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ABSTRACT

A characterization of guantum measurements by operator-valued measures is
presented. The 'generalized' measurements include simultaneous approximate mea-
surement of noncommuting observables. This characterization is suitable for solving
problems in quantum communication.

Two realizations of such measurements are discussed. The first is by adjoining
an apparatus to the system under observation and performing a measurement cors
responding to a self-adjoint operator in the tensor~product Hilbert space of the system
and apparatus spaces. The second realization is by performing, on the system alone,
sequential measurements that correspond to self-adjoint operators, basing the choice
of each measurement on the outcomes of previous measurements.

Simultaneous generalized measurements are found to be equivalent to a single
tfiner grain' generalized measurement, and hence it is sufficient to consider the set
of single measurements.

An alternative characterization of generalized measurement is proposed. It is
shown to be equivalent to the characterization by operator-valued measures, but it is
potentially more suitable for the treatmeni of estimation problems.

Finally, a study of the interaction between the information-carrying system and a
measuring apparatus provides clues for the physical realizations of abstractly char-
acterized quantum measurements.
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Part I. Characterization of Quantum Measurements

1. GENERAL INTRODUCTION AND SUMMARY OF PART I

i.1 Motivation for This Research

Recent developments in coherent and incoherent light sources, optical processors,
detectors, and optical fibers have sparked wide interest in optical communication sys-
tems and optical radars. At optical frequencies gquantum effects can be very significant
in the detection of signals. In fact, there are many cases where quantum noige com-
pletely dominates other noise sources in limiting the performance of optical systems,

It ig essential to have a good understanding of the properties of quantum measurements
in order to design and evaluate quantum optical systems. We present a characteriza-
tion of quantum measurements which communication engineers will find convenient to
use. The study of the interaction between the information-carrying system and a mea-
suring apparatus provides a suggestion for the physical realization of abstractly charac-
terized quantum measurements,

1.2 Characterization of Quantum Measurements

It is a general assumption in quantum mechanics that a measurement on a quantum
system is characterized by a self-adjoint operator, algo known as an observable. Usu-
ally the Hilbert space in which this self-adjoint operator acts is not well defined and
gometimes it is not even mentioned. Frequentiy it is agsumed that the Hilbert space is
the one that includes all (but only) the acceesible states of the system. That is, it is
possible to put the system in any given state in ihis Hilbert space. Occasionally we can
make uge of a priori kr_{owledge of how the quantum system has been prepared, and spec-
ify the Hilbert space ag'the one that is spanned by the set of states that occur with non-
zero a priori probabilities. Rarely is the Hilbert space considered as any one that
includes the set of accessible states as a proper subspace. It is only with such a defi-
nition of the Hilbert space that every measurement is characterized by a self-adjoint
operator. This definition of the space is often unacceptable, however, because we are
seldom sure how big the Hilbert space has to be beftre a particular measurement can
be characterized by a self- adJomt operator within the space. Ttis particularly clumsy
for the communication engineer when he tries to find the optima’ measurement by opti-
mizing over a set of such loosely and poorly defined measuremets. Therefore the com-
munication engineer is interested in characterizing the set of all quantum measurements
by operators acting in more well- defined Hilbert spaces, such as the space spanned
by all accessible states or by the set of states with nonzero a priori probabilities. When
defined on such spaces, not every measurement can be characterized by a self- ad;omt
operator, For example, Louisell and Gordon,l and recently Helstrom and Kennedy
and Holevo3 have noted that if the system under observation is adjoined witl an appa-
ratus, and a subsequent measurement is performed on both systems, the scope of



measurement can be extended to at least simultaneous approximate measurements of
noncommuting observables. This particular type of measurement is important because
it has been E;hown2 that minimum Bayes cost in communication problems may sometimes
be achieved by such measurements. It has been suggested1'3
of quantum measurements by operator-valued measurements is appropriate for quantum

that the characterization

comnmunication. Yuen4 and HolevoB have derived necessary and sufficient conditions on
the operator-valued measures for optimal performances in deteciion problems. It seems
that this characterization of measurement is useful at least in calculating optimal
performances of quantum receivers. But such an essentially abstract mathematical
characterization does not suggest how the measurement can be realized physically.
Furthermore, it does not explain what happens to the system us a resuit of the measure-
ment, This is in contradiction to the self-adjoint observable view of quantum measure-
ment, where the observable can be expressed as a function of a set ol generalized
coordinates of the system and one can see what coordinates of the system the measure-
ment should measure in some faghion. The von Neumann projection postulate gives the
final state of a system after a self-adjoint measurement, So there are nice properties
about a self-adjoint observable that are better than the operator-valued measure
approach, particularly when the interest is in physical realization of quantum measure-
ments. An observable is usually considered to be physically meagurable, in principle
at least, while there has been no indication that any measurement characterized by an
operator-valuéd measure can be meajurable, even in principle. But it is very important
for a communication engineer to optimize his receiver performances on a set of
meagurements that is at least physically implementable in principle. Recently Holfav'o3
has noted that for every operator-valued measure, one can always find an adjoining
apparatus and a self-adjoint observable on the composite system such that the measure-
ment statistics will be the same as those given by the operator-valued meagure. In
Part I, given the operator-valued measure, we show how the apparatus Hilbert space
can be found and what the corresponding observable is, This constructive procedure
we call our 'first realization of generalized measurements,’

The method described here is not the only way to realize a generalized measure-
ment, If we consider a seguence of self-adjoint measurements performed on the system
alone, the statistics of the outcome sometimes correspond to those given by an operator-
valued measure. We call this our 'second realization.'

Since considerations of simultaneous measurement of noncommuting cbservables
lead to the operator-valued measure characterization, we shall consider the simulta~
neous measurement of two or more measurements characterized by operator-valued
measures.

Finally, we propose an alternative (but equivalent) characterization of generalized
measurements. This characterization is potentially useful in congidering estimation
problems,




1.3 Summary of Part I

We address the mathematical problem of the extension of operator-valued measures
td projector-valued measure ou an extended space in Sections III and IV, (The results
arc used in the proofs of theorems in subsequent gections. For a general appreciation
of the results of this report, Section IV may be skipped.) The first realization of
generalized measurement by adjoining an apparatus is described in Section V, Several
properties of the extended space aud the resulting measure are digcugsed in Section VI,
In Section VII the dimensionality results are used to determine the dimensionality of the
apparatus Hilbert space which is required for the first realization. . Thege results are
also used in the second realization of several classes of generalized measurements by
sequential measurements, which is developed in Sections VIII and IX with the main
results given in Section X. Although not every operator-valued measure corresponds
to a sequential measnrement, in Sections XI and XII we have been able to show that a
large class of measurements in quantum communication can be realized by sequential
measuremecnts with the same or arbitrarily close performances. In Section XIII we
show that a simultaneous measurement of two or more generalized measurements corre-
sponds to a single generalized measurement; hence, consideration of such measure-
ments will not give improved performance.

An alternative characterization of generalized measu,ements is offerecd in Sec-
tion XIV,

1.4 Relation to Previous Work

Holevo suggeated3 the realization by adjoining an apparatus when he noted that
NaYmark's theorem provides an extension of operator-valued measures to projector-
valued measures on an extended space, The method of embedding the extended space
in the tensor product space of the system and apparatus was found by the author.

P. A. Benioff was working in the area of sequential mer;n.surements,5"'7 at the same
time that I was doing the thesis research for this report. His characterization of
sequential meagurement is similar to that given in Part I, Section VIIL

Although self-adjoint observables in principle can be measured, very few of them
correspond to known implementable measurements. In Part II, by means of an inter-
action between the system under observation and an apparatus, we shall show how the
relevant information may be transformed in such a way that by measuring a measurable
observable we can obtain the same outcome statistics of the abstractly characterized
measurement. The type of transformation that is required and the means of finding the
required interastion Hamiltonian are shown. Inferences are drawn about which coordi-
nates of the system and apparatus should be coupled together, and in what faghion. The
constraints of physical law on the 'allowable' set of interactions are discussed.

T P T R Mo WL oy S e e D i e e et SR

|



II. GENERALIZATION OF QUANTUM MEASUREMENTS

In quantym mechanics it is generally assumed that an observable of a quantum sys-
tem is characterized by a self-adjoint operator defined on the Hilbert space describing
the state of the system, Let us call this operator ¥, and assume that it has a complete
set of orthonormal eigenvectors {Iki>}ie ¥L associated with distinct eigenvalues
{ki}iE #» Wwhere < is some countable index set, and

K[ki) = ki[ki). {1}

Each commuting and orthogonal projection operator {I]i = Iki) (ki,}ie 5 projects an

arbitrary vector of the Hilbert space into the subspace spanned by Iki) and together they
form a complete resolution of the identity; that is,

EJ Hi =1 (2)
i

where I is the identity operator,
When the measurement characterized by the operator K is performed, one of the
eigenvalues ki will be the outcome, and the probability of getting ki is

P(k;) = (s [T, |s), (3)

if the system is described by a pure state Is), or
P(k) = Tr{p 1.}, (4)

if the system is described by the density operator p p

This formulation of the measurement problem does not include all possible measure-
ments. For example, it does not encompass a simultaneous measurement of noncom-
muting observables. Louisell and Gordon! and rccently Helstrom and Kennedy2 and
Holevo3 have noted that if the system S is made to interact with an apparatus A and
subsequent measurements performed on S+A or A alone, the scope of measwrement can
be extended to at least simultaneous approximate measurements of noncommuting
observables of 8. In particular, we can perform measurements corresponding to a set
of noncommuting, nonorthogonal, self-adjoint operators {Qi}ie ¥ defined on SCS, the
system Hilbert space, which forms a resolution eof the identity in ifCS.

z Q=L {5)
el
T~ illustrate this possibility, we consider the interaction of the system S with an
apparatus A, Before interaction the joint state of S+A can be represented by the density



operator
t t £
Pt = Pg ©® Pp (6
defined on the Tensor Product Hilbert Space UCS ® K A S :;cs+ A’ Where ® denotes tensor

product. The result of the interaction is a unitary transformation on the joint state. At
any arbitrary time t later than to’ the density operator of the combined system and appa-
ratus is

t t t \

where U(t, t O) is the unitary transformation,

Let '{l'li(t)}].E 5 be a set of commuting, orthogonal projectors in SCS ® 3 A at the
time t. If we perform a measurement characterized by the I]i, the probability of getting
the eigenvalue ki corresponding to the subspace into which l'li projects is

P(k,) = Tr{pk, ,I1.(t)}. (8)
Let

=yt

The {l'l i(t o)}ie 5 again form a commuting, orthogonal, projector-valued resolution of
the identity in ZL’S ® SCA, and

t t
P(k;) = Tripg ® p T (t )} (10)
Defining
t
Q; = Trp {p S0, (t )}, (11)

where Tr , indicates taking partial trace over SCA, we obtain

P(k,) = Tre1ps@;} (12)

where Trg indicates taking trace over JCS.

The set {Qi}ie 5 is again a resolution of the identity but in general the Qi are not
orthogonal nor commuting; furthermore, they only have to be nonnegative-definite self-
adjoint operators, It can be shown that if the Qi are projectors it is necessary and
sufficient that they be orthogonal (see Appendix A for a statement of the theorem that
is due to Halmos). This particular form of measurement is important because it has
been shown8 that minimum Bayes cost in communication problems may sometimes be

achieved by such measurements.



1II. THEORY OF GENERALIZED QUANTUM MEASUREMENTS

We shall now specify a generalized theory of quantum measurements that does not
correspond necessarily to measurements characterized by self-adjuint operators on
the Hilbert space that describes the system under observation.

As we have noted, an observable is characterized by a self-adjoint operator K that

possesses a set of orthogonal projection operators {l'[i} such that & II.1 = [, The set of
i
projection operators is said to form a commuting resolution of the identity, and defines

a projector-valued measure on the index set {i}.
This characterization of guantum measurements does not conveniently take into

sccount the simultaneous approximate measurement of noncoramuting observables, and
it is necessary to consider more generaiized measurements characterized by 'gener-
alized' resolutions of the identity. (See refs. 9-11 for more detailed motivation and
discussion.)

The requirement that the II ; be projection operators is relaxed by replacinyg the Hi

with nonnegative-definite operators Qi having norms <1, so that £ Qi =1, Now the ‘mea=
i
surement operators! Q, no longer have to pairwise commute, nor are they orthogonal

to each other in general. The Qi then define an operator~valued measure on the

index i.

Sometimes the resolution of the identity does not have to be defined on countable
index sets such as the integers. For example, the index set can be the whole real line,
We shall now discuss more general definitions of resolutions of the identity. Some of
the terminology will be required for the discussion of estimation problems, although the
foregoing is generally adequate for detection problems

DEFINITION 1. A resolution of the identity is a one-parameter family of projections

{Eh}_wq\ <40 Which satisfies the following conditions:

W EFu = Broina, w)

{(ii) =0, E =1
(iii) EJ\ +0 = Eh'
where

E x= lim E\x
00 Ao 00 N\

E x=1lim E x
A+0 *
pbn B

with x being an element in the space C. (13)
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Such a family of operators defines a projector-valued measure on the real line &,
For an interval A = (?\.1, ?\2], where hl < hz, the measure E{(A) = 13.,L

- E, 1is a projec=
2 M
tion operator, It follows from condition (i) that for two disjoint intervals Al' Az on the

real line
E(4)) E(4,) = 0. (14)
In fact, this orthogonal relation is true for two arbitrary disjoint subsets of the real line

{see Appendix A). In this sense the resolution of the identity E
onal resoclution of the identity.

N is also called an orthog=

For a small differential element d\, the corresponding measure is dE,\ = B(d\) =

aeah ~ By

The integral

E

[+ +]
A=S‘ A dE 15
__MdE, (15)

converges in strong operator topology, and defines a self-adjoint operator in the Hilbert
space JC. Conversely, by the spectral theorem for self=gdjoint operators (see Appen-
dix B}, every self-adjoint operator possesses such integral representation. The
family {E).} is called the spectral family for the operator A.

Sometimes the projecior-valued measure is defined on a finite number of discrete
points {for example, the points may be the integersi=1,..., M), and it is often more
convenient to write the measure [Ii corresponding to each point i explicitly. The mea-
gures {Hi} are projection operators and they sum to the identity operator

I =1L (16)
i 1

The orthogonality condition in Eq. 13 becomes

nm. =410,
i 613 j (17

. _J1 i=
where 613‘ is the Kronecker delta, sij = {0 i#]"

Te reconstruct the resolution of the identity given in the definition, we define

E. = ¥ I 18
Moy B (1%

and {Ek} will have all desired properties of a resolution of the identity.

EX\MPLE 1

If a sel-adjoint operator A has 2 set of eigenvectors {]ai) }i‘fl that forms a com-
plete orthonormal basis for the Hilbert space 3¢, then A can be written




M
z

A= aila]-) <ail' (19)

i=l
where the a; are the real eigenvalues of A.
The set uf projection operators

IIi = |a.i)"(ai| {20)

forms a projector-valued measure on the integers, i = 1,..., M, and they sum to the
identity operator
M

Z 0 =L {21)
i=1

DEFINITION 2. A generalized resolution of the identity is a one-parameter family
of operators {F?\}_°o <A<tH® that satisfy the following conditions:

(1) IEx, >N, By -F) is a bounded nonnegative-definite operator {(which also
2 1
implies that it is self-adjoint)

(i) Fyug = Fy

(ifl) F_o=0, F =L , (22)

Such a [arnily of operators defines an operator-valued measure on the real line. For
example, ° we have an interval A = (hl, )\2], where hl < kz, the measure is F(A) =

Fh - Fh . For a small differential element d\, the corresponding measure is
2 1

dFk = F(d\) = Fh +an " F)\' Whenever the integral A = f_mw hdF)\ converges in strong
operator topology, it defines a symmetric operator A in the Hilbert space ¥ (i.e., its
domain D, is dense in JC; and for f, g €Dy, (Af,g) = (£, Ag)) and the family {Fh} is
called the generalized spectral family for the operator A.

A projector-valued measure is a special type of operator-valued measure, but
operator-valued measures are more general in the sense that the measures are
nonnegative-definite self-adjoint operators instead of being restricted to projection
operators, as in projector-valued measures. One of the consequences of this defini-
tion of measure is that the measures of two disjoint subsets of the index set do not have
to be orthogonal as in projector-valued measures,

EXAMPLE 2 -

An example of an operat re-valued measure that is not a projector-valued measure
is when {E&}, {Eh} are two projector-valued measures that do not commute for at least
one value of A, and we form the generalized resolution of the identity

F); = aEk + (1-G)E?\.' {23}
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where ¢ is a real parameter in the interval (0, 1}). Specifically, Fy defines an operator-
valued meagsure, but not a projector-valued measure, on the real line.

As in a projector-valued measure, sometimes an operator-valued measure is defined
on a finite number of discrete points {for example, the points may be the integers,
i=z1,..., M) and it is more convenient to write the measure Qi corresponding to each
point i explicitly., The measures Qi are nonnegative~definite self-adjoint operators with
norm =1. To reconstruct the resolution of the identity given in the definition, we
define

and {Fh} has all of the desired properties of a resolution of the identity.

EXAMPLE 3

Figure | shows three vectors |s;), i = 1,2, 3 with the symmetry

<si|sj>=-“’—T, M1+ g (25)
We define

Q=% |s) (sl i=123 24)
Then

3

Z Q=1 (27)

i=1
and

Q¥+ Q. (28)

Thus {Qi}f__.1 is an operator-valued measure but not a projector-valued measure on
the space spanned by the {|s;)}. The operator-valued measure {Q,} above is defined
on the real line ®. We can also define operator-
valued measures on general measurable spaces.

If (X, &) is a measureable space, where X
is the space, and &/ a collection of subsets of X
on which an appropriate measure can be defined
(for example, &/ can be a o-algebra, o-ring,
o-field, etc.), a map F(.) can be defined as

follows.
Figure 1. Possible states of S. For all subsets A€ &, A - F(A), where



(i} F(A) is a bounded nonnegative-definite self~adjoint operator.

(ii) The map I'(.} is countably additive, i.e., for any countable number of pairwise
disjoint subsets in &, {Ai}’ say,

U ag= ) Fap (29)

i
(iii) F(X) = I, the identity operator in ¥, so F(.} is a resolution of the identity.
(iv) For the null set &, F(@)=0./

EXAMPLE 4

The output of & laser well above threshold is in a coherent statcs.'.12 A coherent state

|a) is labeled by a complex number «, where the modulus corresponds to the amplitude
of the output field, and the phase of ¢ corresponds to the phase of the field. The inner
product between two coherent states |a), “3) is given by

(el = exp {a"8 - 3 1el* - F 16T} (30)

The coherent states can be expressed as a linear combination of the photon states
111), n=0,1,... where the integer n indicates the number of photons in the field

2 & n
l —— |n). (31)

‘a) - 9-1/2|a
=0 (n1j}/2

The Hilbert space JC that describes the field is spanned by the set of photon states
- 7]
{in) }n=0 and

o0
Z |n){n| = I4. (32)
n=0

H we define
{i_=|n) (n|}; o (33)

then the set of projectors {Hn} is a projector-valued measure defined on the positive
integers of the real line,
The set of coherent states also spans 3C, and the integral

Xc |a) (el d%a = Ises (34)

where C is the complex plane, and dza = dIm () dRe{¢). If we define

10
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R, = le) (aj}yec (35)

we have an operator-valued measure Q a} defined on the complex plane C instead of on
the real line and

QaQ’a' # Qaaaa' (3 6)

so it is not an orthogonal resolution of the identity.

A measurement on a physical system can be characterized by an operator-valued
measure, with the outcome of the measvrement having values in (or labeled by elements
in) X. The probability of the outcome falling within a subset A€ &, is given by
Tr {pF(A)}, where p is the density operator for the system under observation. When
a measurement is characterized by a single self-adjoint operator, sometimes called an
observable, the measures are all projector-valued. Here the measures are generalized
to nonnegative self-adjoint operators with norms <l. A natural question arises, How
do we realize such generalized measurements? Does every operator-valued measure
correspond to some physical measuring process? Inthe sequel we shall prove the fol-
lowing major theorem, which will be restated in more precise mathematical language
in Section V.

Theorem 1

Every operator-valued measure can be realized as corresponding to some physical
meamnent on the quantum system in question in the following sense.

(a) It can always be realized as a measurement corresponding to a self-adjoint oper=
ator on a composite system formed by the system under observation and some adjoining
system that we call the apparatus.

(b) Under suitable conditions that will be specified later, it can be realized as a

sequence of self-adjoint measurements on the system alone. /

We shall give a simple example showing when an observasle cannot provide the
information that we desire and hence generalized measurements have to be used.

Consider the situation in which the information to be transmitted is being stored in
the orientation of the spin of an electron. The electron is in one of three possible states,
just as those described in Example 3. A spin measurement performed on the electron
(that is, a Stern-Gerlach experiment) can have only one of two possible outcomes. This
measurement is clearly unacceptable for distinguishing among three possibilities, and
it is necessary to bring in an apparatus to interact with the electron. The suusequent
measurement on the composite system will give the desired outcome statistics.

11




V. EXTENSION OF AN ARBITRARY OPERATOR-VALUED MEASURE
TO A PROJECTOR-VALUED MEASURE ON AN EXTENDED SPACE

We are now concerned with the proof of Theorem |l and we provide two construction
procedures for the extension space and extended projector-valued measure. For readers
who are interested neither in the proof nor in the construction, this section may be
skipped without inhibiting understanding the rest of the report. Reading Example 5, how-
ever, may be very instructive.

In order to prove Theorem 1 we need some preliminary mathematical results. First,
we want to investigate the extension of an arbitrary operator-valued measure to a
projector-valued measure on an extended space. Two slightly different methods of exten-
sion will be offered, since each has its own merits.

Holevo3 has noted that Na¥mark's theorem provides such an extension.

Theorem 2 (Nalmark's Theorem)

Let Ft be an drbltrary resolution of the identity for the space JC. Then there exists
a Hilbert space w* contammg I as a subSpace. and there ex1sts an orthogonal resolu-
tion of the identity E for the space dct, such that F, f=PypE, *1, for all f € 3C, where Pzo
is the projection operator into ./

The proof, which provides an actual construction, is given in Appendix C.

I'he second method of extension is related to the unitary representations of

*-semigroups.

DEFINITION 3. Let G be a group. A function T(s) on G whose values are bounded

operators on a Hilbert space 3¢ is called positive semidefinite if T(s-l) = T(S)T. for

every s € G and
Z Z [T syh(s). hiy} =0 (37)
s=G 1eG

for every finitely nonzero function h({s) from G to IC ({that is, h(s) has values different
from zero only on a finite subset of G)./

DEFINITION 4. A unitary representation of the group G is a function U(s) on G,

whose values ate unitary operators on a Hilbert space JC, which satisfies the conditions
Ule) = I (e being the identity element of @), and U(s)U{t) = U(st}, for s.t € a./
The following theorem is due to Sz.-‘\Tagy.l3

Theorem 3

(a) If U(s) is a unitary representation of the group G in the Hilbert space s, and
if 3C is a subspace of 5C+, then T(s) = PSCU(S)/C?C is a positive-definite function on G such

12
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that T(e) = I.'JC‘ Moreover, if G has a topology and U(s) is a continuous function of 8
(weakly or strongly, which amounts to the same thing because U(s) is unitary). then T(s)
is also a continuous function of s.

(b) Conversely, for every positive-definite function T(s) on G, whose values are
operators on ¥, with T(e) = Iy, there exists a unitary representation of G on a space
et containing 3 as a subspace such that ’

T(s) = PpU(s)/  fors € G, (38)
and the minimality condition for the smallest possible ic* is iven by

st = V U(s)3  (minimality condition). (39)
seG
This unitary representation of G is determined by the function T{s) up to an isomorphism
so that it ig called "the minimal unitary dilation” of the function T(s). Moreover, if the
group G has a topology and T(s) is a (weakly) con.‘nuous function ot s, then U(s) is also
a (weakly, hence also strongly) continuous function of s./
[Notes. In {a) the solidus indicates that the operator is restricted to operation on
elements in JC. In (b) U{s)¥ means the =ct of all elements Uis)f, e JC. Vv .,//i
d '
is defined as the least subspace containing the family of subspaces {J(]lr An isomor-

phism between two normed linear spaces 3(31 and JCZ is a one-to-one continuous lin-
ear map M : 3(3[ - 3¢, with A, = i,.]

