we can get a cons",,"'c'ative interaction result and it can be shown that the energy of the 

system at t = -00 is equal to the energy at t = +00. There are subtle problems involved 

in this view, and we shall not discuss it further. 

19.2 CC!lservation of an Arbitrary Quantity 

Suppose there are two quantities, characterized by the self-adjoint operators QS of 

the system S and QA of the system A, the sum of which is conserved during and after 

an interaction. lf I at + st» is the state of S+A at time t, this means that the quantity 

(280) 

is conserved. where 

(281) 

If lao + so» is the state at t = 0 when no interaction takes place, 

(282) 

where Vt is given by Eq. 220. The conservation law for the quantity Q states that (Q)t 

is constant in time. That is, 

d ) 0 01 d t I 0 0 dt (Q t = «s +a dt (VtQVt ) a +5 » = 0 

= « sO taO I V: {ri [H, Q]} Vt lao + so» 

= «st~atl~[H,Qllat+st». 

If we allow the state of S+A to be any state in Je S ® Je A' 

condition for the quantity Q to be conserved is 

[H, Qj = o. 
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(283) 

then a necessary and sufficient 

(284) 
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Since in the absence of interactions the quantities QS and QA are individually conserved, 

which implies 

[Ho' Q] = O. (285) 

Hence, together with Eq. 284, we have 

[HI' Q] = O. (286) 

If {Si}f:!1 are the eigenspaces (invr.riant subspaces) of Q, the Hamiltonians can be 

written in the form 

M 

H= L PSHPs. 
i=1 i 1 

M 

= L 
i=1 

19.3 Constraints of Superselection Rules 

(287) 

When the system under observation admits certain symmetry, not all self-adjoint 

operators are measurable, even in principle. For example, if the system admits a 
rotation symmetry, say around the z axis, then by the definition of symmetry the system 

is indistinguishable from a rotated version of the same system. This implies that no 

measurable quantity can be changed by this rotation. The rotational group around the 
i9J 

z axis is represented by the unitary transformation U(9) = e z, where J is the z 
z-component angular momentum, and 9 is the rotated angle. If A is any measurable 

quantity, it will not be affected by this rotation. That is, 

(288) 

which implies 

(289) 

Hence, all measurable quantities must commute with the' supers election' operator Jz' 
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In an arbitrary quantum system, any supers election rule can be represented by a 

superselection operator B such as J z ' and every measurable quantity must commute 

with it. If we take the von Neumann view of measurable quantities, as long as the bases 

operators of the algebra commute with B, all measurable quantities commute with B. 

When there is more than one superselection rule with superselection operators {Bi}~I' 
a first requirement is for the Bi to pairwise commute, and every measurable quantity 

must commute with each of them. In fact, we can find a maximal superselection oper­

ator B that contains all the eigenspaces of the Bi' so that any operator commuting with 

B commutes with all Bi" Hence we need only consider one superselection operator at a 

time. 

When there is a supers election rule, the density operator that represents the state 

of a syetem is not always unique. Let {Pk}~=1 be the resolution of the identity of the 

maximal supers election operator B. If A is the measurable quantity to be measured 

on the system with the density operator p, the nth moment of the outcome statistics is 

given by Tr {Anp}. But 

Therefore 

and 

all n. 

K n 
= l: Tr {PkA PkP}. 

k=1 

Using the identity Tr {AB} = Tr {BA}, we have 

Tr {Anp} = ~ Tr {AnPkPPk} 
k=1 

In general 
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(291) 

(292) 

(293) 
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Since both the density operator p and any observable A have to commute with a 

superselection operator B. it is necessary that the unitary transformation U that sum-

marizes the interaction commute with B. 

• 
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XX. CONCLUSION 

We have made suggestions for implementing abstractly characterized measure­
ments, by considering the possibility of activating an interaction between the information­

carrying system and an apparatus, so that when an implementable measurement is 

performed afterward on the composite system the outcome statistics will be the same 

as that in the abstractly characterized measurement. Procedures for finding the 
required interaction Hamiltonians are described. The Hamiltonian is expressed as a 

mathematical function of parameters of the system and the apparatus. Although we do 
not specify exactly how to perform a certain measurement experimentally, this 

procedure provides clues to finding the relevant quantities that should be actively 

involved in the experiment. It is hoped that by observing the form of the interaction 

Hamiltonian, experimentalists will be able to relate abstract measurements to those 

that they can implement experimentally. 
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APPENDIX A 

Statement of a Theorem for the Orthogonal Family of Projections 

The following theorem is due to Halmos, 30 

Theorem 

If P is an operator and if {P.} is a family of projections such that!: P. = P. then a 
J j J 

necessary and sufficient condition that P be a projection is that P j 1 P k whenever j '" k. 

or. in different language. that {Pj} be an orthogonal family of projections. If this con­

dition is satisfied and if. for each j. the range of P j is the subspace JI j' then the 

range JI of P is V JI .. / 
j J 

The proof has been given by Halmos.30 
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APPENDIX B 

Spectral Theorems 

We shall state two spectral theorems. The first is due to Riesz and Sz._Nagy;lO 

the second is due to Dunford and Schwartz.23 

SPECTRAL THEOREM (Riesz and Sz.-Nagy) 

Every self-adjoint transformation A has the representation 

A = f~oo "dE". 

where {E,,} is a spectral family that is uniquely determined by the transformation A; E" 

commutes with A. as well as with all of the bounded transformations that commute 

with A. / 

SPECTRAL THEOREM (Dunford and Schwartz) 

For every self-adjoint operator A. there exists a measure space (0. fl.) and ~n iso­

metry of of 3C into L 2 (0. fl.) such that 

of : A = mr' 

where f is a measurable real-valued function on O. and m f is multiplication by f./ 
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APPENDIX C 

Proof of NaTmark's Theorem 

Theorem Z (Nal:'mark's Theorem) 

Let F t be an arbitrary resolution of the identity for the space H. Then there exists 

a Hilbert space H+ which contains H as a subspace and there exists an orthogonal reso­

lution of the identity E: for the space H+ such that 

F f = P+E+f 
t t 

for each f E H where p+ is the operator of projection on H./ 

Proof (Akhiezer and Glazman 9): ConRider the set <R of all pairs p of the form 

p = {~,f}, 

where ~ is an arbitrary real interval and f is an arbitrary vector of H. On <R we define 

a function <l>(pl' pz) such that if PI = {~I' f l } and Pz = {~z' fZ}' then 

<l>(pl' PZ) = (F~ . ~ f l , f z)' 
I z 

We show that the function <l>(Pl' PZ) is positive-definit". Indeed, 

and, on the other hand, 

(C. 1) 

If the intervals ~i (i=I, Z, ... ,n) are pairwise disjoint, then 

n _ n Z 
!; (F~.~ f.,fk) S'Sk = !; (F~ f.,f.) Is·1 1; o. 

i, k= 1 i k 1 1 i= 1 ill, 1 
(C. 2) 

If the intervals .6.i (i=l, 2, ... , n) are pairwis~ disjoint a~ J t~1e intervals t .lilCj '~2 coin­

cide, then the sums in tile right member of (C. 1) fall into two parts. )ne part, with 

indices from 3 to n, is of tile form (C. 2), and the other part, with indi~F" 1 and Z, 

satir°t'ies 

z _ 2 

!; (l·A. A f., f k) S'Sk = !; 
i, k= 1 ~i"'k 1 1 i, k= 1 

2 

(F~ L,fk) S'Sk = (F~ !; 
1 1 1 i i= I 
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The case with arbitrary intervals Ai (i=I, 2, .•• , n) can be reduced, with the aid of 

additional partitions, to the cases already considered. Hence, if Al n A2 = 0, then 

(F(A ~ A • A )f, g) = (F(A . A + A • A )f, g) = (FA . A f, g) + (FA • A f, g). 
123 1323 13 23 

Thus ~(PI' P2) is a positive-definite function on <R. 
Using the method desc"ibed earlier we imbed <R in a Hilbert space H+. 