The proof, which also provides a construction, is given in Appendix 1.

Given Theorem 3, we arrive at the following theorem for the extension of arbitrary
operator-valued measures.

Theorem 4

Let {Fh} e an operator-valued measure on the interval 0 N 27, then there exists
a projoctor-valued measure {EK} in some extended space 3¢T C 3¢ euch that F, =PyeE, /i
for all \./

The proof is given in Appendix I.

Note that the fhinimality condition of Theorem 3

[ve]
st = v Um i (40)
n=0

is equivalent to

et = v E, %, (41)
*

and the system (JC, 3C+'{E)\}) is determined up to an isomorphism. Also, the interval
of variation of the parameter \, (0,27) can be extended to any finite or infinite interval

by using a continuous monotonic transformation of the parameter \.

13




EXAMPLE 5 (see Chan'?)

In Example 3 we gave an operator-valued measure that is not a projector-valued
measure, Three vectors {| si)}le have the structure shown in ¥ig. |, We deline

2 .
Q =3 lsp) (sl 1= 123, (42)
Then
3
2 %" e 3
i=

where [.» denotes the identity operator of the two-dimensional Hilbert space 3C spanned
by the three vectors {| si>}i3=l' Pick any extra dimension orthogonal to ¥ to form st

together with 3C. Let {id:i)}?:l be an orthonormal basis for the three-dimensional space
3(1+ as shown in Fig. 2. By symmetry considerations. we adjust the axis of the

Figure 2. Configurations of II, = |¢i) (&

coordinate system made up of the {|¢i )} ?:1 to be perpendicular to the plane ¥ spanned
by the {| si) }. The projections of the |¢i) on the plane of the .si) along the axis are
adjusted so that they coincide with their respective lsi), so that I(¢i[si)| = constant
for all i is maximized (see Fig. 2). By straightforward geometric calculations,

' 2 2
[(&yis ) =3 (44)
and

Pylo) =% Isp). (45)

Hence
Poolo) (6P, =2 |s.) (5! =@
RS TAARS Sl VRN NS TR & i

14



where l'Ii = |¢i) (¢i1 XAi, and

L

I, = (47)

J i [Jc+.
i=1 .

Therefore {Hi} is the projector-valued extension of {Qi} on the extended space act,

15




V. FIRST REALIZATION OF GENERALIZED MEASUREMENTS:
FORMING A COMPOSITE SYSTEM WITH AN APPARATUS

Giiven Theorems 2 and 4, we can prove immediately part (a) of Theorem 1. First,
we must define some mathematical quantities in order to state the theorem more pre-
cisely. We follow the procedure suggested by Holevo.3 although he did not give a detailed
development.

We combine two systems, say S and A, to form a composite system and if GCS and
i A are the Hilbert spaces that previously describe their individual states, then the joint
state of S+A can be described by the Tensor Product Hiibert Space JCS ® I A formed by
the tensor product of the two spaces 'JCS and ¥ A’ Thus if the state of S is [s) and
the state of A is |a). in the absence of any interaction between S and A the joint state

of §+A is denoted by |s)[ a) (Dirac notation is used for states). Moreover, every ele«
ment in g @ SCA is of the form Z ci| si) | ai). where the c; are complex numbers such
that = lci| 2 ¢ w0, and the lsi) and the | ai) are elements in GCS and JCA, respectively.

1
The inner product on ir'CS ® I A is induced in a unique way by the inner products on

the constituent spaces GCS and & A 8° that
((a, (5,1 18,0]a,)) = (s8,]8,) (a;]a,). (48)

It is an immediate consequence of this structure that if we have a set of complete
orthonormal basis for euch of the two spaces .'.FCS and € A’ then the set of tensor products
of the elements in these two sets, taken two at a time, one from each set, forms a com-

plete orthonormal basis for 3Cq @ 3CA. That is, if {]si >}i€.f and {| ay >}jej are sets

of compleie orthonormal basis for SCS and SCA. then the set {| si) | aj >}i€f. je g forms

a complete orthonormal basis for the space 3‘35 ® I a the elenents of which cannot be
separated into the tensor product of an element in 3(35 and an element in JC A’ but it is
possible to express every element in SCS ® & p B8 8 linear combination of elements that
are separable. ‘

Given this definition of the space 3CS ® 3 A the operators in this space can be defined
easily. If Tg and T, are bounded linear operators in JC S and JC A’ then there is a unique
bounded linear operator Tg ® T, in JCS @ JCA with the property that

(Tg ® T(ls)la)y = (Tgls)) « (1, [ad) (49)

for all Is) € JCS and all |a) € SCA.
TS ® Ty is called the tensor product of the operators TS and T A Thus if the state
of S is described by the density operator Pg and the state of A by P We can show that

in the absence of interactions the joint state is given by the operator ps® Pa By lin-
earity, the operation of the operator 'I‘S @T A can be extended to arbitrary elements
in 3CS & SCA. Again, the most general operator on JCS ® JCA cannot be written in the

16



form of the tengor product of two operators as above, but can be expressed as a linear
combination of such product operators, and linecarity defines the operations uniquely on
elements in SCS ® i A

It is obvious that this description may be extended to describe a composite system
with arbitrarily many (but finite} component systems, instead of two.

For the moment, this concludes the characterization of composite quantum systems.
We sghall discuss the dynamics of such systems when we talk about interactions
(Sec. XVII).

Now we are able to state part (a} of Theorem 1 more precisely.

Theorem 1

{a) Given an arbitrary operator-valued measure {Qa}ae A’ Where A is one index
set on which the measure is defined, we can always find an apparatus with a Hilbert
space J¥C A’ 2 density operator p,, and a projector-valued measure {l'l } zc A corre-

sponding to some self-adjoint operator O = Z q, II on JC ® 1 A such that the proba-
acA
bility of getting a certain value q, corresponding to Q . 8s the cutcome of the

measurement is given by

P(a,) = Trg {pgQ,}

TrS+A{pS -2 PAHQ}' {50)

for all density operators Pg in SCS’ where TrS is the trace over JCS and Tx-S +A is the
trace over 3(3 & CfC o/
[Note. The trace of an operator D over a space #C is defined as Tr‘{D} E (f |D|f ¥

where {If )} is any complete orthonormal basis of 3. This quantity is mdependent
of the particular choice of basis.]

Proof: We know from Theorems 2 and 4 that an arbitrary operator-valued measure

{Q}

a

measure {II }a cA

subspace. %% can be embedded in a tensor product space ID'CS ® i A for some apparatus

cA with operator-values on the space JC can be extended to a projector-valued
with operator-values on an extended space 3¢t that contains CfC as a

Hilbert space with enough dimensions. The question of how many dimensions are
required will be addressed later. For the moment, assume that JC A has enough dimen-~
sions that the dimensionality of the space 3(3 ® 3C is greater than or equal to that of
ge*. 1f the state of the apparatus is set 1mt1a11y at some pure state |a) then the joint

state of S+A can be described as the tensor product PS ® Ia) (a| of a density operator Pg

in 4C g’ and the density operator Pp = |a) (a| in 3{3 Thus for every element |s) in TJ’CS
it can be identified as the element |s)|a) in 3C ® 3(3 A- And the whole space SCS can
be identified as the space JCS ® .,#l a)’ where ‘lla) is the one-dimensional subspace

of 3CA spanned by the element |a). Now ¥C = JCS ® .l| a) is a proper subspace of

17
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368 ® K A+ The projection operator into the subspace ¥ can be identified as Pgo =
I ® |a) (al, where the set {| si)} is any orthonormal basis in SCS. We can form an
S

operator-valued measure {Q ® |a) a|} with values in the space 3. By Theorems 2
p a e A

and 4, there exists a projector-valued measure {Ha} A O an extended space act that

a
we can take as 3CS ® 3CA. since we have assumed that SCA has enough dimensions, so

that
Q, ® |a) (a| = Pell Pyor  Ma € A (51)

Now for an arbitrary density operator Pg in ¥ s

Trg {pgQ,t = Trg, , {ieg ® |2} (aly@, ® la) (al)}

= Trg, , {eg ® [a) (a|)Pgll Pyt (52)
With the relation Tr {Bc} = Tr {CB},
Trg{pgQ,t = Trg, s {Pyoleg ® la) (al ey, }. (53)
But pg ® la) (a| is an operator in ¥. Hence
Pyelpg ® la) (al1Pye = o5 ® [a) (al. (54)
Therefore
Tr {p @, = Trg, \ {og ® |a) (alm } . (55)

for any arbitrary density operator Pg Note that
Q, = (al@, ® |a)(a|)|a)

Teal@ @ |2) (ahite @ [a) (al}

Tr A{‘Psc“ap:fc’Psc}

Tr A{Psc“apsc}

Tr A{Pﬁcna}

n

Trp{tye ® 12) (aim }

n

Tr A{(I:,CS ® pyll ks (56)

where Tr A denotes partial trace over the space ¥ A The partial trace of an aperator D
in SCS ® i A over the apparatus Hilbert space ¥ A 18 defined as the operation

. Z . Isj>(ail(sj'D|sj')|ai)(sj','

1: }» ]
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where {| s i )}. {| a, )} are complete orthonormal bases in JCS and ¥C A’ respeclively.

EXAMPLE 6

We shall make use of the operator-valued measure described in Examples | and 5.
In Example 5 we have already found the projector-valued measure extension {ni}i”:l in
the three-dimensional extended space #t. 1f we consider the original two-dimensional
Hilbert space ¥ as the system space 3CS, we only have to find an apparatus whose state
is described by a Hilbert space JC A+ and then embed %" in the tensor product Hilbert
space .’ICS ® i A’ Any apparatus Hilbert space of dimensionality =2 will work (dimen-
sionality of 3CS ® SCA will be 2 4). Let p, = |a) (a| , where | a) is some pure state in
¥ A Therefore the three possible joint states of S+A are {| Bi>| a)}13=1. and they span
a two-dimensional subspace in {FCS ® SCA. namely, JCS ® .Il a)" where .A’Ia) is the
subspace spanned by ] a). Choose any other one-dimensional subspace .di St+A of
JCS ® C‘CA orthogonal to 3(35 ® .A/I a)’ Then the space GCS ® v"] a) v‘lSq-A (=3C") is

three-dimensional and includes .'ICS ® .« l a) =3C) as a subspace. Hence three orthog-

onal projectors {Hi};l can be found in 3c*, so that they are the extensions of the cor-

responding operator-valued measures {Qi}?

Let I be the identity operator of the space (g ® ¥, - {eg ® Moy VA, A and

Hiznio I fori=1,2,3. (57)
Then
S =1 (58)
l_J 1 GCSS 3CA
i=1
and

TrA{(IJCS® lay (alym}= TrA{(ISCSQ lay (alym }

= Q fori=1,2,3./ {59)
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=1 (see Example 5 for the structure of the Hi).
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V. PROFERTIES OF THE EXTENDED SPACE AND THE
RESULTING PROJECTOR-VALUED MEASURE

We shall now examine the properties of the extended Hilbert space and the resulting
projector-valued measure. The most important property is the dimensionality of the
extended space, and it is important for two reasons. First, it will tell us the required
minimum number of dimensions of the apparatus Hilbert space. In a communications
context, the apparatus should be considered as a part of the receiver. If the dimension-
ality of the extended space is known, we have some idea of the complexity of the
receiver. Second. the analysis of the minimum dimensionality of the extended spa~c
is absolutely necessary for the discussion of the realization of generalized measurements
by sequential techniques in Section X. s

When little is known of the properties of the operator-valued measure, Theorem 4
is powerful. It provides an upper bound for the dimensionality of the extended space
whenever the cardinality of the index set, on which the measure is defined, is given.
For example, in the M~-ary detection problem, we tty to decide on one of M different
signals. The characterization of that receiver is given by an operator-valued measure
defined on an index set with M elements corresponding to the M possible outcomes of

the decision process. That is, we have M different 'measurement operators’ {Qi}li\{l-i
M -

that form a resolution of the identity Z Qi = I. If the density operator of the message-

i=l
carrying field is p, the probability of chuosing the kth

message is Tr {ka}- The detailed
properties of the optimum @, depend he:tvily on the states of the received field and the
performance criterion that is chosen. Without going into a more detailed analysis of

the communication problem, all that we know about the quantum measurement for an
M-ary detection problem is that it i{s characterized by M 'measurement operators'

{Q.}'l.\'1 1+ Theorem 5 is useful for this kind of situation.

i'i=
Theorem 5
M
For an arbitrary operator-valued measure {Qi}i—l’ = Qi = I, whose index set has
==l

a finite cardinality M, the dimensionality of the minimal extended Hilbert space, min 3C+.
is less than or equal to M times the dimensionality of the Hilbert space . That is,

dim {min 3*} <M dim {3c}./ (60)

The proof of Theorem 5 is given in Appendix F.

We shall show eventually that there exists a general class of {Qi} such that the upper
bound is actually achieved. In the absence of further assumptions on the structures of
the Qi' this is the tightest upper bound.

If more structures for the operators Qi are given, we can determine exactly how

large the extension space has to be. Theorems 6 and 7 provide us with that knowledge.
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Theorem 6

If the operator-valued measure {Q a} CCA has the property that every Q, is propor-
tional to a corresponding projection operator that projects into a one-dimensional sub-
space S5, of X (.e., Q, = qa|qa) (qa[. where 1 2q_ >0, and |qa) is a vector with
unit norm}. then the minimal extended space has dimensionality equal to the cardinality
of the index set A (card {A}). That is,

dim {min %*} = card {a}./ (61)
The proof of Theorem 6 is given in Appendix G.

Theorem 7

Given an operator-valued measure {Qa}"2 cA’ let (R{Qa} denote the range space of

dim {min %"} = = dim {&lQ 1./ (62)
aSA
The proof is given in Appendix H.
Given Theorems 6 and 7, we can make some interes‘ing observations.

COROLLARY 1. It is an immediate consequence cf the proof of Theorem 7 (see
Appendix H) that the statistics of the outcomes of measurements characterized by some
operator-valued measure {Qa}aEA can be obtained as the 'coarse-grain' statistics of
the outcomes of a measurement characterized by a set of one-dimensional operator-

K
valued measures {Pi = qﬁ[qﬁ) (qil} @ (see Kennedyls). By considering the
k=1

» (IE:'L

associated set of one-dimensional operator-valued measures {Pi} instead of {Qa} no
additional complications will be introduced, since the minimal extensions of the two sets

K
of measures are exactly the same. In this sense the two sets {Q } ~ 5 and { Pa} @
a'aCA k k=l,eEA

are 'equivalent'./

COROLLARY 2. If all of the operators Qa are inveriible (that is, if each of their
ranges is the whole space JC), then

dim {min 3%} = card {a}l " dim {3c}./ (63)
The proof is obvious with Theorem 7.
Note that the upper bound of Theorem 5 is exactly achieved when all the Q, are
invertible.
COROLLARY 3. The construction of the projector-valued measure and the extended

space provided by Naimark's theorem (Theorem 2) is always the minimal extension./
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The proof is given in Appendix I.

EXAMPLE 7

In Example 5, the operator-valued measure {Qi E%- Isi) <Sil }?___1 has the property
that each operator Qi is proportional to a one-dimensional projector. Hence, either by
Theorem 6 or Theorem 7, the dimensionality of the minimal extended space should be
equal to the cardinality of the index set which is three. Therefore the extension given
in Example 5 is minimal. It is clear from Fxample 5 that the projector-valued exension
has to be defined at least on a three-dimensional space./

DISCUSSION, Theorems 5, 6, and 7 hold when the dimensionality of t\ie Hilbert
space ¥ is countably infinite (Efco), but we must be careful in interpreting the results.
The following rules are useful for cardinality multiplication:

Finite cardinality is indicated by an integer.
Couniably infinite cardinality is indicated by Ko

Uncountably infinite (or continuum) cardinality is indicated by K

integer * integer = integer,

in K =R
teger o o’

« integer _
.0

K
o

o 1"

In Theorem 5, the dimensionality of the minimal extended space min et is given by
dim {min 3¢ } =M dim {JC} Thus if dim {#€} = ks then dim {min 36+} M-k = K, also.
This does not mean min 3% = 3¢. 1f we examine the proof of that theorem closely, the
minimality statement really means

dim {min st - 5 = Kye (64)

The reason is that with the space ¥ we need (M-1) dim {3} = (M-1)k = k  number of
dimensions for the extension. (This holds even if M goes to infinity because K" x =K .)
This is also true for the result of Theorem 6 which states dim {mm 3 } = card {A}
In the event that card {A} =Ky the result should be interpreted very carefully. Let A'
be a subset of the index set A such that for alle € A", 1 > q,: This means for all the
e € A-A', g, =led Qa is already a projector that requires no extension. Hence all
the 'extra' dimensions required in min 5t are for those Qa with e € A'. Thus we hava
the following interpretation of the result of Theorem 6.

dim {min 3" -3¢} = cara {a"} - aim {&{ = @}, (65)
ecA' ¢
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where (R{ } indicates the range space of the operator in braces. Obviously card {A'}
can be finite or infinite. Accordingly the 'extra' dimensions needed to form min g *
from JC are finite or infinite.

Similar interpretations should be made for the result of Theorem 7. In Corollary 1
we note that the extension in Theorem 7 is structurally similar to that in Theorem 6, B0
the same interpretation applies. If we follow the proof of Theorem 7, we arrive at the
following result (which we shall not derive in detail).

dim {min 3C+—3(3} = T dim {(R{lim @, -Q2)}}

a= A n-—-mw
- dim {0’-{{ T lim(Q, —Q;‘)} . (66)
gEA n=-o0

The result for Theorem 6 is a special case of this one./
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VII. APPARATUS HILBERT SPACE DIMENSIONALITY

We are now in a position to make some general comments about the complexity of
the apparatus at the receiver of a quantum communication system. Bear in mind that
the dimensionality of a tensor product Hilbert space JCS ® iC A is given by

dim {¥eg ® 3¢ A} = dim {Jcs} + dim {3¢ A}. (67)
We may state the following theorem for the minimum dimensionality of the apparatus
Hilbert space.

Theorem 8

If the system Hilbert space SCS is extended first to the space set 2 3CS and ¥t is a
minimal extension. then the minimum number of dirnensions of the apparastus Hilbert
space JC A required for a realization of the measurement described in the sensec of
part (a) of Theorem 1 is given by the smallest cardinal N such that

N - dim {3Cg} > dim {min sc*}, / (68)

The proof is obvious.
In the absence of detailed knowledge of the nature of the operator-valued measure,
Theorem 5 gives the following theorem.

Theorem 9

For an arbitrary operator-valued measure {Qi}i\il' = Qi = Iyo» whose index set has
i

a finite cardinality M. the minimal dimensionality of the apparatus Hilbert space ¥ A
required to guarantee an extension of the measure to a projector-valued measure in the
tensor product space GCS ® SCA, is equal to M./

Proof: The inequality in Theorem 5 asserts

dim {min SC+} =M dim {SC S}'

If we make dim {3 ,} = M,

il

dim {.’J’CS® 3CA} dim {3{35} * dim {JCA}

M dim {3¢} > dim {min ity (69)

Hence we can always guarantee an extension. Since we show in Corollary 2 that the
bound can be achieved for some classes of measures, M is the minimum dimensionality
that will always guarantee an extension. /

The implications of the theorem are very interesting. One of the main reasons for

our investigation of measurements characterized by generalized operator-valued
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measures is that we hope to improve receiver performances by optimizing over an
extended class of measurements that are not completely characterized by self-adjoint
operators. Theorem 5 tells us that if we are interested in the M-ary detecticn problem,
all we have to do is to adjoin an apparatus with an M-dimensional Hilbert space iC A and
consider only measurements characterized by self-adjoint operators in the tensor prod-
uct Hilbert space ZFCSQ JCA.

The following theorems are immediate consequences of Theorems 6, 7, and 8.

Theorem 10

If the operator-valued measure {Qa}a cA has the property that every Qa is propor-
tional to a corresponding projection operator that projects into a one-dimensional sub-
space S of € (that is, Qa = qa|qa) (qa| » where 1 2q_ > 0, and |qa) is a vector with
unit norm), then the minimum number of dimensions of the apparatus Hilbert space
required for a realization of the measurement described in the sense of part (a) of The-
orem l is given by the smallest cardinal N such that

N dim {ECS} 2 card {A}./ _ (70)
Theorem 11

Given an operator-valued measure {Qm]"I EA’ let (H{Qa} denote the range space of Qa'
a € A, Then the minimum number of dimensions of the apparatus Hilberti space required
for a realization of the measurement described in the sense of part (a) of Theorem 1 is
given by the smallest cardinal N such that

N dim {.’:’cs} = = dim {&{Q,}}./ (71)
eSA

The preoof is obvious.

EXAMFPLE 8

In Example 6 we showed how the extended space in Example 5 can be embedded in
a tensor product Hilbert space of 3CS and an apparatus Hilbert space SCA. We noted that
the space 3 A must be two-dimensional or bigger. The results in this section confirm
that the dimensionality for JC A must be at least two.

DISCUSSION. We must be careful in interpreting the results of this section when
the dimensionality of the Hilbert space ¥ is infinite.

In Theorem 8 when both dim {GCS} = dim {min 3C+} =K, (countably infinite), the dimen-
sionality of the apparatus space will be aa integer (in fact, either 1 or 2). It will be 1
when the measure is already projector-valued and does not need an extension; it will
be 2 when the measure is not a projector-valued measure. Hence, if the Hilbert space X
in Theorem 9 is infinite dimensional { Ko). the minimal extended space is also infinite
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dimenesional (M * Ky = K o)' The 'extra' dimensionality required for the most general
measure is at most (M-1) * k=K . Hence, if the apparatus space is two-dimensional,
we can guarantee an extension of any measure on the tensor product space 3C S ® iC A

Tor Theorems 10 and 11, if both dim {3c S} = dim {36+} = K then the dimensionality
of the apparatus space required is two. /
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VIII. SEQUENTIAL MEASUREMENTS

We shall now discuss the second realization of generalized quantum measurements
as stated in part (b} of Theorem 1. Our interests in sequential measurements originate
from the investigations of the interaction of a system un.er observation with an appara-
tus, and sequential measurements being performed separately on the system and appa-
ratus, with the structure of the second measurement optimized depending on the outcome
of the first measurement. In order to illustrate how a sequential measurement may
actually be performed, we give an example of a simple binary detection problem. (See
Appendix J for a more general problem.) We also analyze sequential measurements
more mathematically.

8.1 Sequential Detection of Signals Transmitted by a
Quantum System (see Cha\n1 6)

Suppose we want to transmit a binary signal with a quantum system S that is not cor-
rupted by noise. The system is in state |s ) when digit zero is sent, and in state |s b
when the digit one is sent. (Let Py and P, be the a priori probabilities that the d1g1ts
zero and one are sent, p ot P = 1.) The task is to observe the system § and decide
whether a "0" or a "1" ig sent. The performance of detection is given by the probability
of error. Helstrom” has solved this problem for a single observation of the system S
that can be characterized by a self-adjoint operator. The probability of error obtained
for one simple measurement is

Pr[e]=%[1— v -4p1pol<sllso>|2]- | (72)

We try to consider the performance of a sequential detection scheme by bringing an
apparatus A to interact with the system S and then performing a measurement on S
and subsequently on A, or vice versa. The structure of the second measurement is

optimized as a consequence of the outcome of the first measurement.

Suppose we can find an apparatus A that can interact with the system S so that after
the interaction different states of system S will induce different states of gystem A.
Suppose the initial state of the apparatus is known to be B ). and the final state is !a )
if 8 is in state |s ), and |9'1> if S is in state |s Y and |al)a»E ]a y. It is shown in
Part I of this report that the inner product of the state that descrzbes the system S+A
when digit "0" is sent and that which describes it when digit "1" is sent is invariant under
any interaction that can be described by an interaction Hamiltonian H AS that is self-
adjoint. That is,

(s,l8,) = (s,ls,) (a la ) = (sElsh) (aflal), 73)

where |sf)) and |s£} are final states of S after interaction if a "0"-or a "1" is sent.

27

AL AT AT ) 3 St A 8 F IR 50 S e B aiPMSE  8 h  T T i e i e




Now suppose

s ls ol < [¢sflshyl < (74)
which implies also

(s s < [alla]yl < 1. (75)

We wish to chserve 8 first in an optimal way. The process is similar to Helstrom's
in that we choose a measurement that is characterized by a self-adjoint operator OS in
the Hilbert space ¥ g 89 that the probability of error Pr[es] is minimized, and it is given

by

)3 fy fy2
Pr[es]zi-l:l - ,\/1 - 4plpol(so|sl)| } (76)
and the probability of correct detection is
1 A
Pr[CS]=E|:1 + ,‘/1 - 4plpo|(sl|so)| ] (77)

Suppose the outcome is "1", The a priori probabilities p 1"Pg of apparatus A for states
|a1) and la ) have been updated to Pr[CS] and Pr[€S] respechvely

Now we perform a similar second measurement on A, characterized by an operator
OA in the Hilbert space JCA A new set of a priori probabilities p1 = Pr[CS] p = Pr[E 1
is used for the states Ia ) and |a Y. Assuming that we already have all avallable mfor-
mation from the outcome of the flI‘St measurement in the updated a priori prebabilities
for A, we base our decision entirely on the second measurement. The optimal self-
adjoint operator O A is chosen to minimize the probability of error of detection Prfe]in
a process similar to the first measurement, and the performance is

Pr[€]=%[l - /1 - 4 Pr{Cd] Pr[es]|(ag]atl‘)|2].

f f,,2 f, . f £y £ : ;
But Pr[CS]Pr[GS]= PP, l{s1|8,}|"s and (s118,) (ayla,) = (s;|s,), which gives

Prie] =—,i,—{1 - /4p1p0|(sl|so)]2].

This is exactly the same performance obtained by Helstrom in one simple measurement.

When the first measurement characterized by the operator OS is performed and one of
two outcomes will result, we decide {temporarily) that either the digit "0" or the digit "1"
is sent. Since Ogis a self-adjoint operator, it possesses an orthogonal resoclution of

the identity (and hence defines a projector-valued measure on the digits "0" and "1").

Let II0 be the corresponding projector-valued measure for the outcome "0". Then I-IIo
is the measure for the outcome "1". The probability of getting outcome "0" is P =

(s| Hol s) where 15) is the final state of S (either |sg) or ]si }), and the probability
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of getting outcome "1" is 1-P. We represent this first measurement diagramatically
in Fig. 3 by a tree with two branches. The transition probabilities are given by P for

0.0 Temporarily decide on "0"

I-T,,1~p Temporarily decide on “t"

Figure 3

the branch zero, "0", and 1-P for the branch one, "1". If the outcome is "1", we shall
perform a second measurement on A characterized by the self-adjoint operator O
Associated with O A are the projector-valued measure II and I- l'l + for outcome "1"
and "0", respectively. If, however, the first outcome 1s "o", We perform a different
measurement corresponding to O' A’ with associated projector-valued measures II and
I- l'l for "1" and "0", respectively. OA and OA do not have to commute; in fact, they
do not for the optimum detection scheme (which minimizes the probability of error) in
this example. Both measurements are represented diagramatically in Fig. 4. The

g, "on
ngr, uye decide on"0"
"I, "0+ decide on 1"
wpn e

Figure 4

probabilities of the different outcome sequences are

Pr{*o" "ot = ((sll_|s))1-(alm,|a))

=(a|(S|HO®(I—ﬂ2)|S>|a) (78)
Pri*o" "1"} = ((s|H_|s))(a|m,|a))

= (al(s|N ® m,|s)la) (79)
Pri"1" "o" = (1-(s|0_}s))(1-(al T [a))

= (al(s|@-M)a-11 )] s)| a) (80)
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Pr{"", "'} = (1-(s|T | s))((alm [a))
= (al(sla-m) ® M| 8)|a). (81)

When the last outcome is "0" ("1"), the receiver will decide that "0" ("1") was sent.

It is surprising that an optimum measurement for the binary detection problem can
be realized as a sequential measurement. Appendix J gives another realization for the
optimum measurement for a more general binary detection problem. Naturally, we are
interested in characterizing the general class of measurements that can be provided by
sequential measurements.

8.2 Projection Postulate of Quantum Measurements

In order to characterize gequential measurements, it is necessary to characterize
the behavior of a quantum system after a measurement has been performed on it.
Von Neumanh has provided a rather mathematical and concise yet complete characteri-
za.tion.18 We shall summarize only the essentials for characterizing sequential mea-
surements.

When a measurement corresponding to a self-adjoint operator A is performed on
a quantum system S, the outcome of the measurement will be one of the eigenvalues of
the operator A, and the resulting state of the system S 1\\I’;«'ill lie in the eigenspace core-
¥

responding to that eigenvalue. More precisely, let {P1 i=

1 be the orthogonal resolution
of the identity given by A, such that

M
iy !
and {82)
M
A= .E aiPi.

i=1

where each 8y is a real eigenvalue of A corresponding to the projector Pi' The proba-
bility of getting the eigenvalue a,; as the outcome is

P(a,) = (s|P,[s) (83)
if S is in the pure staie |s), or
P(a,) = Tr{pp;} (84)

if S is a statistical mixture described by the density operator p.
Given that the outcome is the value ar the postulate states that the system will be
left in the state |s'):

P.ls Y
fs') =t (85)
1/2
(s|p,]s)!/
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if S is in the pure state |s). The factor <S|Pi|8)l/2 in the denominator is fr.. normal-
ization. If S is described by the density operalor p, it will be left in the state described
by the density operator

ot = PipP;

Bk ok W (86)
Tr{P;p}

where the factor Tr{Pip} is for normalization. /

Julian Schwinger gives a more general statement on the Projection Pcnist:ulz-xte.19 He
asserts: Given that the eigenvalue a is the outcome, the system can resuit in 2 state
that is not entirely in the eigenspace corresponding to the projector Pi' This does not
contradict the view of von Neumann. If a transformation characterized by a unitary
operator which is due to an interaction with some other quantum system is allowed
after the measurement has been performed, the system can result in a state that does
not lie in the eigenspace into which Pi projects. In this sense the von Neumann postulate
can adequately take care of all physically possible situations. The Schwinger formula-
tion does not add new dimensions to our problem, and we shall not give a precise state-
ment of his views here, nor prove its equivalence to von Neumann's views.

8.3 Mathematical Characterization of Sequential Measurements

In this section we shall characterize sequential measurements mathematically in
terms of the statistics of the outcomes of the measuring process. The basic concept in
the characterization is simple, given the projection postulate of von Neumann, although
the mathematics for the most general characterization sometimes seems very compli-
cated and formidable. F. A. Benioff has recently written three papers5 -7 on the detailed
characterization of each sequential measurement. That characterization is too compli-
cated and involved for our purposes. We shall outline a simple characterization based
on von Neumann's projection postulate. For our areas of concern, in effect it will have
all of the generality of Benioif's characterization.

It is important to note that the type of sequential measurements we are considering
involves a decision procedure at each step of the measurement. To start the measuring
process, a measurement corresponding to a self-adjoint operator is performed. Then,
depending on the outcome of the first measurement. a decision is made about what the

second measurement should be. The form of each subsequent measurement is decided
on the knowledge of the outcome of each previous measurement. The decision proce-
dures can be predetermined. That is, before the start of the measuring process we can
prescribe the measurements that should be performed contingent on the various possible
outcomes. This enables us to represent the measuring process in the form of a tree as
in Fig. 4.

Figure 5 is an example of a typical tree. Each vertex is labeled by a let-
ter with numerical subscript (for example, cz). At each vertex {with the exception
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of the terminal vertices such as ¢, and dI)
dg a measurement corresponding to a self-
% / q, adjoint operator is performed. English
e :: dp letters are used to label the chronologi-
cal order of the various measurements
performed in the process. Thus the mea-
surement at any vertex labeled by the
alphabet 'c' follows the measurement at
a vertex labeled b, and the measuring
process evolves chronologically from

left to right in the mamner in which the
tree is drawn.

Let the self-adjoint operator corre-

Figure 5

sponding to the measurement at an arbi-

trary vertex ay (where ¢ is an alphabet, i an integer) be labeled as Oa . Without
i
loss of generality, the number of different outcomes of each measurement is assumed

to be finite (the infinite case will be considered later), so that at each vertex the forward
progress of the tree representing all possible outcomes of the measurement is described
by a finite number of branches. When the measurement at a vertex, say a,, is per-
formed, one of several outcomes may result with certain probabilities, and they are
represented by all of the vertices on the right of the vertex a; that are directly connected
to it (by directly we mean that the connection does not go through any other vertex or
vertices). Each of these vertices labels an outcome. For example, the measurement
at vertex b0 in Fig. 5 has three possible outcomes, ey € and Cye The self-adjnint
operator O“i corresponding to the vertex e, defines a projector-valued measure on the
set of all possible outcomes that is labeled by the corresponding vertices. If the vertices

are ‘33' J=N AN Lreees M, = 'M_ » where N <M _are both integers, let the projector-

i i i
VIR i i i

valued measvres be {Pﬁ }j=Ni . Of course;

37 ey

M

a.
i
Z P, =1, the identity operator
=N B
N, T
i
and (87)
M
e,
i
O = Z N\, P

“i =N, PP
i
where the hp are the distinct real eigenvalues of the operator O, .
i i
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When the sequential measuring process takes place, the state of the system will fol-
low a certain 'path' of the tree. At each measurement only one of several outcomes can
occur; therefore, each of the possible paths the system may follow is well-ordered in
the sense that all vertices in the path are connected in the chronological order of the
English letters that label them. Iach path starts at the initial vertex a o and ends at a
terminal vertex. Thus in Fig., 5 (ao.bl, ¢y dg) is a path and (ao'bl' c,) is not. We use
the labels of the vertices of a path to label the path. BSince different measurements can
be performed at different vertices, the sequential measuring process may be said to
involve a decision procedure. The operators O, can be predetermined, but a measure-
ment corresponding to one O, is chosen, dependling on the previous outcome which is
probabilistic. In order to chalracterize this sequential process, we musi specify the
statistics of the outcomes. Specifically, if the system is in some initial state, we want
to know the probability of it following a certain path. A straightforward application of
von Neumann's projection postulate provides the answer.

Let the system be in the pure state !s) originally. We will determine the probability
of it following the path, say (a, bi' CirdyseoesPy)s where i, k:» £ are some integers and
B 2 is the terminal vertex. When the measurement 0 is performed, the probability of

the system branching to the vertex b is (s | Pb |s>. where Pb is the projector-valued
i

measure of the outcome bi By the von Neumann projection postulate, when the out-
come bi occurs the system is left in the state

Pb_|s)
| s(b,)y = ——L— . (88)
(Sle_|8>l/2
1

In general, given that the system is in the state ls’) at a vertex aj. the probability of

branching tco the vertex g, is (s"|P |s" }» and as a result the system will be left in
k By

the state

PBkIS">

(S'lP |S")l/2
Hence the probability of following a path (ao. bi' Cj’ dk’ caesfB ﬂ) is given by

Priagbpepdy - Bgllsdl = (slPy ) (s(bi)Ichls(bi»

(s(c1)|Pdk|s(cj})... . (89)

For arbitrary vertices a, {Sm with ﬁm immediately following @
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(a'P, [8") (s'ay)lPy ls'ler)

| | (s'lP‘zrl P, [s')

=(s'|P_ |8") P . n

“n (:s'|P(x ]s')l/2 P (s"Pa [s')l/z
n n

=(s'|P P, P Is'). {90)
%y Pm %n
Therefore, by induction,
Pria .b.scady, ....ppl I8N =(siP_ P P, ...P, ...P, P_P, |s). (1)
o' "t 7§ Tk L ( by e dy By dkcjl:si

Define the operators

] t ] L R ] = LI ] ¥ 2
R(ao bi < dy Bg) Pbipcjpdk P‘32 {92)
and
= +
Q(ao; bi' Cjn dk; s 'ﬁﬂ.) = R(aos bi' P 'Bﬂ) R (ao'bi' . "ﬁﬂ)' (93)
Then
Pr{ao. bi' cj. vees [3‘0_| |s} = Pr{path| [s)}
= (s‘Q(ao_. by Cyr e ..{32)|s)
= (s|Qlpath)!s). (94)
It can be shown that z Q(path) = 1, the identity operator, and Q{path) =0, for all

all paths
paths. So the set of nonnegative-definite operators {Q(psrl:h)}'ﬂ11 paths forms an operator-

valued measure for the set of all outcome paths of the sequential measurement. And
the measures adequately characterize the statistical properties of the sequential mea-
suring process.

Note that we have discussed the case when the system is in a pure state. When it
is desecribed by a density operator, in general the mathematical arguments are essen-
tially the same but the notation is more complicated. The derivation is omitted here.
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X, SOME PROPERTIES OF SEQUENTIAL MEASUREMENTS

A sequential measurement does not correspond in general to a measurement char-
acterized by a self-adjoint operator in the original Hilbert space of the system because
the operator-valued measure for a path does not have to be a projector. An example is
the sequential measurement represented by the tree in Fig. 6.

The operator-valued measures for the path (ao. b co) is

Q(a_s,bosc =P, P P . 957
o 0 o b0 c, bo

2—
Q=P P P P P . (96)

bO o o O o

If Pb and P_~ do not commute,
o o

Q% Q. (97)
Hence Q is not a projector-valued measure, and the sequential measurement does not
correspond to any single self-adjoint measurement on the system alone.

Theorem 12 gives the necessary and sufficient condition that a sequential measure-
ment must satisfy so that there is a single self-adjoint measurement on the system that
would generate the same meagnrement statistics.

Theorem 12

A sequential measurement is equivalent to # single measurement characterized by
a self-adjoint operator on the Hilbert space of the system if and only if the operator-
valued measure of every path is a projection operator. /

Proof: Since the measure of each path is projector-valuzd, by the Theorem for the
Orthogonal Family of Projections (see Appendix A), the measures are also orthogonal
and thus form an orthogonal resolution of the identity that is the spectral family of some
self-adjoint operator. Conversely, if the measure Q ) of the outcome of a path £ is not
projector-valued, then it is not orthogonal to all measures of the other outcome paths.
Hence the measurement does not correspond to that of a single self-adjoint operator. /
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Corollaries 3 and 4 give two sufficient conditions that may be more useful.

COROLLARY 4. A sequential measurement is equivalent to a single measurement
characterized by a self-adjoint operator on the Hilbert space of the system if the pro-
jectors {Pa } of all the vertices {ai} of each path pairwise commute. /

i

Note that two projectors from two different paths do not have to commute,

Proof: If the projectiors for each path pairwise commute among themselves, then
the operator-valued measure Q for each path can be written

Q(aoi bi’ cj’ LA | Bﬂ) = Pbich ‘e .P

=P, P ve e P [
bi Cj Bp

L) 'PC.Pb.

Bg j i

(98)

and
2
Q =Q. {99)

Hence the measure @ for each path is a projector-valued measure and corresponds to
the orthogonal resolution of the identity given by a self-adjoint operatcr defined on the
Hilbert space of the system./

COROLLARY 5. A sequential measurement is equivalent to a single measurement
characterized by a self-adjoint operator cn the Hilbert space of the system if the pro-
jectors {P‘z } of all of the vertices { ai} of the whole tree pairwise commute./

1

Proof: If all projectors in the tree pairwise commute, then the projectors of all
vertices of each path pairwise commute. By Corollary 4 the theorem is true./

Note that in the examples of binary detection in section 8.2 and in Appendix J, the
sequential measurements sztisfy the conditions of Corollary 4 but not those of Corol-
lary 5.

Finally, we should be concerned about the number of individual measurements that
is necessary in a sequential procedure to realize certain measurements. Theorem 13
is obvious but will be useful later. The proof is omitted.

DEFINITION. The length of a tree is the maximum number of vertices that a single
path of that tree connects exclusive of the terminal vertices,

Theorem 13

Any self-adjoint measurement with a finite number of outcomes M is equivalent to
some sequential measurement characterized by a binary tree of length N, where N is
the smallest integer such that

a 2N,y S (100)
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X. SECOND REALIZATION OF GENERALIZED MEASUREMENTS:
SEQUENTIAL MEASUREMENTS

We have given an example of a two-stage sequential measurement characterized by
a binary tree of length two (see Fig. 6). The resulting measurement is of a generalized
form. That is, it is characterized by an operator-valued measure but iot by a projector-
v~lued measure. We shall now characterize several classes of operator-valued mea-
sures that can be realized by sequential measurements, and prove part {(b) of Theorem 1
for several classes. It is important to realize that not all operator-valued measures
can be realized by sequential measurements. For example, the operator-valued mea-
sure given in Example 3 cannot be realized by sequential measurements, since the
Hilbert space that describes the possible state of that system is two-dimensional. Any
nontrivial measurement must have at least two possible outcomes. If the operator-valued
measure can be realized by a sequential measurement, the first nontrivial measurement
of the sequence will leave the system in one of two known pure states, and subsequen’
measurements will correspond to randomized strategies and yield no new information
on the original state of the system. It can be shown that such sequential measurement
has a different performance from the operator-valued measure described in Example 3.
In fact, the detection performance of that measure for the three equiprobable states
{| 5 )}il in Example 3 is given by the probability of correct detectit?_n_ Pr{c] =%.
whereas any sequential measurement has performance Pr{c] < 3.

Theorem 14

If an operator-valued measure {Qi}?’:ll is defined on a finite index set, with values

as operators in a finite dimensional Hilbert space ¥, (dim {JC} = N), and the measures
{Qi} pairwise commute, then it can always be realized by a sequential measurement
characterized by a tree with self-adjoint measurements at each vertex. In particular,

if M < N, the sequential measurement can be characterized by a tree of length two. In
general, the minimum length of the tree required is the smallest integer £ such that

(101)

NOTE. For a source with alphabet size A and output rate R, the number of output

messages in a duration of T seconds is M = ART. Hence, for block detection of M

signals generated in a duration of T seconds the required number of steps { is

log M
log N

2~1+

log A
log N°

=1+ RT (102)

For large T,
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L T, (103)

Therefore the average number of measurements to be performed per second, £/T, is
constant for large T, and
log A

log N°

L
T

=R (104)

If the dimension of the Hilbert space N changes with time, these expressions gtill hold
by replacing N = N{T). For N(T) = DT, where D is a constant,

0. log A

T-RBlogb+logT ' (105)
and for large T,

Q. log A

T R T (106)

which approaches zero independent of D.

SIGNIFICANCE. From the construction of the sequential measurement given in
Theorem 14 {(see Appendix K) we can see that measurements given by operator-valued
measures that pairwise commute are not particularly interesting in communication con~
text. After the first measurement, subsequent measurements do not furnish any more
information about the system under observation because the first self-adjoint measure~
ment is a complete measurement in the sense that its eigenspaces are all one-
dimensional. After the first measurement is performed the state of the q' wntum systom
is completely determined by the pure state that corresponds to the outcome eige. ralue.
It can be seen that there is no mutual information between subsequent measurements
and the initial unknown state of the system. From the proof in Appendix K it is apparent
that the second measurement can actually be replaced by a randomized selection of out-
comes, and the randomized strategy will give the same measurement statistics. But
we know that we cannot gain performance by a randomized strategy. So one single sclf~
adjoint measurement will perform just as well as the fuli sequential measurement. Hence
we have the following corollaries.

COROLLARY 6. If a quantum measurement is characterized by an operator-valued
measure, with the measures of all outcomes pairwise commuting, then the measurement
is equivalent (i the sense that it has the same outcome statistics) to a single self-adjoint
measurement followed by a randomized strategy. /

Corollary 6 gives us the following very important result.

COROLLARY 7. For a measurement characterized by an operator-valued measure
to outperform all self-adjoint observables, it is necessary that the measures of the out-

comes do not all pairwise commute. /
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When the Hilbert space is infinite dimengional but separable, Theorem 14 can be
extended to handle the situation. In Appendix L we sketch how we can generalize

Theorem 14, We can then state the following theorem.

Theorem 15

If an operator-valued measure {Qi}?gl is defined on an infinite index set, with values

as operators in an infinite dimensional separable Hilbert space, and the measures {Qi}
pairwise commute, then it can always be realized by a sequential measurement charac-

terized by a tree with self~-adjoint measurements at each vertex. Sometimes the length
of the tree is infinite,

Theorem 16 discusses the realization by sequential measurements of a particular
class of operator-valued measure. The conditions that characterize this class appear
rather stringent and it can be argued that the realization of such a narrow class of
operator-valued measures is not very useful. It turns out, however, that a large class
of quantum communication problems gatisfies these conditions. Exactly how this theo-
rem can be applied to almost all quantumn communication problems will be apparent after

the discussion of equivalent and essentially equivalent measurements.

Theorem 16

If an operator«valued measure {Qi}xl is defined on a finite index set (i =1,..., M}
with operator values in the Hilbert space JC, and the measures Qi are projector~valued
except on a subspace # C JC such that M dim {.# } < {3}, then it can always be real-
ized by a sequential measurement characterized by a tree with self-adjoint measurement
at each vertex. /

Prooft Let

o, = lim Q% Mi=1,...,M, (107)
1 1
==00

where n is a positive integer. The ﬂi are projection operators, and

M
(IJC -z ni):ic = M, (108)
i=1
Let
RizQi—ni’ i=1,..., M, (109)
Then
M
Z R, =P
i=1 "
=1 , 1
Y’ (110)
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where P Y, is the projection oi)erator into the subspace .4, and [ is the identity
operator on the subspace .#. The set of projection operators {P vE {Hi}ffl} forms
an orthogonal resolution of the identity in the space .

That is,
M
P + Z I =1.. 111
v b Z it e (111)

Let the first measurement on the system under observation be

characterized by the projector-valued measures {P Vi {ni}ﬂl}'
This measurement can have one of M+! outcomes. Symbol-
ically, it can be represented by the tree in Fig. 7. If the

outcome is represented by a vertex corresponding to one of

Figure 7 the II i? the measurement can stop. If the outcome ends in
the vertex corresponding to the projector P VL a second

measurement is required to complete the sequential measurement process.

The set of operators {Ri}?il sums to the identity operator I Y in the subspace .#,
and each of the operators Ri is nonnegative-definite. Hence they form an operator-valued
measure on the subspace .#. By Theorems 2 and 4, there exists on an extended space
st > 4, aprojector-valued measure {p.} i\il such that

M
z P, =1
i=1 ' 3¢

o (112)

where I  is the identity operator on 3(3+, and
Jc

R.=P PP
1 1

/PP u (113)

By Theorem 5, the minimum dimensionality of this extended space JC+ that is required
is less than or equal to M times the dimensionality of the uriginal space . That is,

min {dim {3¢*}} < M dim {2}, (114)

By assumption,

dim {3} =M dim {#}. o {115)
Hence

dim {3¢} = min {aim {3 *}}, {116)
and

M. (117)

Therefore it is possible to find a projector-valued measure {Pi}?}l in ¥ such
that )
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Ri=P.,#PiP.,.(/’ i=l,...,M {118)
and

M

'Zl Pi = I&C' (119)

1=

If the outcome is in the vertex corresponding to P W2 after the first measurement

we can perform a second self~adjoint measurement given by the projector

~valued meg-
sure {Pi}i\fl 8s represented by the tree in Fig. 8. Bya previous result (

see Sec. VIII),

Figure 8

the operator-valued measure for the path ending in the vertex corresponding to the pro-
jector Pi is

P.lPiP.Aszi' i=1,,.., M (120)
Hence the operator-valued measure Qi is the sum of the measures of two paths, one
ending in the vertex corresponding to Pi' the other in the vertex corresponding to Hi.

The whole sequential measurement is represented in the tree in Fig. 9. Therefore

-0 G0 ..