Not desiring to introduce new notations for those elements ffI of the space H+ which 

are subsets of <R by the construction described earlier, we agree on the following: if 

an element p of (1\ belongs to ffI then we write p instead of ffI. 

We indicate the scalar product in the space H+ by an inferior index (+), and have 

We now consider elements of H+ of the form {I, f}, 1= [-00, ooj. By means of the 

equation 

n 
we can identify the pair {I, f} with the element f from H. The element ~ ;k {I, fk} of 

k=1 
n 

the space H+ is identified with the element ~ 

sidered as a subspace of the space U+. 
k=1 

Thus, H can be con-

We now solve the following problem: find the projection of the element {A, f} of the 

space H+ on the subspace H. We denote the projection to be found by {I, g}. For each 

h of H, 

({A, f} - {I, g}, {I, h})+ = 0, 

01' 

({A, f}, {I, h})+ - ({I, g}, {I, h})+ = (FAf, h) - (g, h) = (FAf-g, h) = 0, 

so that 

i. e. 

(C.3) 

<'he theorem will be proverl if it is established that the operator function E~, whirl, 

is del'ined by 

(C.4) 
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for each element of the form {~', f} E H+ is an orthogonal resolution of the identity for 

the space 11+, since then (C. 3) can be expressed in the form 

for each f E H. 

It is evident that E~ is an additive operator function of an interval. Furthermore, 

the two equations 

and 

(E~{~" f}, {~", g})+ = ({~ n ~', f}, {~", g})+ = (F~.~,. ~"f, g) = (F~ .. ~. ~"f, g) 

= ({~',f}, E~{~'" g})+, 

imply that E~ is a projection operator. Finally, it is evident that E; {~', f} = {~', f}. 

Since the family of all elements of the form {~', f} is dense in H+, the extension 

to Ht by continuity of the operator E~ defined by formula (C.4) is an orthogonal 

resolution of the identity for the space Ht. The theorem is proved. 
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APPENDIX D 

Proof of Theorem 3 

For the statement of Theorem 3 see Section IV. The proof given here is .,dapted 

from Sz.-Nagy and Foias. 13 

Proof: 

(a) T(e) = PJe U (e)/Je = PJe/Je = I3C ' 

T(s-I) = PJe U (s-I)/Je = (PJe U (S)/Je)" = T(s)':'. 

We have 

~ ~ {PJe U (f'l s ) hIs), hIt)} = ~ ~ {U(t)':' U(s) hIs), hIt)} 
sEG tEG sEG tEG 

= II ~ U(s) h(s)11 Z '" O. 
sEG 

(b) Let us consider thc set Jet, obviously linear, of the finitely nonzero functions 

hIs) from G to 3C, and let us define on Jet a bilinear form: 

where 

d~, h') = !: ~ (T(t-Is) his), h'(t)) '" 0, 
s t 

" " h = hIs), h' = h'(s). 

By using the Schwarz inequality, 

I ""..z A."" A'" 
(h,h') <; (h,h) . (h',h'), 

so that the h for which (h, h) = 0 form a linear manifold'% in Jet. It fonows that thp 
AA AA 

value of (h, h') does not change if We replace the functions h, h' with equivalent values 
" " modulo .%. In other words, the form (h, h') defines in a natural way a bilinear for!" 

(k, k') on the quotient space Je~ = Jet /.%. Since the corresponding quadratic form (k. k) 

is pOditive-definite on Je~, II kll = (k, k)I/Z will be a norm on Je~. Thus by completing Je~ 
with respect to this norm woe obtain a Hilbert space Jet. 

Now we embed Je in Jet (...nd even in Jet) by id'mtifying the element h of Je with the 
" 0 

function h = b (s) h where b (e) = I a.nd b (s) = 0 for s .. e or, more precisely, with e e e 
the equivalence class modulo .% determined by this function. This identification 

is allowed because it preserves the linear and metric structure of Je. Indeed, we 

have 
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(b eh, 6 eh') = E E (T(tl1 s) S e (s) h, 6e (t) h')3C
s t

k

A

= (T (e) h, h')3C

= (h, h')3c.

For h= h(S) E 3C + and a E G,
A	 A A A

(ch) a = chat he = h, (hb ) a - hab-

( ha h, a) = Z E Mt- l s) ha-
s t

we set ha = h(a l s). Obviously we have (h+h') a = ha+ha,

Furthermore,

i s), h'(a
-

1t))

E E (T(T -1 a ) h( u'), h'(T))
	 ,

Cr T

A A
(h,h').	 r

Therefore h E X implies ha E X and consequently the transformation h — ha in 3C+
generates a transformation k — k  of the equivalence classes modulo 'Y. Setting U(a) k=
ka , for every a E G we define a linear transformation of 3Co on	 3Co such that U(e) = I,
U(a) U(b) = U(ab), and (U(a) k, U (a) k') _ (k, k'). These transformations on 3C o, form a
representation of the group G.

Setting 8 a (s) = 6 e(a-1 s), for h, h' C 3C, we obtain

(i T (a) h, h') jC = (6a h.  Seh' )

= E ^ ( T( 1 S ) 6 a (s) h, 6e (t) h ')3C
s t

= (T (a) h, h'),W.

Hence T (a) = Pr U (a), for every a E G.
Let us observe that every function h = h(s) C X can be considered as a finite sum

of terms of the type 5 (,(s) h; i. a - , the type (b e (s) h) 6 for 6 E G. Hence every element k
of 3Co can be decomposed into a finite sum of terms of the type U (a) h for a-E G, h E 3C.

This implies 3C + = V U(s) 3C.
SE 

The isomorphism of the unitary representations of G satisfying T (s) = PjCU (s)/3C,
Vs E G and 3C^ = V U(s) 3C its a consequence of the relation

sEG

(U(s) h, U (t) h') = (U(t )* U(s) h, h')

= (U(t-1 ) U ( s) h, h')

= Mt-I s) h, h')

= (T(t -1 s) h, h'),

which shows that the scalar products of the elements of 3C + of the form U(s) h, U(t) h',

(f ,	 92'r,



... ··"",_r~'· , 1 
F" 'r-'~ 

• i:..- • 

r , 

I i. 
I l 

r 
I .. 

for s. t E G. h. h' E X. do not depend upon the particular choice of the unitary represen­

tation U(s) satisfying our conditions. 

The case when G has a topology and T(s) is a weakly continuous function of s remains 

to be considered. Let us show that then U(s) is also a weakly continuous function of s; 

i. e •• the scalar-valued fUl.ction (U(s) k. k') is a continuous function of s. for any fixed 

k. k' E X+ Since U(s) has a bound independent of s (in fact. II U(s) II = I) and. moreover. 

the linear combinations of the functions of the form 6 .. h for cr E G. hEX (more exactly. 

the corresponding equivalence classes modulo .;V) are dense in X+. we conclude that 

it suffices to prove that (U(s) 61J'h. 6Th') is a continuous function of s for any fixed 

h. h' E X and cr. T E G. This scalar product is equal to 

(U(s)U(IJ')h. U(T)h') = (U(T-Iscr)h.h') 

= (T(T-1slJ')h.h'). 

and this is a continuous function of s because T(s) is assumed to be a weakly continuous 

function of s. 