Frhyeo

Fat My= 0y

Figure 9
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we have a realization of the given operator-valued measure by sequential measurement.
Thus we have proved a case in part (b) of Theorem 1./

NOTE. The condition that M dim {4} < dim {3} can be relaxed if more structures
on the Qi are given. If we have

M
Z dim {®{R,}} < dim {3¢}, (121}
i=1

where (R{Ri} is the range space of R,, then by Theorem 7 we can always find a projector-
valued extengion inJ¢. (Remember that in dealing with infinite dimensional spaces
caution should be taken in interpreting the results.)

Corollary 8, which is a useful consequence of Theorem 16, will be needed in Sec-
tion XII.

COROLLARY 8. If an operator-valued measure {Qi}?':l is defined on a finite index
set(i=1,...,M), with operator values in an infinite dimensional Hilbert space JC, and
the measures are projector-valued except on a finite dimensional subspace .4, then it
can always be realized by a sequential measurement characterized by a tree with self-
adjoint measurement at each vertex. /

Proof:
M dim {#} < « = dim {3¢}. (122)

Therefore Theorem 16 applies. /

In Theorem 16 we exploited the property of a special class of operator-valued mea-
sures that are projector-valued except in a finite dimensional subspace. In fact, this
finite dimensional subspace is an ‘'invariant subspace' for the operator-valued mea-
sure. If we explore the proportions of invarient subspaces for an operator-valued mea-
Sure, we can realize a larger class of measures as sequential measurements., These
results are very important because we shall show in Section XII that there are com-
munication problems that fall within such a class.

DEFINITION 5. A closed subspace .# in a Hilbert space ¥ is called an invariant
subspace for the operator A if Ax € .# whenever x € .# (that is, A HC #)./

DEFINITION 6, A closed linear subspace .# in a Hilbert space ¥ reduces a
bounded self-adjoint operator A if both .4 and .# 1. ¥ -.# are invariant subspaces
for A./

Lemma 1

If A is a bounded self-adjoint operator, the subspace .# reduces A if and only
if 4 is invariant for A.
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Proof:
{i} If .# reduces A, by definition . is invariant for A.

(i) ¥xe .4, ye 4t Axe 4.
Hence
{Ax, y) = (x, Ay} = 0. (123)

Therefore, Ay & A L and 4 L is also invariant for A./
If a subspace .# reduces A, then the prublem of characterizing the operator A on
I reduces to the problem on .# and .& 'L, and A can be written as

= +P ,
A=P AP lePJl (124)

where P A’ P,/( | are the projection operators projecting into 4 and .# 'L. respectively.

In general, a self-adjoint operator A can have more than one invariant subspace.
For example, every eigenspace of a self-adjoint operator is obviously an invariant
subspace.

If a set of orthogonal subspaces {"‘/i}?:l are invariant for a bounded self-adjoint

M
operator A, so that 4, N\ 4. =0, for i # j and @ .4, = IC, where @ indicates
i j i

direct sum, then A can be written =l
N
A= Z P ,L AP , , (125)
=1 ;i
and
N
%z P =1, (126)
=1 #; ¥
where P is the projection operator into the subspace 4 i

i
For a bounded self-adjoint operator, a useful set of invariant subspaces is the set
of eigehspaces.

DEFINITION 7. A closed linear subspace .# is a simultaneous invariant subspace

of a set of bounded self-adjoint operators {Ai}i\: | if «# is invariant for each operator
A,i=1,...,M/

Later we shall show how to find a set of simultaneous invariant subspaces for a
set of bounded self-adjoint operators. Assume for the moment that given a set of
bounded self-adjoint operators, we know how to find the simultaneous invariant sub-
spaces.

If a generalized measurement given by a set of operator-valued measures {Qi}?gl

is given, we can try to find the simultaneous invariant subspaces of the Q i Let a set
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of orthogonal subspaces {.# }N be simuitaneously invariant for the set of operators

{Q} 1+ Then
N
Qi=2 PJQPJ’ i=1,..., M
J:
N
= Z s
j=1 QIJ {127}
where
Qij = P"#jQiP"/{j’ for alli, j {128)
and
N
? P J (129)
=
Since {P .A( } is an orthogonal resolution of the identity, it corresponds to some
Let the first measurement be characterized by this
i ig. 10 by

self-adjoint meaburement
Then it can be represented symbolically as in Fig

projector=valued measure.
the initial segment of a tree.

Figure 10

} forms an operator-valued

Each of the N sets of nonnegative-dcfinite operators {Q1 i'i=j

measure with values as operators in their corresponding subspace .# . That is,
(130)

ij
j=1,...,N, (131)

z Q= PV#; IJJ’
is the identity operator in the subspace .A'

\.vhf.erelvé,i
If the first measurement given by the pr01ector-va1ued measure {P "} o1 18

44



performed, the outcome will be in one of the vertices in Fig, 10. Suppose the outcome
is represented by the vertex corresponding to the projector P Y then the second mea~-

surement should be characterized by the operator-valued measui]:'e {Qij}?’:l. Since the
operator-valued measure is defined only on the subspace .4 . and we can choose for the
second measurement any self-adjoint measurement defined on the entire space ¥, under
suitable conditions the second generalized measurement {Qi j}?:l can be reglized by a
self-adjoint measurement defined on 3 that includes "ﬂj as a subspace and acts as an
extension space of # it Specifically, if the operator-valued measures satisfy one of
the following conditions:

(i) ™ dim {.lj} < dim {3c} (132)
M

@) = dim {®{Q, }} < dim {ac}, (133)
i=1

then it is possible to find a projector=valued measure {P }M with operator values
defined on the entire space JC such that when restricted to the subspace j will give

operator-valued measure {Q } 1° That is,
P, PP =Q,., i=1,...,M (134)
AN j=1,...N
M
i}:l Py = Iy for all j. {135}

This means that if the outcome is given by the vertex corresponding to PJ[ , the rest

of the measuring process can be realized by a second self-adjoint measurement on the
system. If indeed each of the N operator-valued measures {Qij f'_ll, i=1,..., N satis=
fies either condition (i) or condition (ii), then we can guarantee, whatever the outcome
of the first measurement, that the subsequent and final measurement will be a
self-adjoint measurement. Condition (i) is from Theorem 5 and condition {ii) from
Theorem 7.

The two-stage sequential self-adjoint measurement is represented by the tree in
Fig. 11. The event corresponding to the operator-valued measure Qi is then the N
possible outcome paths labeled by the projectors {P.A’ ,P } j=1.....N as shown in
Fig. 11, and

N
= .:_ PJ‘PijPJj./ (136)
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Figure 11

Hence we have the following theorem.

Theorem 17

If an operator-valued measure {Qi}?fl has a set of mutually orthogonal simultaneous
N =

invariant subspaces {.# j} i=1 such that
N
vV . =3 (137)
1]
,ﬂi/\.,ffo. alli#j (138)
and
N
Q= '_"-7 Qij (139)
=1
where
Q= Pv‘,jQiP -"’j' all i and j {140)

and if each of the N sets of operators {Qi}?;ll, j=1,...,N satisfies either one or both
of the two conditions (Eqs. 132 and 133), then the operator-valued measure can be real-
ized as a sequential measurement characterized by a tree of length two with self-adjoint

measurements at each vertex. /

EXAMPLE 9

{1) If the Qi pairwise commute as in Theorems 14 and 15, then they can be diagonal-
ized simultaneously by their eigenvectors. These eigenvectors are then one-dimensional

-
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simultaneous invariant subspaces. Such operator-valued measures satisfy the conditions
of Theorem 17 and therefore they permit a realization by sequential meagurements.

{2) The measure in Theorem 16 also satisfies the conditions of Theorem 17. The
finite dimensional subspace .4 on which the Q are not projector=valued is a simulta~
neous invariant subspace for the set of measures {Q }1 =1’ The projector-valued part
of the measures can be realized by a single self-adjoint measurement. The non
projector-valued part is separated out because it ig within a finite dimensional gimul-
taneous invariant subspace. This, in turn, permits a sequential measurement realiza-
tion, as given in Theorem 16./

A natural question to ask is, " Do most operator-valued measures encountered in
quantum communication possess simultaneous invariant subspaces?" If the answer is
negative, then sequential measurement will be of limited use in the realization of mea=
surements in quantum communication. We are not yet in a position to answer this
question fully. In Sections XI and XII, we shall consider 'equivalent classes' of mea-
surements. In quantum communication problems most of the generalized measurements
have equivalent measurements that possess simultaneous equivalent subspaces, and
almost all quantum measurements of interest can be done sequentially. This issue will
be discussed in detail in Section XIL

In lieu of conditions (i) and (ii), we want to find in some sense the 'finest' decompo=-

sition of the Hilbert space ¥ into simultaneous invariant subspaces. The reason for

a 'finest decomposition' (by which we mean that the dimensgionalities of the subspaces
are as small as possible) is simple, If the dimensionality of each of the subspaces .,d’j
is made as small as possible, in a loose sehse we have more available dimensions in JC
for an extension. It is possible to show that there is a construction procedure to find

a ‘finest decomposition' and this decomposition is unique. The main statement is given
in Theorem 18 and an outline of the proof is given in Appendix M.

Theorem 18

For a set of self-adjoint operators {Ta}‘z c A’ it is possible to find a unique 'finest'

set of simultaneous invariant subspaces {Si}il that are pairwise orthogonal and

N

T=ZPTP
¢ =1 Sx Sl.

all a € A. (141)

EXAMPLE 10

We make use of the measure in Example 5, except that we use a Hilbert space €,
with one extra dimension sparned by the vector | f). Let {|s )}l , Span a two-dxmenslonal
subspace of ¥, orthogonal to {£). Define

Q =215l i=12 (142)
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2
Qs = T [s3) (s3] + 1,

where I = |£) (f].

3

Figure 12

(143)

The measurement {Qi} ?:l can be realized by the sequential measurement shown in

Fig. 12./
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X1, EQUIVALENT MEASUREMENTS

Very often in quantum communication two measurements characterized by different
operator-valued measures will yield the same performance. For any given quantum com-
munication problem (whether it be a detection or an estimation problerm) it is possible to
categorize the set of all generalized measurements into ‘equivalent classes' of measure-
ment, so that every measurement of the same equivalent class will give the same per-
formance,

Let the received information-carrying guantum system be described by the set of
density operators {pa}aEA’ and assume that there exists a set of simultaneous invariant
subspaces {Si}liil such that

N
Py = = PS paPS, e S A, (144)
=1 %1 ¢ %
and
N
T P, =1L,. {145)
i 5 X

Let {Q [3} BEB be an operator-valued measure corresponding to some generalized
meagurement under consideration, where B is some index set for the outcome,

Given that the received quantum system is in an arbitrary state given by the density
operator p . the probability of getting the outcome B when the measurement is per-
formed is given by

Pr(pe] = Tr {p,Qp}
N
=Tr{Z Pg paPSQﬁ}
=1 55 ¢ 5
N
= 2 Tr{P. p P Q.t
i=1 Spe 5P
N
= T Tri{p PoQ.P¢}
i=1 @ 8B 5
fod = PyaPg 1}
=Tr{p{T P.G.P
“i=1 S PS
= Tr {pa%}. all pE B, (146)
where
~ N |
Qp= T Ps QP Mp € B. (147}

In (146) the identity Tr {AB} = Tr {BA} has been used.
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A
The set of operators {@ [3} has the following properties,

BEB
6ﬁao, all B B, (148)
A N
BéB V" ﬁ;:zB = Psigﬁpsi
N
) iflPSi(péB ) Fs,
N
"5 Tslwets,
= Ipp. (149)

There the set of operators {6 B}BEB forms an operator-valued measure corresponding
to a generalized measurement which will give the same performance as the measure-
ment characterized by the measure {Qp}ﬁ B In this sense the two operator-valued
measures correspond to 'equivalent measurements,' and they belong to the same equiv-

alent class of measurements. Note that equivalence is established only with respect to
the given gtructure of the density operators {pa}aE A

The measurement corresponding to {6) B} BEB may have an advantage over the mea-
surement corresponding to {Qﬂ}ﬂEB’ since it may have a 'finer' decomposition into

invariant subspaces, and this would facilitate realization by sequential measurements,

COROLLARY 9. In an M-ary detection problem when all of the density operators
{Pi}?-fl pairwise commute, they can be diagonalized simultaneously. If [ Iq’j)}je f is
their set of orthonormal eigenvectors whicn spans 3¢, for any operator-valued measure
{G)i}li\__’f!1 the measure

A M

is an equivalent measurement and the Qi pairwise commute. By Corollary 6, the mea-
surement is equivalent to a single self-adjoint measurement followed by a randomized
strategy. By Corollary 7, this meagurement at best is equal in performance to some
self-adjoint measurement. Hence the optimal measurement for the M-ary detection

problem with pairwise commuting density operators ig a self-adjoint operator. /
Hele:trom17 has proved this result by using a different method,

50



Rl aae B St £~

R R T i P AR AT B ST R e R T R Y L S P qer vt 103 T A e et Ry o e )

XII. ESSENTIALLY EQUIVALENT MEASUREMENTS

We have discussed 'equivalent classes of measurements' in the sense that when two
measurements belong to the same equivailent class they give exactly thz same perfor-
mance, The decomposition into simultaneous invariant subspaces is useful in realizing
generalized measurements by sequential measurements, utilizing the procedure pro-
vided by Theorem 17. But not all generalized me=surements can be realized in this
fashion, and in some cases we have to use the realization by adjoining an apparatus. If
the Hilbert space that describes the states of the information-carrying guantum system
is infinite dimensional but separable, then given any arbitrary operator-valued measure
that is not realizable by a sequential measurement, it is possible to find a sequential
measurement whose performance can be arbitrarily close hut not equal to that of the
‘unrealizable' measurement. We shall show this result for the quantum detection prob-
lem and then for the estimation problem.,

Theorem 19

Given a generalized measurement characterized by an operator-valued measure
{Qi}?: 1 for an M-ary quantum detection problem with a probability of correct detection
Pr[C'] ] if the Hilbert space that describes the state of the received information-carrying
quantum system is infinite dimensional but separable, then for any arbitrary € > 0 no
matter how small, there is a sequential measurement characterized by the operator-
valued measure {Qi}iw-—'l that will give a probability of correct detection Pr[Cz]. such

that
|Pr[c,] - Prlc,]| <e./ (150)

Proof: Let the received quantum system be in the state described by the density
operator Py if the ith message is sent with a priori probability Py The probability of

correct detection for the generalized measurement {Qi M

. is
i=l

M
pric,]= = p, Tr{p,Q}. (151)
i=1

Since a1l the p; are trace class operators, they are compact operators. (An operator T
is said to be compact if it maps bounded sets onto sets whose closures are compact.)
Hence they each have a set of eigenvalites associated with a set of complcte eigenvectors
(for a proof see Segal and Kunzezo). We want to find a finite-dimensional subspace Si
such that given a density operator Py and € > 0 no matter how small,

12Tr {PsipiPsi} >1-e€. (152)

If the range of P; is finite dimensional, Si can be taken to be the range space 80 that the
trace is one, If the runge of P; is infinite dimensional, we can find Si by exploiting the
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property of P; 85 a compact operator that "the set of eigenvalues of a compact self-

adjoint operator is a sequence converging to zero. n? Let {?\ } be the eigenvalues
of Py then
lim A_=0 (153)
new 0
and
= Ay = L= Tr {p}. (154)
n=1

Hence there is a finite set 4 of eigenvalues such that

1= iy)&n>1—€. {155)
n<

Let Si be the finite~-dimensional subspace spanned by the eigenvectors corresponding to
this finite set of eigenvalues. Then

12Tr{P.p,Pat= Z A >1-¢. (156)
81§ ned 1
Let the set of subspaces {S } i=1 be so chosen for the set of density operators {p } It
is clear that each subSpace S is invariant for the corresponding Py since S isa fm1te
sum of the eigenspaces of p;r Let ¥ - S; Sf Then
=P, p.P, +P pP , i=lhL,....M (157)
P78y T Fgefit e
i i
and
Tr {|p;-Pg piPg |} = Tr {p, - Pg p, Py |
i i i i
=Tr{P pP }<e¢. (158)
s i g€
i i
M
TLetS=V S Then
i=1
M
dim {s} £ = dim {si}<oo. (159)
i=1
Hence S is finite dimensional and
Tr{p pP }=1r{P it < alli=1,...,M. (160)
s''s 1

If {Q }1 1 iz an operator-valued measure with a probability of correct detection Pr[C }

we claim that the operator-valued measure {Q PSQ + Py P c}r

formance Pr[CZ] such that |Pr[C 1- Pr[CZ]I < €. Then we have

has an error per-
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Tr {p,Q;} = Tr {PsipiPSiQi} + Tr {PScpiPS Q. (161)
' 1S

But the second term on the right is positive, and

Tr {PscpiPSCQi} < Tr {PscpiPScIsc} = Tr {PscpiPsc} <e. (162)
i i i i i i
Therefore
Tr {piQi} - Tr {Ps_piPS_Qi} <e, (163)
1 1
whereas

Tr {Pge,PgQy} = Tr {Psi u (s—si)"ipsi U (S~Si)Qi}

i

Tr {(P s, + PS_Si) py(P s, + Ps-si)Qi}

Tr {Pg pPg &l + Tr {PS—SipiPS-SiQi}
1 1
+Tr {Pg o Pg g Qjf + Tr {Pg_s iP5 Q4 (164)
1 1 1 1

Since 5; is invariant for p,, Pg commutes with p, and Pg Pg.g = 0. Hence the last two
i i i

i
terms in (164) are zero. Since both p; and Qi are nonnegative-definite, the second term

is nonnegative. Hence
0=Tr {piQi} - Tr {PSPIPSQi}
= Tr {p@} - Tr {Pg piPg Qi - Tr {Pg g piPg g Q!
1 1 1 1
<eg, Mi=1t ..., M. (165)

Therefore

1}

M
I PI‘[CI] - PI‘[CZ] ‘ z pi(TI‘ {piQi} - Tr {PSPiPSQi} -Tr {pipiPSC})

i=1
M
=z py| Tr {p;Q;} - Tr {Pgp,Ps@;t - Tr {pipiPSc‘rl
1:
M
< £ pe€ =€, (166)
j=1 1

A
The operator-valued measure {Qi}i\ll can be realized as a two-step sequential measure-
ment. The first measurement will have two branches. The projectors corresponding

to them are {PS and I - PS = PSC}.
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Given that the outcome is the vertex corresponding to PS’ the second measurement
has to have the same result as the operator-valued measure {PSQiPS}iEI' But this mea-
gure is a resolution of the identity of a finite-dimensional space S, and by Theorem 5 it
permits an extension to a projector-valued measure in any infinite-dimensional space
that contains S as a subspace. The original Hilbert space JC can be taken to be that
subspace, 5o that the second measurement is realizable by a self-adjoint measurement
associated with the projector-valued measure {ni}i}gl such that

p It

T I =1,, (167)
j=1 1 J€

PSQiPS = PSHiPS. alli= 19 caea M. “.68)

When the outcome is in the vertex corresponding to the projector P c {which would oceur
5

with very litile probability, <€), the second measurement can be done by a random
selection of one of the M messages with probability Py i=1...,M. Or we may con~

gider the whole event to be an outright error and call it an erasure, as in an erasure
channel.

The sequential measurement is represented by the tree in Fig. 13./

M ouicomes

X erosura probability < ¢

Figure 13. Sequential measurement modeled as an M-ary erasure channel.

Thus we have shown that given any arbitrarily small € > 0, we can find a sequen‘iul
A
measurement {Qi}?i

1 that will have performance within € of that of a given generalized
A
measurement {Qi}?gl' In this sense we call the two measurements {Qi}li\gl and {Ql}f'gl
essentially equivalent measurement.
If we omit the first stage of the sequential measurement and only perform the self-
adjoint measurement {ni}]i\-f-l' the performance will not change very much, since the

resolving power of ihe first measurement is small. The performance

M
pr[c,]= ifl p;Tr {pini} (169)
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has the property
|Pr[c,]- Pric,]i <e. (170)

Hence the single self-adjoint measurement is also essentially equivalent to the general-
ized measurement; and we have the following theorem.

Theorem 20

Given a generalized measurement characterized by an operator-valued measure
{Qi}i\:l for an M-ary detection problem with a probability of correct detection Pr[C1 )
if the Hilbert space that describes the state of the received quantum system is infinite
dimensional but separable, then for any arbitrarily small € > 0 there is a self=adjoint
measurement that will give a performance Pr[C3] such that |Pr[C1] - Pr[CB]I <e./

The proof is straightforward and is omitted.

From the proof of Theorem 19, we can see that the condition that the Hilbert space 3
be infinite dimensional is not absolutely necessary. Whenever the dimensionality is big
enough, Theorem 19 holds. The exact dimensionality depends on the operator-valued
measure and on the set of possible density operators, in a conczptually straightforward
but mathematically complicated way. Although it is within the realm of the mathematics
developed in this report to state this exact dimensionality, the result is omitted because
of its complexity and dubious usefulness.

SIGNIFICANCE. From Theosrem 20, we see that for each generalized measurement
we can find a conventional observable that gives essentially the same detection perfor-
mance, if the state of the system is described by an infinite-dimensional space. In opti-

cal communication, the natural Hilbert space that should be used is the space spanned
Q0

n=0
question then arises, ¥In optical communication should we consider generalized mea-

by the photon number states iln) which is infinite dimensional. A very important
surements at all?™ It may be argued that since conventional observables will do almost
as well in detection problems, generalized measurements should not be considered. In
some cases, however, the optimal measurement is a generalized measurement. Although
there are observables that give performances arbitrarily close to it, none actually
achieves it. In loose mathematical language, it can be said that if we consider the per-
formance (probability of error) as a form of weak topology on the set of all observables,
that set is not a closed set. The optimum measurement may not be in the set; hence,
it will not be feasible sometimes to find an optimum measurement within the set of
observables.

We shall now prove the equivalence of Theorems 19 and 20 for the estimation prob-
lem. The conditions in Theorem 2! are suff cient but not necessary. but they are gen-
eral enough that most problems satisfy these conditions or can be approximated by them.
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Theorem 21

Given a measurement characterized by a generalized resolution of the identity
{Fa}a eC for a complex parameter estimation problem with a mean-square error Il' if
the Hilbert space that describes the state of the received quantum system is infinite
dimensional but separable, then for arbitrarily small ¢ > ), there is a self-adjoint
measurement that will give a mean-square error 12, such that

|11-12| <e (171)

if the following sufficient conditions are satisfied:
(i) The probability density function for the complex parameter a, p(e) has a com-
pact support S C C. (The support of a complex function f on a topological
space X is the closure of the set {x:f(x) # 0}.)
(ii} ple) is continuous.
(iii) The 'modulation' is uniforinly continuous, which means that if a Sequence {a i}
converges to e, the sequence of density operators {Pa.} also converges to Py’

in trace norm. That is, t

Tr{lp, -p |}~ 0, (172)
1

and if |a-ai| < &, then Tr{|pa_-pa|}<€ for all values of ¢ € 8.

(iv) The generalized resolution of the identity '{IE‘Q}":l ec has a {weakly) and uniformly
continuous first derivative. That is,

= d
Gy = az Fo (17 3)

has the property that for any operator A with Tr {[ AH‘ < @ and if a sequenca
{ai} converges to «a,

Tr {AG, } - Tr {ac (174)
i

and given any € > 0, there exists & > 0 guch that lai-af < § implies

| Tr {AGQ‘}’ - Tr {AGaH <€  Ma,a A/ (175)
i

(Note that 1, = [g [ Tr{p_G_,} la-a'|® p(a) d®a'd%a.)

The proof of Theorem 21 is given in Appendix N.

The performance measure in Theorem 21 does not have to be the mean-square error,
It can be any measure m{a, a') that is uniformly continuous in both variables « and e' on
the support S of pla).

The uniform continuity conditions make the proof much simpler. but the theorem is
provable by requiring that the integrand be measurable. The fact that pl{a) has compact
support is used to show that a finite number of the ai(M) are required to approximate the
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continuous range of ¢ € S, and thus it becomes an Me-ary detection problem. Almost
every density function p(e) has all probability confined to a bounded region. Even if it

does not have compact support, the tail of the function can be truncated to make the sup-
port compact.

EXAMPLE 11

We now give an example of a ternary detection problem where an operator-valued
measure characterizes the optimal measurement. Although we can find self-adjoint

measurements that perform arbitrarily close to the optimal performance, none actually
achieves it.

Consid:r an infinite-dimensional Hilbert space I that is the union of an infinite num-
ber of two-dimensional orthogonal subspaces {Sj};-:l such that

o0
=V s. (176)
=1 1
For each subspace Si.' let three vectors {I s:ii )}{11 have the same symmetry as those
in Example 3 (see Fig. 1). Consider the three dengity operators,
A
2]

8

Py = lsg)(sil, i=1,2,3. (177)

J

The optimal measurement is given by the operator-valued measure

0 . .
Qi=j§1%|sg)(sg|. i=1,2,3 (178)
which gives a probability of correct detection of 2 /3.

Since the density operators have nonzero though diminishing eigenvalues for all sub-
Spaces, we cannot truncate the density opcrators by making a first measurement to pro-
ject it into a finite-dimensional subspace without losing some small but nonzero

performance.
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XIll. SIMULTANEOUS GENERALIZED MEASUREMENTS

Thus far, we have extended the notion of quantum measurements to generalized mea-
surements. The conventional view that measurements are observables corresponding
to self-adjoint operators entertains the concept of simultaneous measurable quantities.
Two quantities are said to be simultaneously measurable if and only if the self-adjoint

operators corresponding to them commute. Thus the quantities A, B are simultaneously
measurable if and only if [A, B]= AB-BA = 0. Equivalently, if the projector-valued mea-
sures {Hi}ie ¥ and {Pj}je o are the resolution of the identities of A and B, they are

simultaneously measurable if and only if there is a third projector-valued measure
{Rk}ke ¥ such that

@ M= = R, Mic .S, (179)
keEN .
i
and for disjoint subsets {¥ } of K, so that U K. =N,
i'ie s jes i
(i) P;= kez.x’! R, Mig £ (180)
J
and for disjoint subsets {¥ !} of ¥, so that

ey
_U X=X, (181)
i€f

Note that conditions (i) and (ii) are simultaneocusly satisfied if and only if the mea-
sures {I1 i}’ {Pj} pairwise commute. That is,

Ilin - P_}'Hi =0, all i, j. (182)
We must now modify the notion of simultaneous measurements.

In order to determine if two operator-valued measures correspond to simultaneously
measurable quantities, we look at their respective projector-valued extensions. On a

common extended Hilbert space st if the respective projector-valued measures com-

mute, then we say that the two operator-valued measures are simultaneously measur-
able. This definition, although basic, is sometimes not very useful, since it requires an
examination of the projector-valued measures on a comm~n extension space. Without
much mathematical difficulty, we can define simultaneous measurability directly on the
operator-valued measures themselves, which is the thrust of the following theorem.

Theorem 22

Two generzlized measurements, characterized by the operator-valued measures
{Si}ie Y {Tj}je 1 are simultaneously measurable if and only if there is a third
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generalized measurement, characterized by the measure {Qk}ke ¥ 80 that

(i) Si= zZ Q.. Miec F (183}
iex;
and disjoint subsets {.x’ i}ie S of ¥, so that
U .7(’ = {184)
ief
i T.= = Q (185)
J jex!
for all j € ¢, and disjoint subsets {o 1} i ¢ of X so that
U Aj= A/ (186)

i€f

The proof of Theorem 22 is given in Appendix O.
As we note in Appendix O, without loss of generality we can require for simultaneous
measurability that there is a measure {Q }1C S, je ¥ such that

Si= z Q allie s (187)
i€ g i’
T.= Z Q i allj & . (188)
Ve s 4

In some sense the measurement {Q } i8 a finer grain measurement than both the mea-
surements {S } and {T }. and the outcome statistics of both are obtained from the {Q }
measurement by coarse-grammg over its outcome statistics.

When the measures {S } {T } pairwise commute, they are always simultaneously mea-
surable and is easy to fmd {Q } If we define

Qij = SiTj, 8.11 i Jl (189)

{Qij} will satisfy all necessary conditions for simultaneous measurability.
In Theorem 23 we give a sufficient but not necessary condition for the simultanzous
measurability of two operator-valued measures.

DEFINITION 8. The anticommutator of two operators A, B is defined as

[A,B]" = AB+BA./ (190)
Theorem 23

Two operator-valued measures {8S. }1€ Y4 {T }JC ¥4 are simultaneously measurable if

all anticommutators of the form [Si' T, ] are nonnegative-definite. That is,

[s,:.Tj] = si'rj + Tjsi =0, all i,j./ (191)
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Proof: Define

1 1
Qij =2 [Si' T]}
1
z Q T = (5T.+TS)=1L
oy M yeg i d0A
ief jef

Then {Qij} is an operator-valued measure with

Si= Q all i
JC/

T.= = Q all j.

b jes

Hence {S b {T } are simultaneously measurable./

(192)

(193)

(194)

(195)

It is not easy in general to find the 'finer grain' measurement {Qi]} In Appendix P

we provide a generally very useful construction for the me: sure {Qij}'

SIGNIFICANCE. We have shown that two simultaneously measgurable generalized

measurements correspond to a single 'finer grain' generalized measurement.

Hence

we shall not get better performance for quantum communication problems by considering

simultaneously measurable generalized measurements,

It is always sufficient to con-

sider single generalized measurements, since this class also encompasses simultaneous

generalized measurenments.
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XIV. AN ALTERNATIVE CHARACTERIZATION OF
GENERALIZED MEASUREMENTS

Thus far, we have characterized generalized measurements with operator-valued
meagures, When the operator-valued measure corresponding to a particular measure-
ment is given, together with the quantum state of a system, the statistics of the cutcome
of that measurement ig uniquely specified, in the sense that the probability density func-
tion (or distribution function} for the outcome is given by Eq. 12, But we can equivalently
specify the measurement statistics by giving the mean and all higher order moments of
the outcomes, The probability density can be gpecified uniquely through thz moment-
generating function (or characteristic function), The specification of moments instead
of probability dengities provides an alternative means of characterizing pgeneralized
quantum measurements. The operator-valued measure characterization is independent
of the particular quantum state of the system. It is universal in the sense that Eq. 12
will give the correct probabilities if we use the correct quantumn state for the system.
To characterize generalized measurements using all order moments of the outcomes,
the characterization should also be universal, so that the gpecification will be correct
for all possible quantum states of a system. We shall now propose such a character-
ization which is equivalent to the characterization by operator-valued measures., We
suspect that the most likely use for this characterization is in estimation problems,
since moments are explicitly involved,

14,1 Another Characterization of Generalized Quantuin Measurements

Suppose we have a quantum systern in an arbitrary quantum state [s), and a gener-
alized measurement is to be performed on it. Without loss of generality we assumre
that the outcome is a real number A. We characterize the gencralized measurement by
a sequence of bounded self-adjoint operators {An}:--—o' where A0 = I = identity operator,
and the nth-order moment of the meagurement statistics is given by

E{hn}=(s]An[s) n=0,1,2,... (196)

where E{ } denotes taking expectations. If the state is described by a density oper-
ator p,

E{\"}=1r{pa } (197"

A trivial example is when there is a self-adjoint operator A such that An = A", for
all n, since the measurement is simply the one characterized by the operator A,

Not every sequence of self-adjoint operators corresponds to a generalized measure-
ment. [or example, when A2 is not nonnegative-definite the second moment of the out-
come can have negative values, which is absurd, So a necessary condition for a sequence
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of operators to correspond to a generalized measurement is that its even indexed oper-
ators be nonnegative-definite; that is,

A =0, n even, {198)

We shall give a necessary and sufficient condition on the sequence {A n} so that it
characterizes some generalized measurement. It is obvious from the previous discus-
sion of generalized measurements that there must exist on an extended Hilbert space
o D3¢, a self-adjoint operator A corresponding to a conventional measurement such
that

Aﬂ

A PBC' all n (199)

n° Pre
if {A } corresponds to a particular generalized measurement,

Whenever such an operator A exists on some extended space 3(3 , we are willing to
say that {A } characterizes a generalized measurement. Then the necessary and suf-
ficient condmon for the sequence {A } to characterize a generalized measurement is
the same as the condition for {A } to have an extension A that sat1sf1es Eq.199. When
we have the observable A defmed on an extended Hilbert space SC , the measurement
can be realized by embedding % into a tensor product Hilbert space of JC and some
apparatus space (see Sec. V),

14. 2 Necessary and Sufficient Condition for the Existence of an
Extension to an Observable '

We now give a necessary and sufficient condition for a sequence of self-adjoint oper-
ators to have an extension such as we have just discussed.
Theorem 24

Suppose {An} , n=0,1,2,..., is a sequence of bounded self-adjoint operators in a
Hilbert space ¥ satisfying the following conditions:
(i) For every polynomial

piM =a_ +a x+azh2+... +a A" (200)

1

with real coefficients assuming nonnegative values in some bounded interval -M < A S

M, we have
avo+ alAl +azA2+ JR J anAnBO. {201}

{ii) A (202}

Then there exists a self-adjoint operator A in an extension space 3(3 such that
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n =
A = Py A|X n=0,12,... (203)

Furthermore, we require that 3¢¥ be minimal in the sense that it be spanned by elements
of the form Anf, where fE 3 and n=0,1, 2,... . Inthis case the structure {GC+, A, 3(’}
is determined to within an isomorphism, and we have

hal s m./ (204)

The proof of this theorem has been given by Riesz and Sz.-l\lagy.10 We shall outline
only a particular part of the necessity proof because it correlates this formulation of
the generalized measurement with the operator-valued measure characterization, which
we have considered earlier.

Observe that if A is a self-adjoint operator [|A] < M on a Hilbert space se* 2 i,
A will have an orthogonal resolution of the identity such that

A= M \E,, (205)

where {Eh} is a projector.valued measure and

A" = M \aE, n=0,1,2... (206)

When we project A" back into the subspace ¥, we have

n . M \n
Pje APge = [ oy M dPgeFyPye
M o n
= [ MdE, = AL (207)

where {Fh = PSCE)\PGC}’ in general, is an operator-valued measure, Hence we sce that
if a sequence of bounded self-adjoint operators satisfies the conditions of Theorem 24
there will always be an operator-valued measure so that the sequence of operators can
be represented in the form of Eq. 207,

DISCUSSION. We have provided two essentially equivalent characterizations of
generalized measurements. It is purely a matter of convenience to choose one partic-
ular characterization rather than the other. Since the moment characterization involves
the powers of the eigenvalues of the measurement more explicitly, it may be more use-
ful in quantum estimation problems. From the characterization of sequential measure-
ments, however, the operator-valued measure characterization appears to be more
convenient,
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XV. CONCLUSION

We have provided two realizations of generalized measurements. The first realiza-
tion, involving an apparatus, guarantees a realization for every operator--alued
mezsure. The second method of realization, by sequential measurements, provides
realization only for several restrictive classes of generalized measurements, But we
have shown that for a large class of detection and estimation problems sequential mea-
surements with performance arbitrarily close to the operator-valued measures can be
found, A very striking and important result is that in both detection and estimation prob-
lems, under reasonable assumptions, generalized meagurements can be replaced by
self-adjoint observables, with arbitrarily close though sometimes not equal perfor-
mance.

From the characterization of sequential measurements, we have noted the important
fact that measurements characterized by commuting operator-valued measures at most
can perform as well as self-adjoint observables. In general, they correspond toa
single self-adjoint measurement followed by a randomized decision,

Simultaneous generalized measurements are shown to be equivalen! to a single 'finer
grain' generalized measurement, Hence there would be no possibility of improving
performance by considering such measurements.

A different approach to characterizing generalized measurements has been proposed.
It is possible that this characterization will be more useful in estimation problems.
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Part II. Role of Interactions in Quantum Measurements
Xvi, INTRODUCTION

In Part I we characterized quantum measurements with a rather abstract mathemat-
ical language. We claimed that every quantum measurement corresponds to some self-
adjoint operator on a Hilbert space that can be larger than the original Hilbert space
describing the state of the system. Egquivalently, we said that quantum measurements
can be characterized by operator-valued measures defined on the system Hilvert space.
At various instances, notably in the discussion of sequential measurements, we also
assumed that the converse is true — that every operator-valued measure can, in prin-
ciple. be physically realized as a measurement, This view is similar to the popular
concept that the set of all measurable quantities forms a von Neumann algebra gener-
ated by the set of all self-adjoint operators corresponding to the conjugate coordinates
of the system, with each member of the algebra being a bounded function of the not nec-
essarily commuting coordinate operators. For example, the von Neumann algebra gen-
erated by the positive operator X and momentum operator P is the set of all bounded
operators on the space of square integrable functions L (X p), where p is the Lebesgue
measgure.

There is actually no systematic realization procedure for implementing abstractly
characterized measurements. For the most part, experimentalists measure physically

a very small subset of the set of all abstract measurements. In many cases, for example,

the only known physically measurakle quantity is the energy of the system. Some of
these measurements are performed on the system alone. An example is photon
counting in the direct detection scheme of optical communica’cicm.21 Other measure-
ments are performed with the aid of an apparatus that interacts with the system under
observation, the final measurement being made on either the apparatus or the composite
system. An example of this is heterodyne detection in optical communicationu where a

local oscillator field interferes optically with the received field before the combined field

is detected by means of an energy measurement. Many measurements are in this second
category, and frequently the final measurement is performed only on the apparatus, and
the interaction play . the important role of transferring information from the system to
the apparatus.

If we are faced with the problem of trying to realize physically a certain abstract
measurement that does not correspond to any known implementable measurement, it
would be fruitful to consider different apparatus that are compatible with the system
under observation. (By compatible, we mean that the apparatus can somehow be cou-
pled to the system.) We know how to measure some quantities in these apparatus. and
by an interaction between the apparatus and the system, brought about by suitable cou-
pling, information about the state of the system is transferred to the apparatus. Thus
by performing a physically realizable measurement on the apparatus, we obtain the

65



same information about the gystem as in the abstract measurement, Hence the task of
realizing the abstract measurement ig now transformed to the task of finding an appro-

priate interaction to transfer the information from the system to the apparatus. While

we cannot guarantee that any interaction can be brought about by some physically real-
izable coupling, this method is superior potentially to most ad hoc procedures, and ig
well worth congidering,

Thus the role of interactions in guantum measurements is our central theme in
Part II. The importance of such interactions hag been discussed by many authors (for
example, von Neumanm,18 d'Espagnat, 22 and Yuen4). Scant attention has been paid to
the problem of implementing arbitrary quantum measurements, although d'Espagnat22
and recently Yuen4 have made some progress along these lines,

Interactions are also important in sequential measurements, The effectiveness of
sequential measurements hinges on the very crucial nature of the self-adjoint measure-
ment at each step. In crder for subsequent measurements to add information about the
original state of the system, previous measurements all must correspond to self-adjoint
operators that have degenerate eigenspaces. Otherwise, if one of the previous measure-
ments is 'complete’ (i. e,, if each of the eigenvalues of its agsociated self-adjoint oper-
ator corresponds to only a single eigenvector), after that measurement the system will
be in a known pure state, ana_;ge_outcome statistics of subsequent measurements will
depend only on thig state rather than on the original state of the system; hence, no fur-
ther information can be gained. Sometimes the dimensionality of the Hilbert space is too
small for an 'incomplete' measurement. For example, if the system is two-dimensional,
any measurement on this systemn must either be a complete measurement or a trivial
measurement that adds no information (e. g., the measurement corresponding to the
identity operator). We have encountered such a situation (see sec, 8. 1) where an appa-
ratus is brought to interact with the system so that part of the information is transferred
to the apparatus for the second measurement. Hence via interactions the apparatus (or
many apparatus) can be used as an information buffer for future measurements.

In Section XVII we examine several classes of measurements with interactions
involved. 1In particular, we address the problem of the physical realization of an
abstract measurement, by specifying the interaction that is required to transform the
joint slate of system and apparatus, so that after the interaction, by performing a known
implementable measurement, the vutcome statistics are identical to the abstract mea-
surement. The interaction will be characterized by specifying the unitary transforma-
tion U which summarizes its effects. In Section XVIII interactions are stud'=d in
detail and the unitary operator U is used to find the interaction Hamiltonian HI' which
can then be expressed in terms of the generalized coordinates of both the system S and
the apparatus A, This expression will suggest the coordinates of S and A tha’ should
be coupled and how they are to be coupled together.

Section XIX takes into account the constraints of physical laws and elim .zates inter-
actions that are not 'allowable.!
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XVII. SPECIFICATION OF THE INTERACTIONS FOR REALIZATION
OF QUANTUM MEASUREMENTS

We shall investigate the properties of two familiar classes of measurements, both
of which involve an adjoining apparatus. By exam: aing the interactions that take place
before the measurements are made, we shall give specific suggestions for physical real-

ization of abstract measurements.

Class I. The system S under observation is brought into interaction with an appara-
tus A, and then a self-adjoint measurement is performed on A alone. /

Class II. The system S under observation is brought into interaction with an appara-
tus A, and then two self-adjoint measurements are performed, one on S, the other
on A./

We could also consider the class of measurements with the final measurement per-
formed on S alone, but by symmetry that is equivalent to the Class I considered here.

Whenever there is no known implementation of an abstractly characterized measure-
ment, it is fruitful to consider measurements in Classes I and II. If there is a sel of
quantities that we know how to measure on A (or on both A and S), we shall iry to
implement an interaction between A and S, so that essentially by measuring one (or
more) of the measurable quantities on A (or on both) we shall have measured the desired
abstract measurement. After finding a compatible apparatus with known measurable
quantities, the first step is to find the required interaction and decide whether there is
any coupling between A and 5 that will bring about that interaction. The following prob-
lem for measurements in Class I is useful for detection problems. A modified prob-
lem for estimation problems will be offered 1u er.

PROBLEM 1

Given a measurement abstractly characterized by the operator-valued measure
{ojhic s tina |

(i) an apparatus with a Hillert space i A’

({i} a density operator g, for the apparatus,

{iif) an interaction between S and A, whose sole effect is summarized by @ unitary
t~ansformation U on the joint state of S+A,

[The fact that an interaction can be summarized by a unitary transformation will be
discussed in Sec. XVII]

{iv} a measurable observable on A alone that is characterized by the projector-
valued measure {“i}ie 7 which forms a resolution of the identity on the space 3 A that
is, = II,=1 (so the set of measures {p,=N. @1 }._ is a resolution of the iden-

ief b 16 A i i JCS ies
tity of the space 3o ® 3 , such that = P. =1 }, and such that

T A jer 1 Fgya
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n

TrA{pAUT(IIi ® IsCS)U}, Miec.s. (208)

DISCUSSION. We know (see Sec. V) that we can find the ap~aratus space 3 A and
the density operator p A Since the measurement is being per:c med on the apparatus,
the apparatus space X A must have dimensionality greater than or equal to the dimen-
sionality of the minimal extension space ¥ of the measure {Qi}' Let {Ri}ie 5 be the
projector-valued extension of {Qi} on the space i g® ¥ 5+ Hence we want to find an
apparatus U such that

R, = UTPiU, alli € .7, (209)

Ri and Pi are then said to be unitary equivalent. (The subject of unitary equivalence

10,11,23

has been studied extensively .} A necessary and sufficient condition for the two

measures {Ri} and {Pi} to be unitary equivalent is

dim{®{R }} = dim {(R{Pi} 1 alli € &, (210)

where G"I{ } denotes the range space of the operator in braces.

If this condition is satisfied, there will be a set of isometric mappings from each
of the range spaces (R{Ri} onto the range spaces (R{Pi} for all i, and by combining these
mappings we can specify the unitary operator U. (Note that unless all range spaceg are
one-dimensional, the isometries and hence the unitary operator U will not be unique.)/

We have a similar problem for measurements of Class II. Notice in both classes [
and II that we assume implicitly that neither the system nor the apparatus is destroyed
by the interaction; after the interaction, parts of the composite rystem can still be iden-
tified as the system and the apparatus. In Class II we have a slightly more stringent
assumption. We assume that $§ and A in some sense are uncoupled after interactions.
and measurements on 8 will not affect the state of A or vice versa {although the mea-
surement statistics of the two subsystems will be correlated because of the interaction).
We present the following problem for measurements in Class II. This is a detection
probl-m.

PROBLEM 2

Given a measurement abstractly characterized by the operator-valued measure
{Qi}ie.f » find

(i) an apjpuratus with a Hilbert space I(,,

{ii} a density nperaior PA for the apparatus,

{(iii) an interaction between S and A, whose sole effect is summarized by a unitary
transformation U on the joint state of S5+A,

{iv) two measurable observables, one on S alone and one on A alone, characterized
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by the respective projector-valued measures {nm}m e vﬂ"{nn}ne A7+ 80 that the set of
projectors {Pmn = l"lm ® H;l MEM, nEN is a projector-valued measure defined on GCS ®

O =L (211)
m S

}r:l I = IGCA (212)

T P = ® ¥ ,, (213)
mn M0 IGCS A

and such that

u

vy Q.

T
i TrA{pAU Pan}

T
Ty A{p PUALLLY HI'I)U} (214)
for all i €. and the corresponding m,n./

DISCUSSION. Problem 2 is almost identical 1~ Problem 1 except in the necessary
and sufficient condition; the set {Pmn} is defined for Problem 2./

In the discussion of detection problems the eigenvalues of the observables merely
serve as labels of the outcomes, But in estimation problems the cost functions also
depend on the magnitude of the eigenvalues, and both Problems 1 .nd 2 must be modified.

PROBLEM la

We assume by the extension technique described in Part I that we have already found
an apparatus space JC A’ the density operator p A' and an observable B on JC S ® X A’
which is our desired measgsurement. (If the original measurement is a generalized mea-
surement, we assume that B is found to be its observable extension on JCS ® 3 A.) Given
a quantity C that we know how to measure on the apparatus, our problem is to see
whether an interaction can be found such that after the interaction the measurement C
gives the same statistics as the measurement B without the interaction. Again, the
necessary and sufficient condition is for B and ISCS ® C to be unitary equivalent. That

is, there exists a unitary operator U such that

-'.

B=U'(I;p ® QO)U. (215)
S

For two operators to be unitary equivalent, their spectra must be identical. This means
that if {Eh} and {E,'\} are their spectral measures, then

JE S
E, = U'E U, M./ (216)
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[The spectrum of an operator B is the set of all A € C such that the operator (B-AD)
does not have an inverase, ldentical implies that the spectral multiplicities (i, e.,
the degree of degeneracy of each eigenvalue) must also be identical, |

PROBLEM 2a

This problem is similar to Problem la, If B is the abstract observable to be mea-
sured, and C and D are the two measuruble observables on S and A respectively, the
problem is to find a unitary operator U such that

5=1u'(c ®nu (237)

and the conditions on the spectra are the same,/

We have now provided a summary of the required interaction by specifying the uni-
tary transformation that results. Next, we shall show how this unitary transformation
is related to the interaction Hamiltonian. From the structure of the interaction Hamil-
tonian, we should know how to couple S and A to bring about the desired interaction.
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XVIII. INTERACTION HAMILTONIAN
18.1 Characterization of the Dynamics of Quantum Interactions

When two systems 8 and A interact, the evolution in time of their joint state is given
by an interaction Hamiltonian Hp, defined on the same tensor product Hilbert space ECS ®
CF(’A on which the unperturbed Hamiltonian H =Hg ® IJCA + ISCSG H, acts. Hgand Hj,

are the Hamiltonians of S and A. To determine the dynamics of the interaction I-I0 is
replaced by H = H ot HI in the Schrédinger equation for the joint state,

i O |s+a)) = Hls+a)). (218)

The formal solution to this equation is

t ot
|at+a®y) = Vit ) s O+a ), (219)
where V{t-t 0) is a unitary operator defined as
= __:i,'_ -
Vit-t) = exp{- 3 H(t to)}. (220)

It can be verified that
Vi) Vi) =V{r+7') (221)

and hence {V(-r)} is a one-parameter unitary Abelian group. It can also be shown that
V{7) is continuous in the weak topology (i.e., (xl Vi 1°)|y) is continuous for all t and all
X yE 3CS &® I A).