Thus Theorem 3 is proved. / 
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APPENDIX E 

Proof of Theorem 4 

Theorem 4 

Let {F>..} be an operator-valued measure on the interval 0 ,,;; >.. ,,;; 2", then there exists 

a projector-valued {E>..} in some extended space xt S;; X SUC,I that F>.. = PXE>../X for 
all >... / 

Proof: The integral 

r2" in>.. T(n) '" JO e dF>.., n = 0, :1:1 f ••• 

exists and defines an operator function T(n) on the Abelian integer group 
T(O) = I, T(-n) = T(n)t, and 

~ ~ (T(n-m)hn, h ) = 102" ~ ~ ei(n-m)>.. d(F h ,h ) 
n m m n m >..n m 

where the last integral denotes the limit of the sums 

Z, such that 

with >"0 = 0 < >"1 < ••• < >"k < ... < >...£ = 2", and max (>"ktl->"k) - o. . 
Hence, by part (b) of Theorem 3, there exists a unitary operator U = J~1T e1>" dE>.. 

t on an extended space X S;; X such that 

T(u) = Px U(n)/X , n = 0, :1:1, ..• 

h, hI E X 

and E>.. is a projector-valued measure, and it can be chosen so that it satisfies the same 

condition of normalization as {F>..}; i. e., E>.. = E>..tO' Eo = 0, E 21T_O = IX' Then the 

equation implies F>.. = PXE/X. / 
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APPENDIX F 

Proof of Theorem 5 

Theorem 5 

M M 
For an arbitrary operator-valued measure {Q'}i-l' 1: Q. = I, whose index set has 

1 - i=1 1 

a finite cardinality M, the dimensionality of the minimal extended Hilbert space 

min :JC+, is less than or equal to M times the dimensionality of the Hilbert space :JC. 
That is, 

dim min {:JC+} ., M dim {:JC}. / 

Proof: The minimality condition of Theorem 3 is 

min 

where 

+ co 
:JC = V U(n) :JC, 

n=O 

with j = -r::t, and {EJ is a resolution of the identity. For a finite set of the Qi the inte­
gral becomes the sum 

M jn?.. 
U(n) = 1: e 1 Q

i
, 

i=l 

where the ?., are M distinct real numbers chosen arbitrarily. 
1 

Let 

Then 

, _ 2rri 
I\,i - M' i = 1, ... , M. 

M J, 2rrn } 
U(n) = .1: expu M i Qi 

J=1 

U(M) = U(O) = IX' 

2rr(MH) 
U(MH) = 1: exp{j M i} Q. 

i 1 

= 1: exp{j 2~t i} Q. 
i 1 

= U(.I'). 

Hence, with this choice of the ?.., the unitary group U(n) repeats itself every 
1 
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M increments on the index n, and the minimality condition becomes 

min 3C+ = :; U(n) 3C 
n=O 

M-l 2M-l 
= {V U(n) 3C} V { V U(n) 3C} V 

n=O n=M 

M-l M-I 
= { V U(n) 3C} V { V U(n) 3C} V 

n=O n=O 

M-l 
= V U(n) 3C, 

n=O 

Since U(n) is a unitary operator, each of the spaces Z n " U(n) 3C, n = 0, I, ... , M-l, 

has dimensionality equal to dim {3C}. (Note Zo = 3C.) For n'" m, any two of these 

spaces Z n' Z m may not be orthogonal. But if we assume that they are indeed orthog­
onal, we can arrive at a union bound for dim {min 3C+}. 

M-I 
dim {min 3C+} = dim { V U(n) 3C} 

n=O 

M-l 
=dim{VZ} 

n=O n 

M-l 
,. 1: dim {Z } 

n=O n 

= Mdim{3C}./ 
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APPENDIX G 

Proof of Th"orem 6 

Theorem 6 

If the operator-valued measure {Q)aEA has the property that every Qa is propor­

tional to a corresponding projection operator that projects into a one-dimensional sub­

space Sa of :re (i. e .. Qa = qa 1 qa > (qa I. where 1 ;. qa ;. O. and 1 qa) is a vector with unit 

norm). then the minimal extended space has dimensionality equal to the cardinality of 

the index A (card {Ah. That is. 

dim {min :re+} = card {A}. / 

Proof: Let the projector-valued measure {IIa}aEA be the minimal extension of the 

operator-valued measure {Qa}aEA on the minimal extended space min :re+ such that 

and 

P:reIIaP:re = Qa 

~ II = I 
aEA a :re+ 

~ Qa = I:re' 
aEA 

1 "'q ;'0 
a 

Each projector IIa projects into a subspace Sa of min :re+. We shall show that if 

min:re+ is minimal. Sa is a one-dimensional subspace. K 

Assume Sa is not a one-dimensional subspace for some a. Let {f~}k:l be a complete 

orthonormal basis for this Sa so that Ka is an integer bigger than one. since Sa by 

assumption is multidimensional. Then 

Ka 
II = ~ 1 t.'k) (t.'kl. 

a k=l 
Let 

where the vectors 1 g~) are no longer orthogonal nor do they have unit norms in general. 

Hence 

Qa = P:reIIaP:re 

Ka 

= ~ Ig~) (g~1 
k=l 

= qa1qa) (qa l . 
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Each of the vectors I gk) must be proportional to I qa)' otherwise it can be seen that 
Q Is a nonzero operator over more than one dimension. simply by orthogonallzlng th," 

a K 
set {g:!k:l and expressing Qa in these coordinates . 

Hence we have I g~) = g~ I qa) where g~ is a complex number. an I 

which Implies 

Ka 
q = ~ I ga

k l2. 
a k=l 

Now let 

K 

(h I h ) = q-I/2 .; Ilkl2 = I. 
a a a k=1 

and 

Therefore 

K 
-1/2 a =q ~ 
a k=l 

Since I ha ) is a linear combhl .. tion of vectors in Sa' IIa' " I ha > (ha I is also an exten­

sion of Qa orthogonal to other II".. a';# a. Furthermore. IIa projects into a one­
dimensional subspace. which means that the operator-valued measure with IIa replaced 

by II", is an extension of the operator-valued measure Qa and has an extended space with 
a smaller dimensionality than min Jet. which by assumption Is the minimal extended 

space. Hence we have arrived at a contradiction. Therefore. for the minimal extension 

space. every projector-valued measure projects into a one-<cmensional subspace S,,' 

Since 

~ II = I 
a€A a min Jet 
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min X+ = US. 
aEA a 

Therefore 

dim {min X+} = I: dim {Sa} 
aEA 

= I: K 
aEA a 

= I: = 1 
aEA 

= card {A}. 
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APPENDIX H 

Proofs (II Theorem 7 

Theorem 7 

Given an operator-valued measure {Qa} aEA' let <R{Qa} denote the range space of 

{Qa}' a E: A, then 

dlm {min :re~ = a'iA dim {<R{Qa}}' / 

Proof: We shall prove 

Then we shall show 

so that the two quantities on each side must be equal. 

(i) Since each Q is a nonnegative-definite self-adjoint operator, there exists for 
a K 

each Qa an orthogonal set of vectors {Iq~)}k:l' such that Qa is diagonalized by these 

vectors, and where Ka is an integer larger than zero. That is, 

Ka 

Qa = ~ q~lq~) (q~I, 
k=l 

and ! ;. q~ ;. O. 