The dynamics of the interaction described by Eg- 219 is described in the Schrédinger
or S-picture where the state of the system evolves with time. In another description,
the Heisetberg or H-picture, the states remain constant in time but every observable A
evolves as

Aft) = UT(t) A{0) U{t). {222)

The S-picture and the H-picture are completely equivalent and will be used interchange-
ably.
Sometimes when we wish to describe the sole effect of HI' it is convenient to remove

from the equation the time dependence associated with the free Hamiltonians Hg and H A
Thig is accomplished by a unitary iransformation on the states,
|st+at))=ex {-i-(H ®L, +l,, ® H )t}]st+at)) (223)
173 PR % ® e, Mo ® Ha '

where the subscript I denotes the change of state with time because of the interaction.
This description is called the interaction, or Dirac, picture. Equation 218 becomes

71




ifi 2 |sf+al)) = Hy(t) - st+al)), (224)

where
- i .
Hy(t) = exp {5 (Hg ® lse , *Tac ® Hyt - H
i
cexp{- (Hg ® Iy, *lse @ 1 alth (225)

The formal solution to the interaction problem, which is well known in time-dependent

perturbation theory, 24-27 , is often used in scattering and quantum field theories:
t, .k [ tD t0
|SI+aI))= Uttt ) s,° +2,°)) (226)
where
= — i t ' 1
Ultst ) = T exp{-¢ Ito H(t') dt'}, (227)

with U(t.to) a unitary operator, and T the time-ordering operator.
Equations 224, 226, and 227 can be combined to obtain the following differential equa-
tion for the two-parameter unitary transformation U(t, s)

a% Uty s) = —-ﬁi-HI(t) Uit, s), (228)

where

Uty s) Uls, u} = Uft, u)
{229)
Ult,t) = 1, Mt.
Hence {U(t. s)} is a two-parameter unitary group. In general, unlike the Cle-parameter
unitary group V{(r) in the S-picture, Uf{t, 5) does not depend only on the time difference
T=t—s,_unless HI commutes with Ho' In that case, HI(t) = HI for all t, and U(t,s) =
exp{- % : Hl{t—s)}
It‘ the joint state of S+A is described by a density operator PStA’ the time evolution
of pS-}-A is given by

t oy o T,
Pgea = VIt ) po A VI (-t ), (230)

and ~ the interaction picture

1.

t t
+

S+A U'(t, to). (231)

Heretofore we have considered conservative interactions where the Hamiltonian is

constant in time. With a little modification of the relevant equations, nonconservative
interactions can be characterized. Suppose that the interaction Hamiltonian HI(t) is
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time-variant, then the Schrédinger equation that describes the evolution of states can
be obtained from Eq. 218 by replacing the time-constant Hamiltonian with a time-variant

orle,
ih & |s+a)) = Hp)|s+a)) (232)

where H{*) = H o + HI(t). The solution is of the form of Eq. 226:
t, 1 to to
|steal)y = Wit t ) s O +a %)) (233)

where W(t. t ) =T * exp{--é—" I'; H(t') at'}. In the interaction picture, W(t:t,) is replaced
by o

Wit t) =T - exp{-¢ I:O i at'h (234)

where H(t) = exp{d + H_th H (1) - exp{- 2w th

Thus we can see that the effects of an interaction for a duration of time can always
be characterized by a unitary transformation. We shall now see whether we can find
the interaction Hamiltonian if we are given the unitary transformation.

18.2 Inverse Problem for Finite Duration of Interaction

We have attempted to specify the interactions required for the realization of guantum
measurements. That specification is in the form of a unitary operator acting on the
tensor product space JCS ® i A It is very difficult, however, to make suggestions about
the coupling between S and A that will bring about the interaction by looking at the uni-
tary operator. We shall now try to find the interaction Hamiltonian (or Hamiltonians)
that gives such a unitary transformation. This is the inverse of the problem of finding
the unitary transformation from the interaction Hamiltonian. At first we shall consider
only finite duration interactions.

PROBLEM 3 (Schridinger Picture, Conservative Interactions)

Supnose during the time interval from t, to t; that the resulting transformation on
the joint state of StA in the S-picture is given by the unitary operator U. The trans-
formatior U deviates from that affected by the free Hamiltonian H o because of the inter-
action Hamiltonian HI' We want 1o find HI'

SOLUTION AND DISCUSSION. We assume that from the time - to tg S+A is
evolving according to the free Hamiltonian. The interaction Hamiltonian Hy is "turned
on' at time t, and continues to affect the system S+A until t. The turning on of the
interaction presumably does not affect the states of S+A except in the way predicted by
the Schridinger equation.
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The solution to this problem is well known. Since the one~parameter unitary group
defined in Eq. 220 is continuous by a theorem of Stune10 (see Appendix @), there exists
a gelf-adjoint group generator H = 0 such that

ViT) = exp{- ﬁ- . H'r} (235)

and V(tf—to) = U. In fact, H can be written as

t/{te=t )
H=1im§?{U fo
t=0

—I}. (236)

Then the interaction Hamiltonian is given by
HI =H ~ HO. (237)

If the free Hamiltonian for the apparatus H A is unknown, then

HI+I3CS® HA= H—HSQ IJCA' {238}

In general. there is no unique decomposition into HI and Ir,» @ H A But if we make the
S

additional assumption that HI has finite trace (trace class), then there is a unique H A

given by

Hy = lim {(s;|H-H ® ISCAlsiH’, (239)

jor 0

where { I 5; )}:il is any orthonormal basis in the space JCS which we assume to be infinite
dimensional. This results because HI is of trace class; hence, (si| HII si) must vanish
ag i=o0 and leave

1]

H, = lim <Si|13€S ® HAI s;)

i—co

lim {s.|I 8. YH, =H,. (240)
i-°0< 1| 3CS| i’ A A

Trace class interaction Hamiltonians are very important, since they form a large

class wherein time-dependent and time-independent perturbation theories c:onverg(:.23’28

PROBLEM 4 (Interaction Picture, Conservative Interactions)

If we are given the resulting unitary transformation U in the interaction picture,
there is no known guaranteed procedure for finding HI directly. If Ho is known, we can
transform the problem into a problem in the S-picture hy specifying the unitary trans-
formation as

U = expf- L H (t.-t )} U, (241)

and make use of the solution of Problem 3. There is a method for working directly

74

S T




|
|
|

within the interaction picture that will probably yield a time constant HI’ but that is a
particular case of the general nonconservative interaction problem which will be dis-
cussed next./

We shall work entirely iu the interaction picture for nonconservative interactions.
The mathcmatics in the S-picture is similar, and the only requirement is to put the cor-
rect guantities in tiis problem.

PROBLEM 5 (Nonconservative Interactions)

Given a unitary operator U which summarizes the effect of a nonconservative inter-
action between S and A in the interaction picture, we want to find an interaction Hamil-
tonian (or a class of interaction Hamiltonians), which can be time-variant so that it will
give the transformation U in the interval from zero to T./

SOLUTION AND DISCUSSION. By the Spectral theorem (Theorem 1, see Appen-
dix B), there exists an Lz-space of functions defined on a domain X with the mea-
sure p, such that LZ(X. w) is isometric to the space 3CS ® JCA, and ¥ : U= exp {if(x)}
where f{x) is a real-valued function defined on X, and J is the isometric mapping. Let
g(t) be any square-integrable function in the interval (0, T). Let

)
I8 let]? at ,.
L = for0st=sT

By =4 gl (242)
0 otherwise

where gt % = I |gt)| ® dt. Then

h_(t) = 0, t <0
g (243)
hy{t) = 1, t=T.
Let
u b t) = exp {if(x) hg(t)}. (244)
Then
u_ (x,0)=1
g (245)

ug(x. T) = exp{if(x)}.

1t #”! is the inverse map from the LZ~space onto K, @, s uglx ) = Uglt) which
is unitary., with

1 t <0
U (t) = (246)
g u t=T.
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The interaction Hamiltonian in the interactiun picture is simply
S i n £ (0} = flt) (247)
which satisfies Eq. 234. And in the S-picture
i i
Hf(t) = exp{p H_t} HE(t) - exp{-+ H_t}. (248)

In general H%(t) will not be constant in time, If it i. then it is a solution of Problem 4,/
Note that the upper time limit T can be o.

PROBLEM 6 (Impulsive Interaction)

Let
ﬁl(t) = 5(t) H. (249)
Then
Hy(t) = 8(t) exp {3 H th Hp exp {- 7 Hoth

5(t) HI. {250)

The unitary transformation occurring around t = 0 is
I t=0_
Uty = i {251)
U=exp{-—'ﬁ-Hl} t=0+.
If we are given U, H; can be found by Eq. 236:

H, = hm—-—{U -1}, (252)

18.3 Inverse Problem for Infinite Duration of Interaction

Sometimes it is very difficult to turn on an interaction at some time t= t without
affecting the state of the system. In such a situation it is desirable to prov1de the
coupling for the interaction long before the information-carrying part of the system
arrives, so that interaction starts gently but essentially goes on from the period of time
—-© <t 0. The final measurement is made at time t=G. The resulting transformation
in the interaction picture for the duration (-, 0} by Eq. 227 is

U{0,-} = lim U0, t). {253)
L S
If | x) is the state of S+A at t=0, exp {-—LHtH x) is its state at an arbitrary time t. After
removing the dependence on the free Hamilionian the state in the interaction picture is
exp{—-fl t} + exp{- = Ht}|x). In the infinite past, S+A is then in the state
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. i i
|x_o0) = Lim exp{pH t} - exp{- ;- HiH x)

=00

{254)
or

| x) = tEToo exp{% Ht} exp {- %HotH X_o0)

Q|x_m).

{255)
The limit © exists only for certain conditions on Ho and H; {for detailed discussion,
see refs, 23, 26-28B).

That issue is not important here, since we are interested in the
inverse problem, where 2 is given.
If the limit

Q= lim exp{ﬁi- Ht} exp{— ﬁl Hot}

(256)
tmem00
exists, it is in general an isometric ope ~ator and it satisfies the condition
HQ = QH . (257)
This can be shown as follows;
. ~itH ; -itH
c-l‘-',-c (et ¢ 70 o g itH (H-H)e °. (258)
If the limit @ exists, the derivative in Eq. 258 as t = -® is zero, which implies as t =~ -
. -itH
HmH)e =0 (259)
or
. -itH . -itH
elﬂ-I He . eltH Hoe ° {260)
or
. ~-itH . ~-itH
HE11:H e o e1tH o o Ho' (261)
Therefore as t - - we have H2 = QHO.

In the inverse problem £2 is given as the transformation brought about by the inter-

acticn, and @ carries states in the infinite past to states at t=0 in one-to-one fashion,
and hence the inverse map can be found. Thus

H = QHOQ"I (262)
or
H.o=0do-1.
I o o

(263)
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XIX. CONSTRAINTS OF PHYSICAL LAWS ON THE FORM OF
THE INTERACTION HAMILTONIAN

We have described several methods of finding the interaction Hamiltonian from a
given unitary transformation. Not every interaction Hamiltonian corresponds to a real-
izable interaction. We can narrc the classes of Hamiltonians that have to be considered
by studying constraints imposed by different physical laws. For example, in a collision
type of interaction an interaction Hamiltonian that does not conserve linear momentum
is clearly not admissible,

19.1 Conservation of Energy

We consider first the constraints of the law of conservation of energy on the inter-
action Elamiltonian.29 '

Assume at some initial time t = 0 that the system S and the apparatus A are not
interacting and evolve according to their free Hamiltonian Ho' If | 59+ ao)) is the joint
state at this time, the energy of the system at this paint is

E (s°+a°|H_}s%+a%). (264)

o _
S+A‘<

After some initial contact time, say tc > 0, the systems interact, and the joint state
evolves according to the full Hamiltonian H = HO+HI. For any t >t

af+ sy = U] 2% +5°)) (265)
where
U, = exp{—-iﬁ Ht}. (266)

The energy of the combined system S+A at time t > tc iz

t t,.t t t
Eg,p = (s +a'[H[a +s7))
.0, 01T t, t
={{s ta 'UtHUt|a +8°)). {267)
Since H is the generator of the unitary group Ut' it commutes with the combined system.
Hence
t o, 0 o, _0 ,
Egup ={(s *a |H|a”+ s™)

((s°+ a°|Ho| a®+s%) + (% +a° HI_I a®+s%)

o o, _© o, O
Egeat (s ta |Hla +s7). (268)
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Conservation of energy requires

t R
Egia = Egiar Nt (269)

Hence this implies
(s®+a®|Hy]a%+s%) = 0. (270)

If we allow the joint system S+A to have any state in JCS ® JCA, the fact that H; has
to be a self-adjoint operator, together with Eq. 270, implies HI = 0 identically. This
means that if energy has to be conserved, no nontrivial interaction may occur.

There are several ways to impose conditions on HI so that Eq. 270 will be satisfied.

Condition 1

{(a) Restrict the interaction to be a 'local' interaction. That is, the interaction takes
place appreciably only when the physical distance of S and A is within certain bounda=-
ries.

{(b) At time t=0 before any interaction takes place require that the allowable states
of S+A be within a linear subspace .# g+A & c GC ® 3 A whlch in sc . e sense does not
fall within the boundaries of the interaction. For a state | sC+a ) in SHA? this means
that

(2% +8°|Hy|s%+a”%)) = 0. (271)

In this case the interaction will finally take place at some time t = tc’ since S+A will
evolve according to the free Hamiltonian which eventually carries them into the region
of interaction. It is clear that .4 S+A cannot be an invariant subspace of Ho' Otherwise
the action of H could never carry any state in & SHA outside it. Hence the condition
for nontrivial interaction to take place is

H,P 140, 272

[ o "JS'FAJ * ( )

where P is the projection operator into the subspace .4 S+A" Figure 14 gives a
# 5ip A

description of the process. Att =0, |a°+ %) e M o, 5 Hence

(s 4] (o] o]
(s +a |PJS+A|a +8 ) =1, (273)
Att=t > tc = 1contact' time,

|at+st)) = expi- -}—11-I-Iot}' |a%+5s°))

v,]a%+s%)). (274)
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Probability current
due to H,

Figure 14, Condition for nontrivial interaction.

The probability that S+A will be found in the subspace M S+A at time t is
: t, .t t, .t
Pr{StA in JS+A}= {{s ta |P"¢S+Aia s

= ((8°+ a°|v;fPJS+Avt! a°+5°)). (275)

Therefore the 'probability current' that crosses the boundary BE' is

- gai {Pr{8+A in jS+A} 2 - 58:':- { s°+a°]V§PJS+AVt| ao—l—so))

i t, t : t, t
=-= ({s'+a’|[H,P a +s ). (276)
fi ¢ I[ o ./!S_M” »

] = 0, no probability current goes into .# é +A where the interaction takes

If[H_, P
ot Pt a

place.
Note that HI =0 in "/('S+A‘ Hence "‘(S-{-A and .A’é'.i_A are invariant subspaces of HI
but not of Ho. Therefore, for nontrivial interaction to occur,

[Ho' HI] # 0. (277)
Condition 2

If we are willing to consider a time-variant Hamiltonian, we can have an interaction
Hamiltonian HI(t) such that

3 , =0 t=0
HI(t)
#0 t >0, (278)

The energy E;-&-A = st+at|Ho+HI(t){at+st)) will not be constant in general, and
energy is either pumped in or out of the combined system S+A.
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_Condi,tion 3

In discussions of scattering 'adiabatic switching' is encountered, The interaction
Hamiltonian is assumed to have the form

HS() = e-lelt H. (279)

Hence interactions start at some time t = 3. There is no interaction as t = -, But

as t approaches t = - L , the interaction becomes appreciable, Then the system S+A
£

is assumed to be observed at large times (at t = ®}. By passing to the limit ase¢ -~ 0,
we can get a conse:-rative interaction result and it can be shown that the energy of the
system at t = -~% is equal to the energy at t = +®, There are subtle problems involved
in this view, and we shall not discuss it further.

19.2 Ccnservation of an Arbitrary Quantity

Suppose there are two quantities, characterized by the self-adjoint operators QS of
the system S and QA of the gsystem A, the sum of which is conserved during and after
an interaction. If ]a +8 )) is the state of S+A at time t, this means that the quantity

(s rat|Qlat+ sty =(Q), (280)
is conserved, where
Q=Qg ®@L, +I, ®Q,. (281)
A 5
If |a0+ s®)} is the state at t = 0 when no interaction takes place,
(Q), = (s°+2°) VEQVt] a®+s%)), (282)

where Vt iz given by Eq. 220, The conservation law for the quantity Q states that (Q)t
is constant in time. That is,

2 (@), = (s°+2°| & (viQvy|a®+s% = 0
= (s°+a°| v {f [1,Q]} v, ] 2%+ %))
= ({ st~|-at|ﬁi—[ﬂ, Q]]at+st)}. (283)

I we allow the state of S+A to be any state in JCS ® JCA, then a necessary and sufficient
condition for the quantity Q to be conserved is

[H,Q] = 0. (284)
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Since in the absence of interactions the guantities QS and Q A are individually conserved,
[H A @ A] =0
[Hg Qg) = 0
which implies
[H,,Q] = 0. - (285)
Hence, together with Eq. 284, we have
[H, Q] = °. (286)

If {Si}M1 are the eigenspaces (invarient subspaces) of Q, the Hamiltonians can be

i=

written in the form

M
H= Z P, HP
s 1Fs
=t 1
M
= ) mPg./ (287)
=1 !

19. 3 Constraints of Superselection Rules

When the system under observation admits certain symmetry, not all self-adjoint
operators are measurable, even in principle. For example, if the system admits a
rotation symmetry, say around the z axis, then by the definition of symmetry the system
is indistinguishable from a rotated versicn of the same system. This implies that no

measurable quantity can be changed by this rotation. The rotatgonal group around the
i8Jg

z axis is represented by the unitary transformation U(9) = e z

z-component angular momentum, and @ is the rotated angle. If A is any measurable
quantity, it will not be affected by this rotation. That is,

, where JZ iz the

iBJz —iE)Jz
e cA-e = A {288)

which implies

[5,, A] = 0. (289)

Hence, all measurable quantities must commute with the ! superselection' operator J 2
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In an arbitrary quantum system, any superselection rule can be represented by a
superselection operator B such as J 7t and every measurable quantity must commute
with it. If we take the von Neumann view of measurable quantities, as long as the bases
operators of the algebra commute with B, all measurable quantities commute with B,
When there is more than one superselection rule with superselection operators {Bi}i"’il,
a first requirement is for the B ; to pairwise commute, and every measurable quantity
must commute with each of them. In fact, we can find a maximal superselection oper-
ator B that contains all the eigenspaces of the Bi’ so that any operator commuting with
B commutes with all Bi' Hence we need only consider one superselection operator at a
time.

When there is a superselection rule, the density operator that represents the state
of a sy=tem is not always unique. Let {Pk}f=1 be the resolution of the identity of the
maximal superselection operator B. If A is the measurable quantity to be measured
on the system with the density operator p, the nth moment of the outcome statistics is

given by Tr {aA"}., But

[a", B] = 0, all n. (290)
Therefore
K
Az = PkAnPk (291)

and
n K n
Tr{A"p}=Tr{{ = P A Pk)p}
k=1

K n
= = Tr{pPA"Pp}. (292)
k=1
Using the identity Tr {AB} = Tr {BA}, we have

K
Tr {A"p} = kfl Tr {A"P,pP, }

K
= Tr {A" 1:1 P pP,}

= Tr {APf}. (293)

In general

o
[IH}

N

Pkp.'["k # p. 1294)
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Since both the density operator p and any observable A have to commute with a
superselection operator B, it is necessary that the unitary transformation U that sum-
marizes the interaction commute with B.
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XX, CONCLUSION

We have made suggestions for implementing abstractly characterized measure=
meuts, by considering the possibility of activating an interaction between the information-
carrying system and an apparatus, so that when an implementable measurement is
performed afterward on the composite system the cutcome statistics will be the same
as that in the abstractly characterized measurement. Procedures for finding the
required interaction Hamiltonians are described. The Hamiltonian is expressed as a
mathematical function of parameters of the system and the apparatus. Although we do
not specify exactly how to perform a certain measurement experimentally, this
procedure provides clues to finding the relevant quantities that should be actively
involved in the experiment. It is hoped that by observing the form of the interaction
Hamiltonian, experimentalists will be able to relate abstract measurements to those
that they can implement experimentally.
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APPENDIX A

Statement of a Theorem for the Orthogonal Family of Projections

The following theorem is due to Halmos.2?

Theorem
If P is an operator and if {Pj} is a family of projections such that = Pj =P, then a

necessary and sufficient condition that P be a projection is that P, 1 Pk whenever j # k,
or, in different language, that {Pj} be an orthogonal family of projections. If this con-
dition is satisfied and if, for each j, the range of Pj is the subspace .# i then the

range .# of P is V .,ﬂj./
J

The proof has been given by Halmos.30
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APPENDIX B

Spectral Theorems

We shall state two spectral theorems. The first is due to Riesz and Sz.-Nagy;10
the second is due to Dunford and Schwartz.23

SPECTRAL THEOREM (Riesz and 5z.-Nagy)

Every self-adjoint transformation A has the representation
o0
A = [Z  ME,,

where {E } is a spectral family that is uniquely determined by the transformation A; E?\
commutes with A, as well as with all of the bounded transformations that commute

with A./

SPECTRAL THEOREM (Dunford and Schwartz)

For every self-adjoint operator A, there exists a measure space (& u) and zn iso-
metry # of ¥C into Lz(ﬂ. 1) such that

j:A=mf.

where f is a measurable real-valued function on £, and me is multiplication by f./
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APPENDIX C

Proof of Nalmark's Theorem

Theorem 2 {Namark's Theorem)

Let F, be an arbltrary resolution of the identity for the space H. Then there exists
a Hllbert space H whmh contains H as a subspace and there exists an orthogonal reso-
lution of the identity E‘t for the space H' such that

_ tot
th =P Etf
for each f € H where P" is the operator of projection on H./

Proof {Akhiezer and Glazmang): Consider the set & of all pairs p of the form

p={a, i},
where A is an arbitrary real interval and f is an arbitrary vector of H. On # we define
a function @(p,, p,) such that it p; = {A,,f,} and p, = {a,. 1}, then

2(p;)py) = (FAl . Azfl’ f,).

We show that the function @(pl. pz) is positive=definite. Indeed,

‘I’(Ply pz) = (FA]_ . A..,fl' fz) = (fl’ FAI -Azfz) = (FAI 'Azfa' fl) = ‘I’(qu Pl)

and, on the other hand,

n I n —
T ®(p,p)EE = Z (F, .a £.£)E8. {C. 1)
i, k=l "k’ "itk i k=1 Ai Akl k' "i”k

If the intervals Ai (i=1, 2,...,n} are pairwise disjoint, then

n n
' E = N 2
B (Fp op fpf) Eif s B, f f)|g| 2 (C. 2)
i, k=l ik i=1
If the intervals Ai (i=i, 2,...,n) are pairwise disjoint a: d the intervals /# .ud a, coin-

cide, then the sums in the right member of (C.1) fall into two parts. Jne part, with
indices from 3 to n, is of the form (C.2), and the other part, with indices 1 and 2,

satirfies
2 _ 2 _ 2 2
T (1, A f,f)EE = T (F, f,f)E8& =(F, Z &f, E §f) 20,
i, k=1 Ai Akl k' "i”k i, k=1 All k' 7i°k Aii:l L k'K
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The case with arbitrary intervals Ai (i=1,2,...,n) can be reduced, with the aid of
additional partitions, to the cases already considered. Hence, if A, N 4, =0, then

F(Al {-Az. As)fs g) = (F(A.l ‘A +A2-A3)f' g) = (FAI . Asfa g} + (FAZ. Asfr g).

3

Thus &(p,, p,) is a positive-definite function on &.

Using the method described earlier we imbed ® in a Hilbert space u',

Not desiring to introduce new notations for those elements & of the space g which
are subsets of & by the construction described earlier, we agree on the following: if
an element p of @ belongs to # then we write p instead of &.

We indicate the scalar product in the space H+ by an inferior index ( +), and have

(pls P2)+ = ‘I’(P]_- pz)-

We now consider elements of H' of the form fr,£}, 1= [-%, ©]. By means of the
equation

dLeh il eh, = (P o) = (1, g),

n
we can identify the pair {I, f} with the element f from H. The element = &,k{l, fk} of
k=1

the space II is identified with the element L gkfk of the space H, Thus, H can be con-
k=1
sidered as a subspace of the space at.

We now solve the following problem: find the projection of the element {A, f} of the

space H on the subspace H. We denote the projection to be found by {I g} For each
h of H,

da f}-fLegh fLnh, =

or
da,th{Lnp, - L eh L nh, = (7 8, 0) - (g, h) = (F,f-g, h) = 0,

so that
g = Fyl,

i e.
P'{a, f}= {L F,t}. (C. 3)

The theorem will be proved if it is established that the operator function EZ, which
is detined by

Ex{anf} = {anay i} (C. 4)
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for each element of the form {A!, f} € H is an orthogonal resolution of the identity for
the apace l-1+, since then (C. 3) can be expressed in the form

+..+ +.,+ .t _ ot _ “ o
PEpf= P EL=P{ANL )= P{A, £} = {I, Ff} = F,f
for each f € H.
It is evident that EZ is an additive operator function of an interval. T[Furthermore,

the two equations

(£5)% {a, g} = up{a o, = fa nanagh= mi{a, g,

(Ex{ar, o} {ae, gh, =(a nas s}, {an, gh), = (Fu, o anBiB) = (Fpy. o2 anE 8)
o+
= ({A',f}, EA{A“» g}),[_.
imply that EZ is a projection operator. Finally, it is evident that E;{A' £} = {ar, £}

Since the family of all elements of the form {A', f} is dense in H+, the extension
to u* by continuity of the operator EZ defined by formula (C.4) is an orthogonal

resolution of the identity for the space H+. The theorem is proved,

20
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APPENDIX D

Proof of Theorem 3

For the statement of Theorem 3 see Section IV. The proof given here is odapted

from Sz.-Nagy and Foias.l3

Proof:

(s = Py U (s by/se = (Pge U (s)/3) = T(s)".

We have
r = {Ppu Lsyn(s), hity} = = {uw™ uis)his) hit}
s&G tEG S(—EG teG

= z usins)? =0
s

(b} Let us consider the set 3{3 , obvmusly linear. of the finitely nonzero functions
h(s) from G to ¥, and let us define on 3¢t a bilinear form:

AA -1 . -,
(h,/h') = T = (T(t “s)his), h'(t}) >0,
st

where

f=h(s), h'=h'(s).

By using the Schwarz inequality,

(B 60" < (BB - (R b,

so that the h for which (h h) = 0 form a linear manifold ./V m T, 1t follows that the
value of (h. h ) does not change if we replace the functions h. h‘ with equlvalent values
modulo 4. In other words, the form (h h') defines in a natural way a bilinear form

{k, k'} on the quotient space 5(30 = $C+/./V . Since the corresponding quadratic form (k. k)

is positive-definite on JC n k" (k, k)l/2 will be a norm on EC;. Thus by completing I}C;
with respect to this norm we obtain a H11bert space et

Now we embed ¥ in X' (und even in st o) by 1dr‘nt1fy1ng the element h of ¥ with the
function h =8 (s) h where & (e) =1 and & (s) =0 for s # e or, more precisely, with
the equwalence class modulo A determmed by this function. This identification
is allowed because it preserves the linear and metric structure of JC. Indeed, we
have
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alaliiiliaing o8 ¢ ¥

ki
]
(oghs 8"y = = 2 (Tt ) 6 (s) by 6 (1) h')ge y
= (T(e) h, ht)sc
= (h, h')ge-
+ N _1 A M ) A
For h h(s) € ¥ and € G, we set ha = h(a "s). Obviously we have (h+h‘)a= ha+hia,
(ch) = cha h = h, (hb) = h . Furthermore,
aoAL - S SIS
(ha,h y=Z 2 (T{t s) h{a “s})h'(a "t))
st
= £ 2 (T{+ }o) h(o), h*{7) o
o T
A A
={h,h'). 4

Therefore he A inplies ﬁ € A and consequenily the transformation B ?1 in I?C"'
generates a transformation k - k of the equivalence classes modulo 4. Setting Ufa) k= |
o for every a € G we define 3 hnear transformation of 3C+ on 3{3" stch that U(e) =1,
U(a) U(b) = Ulab), and (Ufa) k, U{a)k") = (k; k"), These transformauons on 5t o' form a
representation of the group G.
Setting &_(s) = 6 _(a”'s), for h,h' & 3, we obtain

-k, el

(Ua} hy h')ge = (8 h, 8 k')

L T A -

- -1
§ z (T{t "s)8,(s)h, 8 _(t) h')ge

(T(a) by h')ge.

Hence T{a) = Pr U(a), for every a € G.

Let us observe that every function ﬁ = h(s) € I?C+ can be considered as a finite sum :
of terms of the type & (s) h; i.e., the type (6 {s) h) for ¢ € G. Hence every element k "
of 3C can be decomposed into a finite sum of terms of the type U(s) h for ¢ € G, h € .

This 1mp11es et = v U(s) 3C. :

s€G 3

The isomorphism of the unitary representations of G satisfying T{s) = PJCU(S)/R, ' ‘

MsEGand¥t= v U(s) 3C is a consequence of the relation
seG

(UG(s) h, Uty h') = (U U(s) h, h')
= Ut ) Us) o v
= (Ut ts)h, hY

= (Tt Ye) o B"),

which shows that the scalar products of the elements of st of the form U(s) h, U{t) h',
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for s,t € G, hyh' € ¥, do not depend upon the particular choice of the unitary represen-
tation U(s) satisfying our conditions.

The case when G has a topology and T(s) is a weakly continuous function of s remains
to be considered. Let us show that then U(s) is also a weakly continuous function of s;
i.e., the scalar-valued fuuction (U{s}k, k') i8 a continuous function of s, for any fixed
kk'es 3(3+ Since U(s} has a bound independent of s (in fact, HU(s)” = 1) and, moreover,
the linear combinations of the functions of the form Gwh for ¢ € G, h € ¥ (more exactly,
the corresponding equivalence classes modulo ) are dense in 31, we conclude that
it suffices to prove that (U(s}$ c,_h. 6Th') is a continuous function of s for any fixed
h,h' € ¥ and ¢, T € G. This scalar product is equal to

(U(s) U(e) h, U{T)h") = (U{r 'sc) b h')
= (T('r—lscr)h, h'y,

and this iz a continuous function of s because T(s) is assumed to be a weakly continuous
function of s.
Thus Theorem 3 is proved./
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APPENDIX E

Proof of Theorem 4

Theorem 4

Let {b‘x} be an operator-valued measure on the interval 0 €\ = Zm, then there exists

a projector-valued {Eh} in some extended space st S ¥ sucn that F\ = Py E, /X for
all »./

Proof: The integral

T = 27 ™ am, =01,

exists and defines an operator function T(n) on the Abelian integer group Z, such that
T(0) = I, T(-n} = T(n)*, and

_ perm i(n-m)x
Z Z{T{n-m)h _,h_}=[" = = e d(Fyh ,h )
n m n'm 0 n m m

2w
=J*" £ Z (Flan)h_,h_)
0 n m n’ m

= ,r(f“ (F(\) T ™ h, = ™y )20,
n n m
where the last integral denotes the limit of the sums
5 in)Lk Kk
= ((F(?\k“)—F(hk)) Ze Kn, ?1 e hn),

withh =0<\ <... €X\_<... €A, =27, and max (\, ,,~\,}) ~ 0
0 1 k ] k+l "k o
Hence, by part (b) of Theorem 3, there exists a unitary operator U = fo
on an extended space st € IC such that

T(u) = PJCU(n)/.'I(’., n=0,z1,...

e, [o7 ™ arnw = [T e™ qE b ), nwex

and E)\. is a projector-valued measure, and it can be chosen so that it satisfies the same
condition of normalization as {F, }; i.e., E, =E E =0, E = I50. Then the
equation implies F, )\/ 3. /

AO? Zn-0

94




e o i e A et Y, it ! [

APIGSR  RATEE

APPENDIX F

Proof of Theorem 5

Theorem 5

M
For an arbitrary operator-valued measure {Q} . = Q = I, whose index set has
i=1

i=1
a finite cardinality M, the dimensionality of the minimal extended Hilbert space

min GC+, is legs than or equal to M times the dimensionality of the Hilbert space .
That is,

dim min {3(3 Y < M dim {3¢c}. /
Proof: The minimality condition of Theorem 3 is

+ o0
min "= v Un) ¥,
n=0
where

Uln) = IZﬂ' ]n?t dE

with j =4-1, and {Eh} is a resolution of the identity. For a finite set of the Q, the inte-
gral becomes the sum

M jnA,

Uln)= T e 1Qi.
i=1

where the hi are M distinct real numbers chosen arbitrarily.
Let

—a“_i i =
hi-M' i=1,..., M

Then

=2

Un)= Z exp{j %—q i} Qi
=1

U(M) = U(0) = I(fC‘

2a{M+£)
M) = E exp{j —37— it Q

i
i

= E exp{_] 2z2d i}Q

= U(L).

Hence, with this choice of the \., the unitary group U(n) repeats itself every
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M increments on the index n, and the minimality condition becomes

+ 00
min ' = Vv Uln) 3
n=0

M-1 2M-1
={v vmislv{ v uvnsitv...
n=0 n=M

M-1 M-1
={ v Un) s} v{ v0 Un) 5} v ...
n=

n=0

M-1
= Vv Uln) I,
n=0
Since Uln) is a unitary operator, each of the spaces .?’n = Uln) ¥, n=0,1,..., M-1,
has dimensionality equal to dim { i} (Note ..ff’o = 3.} For n# m, any two of these
spaces .E.fn, .Z’m may not be orthogonal. But if we assume that they are indeed orthog-

onal, we can arrive at a union bound for dim {min 3 +}.

M-1
dim {min %*} = gim{ VvV  Un) 3¢}
n=0

M-1
=dim{ Vv 2}
n=0 "

M-1
* dim{# }
n=0 n

=

=Mdim {3}/
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APPENDIX G

Proof of Theorem 6

Theorem 6

If the operator-valued measure {Q a} a€A has the property that every Q_ is propor-
tional to a corresponding projection operator that projects into a one-dimensional sub-
space S, of i e, Q= qaiqa) (qal » where 1 2q, >0, and |qa) is a vector with unit
norm), then the minimal extended space has dimensionality equal to the cardinality of
the index A (card {A}). Thatis,

dim {min Jc+} = card {A}./

Proof: Let the projector-valued measure {II }ac A be the minimal extension of the
operator-valued measure {Q } ecA of the minimal extended space min 3t such that

PJCHU.PEC = Qa
=q,la,) (a,! 12q 20
and
= l'[
aSA 3C+
z Q,
eEA Jc

Each projector II projects into a subspace 5 of min 3¢*. We shall show that if
min %% is minimal, S , i8 a one- -dimensional subspace.

Assume Sa is not a one-dimensional subspace for some a. Let {fﬁ k:1 be a complete
orthonormal basis for this S, so that K, is an integer bigger than one, since 5, by
assumption is multidimensional. Then

K,
mo= = (.

Let
Prlfi)=lgl)., Mk

where the vactors ]gi) are no longer orthogonal nor do they have unit norms in general.
Hence
Qa = PifcnaPC’tC

K,
' (-] a
z leg> (el

=aq.la,)(a,l-
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Each of the vectors ng) must be proportional o |q a). otherwise it can be seen that
Q, is a nonzero operator over more than one dimension, simply by orihogonalizing the

K
set {gf:}k:l and expressing Q, in these coordinates.
Hence we have |g?{3 = giiqa) where gf{ is a complex number, an!

K
a
2
Q= 91a,) @l = 2 1l [ag) (aq]

which implies

Kﬁ
%= 2 gkl

Now let

K
_=1/2 2 a%
Iha) "'qa_ k§1 gk ‘fiz{)

K
-1/ a
(h,|n)=q'"? Z 5] = 1.

and

K
o o=1/2 & ax
PifCIhn:> =9, l:::l B Ps@‘fip

- a
= q /2 Z 1212 la,) = al/?]a,)-

Therefore
Prolg ) (0, 1Py = q,la,) (g, = Q-

Since |ha) ig a linear combinution of vectors in Sa. IIa, = |ha) <hal is also an exten-
sion of Qa orthogonal to other Ha,, a'#a. Furthermore, Il < projects into a one-
dirmengional subspace, which means that the operator-valued measure with 11 o replaced
by l'lﬂ, is an extengion of the operator-valued measure Q - and has an extended space with
a smaller dimensionality than min 3e*, which by agsumption is the minimal extended
space. Hence we have arrived at a contradiction. Therefore, for the minimal extension
space, every projector-valued measure projects into a one~d!mensional subspace Sa .
Since

=z I =1 +
acA ° min JC
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min ¥* = U 8, Salsa,fora +al.
aS A

Therefore

dim {min %'} = £ dim {s,}

aSA

1}

Z K

acA ¢
z =1

eSA

card {A}
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APPENDIX H

Proofs ¢i Theorem 7

Theorem 7

Given an operator-valued measure {Q a} eEA’ let B{Qa} denote the range space of
{Qa}' a € A, then

dim {min %%} = _Z dim {®{qQ,t}./

Proof: We sghall prove

(i) dim{min%™}<s = dim{&{Q}}
a= A

Then we shall show

1) dim{min%'}> = am{r{Q}}
aS A

so that the two quantities on each side must be equal.
(i) Since each Q is a nonnegative- defm1te self-adjoint operator, there exists for

each Q an orthogona! set of vectors {qu)}k 1 such that Q is diagonalized by these
vectors. and where Ka is an integer larger than zero. That is,
K

a
%= 2 ay | ag) {ag |

and 1 = qz Zz0,
The set of vectors {[qk)}k_l gc A SPans (R{Qa}. In fact, we have

I= 2 @Q

acA °

K

[
z = o ]ap){al
«cA k=1 &Kk

n

Therefore the set of one-dimensional operators, {Pk qk|qk) (qkl}k-l aEA is a gener-
alized resolution of the identity in 3¢, and each is proportional to a one-dimensional

projector, It is clear that an extension for the set {Pak}kf aCA is also an extension
for {Q } oE A’ since each Q can be obtamed by summing over K of the operators in the
former set, Bui by Theorem 6 we know the dimensionality of the minimal extension

space for the set of one-dimension operators {Pk}k==1 aC A and that it is equal to the
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cardinality of the index set

K

K a
dim {min %% for {P%, ¢ = £ T 1= T K.
k=l,a€A " A k=1 ecA ©

But Ka is the number of dimensions over which Qa is nonzero. That is, K ” is the
dimensionality of the range space of Qa’

K, = dim {&{Q_}}.

K
Since an extension for the resolution of the identity {P'z a is also an extension
k-1, a€A

for the resolution of the identity {Qa}aEA, it is clear that the dimensionality of the

minimal extended space for the Q , 18 upper bounded by the dimensionality of the min-
imal extended space for the Pz. Hence

dim {min GC'P} for {Qa}a(—: A

K
s dim {min 5} for {P;}k:L aEA

Z K
ecA @

z dim {&{Q_}}.
aS A

We have proved (i).
(ii) Now we wish to prove

dim {minge*} = = dim {a{a,}}.
aS A

Let the projector-valued measure {11“}(z c A be the minimal extension of the operator-
valued measure {Qa}ae AOn the extended space min 3C+ such that

Qa ¥ PSCHanfC

z =1 .
acA © min3{3+

Since the projectors Ila are all orthogonal to each other (for the proof see Riesz
and Sz.-Nagylo). the minimal extended space is simply the union of al! subspaces into
which the projectors II‘l project. Hence the dimengionality of min et is

dim {_in 3%} = £ dim {&{n }}.
aE A
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L.et us agsume that

dim {min GC"'} < X dim {G{Qa}}.
ac A

Then there exists an ¢ such that

dim {®{11 }} < dim {®{Q }} = dim {@{Py Py }} < aim {1 }},

which is a contradiction, Therefore the inequality {ii) is true. Putting (i} and (ii)
together, we have proved that dim {min SC"} = £ dim {(R{Qa}}. /
eEA

In this proof it is assumed that every Q o has a complete set of eigenvectors. Strietly
spesking, in an infinite dimensional Hilbert space only compact operators are guaran-
teed to have a set of complete eigenvectors. Although there are cases when this assump-
tiocn is incorrect, it does provide a heuristic proof of correct resuits, We shall give
an alternative proof that does not depend on this assumption but leads to the same con-
clugion,

Alternative Proof of Theorem 7: For eacha € A we have

QG = Psc l'lanc.

where l'l«z is s projection operator,
Assume for the minimal extension
dim {R{Q,}} < dim {R{N_}}

for some ¢ € A, We have
% = Fafe 1% ale )
= P(R {Qn}P.'ICHaPGC Pm{Qa}
= PyePa{e MaFaie }Fue
Let Sa be the closure of the range of l'la when restricted to ('R{Qa},
s, = IL{/ {1}

Then dim {Sﬂ} £ dim {(R{Qa}} <dim {(R{l'la}} and Sag G{Ha} is the range space of Il a
which implies

P l-l = P L
Sa a Sa
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Hence
% = PePafe eFa{q,} i
= PP P.DP. P P
e a{Q} s e s, ®i{Q} e
* PxPaiq}ts, Faiq,} i
® Faio, M Fs, PeFa{e}
- Psc PS Psco
a
Therefore Pg is a projection operator and, together with the other II git @ #a is a
a
projector-valued extension of the cperator-valued measure {Qa}ae A But by assumption
dim {®{Pg }} = dim {8 } < dim {®{n }}.
a

Hence the set {I]a}aE A is not a minimal extension. And for a minimal extension, we
must have

dim {®{Q }} = aim {®{1 }},  Mae A

It is easy to show that
dim {®{Q < dim {&{n }},  Meca
So for the minimal extension we have the equality
dim {®{Q_}} = dim {&{n }}
and

dim {min 3¢*} = Z, dim {&f{n }}

= = dim{®{Q.}}./
eEA
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APPENDIX 1
Proof of Corollary 3

COROLLARY 3. The construction of the projector-valued measure and the extended
space provided by Nalmark's theorem (Thcorem 2) is always the minimal extension./

Proof: The proof of Na¥mark's theorem in Appendix C is a proof by constructior.,
That is, a construction for the projector-valued measure {l'l a} is actually given for any
arbitrary operator-valued measure {Qﬂ}. We :tiall show that the resulting extended
space in this construction ie indeed minimal, First, we sketch another proof of Theo-
rem 5 using Nalmark's theorem,

In Nalmark's theorem the extended Hilbert space Ht is spanned by the set of pairs
{p = (A, f) for all subintervals A in the intervall= (0,2}, andall f € H}. If we have M
Qi's where M is a finite number. we can pick M points {hi}li‘gl in the interval (0, 27]
where F’\ changes values, Let these points be

= < < =
0 ?\.°<?\l<?\.2 N RI\I 2.

The points {hi}i\io divide I into M subintervals,
AiE(hi-l')‘i]' i=ll-n-lI\lo

Now the M sets of pairs {p = (Ai' f), all f € H}i\gl. are orthogonal to each other, since
the inner products between any two pairs, one from each set, by definition is

{a;: 0. (a; m} = (Fp g frh) = (Fofih) =0

J

forany f, he H, 1i#j.

Furthermore, these M suis of pairs span H. Individually. each of these sets
include:s 2lements of the form (Ai. f) for all f € H, so each has at most dimensionality
equal to dim {H} Hence we have

M
dim {H'} € = aim {8} = M dim {1},
i=1

which is Theorem 5.

DISCUSSION. We now consider the interval A, that contains the point Ay Fpo =

Qi. We can show that the dimensionality of the subspace spanned by the set {(Ai, ). all
fe H} is equal to dim {(R{Qi}}. Let Si be the range space of Qi' For any vector f orthog-
onal to all elements in Si' the square of the length of the vector (Ai. f) is

{(Ai. ) (A n} = (FAif. f) = (Q;f f) = 0.

Hence for all f 1 Si’ (Ai. f) = 0 is a trivial zero element. Whereas for g € Si'
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because g is in the range space of Qi Therefore

dim {(a;, 1), all £ € 1} = aim {&fq,}

and

M
dim {8} = = dim {ap 0, an f e B}
i=1

= 1;1 dim {(R{Qi}}.

i=1

This condition satisfies the minimality condition given by Theorem 7. Hence the
construction in Naimark's theorem (Theorem 2) gives the minimal extension./
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APPENDIX J

Sequential Detection of Signals I'ransmitted by a Quantum
System (Equiprobable Binary Pure State)

Suppose we want to transmit a binary signal with a quantum system S that is not cor-
rupted by noise (see Chan 1). The system is in staie |s } when digit "0" is sent, and
in state |s ) when digit "1" is sent. Let the a priori probabﬂmes that the digits "0"
and "1" are sent each be equal to one-half. The performance of detection is given by
the probability of error. We try to consider the performance of a sequential detection
scheme by bringing an apparatus A to interact with the system S and then performing
a meagurement on 5 and then on A, or vice versa. The structure of the second mea-
surement is optimized as a consequence of the outcome of the first measurement. In
Section VIII we considered the case in which the joint state of S and A can be factored
into the tensor product of a state in S and a state in A. In general, the joint state of S
and A does not factor, and we now wish to treat this general case.

Let the initial state of A before interaction be Ia Y. If digit "0" is sent, the joint
state of S+A before interaction is |s )Ia Y. If digit “1" is sent, the state is |..1 )la .

The interaction between S and A can be characterized by a unitary transformation U
on the joint state of 5+A.

|l +al ) = Uls ) ay)

|s§+a§)} = U|sl)|ao).

By symmetry of the equiprobability of digits %11 and "0", we select a measurement
on A characterized by the self-adjoint operator O A such that the probability that it will
decide a "0", given that "0" is sent, is equal to the probability that it will decide on "1",
given that "1" is sent. Let |¢ ) and |¢1) be its eigenstates. Then { by )} » Spans

the Hilbert space, ¥ A Let {ltIJJ )} i=1,2 be an arbitrary orthonormal basis in the Hilbert
space, GCS. Then the orthonormal set {|¢i)|tb )}1,, 1,2 is a complete orthonormal basis

for the tensor product Hilbert space 3¢, ® g j=1.2

Then

£, f\w=
|50+a0)) i b a13‘¢1>|q’3)
i

I%+ﬁ»— z bl¢ﬂw>

1,
1

3 )

W

where ay; and bij are complex numbers. Since unitary transformations preserve inner
products,
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f,. 0. £, .1 %
= T b,
(s} +alag+sy) o2 P
j=1.2

= (sllso).