K 
The set of vectors {lq~)}k:l,aE:A spans <R{QJ In fact, we have 

I = ~ Q 
aE:A a 

K 
a a a a 

= ~ ~ qk Iqk) (qk l . 
aE:A k=! 

K 
Therefore the set of one-dimensional operators, {p~ '" q~1 q~) (q~l}k:!, aE:A is a gener-

alized resolution of the identity in :JC, and each is proportional to a one-dimensional 
K 

projector. It is clear that an extension for the set {P~k:I. aE:A is also an extension 

for {Qa}aE:A' since each Qa can be ~btained by summing over Ka of the operators in the 

former set. Bu, by Theorem 6 we know the dimensionality of the minimal extension 
K 

space for the set of one-dimension operators {p~ k:l, aE:A and that it is equal to the 
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cardinality of the index set 

dim {min :I{' iJ 
K .. 
1:1=1:K. 

k=l .. E:A" 

But Kcz is the number of dimensions over which Q .. is nonzero. 

dimensionality of the range space of Q .. , 

• 

That is, K .. is the 

K 
Since an extension for the resolution of the identity {P~k~l, .. E:A is also an extension 

for the resolution of the identity {Q) .. E:A, it is clear that the dimensionality of the 

minimal extended space for the Q .. is upper bounded by the dimensionality of the min­

imal extended space for the P~. Hence 

= 

= 1: dim {<R{Q,,}}. 
"EA 

We have proved (i). 

(ii) Now we wish to prove 

dim {min:reiJ;. 1: dim {<R{Q }}. 
"E:A " 

Let the projector-valued measure {n"}"E:A be the minimal extension of the operator­

valued measure {Q) .. E:A on the extended space min :re+ such that 

1: n = I + . 
.. E:A" min :re 

Since the projectors n are all orthogonal to each other (for the proof see Riesz 
" and Sz._NagylO), the minimal extended space is simply the union of al:. subspaces into 

which the projectors n" project. Hence the dimensionality of min :re+ is 

dim Lin :reiJ = 1: dim {<R{n)} . 
.. E:A 
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Let us assume that 

Then there exists an a such that 

which is a contradiction. Therefore the inequaUty (Ii) is true. Putting (I) and (ii) 

together. we have proved that dim {min :Ie"'} = I: dim {tR{Q }}. / 
aEA a 

In this proof it is assumed that every Qa has a complete set of eigenvectors. Strictly 
speaking. in an infinite dimensional Hilbert space only compact operators are guaran­

teed to have a set of complete eigenvectors. Although there are cases when this assump­
tion is incorrect. it does provide a heuristic proof of correct results. We shall give 

an alternative proof that does not depend on this assumption but leads to the same con­

clusion. 

Alternative Proof of Theorem 7: For each a E A we have 

where nil is a projection operator. 

Assume for the minimal extension 

for some a EA. We have 

Let Sa be the closure of the range of nil when restricted to tR{Qa}' 

Then dim {S } .;; dim {tR{Q }} <dim {tR{n }} and S c tR{n } is the range space of na a a (I. (1.- a 
which implies 

P s na = P s . 
a a 
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Hence 

Therefore PSis a projection operator and, together with the other n a" a' ¢ a is a 
a 

projector-valued extension of the Clperator-valued measure {Qa}aEA' But by assumption 

dim {<R{ps}} = dim {Sa} < dim {<R{na}}. 

Hence the set {na}aEA is not a minimal extension. And for a minimal extension, we 

must have 

Ma E A. 

It is easy to show that 

Ma EA. 

So for the minimal extension we have the equality 

and 

dim {min 3C"} = I: dim {<R{na}} 
aEA 

= I: dim {<R{Qa}}' / 
aEA 
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APPENDIX I 

Proof of Coro11ary 3 

COROLLARY 3. The construction of the projector-valued measure and the extended 

space provided by NaYmark's theorem (Th('orem 21 is always the minimal extension. / 

Proof, The proof of NaYmark's theorem in Appendix C is a proof by constructior .• 

That is. a construction for the projector-valued measure {n,,} is actua11y given for "ny 

arbitrary operator-valued measure {Q,,}. We ll,a11 show that the resulting extended 
space in this construction is indeed minimal. FirRt. we sketch another proof of Theo­

rem 5 using NaYmark's theorem. 
In NaYmark's theorem the extended Hilbert space Ht is spanned by the set of pairs 

{p = (A. fl for a11 subintervals A in the interval I = (0.2]. and a11 f E H}. If we have 1\1 

Qi's where M is a finite number. we can pick M points {"i}~1 in the interval (0.271] 

where F" changes values. Let these points be 

0= "0 < "I < "2 < .•• < "1\1 ~ 271. 

The points {"i}~~O divide I into 1\1 subintervals. 

i=I ..... I\1. 

Now the M sets of pairs {p = (Ai' fl. all f E H}~ I' are orthogonal to each other. since 
the inner products between any two pairs. one from each set. by definition is 

{(A .• fl. (A .• hI} = (F. n. f.hl= (F f.hl=O 
1 J "i "j 0 

for any f. h E H. i .,. j. 

Furthermore. these 1\1 suts of pairs span H. Individua11y. each of these sets 

includel ~lements of the form (Ai' fl for all f E H. so each has at most dimensionality 

equal to dim {H}. Hence we have 

M 
dim {Ht} ~ l: dim {H} = M dim {H}. 

i= I 

which is Theorem S. 

DISCUSSION. We now consider the interval Ai that contains the point "I' F Ai = 

Qi' We can show that the dimensionality of the subspace spanned by the set {(Ai' f). a11 

f E H} is equal tv dim {<R{Qi}}' Let Si be the range space of Qi' For any vector f orthog­

onal to all elements in Si' the square of the length of the vector (Ai' fl is 

{(AI' fl. (Ai' f)} = (FA f. f) = (Qif. f) = O. 
I 

Hence for all f 1 Si' (Ai' f) = 0 is a trivial zero element. Whereas for g E SI' 
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because g is in the range space of ~ • Therefore 

dill". {(Il.i • f). al1 f e: H} = dim {cR{Qi}} 

and 

+ M 
dim {:a } = I: dim {(Il. . .f). al1 f e: H} 

i=1 1 

M 
= I: dim {<R{Q.}}. 

i= 1 1 

This condition satisfies the minimality condition given by Theorem 7. Hence the 

construction in Na'!mark's theorem (Theorem 2) gives the minimal extension./ 
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APPENDIX J 

Sequential Detection of Signals rransmitted by a Quantum 
System (Equiprobable Binary Pure State) 

Suppose we want to transmit a binary signal with a quantum system S that is not cor­

rupted by noise (see Chan31 ). The system is in state I so) when digit "0" is sent. and 

in state lSI) when digit "I" is sent. Let the a priori probabilities that the digits "0" 
and "I" are sent each be equal to one-half. The pel"formance of detection is given by 
the probability of error. We try to consider the performance of a sequential detection 

scheme by bringing an apparatus A to interact with the system 5 and then performing 

a measurement on S and then on A. or vice versa. The structure of the second mea­
surement is optimized as a consequence of the outcome of the first measurement. In 

Section VIII we considered the case in which the joint state of S and A can be factored 

into the tensor product of a state in S and a state in A. In general. the joint state of S 
and A does not factor. and we now wish to treat this general cas ... 

Let the initial state of A before interaction be I ao )' If digit "0" is sent. the joint 

state of S+A before interaction is Is) I a ). If digit "I" is sent. the state is le,) I a ). o 0 • 0 
The interaction between S and A can be characterized by a unitary transfol'mation U 

on the joint state of S+A. 