If we perform the measurement characterized by O A’ the probabilities that we shall
find A in state |¢,) and |4, ). given that digit "1" or digit "0" ig sent, are

Pr{le )l0]= 2z, lac,jll2
prlleplo]= = layl
prlle )1]= 2, byl
prlle)1]= = oyl

But by symmetry we choose Pr[l¢o)| 0]= Pril ¢, )I 1]

pr(le,)]0]=Prlle; i1}

Given as a result of the measurement that we find system A to be in state |¢ O). we
wish to update the a priori probabilities ot digits "14 and "0". Using Bayes' rule, we

obtain
pr(|o )| 0] Prlo]
prile )]

prlo e )]=

Pr[O] =-%-

pr{|6)]= Prllo )l 0] Prlo] + Prlle 1] Prl1]

=.é_{pr[l¢o)|0]+Pr[|¢l)|0]}

=1
T2
= priolle 1= Prlle dlo]
= & a .|2
j=1,:a1 )
- 2
pri1| e )] = 3_:12'2 [bg,!
= I |a1jlz.

j=1,2
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Given that the outcome is |4 o>’ the system S is now in well-defined states. If "0"
is sent,

If "1" is sent,

z bl
£ j=1,2 90 J

8 )= .
5] o 2 v
= R
{j=1'2 OJ }

After the measurement on A we have a new set of a priori probabilities and a new
set of states for system S. We choose a measurement on S characterized by the self-
adjoint operator OS such that the performance is optimum. From previous calculations
the probability of error, given |¢ 0), as a result of the first measurement, is

1/2
Pr[ellebo)]%{l-[1-4Pr[0lI¢°>]Pr[11|¢°>]l(sflsf,)|2} }
e 2
|J=i2 ot
(silsf =

By symmetry

1/2
Prel|s,)] =1 {1 - [1 -4Ij=-12.z bljaleZ:' }

1/2 1/2
. Y N L EasY N Nt
R Pr[e]——a-{l 5 [1 4|j=11..“2b0jaoj| ] 5 [1 4|j=.1's bljalj[ ] }

2
b .a =(s,|s_), yields
Y 1 0 ¥

Minimizing Pr(e], subject to the inner product constraint, £ 1174

i=1,2
j=l|2

Pr[G]opt=%—[l - ,‘/l -|(51|so)|2].

This is the same result that was derived for the case when the joint state of S+A can be
factored into the tensor product of states in S and A.
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APPENDIX K

Proof of Theorem 14

Theorem 14

If an operator-valued measure {Q }M » is defined on a finite index set, with

values as operators in a finite d1mensmna1 Hilbert space ¥ (dim {JC}zN), and

the measures {Qi} pairwise commute, then it can always be realized by a sequential
measurement characterized by a tree with self~adjoint measurements at each vertex.
In particular, if M < N, the sequential measurement can be characterized by a tree of
length 2, In general, the minimum length of the tree required is the smallest inte-
ger { such that

log M
=1+ Tog N /
Proof:

(i) Let us prove the case for M = N. Note that the case M < N can be made to cor-
respond to M = N by defining

QiEO fori= M+1,.,.,N,

N
so {Q; } -1 is an operator-valued measure and % Q, = L.
i=1
Since the Q pairwise commute, on a finite dimensional Hilbert space ¢ they can

be d1agona11zed simultaneously by a set of complete orthonormal eigenvectors {| b. )

=1
where N is a finite integer (equals dim {36}) That is,
N

Q= Z qlbp(bl,  Mi=l,....M
with q} 20, for all i, j, and

N

>2 q M i (K. 1)

i=1

(Fpy) (ByIMI by by ¥ = 84 [ (], M, 3,

Let us perform a self-adjoint measurement on the system characterized by the

projector-valued measure

{1t = ) (b | Y.

The possible outcomes can be modeled by the N branches of the tree of length 1,
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Figure K, 1

as shown in Fig, K. 1.

Suppose the outcome of the first measurement is bJ Let a second self-adjoint
measurement be performed Let the projector-valued measure for this measurement
be {PJ = ]cJ) (cJ[} ~» where {|c J>}1- is a complete orthonormal basis of €. The N
possible outcomes of the second measurement can be modeled by the N branches of the
'subtree' in Fig. K. 2.

Figure K. 2

By the results in Section IX, the operator-valued measure R for 2ach path (i, e,,
each path (a bJ c; ) for all i, j) is given by

o= 10, J .
RJI 3P1HJ

= b3} byl ef) (ef[b)) (by|
iy 12
= lbj)l(bjlci])l (bjl' (K. 2)
Let {| Ef)}fi_,l be an arbitrary complete orthonormal basis, and let

N .
- 1/2 |-
lbj) ) i=zl (q;) / 8-
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From Eq. K. 1,

Then
= =iv2 i .
IKBed " = qh ki

But since |B j} and ]bj) are both unit norm vectors, there exists a unitary transforma-
tion U j (that is not unique) such that

b.) = U,|b.).
3o if we choose the second self-adjoint measurement such that

lef) = LAY Mi,

the operator-valued measure for the path {( a, bj‘ cJ.J:), from Eq. K. 2, is

I

o1l eI (ol = 001 (B wfu a2 (o

[Pl vyl

q;[bj) (bjl'

Let us perform such second measurement on all outcomes bj’ and identify each out-
come i in the index'set of operator-valued measure {Qi}il as corresponding to the set
of all paths (ao. bj,cg), i=l,...,N ending in the vertices c-l?, J=1,...,N with a sube
script i. ‘Then the operator=-valued measure of the sum of all of these paths is

2 z 4 vl
= L= D .1 b. b.! =Q. i.
j=1 it j=1 %Gl oyl =Q

The sequential measurement can then be characterized by the tree in Fig, K, 3, Hence
we have realized the generalized measurement given by the operator-valued measure
{Qi}}il by a sequential measurement.
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» gives Q,

Figure K. 3

(ii) Let us prove the case for M > N, The method of constructing the sequential
measurement is similar to the case M € N, except that in general the sequential mea=-
gsurement must have more than two steps. Let {Q }M be a set of operator-valued mea-
sures such that they pairwise commute and M > N = dim {&C}

Since they commute, they can be diagonalized simultanecusly by a complete ortho-
normal basis {| bj)}?_]__l, such that

Qi=§q|b)(b1 i=l,...,M
M
w1thq 20, i, j, and ‘_Zl q =1, ®j.

As in part (i), let Lts first perform the self-adgomt measurement corresponding to
the projector-valued measures {II |b ) {b; I} .1 50 that the initial part of the tree
characterizing the sequential measurement ls gwen by Fig. K. L.

For each of the N one-dimensional subspaces spanned by the N vectors {I b, >}J—1'
we can define a resolution of the identity given by the Q, ir since

M
Z q|b) (bl = b)) (b
j=1 ¢
=1.
’ h
= the identity operator of the jt one=-dimensional subspace spanned
by |bj).
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So the set of one-dimensional positive operators {q [b ) (b [} is a resolution of the
identity. Whenever any of these {qJ} i=1 equals zero, we ca.n delete them from the res-
olution of the identity without loss of generality. If the number of nonzero q for some j
is smaller than N = dim {JC}, it is obvious that we can perform a second self-adjoint
measurement at thoge vertices in exactly the same fashion as in the proof of part {i},
and we proceed accordingly. The problem is when the number of nonzero q; exceeds
the number N = dim {3¢}. By Theorem 6, an extended space of dimensionality equal to
the number of nonzero qi. is required. Certainly the origipal Hilbert space with less
dimensions will not suffice. Let the number of nonzero ql. be M, so that N < M. £ M.
We group the set of M, positive operators {q;| bj) (bj[} into N subsets {groups), since
we want each subset to have as few members as possible. We try to group the M:i oper=
ators as evenly and optimally as possible; hence, the minimum for the maximum number
in each of these N subsets is given by the smallest integer N i such that NNJ. 2 Mj' We
can indicate the partition symbolically by Fig. K. 4.

Partition into
N subsets
Maximum number
of membars in
sach subset is
N i
Total number
of one-dimen-

sional operators
= Mj

Figure K, 4

For each of these N subsets, if we sum the operators within the subset, we get a

gingle one-dimensional operator. Then the N resulting one-dimensional operators (one

from each subset} form a resolution of the
I subset { } identity that has a projector-valued exten-
ubse sion on an N-dimensional space. Thus it is
: possible to perform a second self-adjoint
c) subset {2}
2 measurement exactly like that in part {i)
{indicated by Fig. K. 2} to 'separate' these
cji subsget {.} N subsets of outcomes. The process is

indicated symbolically in Fig. K. 5.

cg‘ subset {N} If N_j € N we can 'separate' each of
the subset of members into their indi=
Figure K. 5 vidual members by performing a third
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measurement. The nature of this measurement is exactly analogous to that of the second
measurement, the construction of which is given in part {i}. Then we can identify the
measures {Qi} by summing the measures for the appropriate paths as in part {i). But
the tree now has length 3 instead of 2.

If N. > N we have to 'geparate' each subset that has more than N members into N
finer subsets, and this can be done by a reiteration of the procedure that has been
described, This 'separation' process is repeated (by measuring a sequence of self-
adjoint measurements) until the number of membersg in each subset is less than N. Then
the final measurement corresponding to the second measurement of part (i) is per-
formed, and the measures Qi are identified by summing over the measures of the
appropriate paths.

This construction demonstrates that if 0 < M €N, we only need a tree of length 2,

For N<M = N2 we need a tree of length 3. In general the minimal length of the tree
log M
that is required is the smallest integer £ such that £ =1 + Tog N /
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APPENDIX L

Extension of Theorem 14

When the Hilbert space is infinite dimensional but separable, Theorem 14 can be
extended to handle the situation. We shall sketch how this theorem can be generalized.
Since the operator-valued measures (still defined on a finite index set) pairwise com.

mute, they can be diagonalized simultaneously. It is then possible to find an infinite
number of finite dimensional orthogonal subspaces {Sk]':=l of ¥ such that if {Pk lle
corresponds to the projection operator on these subspaces. then

[ +)

with

o0
Z P, =l
k=1 k™ X

Given this decomposition, we can separate the sequential measurement into an infi-
nite number of steps. For example, we can separate the resolution of the identity in
the first subspace S1 from the rest of the subspaces by performing a first measurement
corresponding to the binary projector-valued measure Pl and Iy, - P, as in Fig. L.1. If

S, iP
“S, i =R
Figure L. 1

the outcome is in the vertex corresponding to Sl' we can make use of the construction
in Theorem 14 to 'separate’ the measures further by sequential measurements. If the
outcome is in the other vertex, we can devise a second measurement (just like the first
one} to separate S, from the rest of the subspaces. Eventually, we should be able to
'separate’ the whole space JC, although we may have to use a sequential measurement
with infinite length. But with a judicious choice of subspaces {Sk}. we can guarantee
that with probability close to one, that the measurement will terminate after a finite
number of steps. This fact will become apparent after Section XII.,

There is still another way to construct a sequential measurement for the infinite
dimensional case. If we are willing to perform a self-adjoint measurement that has an
infinite number of possible ouicomes, by the first measurement we can immediately
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separate the measures into one-dimensional subspaces as in Theorcm 14. Now there
will be an infinite number of second-level vertices. But because of von Neumann's pro-
jection postulate only one of these vertices will be the outcome and that is all we have
to deal with in the second measurement. Thig will enable us to guarantee that for all
possible situations the sequential measurement will have a finite number of steps.

When the operator-valued measure is defined on an infinite index set, the situation
will not be different from the first index set case, except that there will be an infinite
number of outcomes at the final measurement of each path (instead of a finite number).
Hence we have the general result, which is stated in Section IX as Theorem 15.
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APPENDIX M

Procedure to Find a 'Finest' Decomposition of the Hilbert Space i
into Simultaneous Invariant Subspaces

The main statement that it is possible to find a unique finest set of simultaneous
invariant subgpaces that are pairwise orthogonal is given in Theorem 18. We shallpre=
scribe a construction procedure to find the finest simultaneous invariant subspaces of a

set of bounded self-adjoint operators {'I'a]'.:z cA"

DEFINITION. A partially ordered system (S, €) is a nonempty set S, together with
a relation € on S such that

{a) fa€bandb < ¢, thena € ¢

(b) a€a/

The € relation is called an order relation in S.

DEFINITION. If B is a subset of a partial'y ordered system (S, <) then an ele-
ment x in S is said to be a lower bound if every y € B has the property x sy. A lower
bound x for B is said to be a greatest lower bound if every lower bound z of B has the
property z <x./

A similar definition can be given for the least upper bound.

DEFINITION. A partially ordered set S is a lattice if every pair x.y € S has a least
upper bound and a greatest lower bound, denoted by x \/ y, and x A y: respectively. The
lattice S has a unit if there exists an eleraent 1 sich that x <1, for all x € S, and a zero
if there exists an element 0 such that 0 <x, for all x € S. The lattice is called distrib-
utive if

AV =AY vIXAz), XNy.2 €5

and complemented if for every x in S, there exists an x' in S such that
x\Vx'=1,
xAx'=0./

DEFINITION. A Boolean algebra is a lattice with unit and zero which is distributive
and complemented. /

For example, the family of all subsets of a set S with inclugion as order relation is
a Boolean algebra (see Dunford and SchwartzZ3). If A,B are subsets of 5, A B if and
only if A © B, The unit element is S, and the zero is (@, the empty set.

AAB=ANB, AVEB=AlUBE.

We have noted that every bounded self-adjoint operator has a unique resolution of the
identity, which defines a projector-valued measure on the Borel measurable sets of the
real line., Furthermore, the projector=valued measures of any two Borel sets commute.
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Congider then the family of projection operators {Pp}pFB that are measures of all Borel
measurable gets f on the real line ®., If we define the relations

{i) PP, = Pl implies the order relation P, <P,
(i) P AP,=P P,

(iii) Pl v P, = Pl +P, -PlP2

for every pair of projection operators in this family, then this famil; of projectors fo:.us
a Boolean algebra. If we consider the subspaces {Sp}p GB of the Hilbert space J3C that
are the range spaces of this family of commuting projectors {PS}BEB and define the rela-
tions

(i) S, =8 if 8§, C8, (partial order by inclusion)
Py P2 By —

P2

(iiy S, vV S. = least subspace of ¥ that contains S, .S

Py Py By P2

(iii) S[3 A SB = greatest subspace of ¥ contained in both,
1 2

then the system {{Sp}peB' S} is a Boolean algebra.
Consider for each bounded self-adjoint operator T, a € A, the corresponding Boolean
algebra of subspaces

{{S; BEB’ g}) a € A,

Each of the subgpace s? is an invariant subspacr of T, To find the simultaneous invari-
ant subspace of the set {Ta} ecA’ Ve find in some sense the intersection of all Boolean
algebras of subspaces. Specifically we form the family of all subspaces {S\'} YEG such
that

s.= A s%
Y ecaA pa
for all possible combinations of the {ﬂa}.
The family of subspaces {Sy}\rEG have corresponding projection operators that pair-

wise commute and, in fact, {{SY}. g} is a Boolean algebra (the proof is simple but tedious
and is omitted).

To find the finest decomposition of J¢ into the subspaces {Si}}il where N can be a
finite integer or the countable infinity o' We single out the subspaces {Si} in {8 YEG'
80 that the null space {0} is the only subspace in the algebra {S } that is included in each
of the subspaces Si' This is possible because {{SY}, g} is a lattice that has a partial
ordering. I the null space {0} is deleted, each of the subspaces Si is a 'lbeal' greatest
lower bound, for a total-ordered subalgebra of {SY} We may view {Si}ﬁl as the 'atoms'
of the measure space {JC.{S }. |.|.}- where p is the dimensional counting measure, defined

as w(S,) = dim {3 } = Tr {Psa}. A set 5; € {8} is called an atom if u(S)) # 0 and, if S, =
Sy» then either u(S,) = u(§;) or u(S,) = 0.)
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[t can be shown that Si’ i=l,..., N are pairwise orthogonal subspaces. That is
N

N
PSiPSj = f’ijPSj' X i,j, and igl 8, = ¥ or i=zl Psi = lzo.  Since by definition each of th

Si is invariant for all Ta. 2 € A, the set {Si}il\il is simultaneously invariant for all of
the Ta. Furthermore, it is unique. Hence we have Theorem 18.

There is an abnormal situation when all of the Ta has a simultaneous degenerate
eigenspace Si such that every subspace of Si is also a simultaneous invariant subspace.
The construction that is provided here will only single out the unique Si’ but it does not
further decompose Si into finer subspaces. The finer decomposition (which is never
unique) is unnecessary because this case is unimportant in communication problems.
It corresponds to a measurement that first resolves the subspace Si and is followed by
a randomized strategy that we know cannot improve performance.
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APPENDIX N

Proof of Theorem 21!

For the statement of Theorem 21 see Section XII. The proof is in four parts.
Proof: The mean-square error Il is
2 2 ;.2
1, =Jgf Tr {paGa,Ha-a'! p{a) d“a'd“a. (N. 1)
We shall attempt to show that there is a self-adjoint measurement characterized by the
projector-valued measure {II a }1\:1 such that when the measurement is used the output
i

will be one of the M finite number of discrete points {a i}' and have a mean-square error

M
2 2
I, = IS 2 Tr {pal'laiHa-ail pla) d"a. (N.2)
with [I,-L | <e.
The general philesophy of the proof hinges on the fact that the integral I1 in Eq. N.1
can be approximated by discrete sums over the index set of ¢ and a', with arbitrary
accuracy, in the sense of a Riemann sum. Witn this transition the problem becomes

a 'pseudo-detection' problem, and Theorem 20 applies.

Part (i). The function |a—a'|2’ is continuous on .. compact set S; hence, it is also
uniformly continuous on S. By assumption G o' 18 uniformly continuous. Therefore the
integrand in Eq. N.1 is also wniformly continucus.

Tet

Is I ple) dPad?a’ = [  d%e’ = K < o, (N. 3)
since S is compact. For an ;—fﬁ > 0, there exists a 5, > 0 such that for all 2!, «" € 8 and
latma"] <6, '

| Tr {o,G,uHa-a"1? ~ Tr {p G Ha-a' 3} < £ (N. 4)
Define the neighborhoods for alle € S;

V, (e) ={et: [e=a'| < 5} (N.5)
1

Than the set of open sets {Vé (a)}aes is an open cover of 5 and, since S is compact,

there exists a finite subcover {V 5 (ai)}li"_f!1 such that
! =

M
Uv, @a)=s. (N.6)
i=1 )

The sets {V‘5 (ai)} are not disjoint, but we can form disjoint subsets {\,/\'6 (ai)} from them
1

1
by arbitrarily assigning the overlapping parts to one of the sets, so that
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I3
»
F
4

il

- )

~ n N .
Val(ai) vﬁl(aj) =0, fori+j

and
M
1 .
iLJl Vél(ai) = S. (N.7)
Let
Q =[a dF .
e V51(ai) a (N. 8)
Define
M,
1, =g T {paQa!'Ha-ai,lz pla) d%a. (N.9)
1= 1

M
1
Vol e oo Homarl® e 2 3efp,q, Hamep ot e

1, -1, =
! i'=1
M
2 2 2 2
<5 |Trlo,Gyidle-atl®d%er = = 7rie Q. Healil®| ple) a%
€ €
< IS ) K’ pla)} dza'dza =7 {N.10)

The last inequality is implied by Eq. N.4.

Part (ii). Similarly, since P and |a-a'|2 are both uniformly continuous on S, given

. A M
any%> 0, there exists a 62 > 0 such that if we form the sets {Va (ai)}ij, we have
2
€
[1,-1,] <5 (N.11)

where 1 4 is defined as

M, M
Yz Hee-a,|2 Peif, (@}
= Z Pl . . )
14 i=1l i'=1 N {paiQai'.' al A P Vaz(al)
where
[ = 2
Pr{Vaz(ai)}= Ig}s (a,) Pla) d°. (N.12)
2 1

Note that we can use the same neighborheod as in part (i} by forming neighborhoods of
size 5 = min (61. 62) and use the same set of {"1}?:]1' Then I becomes
M

M
- _ 2 A
4= 2 ZTr {paiQai.H"i 2, Pr{Vbz(ai)}. (N.13)
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Part (iii). Observe that I, looks like the probability of error expression for the
M-ary detection problem with a slightly different cost function. By the method used in
Theorems 19 and 20, it can be shown that there exists a projector-valued measure
{l'lai}li\i 1 such that

£
< 1’ (N.14)

2 A
Tr {pﬂinai|}lai_ai'| Pr{véz(ai)}'

Part (iv). If we use the self-adjoint operator characterized by the projector-valued
measure {IItz }I\El as measurement, the mean-square error is
i 1=

M 2 2
I, = Iy i=zl Tr {paﬂai'}|a-—ai,| pla) d%a. (N.15)

But I5 is a Riemann sum of the integral Iz. and with small enough partition size & for
the {\Tﬁ(ni). we have

€

I, 1] <5 (N.16)
From part (iii),
€
l1,-1,0 <5- (N.17)
From part {ii),
- < £
l1-1,] <% (N.18)
From part (i),
€
[1,-1,] <3- (N. 19)
12-111 <eg, (N.20)
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APPENDIX O

Proof of Theorem 22

Theorem 22

Two generalized measurements, characterized by the operator-valued measures

{Si}ic—: .}"{Tj}j(-: ra are siraultaneocusly measurable if and only if there is a third gener-
alized measurement, so characterized by the measure {Qk}kC—ZK that

€K,
1
and disjoint subsets {K },. s of K, so that
U K, =K,
ieSs
and
(i) T,= I Q. Mjie f

and for disjoint subsets {Ki }jc—: ,}’ of K so that

Ux=x/
s !

Proof:
(i} Necessity. H{Si}ie J’{Tj}je s are simultaneously measurable, there exists on

an extended space et D &, two commuting projector-valued measures {“i}ie WL

P.;. t
{ J}Jef such that
8; = Pgoll.Pro, i

Since {ni}'{Pj} are simultaneously measurable, there exists a third projector-valued

measure {mk}kEK such that

(a) Ili= z (Rk. nieJSs
€K,
i
and disjoint subsets {Ki}ie i of K, so that

U k. =K
S !
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(b) P,= T &, Mjed
4 S

and disjoint subsets {KJ' }je, ¥} of K, so that
U K} =K.

e g

Therefore

Si = PSCHiP:}C

Simitarly,

P.= Z Q.
JjEKi k

where Qk is defined as Py (RkPCFC' In fact, without loss of generality we can form all
possible products of the form

®R..=1.P
1] 1]
Then
.=z ®&,.
1 jE/ 1)
P.= Z (R..l
boes Y

which gives

8,= T Q.
boeg
T.= Z ccq
A

where
Qij = PCIC(R'jPJC'

1

Hence the condition given in the theorem is necessary.
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(ii) Sufficiency, Let {mk}kEK be a projector-valued extension for the operator-
valued measure {Qk}kEK' Then the two projector-valued measures defined as

IL= == ®
i keK, k
P.= = @&
] ke K
j

comrnute and are simultaneously measurable, Hence the condition given in the theorem
is sufficient. /

B T T VP

T

BT I
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APPENDIX P

Construction for Operator-Valued Measure {Qij}

Problem

Given two simultaneous measurable operator-valued measures {51}1(: e {T }Jc
want to find a third measure {Q }1C £, iE f such that

/r we

si= Q Mie s
JC/

T,= Z i & .
] 1€JQ‘1 M j/

Construction

To find Q”. in some sense we would like to find the 'biggest' possible operator Q,
such that S Q“. and T = Tl - Qll are still nonnegative-definite. {(An operator A
is bigger than the operator B, A zBifand only if A - B = 0. The order relation = pro-
vides a partial ordering and Q,11 is the maximal element.) Since §I = Q is a mea-
sure and should be posmve, 80 is T 371

Sl - T = S1 T1 is a bounded self—adjoint operator; therefore, by the spectral
theorem for bounded self-adjoint operators. there exists a spectral measure {E } such

thatS -T —g -T -'.fl )\d?FJ)L HenceS -f J\dEh andT “"I ,L, so that

e L ol
Q, =85, =5 =8 - [ \dE,

~ ) - 0
=T) =T =T+ I ME, .
Now that we have a basic construction for Q1 1’ it is possible to generalize by induction
to find any arbitrary Qij' Suppose we are given Q for alli <i', j<j', and we desire

to find the Qi’j' operator.

Define
SI,=28,- £ Q..
i! i! i<§' i'j
T, =T, - Z Q
J I <y
Then Qi'j' is the biggest operator such that Sz! Q 'yt 20 and T!, -Q 1 =0, and it can

be obtained by the previous procedure for Q“ By inductmn. all of the {Q } can be
found.
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APPENDIX Q

Stone's Theorem

The statement of this theorem is taken from F. Riesz and B. Sz.-Nagy.lo

STONE'S THEOREM. Every one-parameter group {Ut} (=w < {<o) of unitary trans-
formations for which (Utf, g) is a continuous function of t, for all elements f and g,
admits the spectral representation

L . /
U = e dEy.
where {Eh} is a spectral family such that Eh“""" {Ut}.

The proof is due to Sz.-Nagylo but it was preceded by other proofs.
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