Is~+a~» = U1so)lao) 

I sr +a~ » = U lSI) I ao )' 

By symmetry of the equiprobability of digits "I" and "0'. we select a measurement 

on A characterized by the self-adjoint operator 0 A such that the probability that it will 

decide a "0". given that "0" is sent. is equal to the probability that it will decide on "1". 

given that "I" is sent. Let I <I> ) and 1<1>1) be its eigenstates. Then {I <1>. ) L 1 2 spans o 1 1-, 

the Hilbert space. :leA' Let{II\I·)L12 be an arbitrary orthonormal basis in the Hilbert 
J J- • 

space. :leS' Then the orthonormal set {I<I>i)ll\Ij)}i=1.2 is a complete orthonormal basis 

for the tenso!" product Hilbert space :Ie A ® :leS' j=1.2 

Then 

where a ij and bij are complex numbers. Since unitary transformations preserve inner 

products. 
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f fl f f " « s I + a I a + s » = l: b .. a .. 
o 0 i= I. 2 1J 1J 

j= 1. 2 

=(sllso>' 

If we perform the measurement characterized by 0 A' the probabilities that we shall 

find A in state 1<1>0> and 1<1>1 >. given that digit "I" or digit "0" is sent. are 

Pr[ I <I> > 10] = l: I a .\2 
o '_I 2 oJ J- r • 

Pr[\<I>I>IO] = l: la 1 ·1
2 

j= I. 2 J 

Pr[l<I> >11]= l: Ib .12 
o j=I.2 oJ 

Pr[ 1<1>1> II] = l: I b I .12. 
j=I.2 J 

But by symmetry We choose Pr[\ <1>0> 10] = Pr[\ <1>1 ) II] 

Pr[\<I>l >10] = pr[l<I>l >11]. 

Given as a result of the measurement that We find system A to be in state I <1>0>' we 

wish to update the a priori probabilities 01 digits "1" and "0". Using Bayes' rule. we 

obtain 

[ II ] 
pr[\ <1>0> I 0] pr[ 0 ] 

PrO <I> > =--~---
o Pr[I<I>o>] 

Pr[O] = ~ 

Pr[\ <1>0>] = Pr[I<I>o> 10] Pr[O] + pr[l <1>0> II] Pr[l] 

= ~ {Pr[\<I>o> I o]+Pr[\<I>I>1 oJ} 

I 
='2 

:. pr[oll<l>o>]= Pr[I<I>o>lo] 

= l: la .12 
j=I.2 oJ 
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Given that the outcome is 1<1>0>' the system S is now in well-defined states. If "0" 
is sent. 

:E a ,14'j> 
j=l. Z oJ 

Ii> = 0 

I 12y/Z 
{j=f. z 

aoj 

If "I tr is sent. 

:E b, I 4',> 
f j= I. 2 oJ J 

lSI> = . 

{ y/z .:E IbOjlZ 
J=I.2 

After the measurement on A we have a new set of a priori probabilities and a new 
set of states for system S. We choose a measurement on S characterized by the self­
adjoint operator Os such that the performance is optimum. From previous calculations 
the probability of error. given I <1>0>' as a result of the first measurement. is 

Pr[€II<I>o>J = ~ {I - [1-4pr[01I<l>o>Jpr[1/ l<I>o>JI(s~ls~>IZr/z} 
I ,; IZ :E b.a, 
J'-I 2 oJ oJ f f - • 

(sllso> = {:E la .12}{:E Ib .I Z} 
j=l. Z oJ j=I.2 oJ 

:. pr[€" cj> > J = ZI {I - [I - 41 :E b *.a .12J I /Z}. o '-1 Z oJ oJ J- • 

By symmetry 

• I { I [ * zJ 1/2 I [ ~'2] 1/2} " pr[ € J = 2' I - 2' I - 41 ,:E b.a, I - 2' I - 41 ,:E b I J.a I J' I . J= I. 2 oJ oJ J= I. Z 

Minimizing Pr[€ 1. subject to the inner product constraint. :E b?a .. = (sil s >. yields i= I. 2 1J 1J 0 
j=I.2 

This is the same result that was derived for the case when the joint state of S+A can be 
factored into the tensor product of states in S and A. 
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APPENDIX K 

Proof of Theorem 14 

Theorem 14 

If an operator-valued measure {Q)~I' is defined on a finite index set, with 

values as operators in a finite dimensional Hilbert space JC (dim {JC} = N), and 

the measures {Qi} pairwise commute, then it can always be realized by a sequential 

measurement characterized by a tree with self-adjoint measurements at each vertex. 

In particular, if M " N, the sequential measurement can be characterized by a tree of 

length Z. In general, the minimum length of the tree required is the smallest inte­

ger t such that 

log M 
t;'I+ 10gN ./ 

Proof: ---
(i) Let us prove the case for M = N. Note that the case M < N can be made to cor-

respond to M = N by defining 

Q. '" ° 1 
fori=M+l, ... ,N. 

N N 
SO {Q'}'-1 is an operator-valued measure and ~ Q. = IJC' 

1 1- i=1 1 

Since the Qi pairwise commute, on a finite dimensional Hilbert space JC they can 

be diagonalized simultaneously by a set of complete orthonormal eigenvectors {I b j)}f= I' 
where N is a finite integer (equals dim {Je}). That is, 

N . 
Q. = ~ q~lb) (b·l. 

1 j=1 J J J 

with q~ ;. 0, for all i. j, and 

N 
~ 

i=1 
Mj 

Mi = I" .. , M 

(K. 1) 

M j, j'. 

Let us perform a self-adjoint measurement on the system characterized by the 

project0r-valued measure 

The possible outcomes can be modeled by the N branches of the tree of length I, 
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°0 ba Figure K. 1 

as shown in Fig. K. I. 

Suppose the outcome of the first measurement is bj' Let a second self-adjoint 
measurement be performed. Let the projector-valued measure for this measurement 

. , 'N ' N 
be {PI" I c1> (cII }i=l' where {I cI)}i=1 is a complete orthonormal basis of JC. The N 
possible outcomes of the second measurement can be modeled by the N branches of the 

'subtree' in Fig. K. 2. 

cl 

°0 
I 

.j 
c
2 

bl cl 
I 

cl 
N 

Figure K. 2 

B:> the results in Section IX, the operator-valued measure R" for .lach path (i. e. , , p 
each path (ao' bj' cI) for all i, j) is given by 

= Ibj> (bjlcf> (cllbj> (bjl 

, 2 
= Ibj>J<bjlcI>1 (b/ (K.2) 

Let {I cl)}~1 be an arbitrary complete orthonormal basis, and let 
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From Eq. K. I, 

- - N i (b.lb.) = ~ q. = I. 
J J i=1 J 

Then 

Mi. 

But since I bj > and I bj > are both unit norm vectors, there exists a unitary transforma­
tion U j (that is not unique) such that 

lb.> =U·lb.>. J J J 

So if we choose the second self-adjoint measurement such that 

I j> d) c. = u.[c. , 
1 J 1 

Mi, 

the operator-valued measure for the path (ao' bj, cl), from Eq. K.2, is 

Ibj>l(bj \cI>\2 (bj \ = Ibj >\(bj \UJupl>1
2 

(bjl 

= \bj >l(bj \cf>\2 (bjl 

= q~1 b j > (b j \. 

Let us perform such second measurement on all outcomes b., and identify each out­
come i in the index set of operator-valued measure {Q'}~I as ~orresponding to the set . 1 1- . of all paths (a ,b.,cJ ), j = I, .•• , N ending in the vertices d, j = 1, ..• , N with a sub-o J 1 1 script i. Then the operator-valued measure of the sum of all of these paths is 

N N 
~ R .. = ~ 

j=1 J1 j=1 
q~1 b') (b·1 = Q1" J J J 

Mi. 

The sequential measurement can then be characterized by the tree in Fig. K.3. Hence 
we have realized the generalized measurement given by the operator-valued measure 
{Qi}~1 by a sequential measurement. 
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Figure K. 3 

(ii) Let us prove the case for M > N. The method of constructing the sequential 

measurement is similar to the case M .; N. except that in general the sequential mea­

surement must have more than two steps. Let {Qi}~l be a set of operator-valued mea­

sures such that they pairwise commute and M > N = dim {X}. 
Since they commute. th.ey can be diagonalized simultaneously hy a complete ortho­

normal basis {lbj)}f=I' such that 

N . 
Q. = ~ q~lb.) (b·l. 

1 j=1 J J J 
i = 1 •••• , M 

·th i >- 0 \..J. • and M i \..J 
Wl q. ~ • ml. J. ~ qJ'= I. ""j. 

J i=1 
As in part (i). let us first perform the self-adjoint measurement corresponding to 

the projector-valued measures {II j '" I bj ) (bjl }f=1' so that the initial part of the tree 
characterizing the sequential measurement is given by Fig. K. 1. 

For each of the None-dimensional subspaces spanned by the N vectors {I bj )}f=l' 

we can define a resolution of the identity given by the Qi' since 

M . 
~ qlJb.) (b.1 = lb.) (b.1 

i=1 J J J J J 

= 1. 
J 

'" the identity operator of the jth one-dimensional subspace spanned 

by I bj). 
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So the set of one-dimensional positive operators {q~ 1 b.) (b. 1 }~l is a resolution of the 
. M J J J 1-

identity. Whenever any of these {q~}'-l equals zero, we can delete them from the res-
J~ . 

olution of the identity without loss of generality. If the number of nonzero qj for some j 

is smaller than N = dim {:re}, it is obvious that we can perform a second self-adjoint 

measurement at those vertices in exactly the same fashion as in the proof of part (i), 

and we proceed accordingly. The problem is when the number of nonzero q~ exceeds 

the number N = dim {:re}. By Theorem 6, an extended space of dimensionality equal to 

the number of nonzero qi is required. Certainly the original Hilbert space with less 
J . 

dimensions will not suffice. Let the number of nonzero q~ be M. so that N < M. '" M. 
. J J J 

We group the set of M. positive operators {q~1 b.) (b.l} into N subsets (groups), since 
J J J J 

we want each subset to have as few members as possible. We try to group the Mj oper-

ators as evenly and optimally as possible: hence, the minimum for the maximum number 

in each of these N subsets is given by the smallest integer Nj such that NNj :;. Mj" We 

can indicate the partition symbolically by Fig. K. 4. 

Total number 
of one-dimen­
sional operators 
• Mj 

Figure K.4 

Partition Into 
N subsets 
Maximum number 
of members in 
each sub .. t Is 

N j' 

For each of these N subsets, if we Sum the operators within the subset, we get a 

single one-dimensional operator. Then the N resulting one-dimensional operators (one 

cJ subset 

c~ subset 

c! 
I 

sub .. t 

c~ subset 

Figure K.5 

{I} 

{2} 

{i} 

{N} 
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from each subset) form a resolution of the 

identity that has a projector-valued exten­

sion on an N-dimensional space. Thus it is 

possible to perform a second self-adjoint 

m~asurement exactly like that in part (i) 

(indicated by Fig. K. 2) to 'separate' these 

N subsets of outcomes. The process is 

indicated symbolically in Fig. K. 5. 

If Nj '" N we can 'separate' each of 

the subset of members into their indi­

vidual members by performing a third 

! 
j 

I 
I 
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measurement. The nature of this measurement is exactly analogous to that of the second 

measurement, the construction of which is given in part (i). Then we can identify the 

measures {Qi} by summing the measures for the appropriate paths as in part (i), But 

the tree now has length 3 instead of 2. 
If Nj > N we have to 'separate' each subset that has more than N members into N 

finer subsets, and this can be done by a reiteration of the procedure that has been 

described. This' separation' process is repeated (by measuring a sequence of self­

adjoint measurements) until the number of members in each subset is less than N. Then 

the final measurement corresponding to the second measurement of part (i) is per­

formed, and the measures Qi are identified by summing over the measures of the 

appropriate paths. 
This construction demonstrates that if 0 < M ';N, we only need a tree of length 2. 

For N < M .; N2 we need a tree of length 3. In general the minimal length of the tree 
log M 

that is required is the smallest integer i such that i '" 1 + log N • / 
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APPENDIX L 

Extension of Theorem 14 

When the Hilbert space is infinite dimensional but separable. Theorem 14 can be 

extended to handle the situation. We shall sketch how this theorem can be generalized. 

Since the operator-valued measures (still defined on a finite index set) pairwise com­

mute. they can be diagonalized simultaneously. It is then possible to find an infinite 

number of finite dimensional orthogonal subspaces {Sk};=1 of X such that if {Pk};=1 

corresponds to the projection operator on these subspaces. then 

00 

Qi = i:l PkQiPk' 'if/. i 

with 

Given this decomposition. we can separate the sequential measurement into an infi­

nite number of steps. For example. we can separate the resolution of the identity in 

the first subspace S 1 from the rest of the subspaces by performing a first measurement 

corresponding to the binary projector-valued measure PI and IX - PI as in Fig. L. 1. If 

-S . I -P .'Jof' • 
Figure L. 1 

the outcome is in the vertex corresponding to SI' we can make Use of the construction 

in Theorem 14 to 'separate' the measures further by sequential measurements. If the 

outcome is in the other vertex. we can devise a second measurement (just like the first 

one) to separate S2 from the rest of the subspaces. Eventually. we should be able to 

'separate' the whole space X. although we may have to use a sequential measurement 

with infinite length. But with a judicious "hoice of subspaces {Sk}' we can guarantee 

that with probability close to one. that the measurement will terminate after a finite 

number of steps. This fact will become apparent after Section XII. 

There is still another way to construct a sequential measurement for the infinite 

dimensional case. If we are willing to perform a self-adjoint measurement that has an 

infinite number of possible outcomes. by the first measurement We can immediately 
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separate the measures into one-dimensional subspaces as in Theot'Qm 14. Now there 

will be an infinite number of second-level vertices. B'lt because of von Neumann's pro­

jection postulate only one of these vertices will be the outcome and that is all We have 

to deal with in the second measurement. This will enable us to guarantee that for all 

possible situations the sequential measul'ement will have a finite number of steps. 

When the operator-valued measure is defined on an infinite index set, the situation 

will not be different from the first index set case. except that there will be an infinite 

number of outcomes at the final measurement of each path (instead of a finite number). 

Hence we have the general result. which is stated in Section IX as Theorem 15. 
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APPENDIX M 

Procedure to Find a 'Finest' Decomposition of the Hilbert Space 3C 

into Simultaneous Invariant Subspaces 

The main statement that it is possible to find a unique finest set of simultaneous 

invariant subspaces that are pairwise orthogonal is given in Theorem 18. We shall pre­

scribe a construction procedure to find the finest simultaneous invariant subspaces of a 

set of bounded self-adjoint operators {Ta}ae:A' 

DEFINITION. A partially ordered system (S,.o) is a nonempty set S, together with 

a relation .. on S such that 

(a) if a .. b and b .. c, then a .o c 

(b) a .. a./ 
The .. relation is called an order relation in S. 

DEFINITION. If B is a subset of a partial!.y ordered system (S. "') then an ele­

ment x In S is said to be a lower bound if every y e: B has the property x "'y. A lower 

bound x for B is said to be a greatest lower bound if every lower bound z of B has the 

property z '" x./ 
A similar definition can be given for the least upper bound. 

DEFINITION. A partially ordered set S is a lattice If every pair x. y e: S has a least 

upper bound and a greatest lower bound. denoted by x V y. and x 1\ y. respectively. The 

lattice S has a unit if there exists an eler.lent I s Ich that x '" I. for all x e: S. and a ~ 

If there exists an element 0 such that 0 '" x, for all x e: S. The lattice is called distrib­

utive if 

x /\ (y V z) = (x 1\ y) V (x 1\ z). x,y,z E S, 

and complemented if for every x in S. there exists an x' in S such that 

x V x' = 1. 

x/\x'=o./ 

DEFINITION. A Boolean algebra is a lattice with unit and zero which is distributive 

and complemented./ 

For example, the family of all subsets of a set S with inclusion as order relation is 

a Boolean algebra (see Dunford and SChwartz23 ). If A. B are subsets of S. A .,,; B if and 

only if A £. B. The unit element is S. and the zero is ¢. the empty set. 

A 1\ B '" An B. A VB" A U B. 

We have noted that every bounded self-adjoint operator has a unique resolution of the 

identity. which defines a projector-valued measure on the Borel measurable sets of the 

real line. Furthermore, the projector-valued measures of any two Borel sets commute. 
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Consider then the family of projection operators {P~}~(;;B that are measures of all Borel 

measurable sets ~ on the real line <II. If we define the relations 

(i) PIPZ = PI implies the order relation PI ,,; P z 
(ii) PII\PZ"PIPZ 
(iii) PIVPZ=PI+PZ-PIPZ 

for every pair of projection operators in this family. then this famll;; of projectors foe HIS 

a Boolean algebra. If we consider the subspaces {S~}~E:B of the Hilbert space X that 

are the range spaces of this family of commuting projectors {p ~}~E:B and define the rela­

tions 

(i) S~1 ,,;S~Z if S~I c S~z (partial order by inclusion) 

(ii) S~ 1 V S~z = least subspace of X that contains S~ l' S~z 

(iii) Si3
1 

1\ S~z ,. greatest subspace of X contained in both. 

then the system {{S~}~E:B' S;} is a Boolean algebra. 

Consider for each bounded self-adjoint operator Ta' a E: A. the corresponding Boolean 

algebra of subspaces 

a E A. 

Each of the subspace S~ is an invariant subspac'- of Ta' To find the simultaneous invari­

ant subspace of the set {Ta}aEA' we find in some sense the intersection of all Boolean 

algebras of subspaces. Specifically we form the family of all subspaces {S)yEG such 

that 

S = 1\ Sa 
'I aE:A ~a 

for all possible combinations of the {i3 }. a 
The family of subspaces {S'I}'IEG have corresponding proje~tion operators that pair-

wise commute and. in fact. {{Sf' S;} is a Boolean algebra (the proof is simple but tedious 

and is omitted). 

To find the finest decomposition of X into the subspaces {Si}~ I where N can be a 

finite integer or the countable infinity KO' we single out the subspaces {Si} in {Sf 'IE:G' 

so that the null space {a} is the only subspace in the algebra {Sf that is included in each 

of the subspaces Si' This Is possible because {{Sf' £} is a. lattice that has a partial 

ordering. If the null space {a} is deleted. each of the subspaces S. is a 'lbcal' greatest 
1 N 

lower bound. for a total-ordered sub algebra of {Sf' We may view {SI}i=l as the 'atoms' 

of the measure space {X. {S'I}. f1}. where f1 is the dimensional counting measure. defined 

as f1(S ) = dim {~ } = Tr {PS }, A set S. E {S } is called an utom if f1(5.) '" 0 and. if S = 
a a a 1 a 1 a 

Si' then either f1(Sa) = f1(Si) or f1(Sa) = 0.) 
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It can be shown that S .• i=I •...• N are pairwise orthogonal subspaces. That is 1 N N 
P s P s = &. ,PS ' 'Ir/. i. j. and ® S. = JC or ~ P s = IJC' Since by definition each of til i j 1J j i=1 1 i=1 i 
Si is invariant for all T a, a EA. the set {S)~I is simultaneously invariant for all of 
the T . Furthermore. it is unique. Hence we have Theorem 18. a 

There is an abnormal situation when all of the Ta has a simultaneous degenerate 
eigenspace Si such that every subspace of Si is also a simultaneous invariant subspace. 
The construction that is provided here will only single out the unique S1' but it does not 
further decompose Si into finer subspaces. The finer decomposition (which is never 
unique) is unnecessary because this case is unimportant in communication problems. 
It corresponds to a measurement that first resolves the subspace Si and is followed by 
a randomized strategy that We know cannot improve performance. 

119 

'i 
1 

; ~ 

Ii 
J ~ , . 

1 
j 

i 
1 
I 
I 
I 

I 
1 

I 
1 



, 

. I 

\ 

APPENDIX N 

Proof of Theorem ZI 

For the statement of Theorem ZI see Section XII. The proof is in four parts. 

Proof, The mean- square error I I is 

II = IS I Tr{PaGa,}la-a'I Z pIa) dZa'dZa. (N. I) 

We shall attempt to show that there is a self-adjoint measurement characterized by the 

projector-valued measure {na Ji':! I such that "'hen the measurement is used the output 
1 

will be one of the M finite number of discrete points {ail. and have a mean-square error 

M Z Z 
l:: Tr{p n ,}la-a!1 pIa) d a. 

i= 1 a a i 1 
(N. Z) 

with III-Izi < €. 

The general philosophy of the proof hinges on the fact that the integral I I in Eq. N. I 

can be approximated by discrete sums over the index set of a and a '. with arbitrary 

accuracy. in the sense of a Riemann sum. Witn this transition the problem becomes 

a 'pseudo-detection' problem. and Theorem ZO applies. 

Part (i). The function la-a'I Z is continuous on .. compact set S: hence. it is also 

uniformly continuous on S. By assumption Ga , is uniformly continuous. Therefore the 

integrand in Eq. N. I is also uniformly continuous. 

Let 

IS I pIa) dZadZa' = Is dZa' = K < co. (N.3) 

€ since S is compact. For an 4K > O. there exists a b t > 0 such that for all a '. a" E S and 

!al-a"l < 6 1, 

Define the neighborhoods for all a E S, 

Vb (a) :{a': la-a'i < bl}' 
I 

(N.4) 

(N.5) 

T!:2n the set of open sets {Vb (a)}aES is an open cover of S and. since S is compact. 
I 

there exists a finite subcover {V b (ai)}~~1 such that 
I -

M 
UVb(a.)=s. 
i=1 I 1 

(N.6) 

The sets {V < (a,)} are not disjoint. but we can form disjoint subsets {V < (a,)} from them 
"I 1 "I 1 

by arbitrarily assigning the overlapping parts to one of the sets. so that 
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" A 
V" (a.) n Vo (a.) = O. for! * j 

0 1 1 I J 

and 

MI u V 0 (a.) = S. 
i=1 I 1 

(N.7) 

Let 

Q E fA dF . 
a. Vo (a.) a 

1 I 1 
(N.8) 

Define 

M 
I 2 2 

13 = fS !: Tr {p Q ,}la-a!,1 pea) d a. 
i=1 a ai' 1 

(N.9) 

{ 
M } 2 2 I Z 

11 -13 =fs fsTr{pG ,}Ia-a'i da'- !: Tr{pQ ,}la-a!,1 p(a)dZa 
a a i '= 1 a a i I 1 

M 
Z 2 I Z 

Tr{p G ,}Ia-a'i d a'- !: Tr{P Q ,}la-a!,1 
a a i'=1 a ai' 1 

ff " Z,Z" < S 4K' p(a) dad a = 4' (N.IO) 

The last inequality is implied by Eq. N.4. 

Part (ii). Similarly. since Pa and la-a'I Z are both uniformly continuous on S, given 

" " M2 any '4 > O. there exists a O2 > 0 such that if we form the sets {Vo (ai)}i-I' we have 
Z -

1 13-141 < ~ • (N. II) 

where 14 is defined as 

M 
I Z " 

!: Tr {p Q ,}la.-a!,1 pr{V< (a.)}. 
i '= 1 a i a i I 1 1 u2 1 

where 

pr{v Oz (ai )} E fV O
2 

(a
i
) pea) dZa. (N.IZ) 

Note that we can use the same neighborhood as in part (1) by forming neighborhoods of 

size 0 = min (0 1, oZ) and use the same set of {ai}~I' Then 14 becomes 

M M 2 A 

14 =!: !: Tr {p Q }la.-a·,1 pr{V< (a.)}. 
i=1 i'=1 a i ai' 1 1 u2 1 

(N.13) 
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Part (iii). Observe that 14 looks like the probability of error expression for the 

M -ary detection problem with a slightly different cost function. By the method used in 

Theorems 19 and 20. 

{na.}~1 such that 

it can be shown that there exists a projector-valued meaSure 

1 

where 

M 
I " I: 
5 i=1 

(N.14) 

M 2 A 

~ Tr{p n }I a.-a .,1 Pr{v, (a.)}. 
i'=1 a i ai' 1 1 U 2 1 

Part (iv). If we use the self-adjoint operator characterized by the projector-valued 

measure {naJ~1 as measurement. the mean-square error is 
1 

M 2 2 
12 = IS ~ Tr{p II } I a - a., I p(a) d a. 

i=l a ai' 1 
(N. 15) 

But IS is a Riemann sum of the integral 12 , and with small enough partition size 6 for 

" theV
6

(a i). we have 

I 12- 151 ~ ~. (N. 16) 

From part (iii). 

115- 14 1 <~. (N.17) 

From part (U). 

114- 13 1 < ~. (N.18) 

Fr:>m part (i). 

113- 111 < ~. (N. 19) 

. 
112- 111<£ . • • (N.20) 
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APPENDIX 0 

Proof of Theorem 22 

Theorem 22 

Two generalized measurements, characterized by the operator-valued meaSures 

{S)iEJ,{Tj}jE,/' are simultaneously measurable if and only if there is a third gener­

alized measurement, so chal'acterized by the measure {Qk}kEK that 

(i) S. = l: Qk' 
I iEK. 

I 

and disjoint subsets {K) iE J of K, so that 

U K=K, 
iEJ' 1 

and 

( Ii) T. = l: Qk' 
J jEK! 

J 

and for disjoint subsets {KJ }jE,/ of K so that 

UK! = K./ 
jE,/ } 

Proof: 

(i) Necessity. If {Si} iEJ" {Tj}jE,/ are simultaneously measurable, .here exists on 

an extended space :re+ 2 :re, two commuting projector-valued meaSures {lli}iEJ" 

{Pj }jE,/ such that 

Si = P:relliP:re' ¥i 

Since {ll.},{P.} are simultaneously measurable, there exists a third projector-valued 

I J 

measure {lRk}kEK such that 

(a) ll. = l: IRk' 
I iEK. 

I 

and disjoint subsets {K)iEJ' of K, so that 

U K. = K. 
iEJ' I 
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(b) 

., 

P. = l: (Ilk' 
J jEK! 

J 

¥j E J 

and disjoint subsets {K!}'E I of K, so that 
J J , 

U 
jE/ 

Therefore 

Similarly. 

K! =K. 
J 

P. = l: Qk' 
J jEK! 

J 

where Q
k 

is defined as PX(llkPX' In fact. without loss of generality we can form all 

possible products of the form 

Then 

n. = !: (Il .. 
1 jE/ 1J 

P. = !: (IliJ" 
J IEJ 

which gives 

where 

S. = !: Q .. 
1 jE/ 1J 

T." !: Q ..• 
J iEJ 1J 

Hence the condition given in the theorem is necessary. 
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(ii) Sufficiency, Let {eIlJkE:K be a projector-valued extension for the operator­
valued measure {Qk} kE:K' Then the two projector-valued measures defined as 

n = I: ell 
i kE:K k 

i 

P j = k:K! eIl k 
J 

commute and are simultaneously measurable. 
is sUfficient./ 

lZ5 

Hence the condition given in the theorem 
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APPENDIX P 

Construction for Operator-Valued Measure {Qij} 

Problem 

Given two simultaneous measurable operator-valued measures {Si}iE:f' {Tj}jE:/' 

want to find a third measure {Q. '}'E: 4" '12 , such that 
lJl-J",r" 

S. = E Qi" 
1 jE:/ J 

T.= E Q'j' 
J iE:f 1 

Construction 

Mi 12 f 

Mj 12 /./ 

we 

To find Qll' in some sense we would like to find the 'biggest' possible operator Q ll '" '" such that SI " SI - QII' and T I "T I - Q II are still nonnegative-definite. (An operator A 

is bigger than the operator B, A ;;, B if and only if A - B ;;, O. The order relation;;' pro-

vides a partial ordering and Q II is the maximal element.) 

sure and should be positive, so is T I' 
~ ~ 

'" Since SI = E QI' is a mea-
PI J 

SI - T I = SI - T I is a bounded self-adjoint operator; therefore. by the spectral 

theorem for bounded seli-adjoint operators, there exists a spectral measure {E)) such 
~ ~ JI ~ I ~ JO 

that SI - T I = ::;, - T I = -I "dE". Hence SI = J a "dE" and T I = - -1 "dE". so that 

Now that we have a basic construction for QII' it is possible to generalize by induction 

to find any arbitrary Qij' Suppose we are given Qij for all i < i', j < j', and we desire 

to find the Qi 'j' operator. 

Define 

S!, "S., - E Q.,. 
1 1 j<j' 1 J 

T!, " T., - E Q .. ,. 
J J i< i' 1J 

Then Qi 'j' is the biggest operator such that Si' - Qi 'j' ;;, a and Tj' - Qi 'j' ;;, 0, and it can 

be obtained by the previous procedure for QII' By induction, all of the {Qij} can be 

found. 
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APPENDIX Q 

Stone's Theorem 

10 
The statement of this theorem is taken from F. Riesz and B. Sz.-Nagy. 

STONE'S THEOREM. Everyone-parameter group {Ut} (-"'< t< "') of unitary trans­

formations for which (Utf. g) is a continuous function of t. for all elements f and g, 

admits the spectral representation 

'" ·u Ut = f_", e1 dE~. 

where {E~} is a spectral familY such that E~ vv {Ut}. 

The proof is due to Sz._NagylO but it was preceded by other proofs. 
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