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FOREWORD

This is Volume II of the final report prepared by Lockheed Missiles and Space
Company, Inc. (LMSC) for NASA Contract NAS 9-12083, Space Shuttle Thermal
Protection System Development.

Documented in this volume are the LMSC design efforts performed under this contract
for the National Aeronautics and Space Administration Manned Spacecraft Center, under
the direction of the Thermal Technology Branch of the Structures and Mechanics
Division, D. J. Tillian, COR,

This volume, subtitled Design Methodology, delineates the work performed under
Task 2.0. Per agreement with the COR, this separate volume satisfies the Data
Requirements List twelfth item: DESIGN METHODS REPORT. A short summary
of this work has been included in Section 2.0 of Vol I.

The following individuals have participated in this effort and deserve recognition for

accomplishing the program objectives:

R. P. Banas

A, B. Burns

A, J. Chinn

J. A. DeRuntz

M. H. Kural

R. Lambert

J. R. Ritz

B. Van West -
J. T. Woneis
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SUMMARY

Design methodology developed by LMSC for the shuttle TPS — including analysis,
verification, and design techniques — allows detailed definition of design applications
of LI-1500. Although such methodology is applied to LMSC-developed RSI material in
the design of four deliverable prototype panels, the design/analysis logic applies

to other RSI material systems as well. This study has considered RSI for application
to primary structure and subpanels. Optimization methods have been developed which
result in minimum‘weight/cost systems that are refurbishable. Strength/stiffness
requirements and failure criteria are identified for LI-1500 RSI system components
and metallic substrate materials and configurations. Fastener concepts and tile
bonding methods have been studied and textured coating systems evaluated.

Design methods and groundrules were established to carry out parametric studies and
evaluate alternate design concepts. The impact of unique LI-1500 thermophysical
properties on RSI panel design was ascertained and conclusions as to design validity
have been drawn. Finally, cost and weight comparisons with competing TPS concepts
have been made. These items are discussed in detail in this volume of the report

and are summarized here.

Design/Analysis Methods:

¢ RSI stress analysis requires fine-mesh, double-precision finite
element codes.

e TPS design should utilize sophisticated 2-D and 3-D analysis
techniques developed or modified specifically for RSI panels.

e Rational design/analysis should incorporate orthotropic LI-1500 properties.
e Combined stress-failure mode of RSI is recognized as a possibility.
e - Experimental results validate analysis techniques.

¢ Design of substrate should incorporate no skin buckling in lieu of test data.
vii
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Optimization Studies:

Heat sink effect of bond indicates lower TPS system weight than mechanical
fasteners.

Bond weight is not a significant driver on lower surface.
Bond weight is a major driver on upper surface.

Primary panel structure should be optimized, using nonlinear beam-column
analysis. '

Zee-stiffeners are optimum for panel designs compared with other configu-
rations of similar cost/manufacturing complexity.

Panel designs should be based on thermal/structural optimization. -

Design Details Evaluation:

Orbitai cold-soak condition (-200°F) negates strain isolation properties
of RTV-~560 leading to unacceptable LI-1500 stress levels.

Strain arrestor plate can offer strain isolation at -200° F orbital cold-soak
condition as well as allowing use of larger tiles.

Coating stresses are well within allowables, even on sides of tile.
Discontinuous bond between tiles keeps LI-1500 stréss levels down.

Low-density filler block in baseline joint does not appreciably perturb
LI-1500 temperature distribution. '

Based on preliminary studies, lightweight core concept shows no apparent
advantage.

Textured and discontinuous coatings offer no advantage.

Attachment Studies:

Beryllium subpanel concept with direct-bonded LI-1500 leads to largest
(12 in. x 12 in.) tile size.

Mechanical fasteners show promise.

LMSC has feasible refurbishment schéme for bonded tiles.
viii
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1LI-1500 Advantages:

e Reduced conductivity of LI-1500 under reentry pressure environment
results in lighter TPS system than competitive materials.

o Low LI-1500 coefficient of expansion limits thermal stresses and reduces
required external gaps.

e Degradation effects on resulting RSI stress levels due to repeated thermal
cycling of LI-1500 offer no problem.

Cost/Weight Comparisons:

e LI-1500 TPS system is indicated to be lighter and less costly than comparable
metallic heatshield.

e LI-1500 TPS system is indicated to be less costly than ablative heat shield.

LOCKHEED MISSILES & SPACE COMPANY
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Section 1
INTRODUCTION

The development of rigidized surface insulation for space shuttle application includes
the establishment of rationale, methods of analyses, techniques, and design details.

This key contract task defines the criteria/methodology required for shuttle usage of
LI-1500 RSI. The effort is divided into two subtasks.

e The first defines the criteria, requirements, and environments applicable
to the shuttle TPS. The specific point design requirements for the prototype

panels are given in Section 6 of this volume.

o The second concerns design applications and methodology establishment
which culminates in the design of the deliverable panels.

1.1 CRITERIA REQUIREMENTS AND ENVIRONMENTS

Space shuttle requirements applicable to the design of the Thermal Protection Systems
(TPS) have been delineated in a separate document ,(1-1) together with design criteria
and primary design conditions to be utilized in the development of the TPS. Applicable
loads and thermal environments are provided for both the orbiter and booster, based
on the vehicle design data available at the time of the study. Requirements and criteria
for accomplishing '"proof of design' also are included. These data are briefly sum-
marized in the following subsections.

The results of the study summarized herein are considered to represent a basis for
initiating TPS detail design/analysis efforts in a Phase C Space Shuttle development
program. In the course of the present TPS technology development program, and
other concurrent space shuttle studies, some changes to requirements and design cri-
teria will naturally evolve. These are not expected to be extensive in scope and, in
most cases, of only minor consequence to the designs.

(1-1) LMSC-A991379/SS-1108, ""Design Criteria for Space Shuttle Thermal Protection
System Development,' dated 1 Sep 1971

1,1-1
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In other areas, considerable changes can be expected due to improved knowledge of the
environments to be encountered and the time ~-dependent thermal effects within the TPS.
Changed space shuttle configuration and detail analyses of the TPS subsystems and of
the detail design areas within each subsystem will also introduce their iterations.
Finally, improved knowledgeability of material-characteristics effects and related
implications on the design criteria will affect final TPS configurations.

A major element of TPS design criferia, which is dependent upon specific Space
Shuttle System concepts and baseline mission presumptions, is the definition of the
optimization criteria betwéen TPS weight and cost. To this end, relative cost and
weight analyses of competing concepts are provided in Section 6. 8.

The criteria and loads specified by NASA/MSC for prototype panel design are included
in Section 6. 1. - - ‘

Objectives and Scope.

Thermal protection systems for the space shuttle must protect the primary vehicle
substructure and other vehicle subsystems during various phases of mission environ-
ments. The TPS on the orbiter, and (where required) on the booster, must perform
this function with a high level of reliability. Extensive failure of the TPS systems is
likely to lead to loss of, or major damage to, the vehicle system. In that sense, TPS
is somewhat like a pressure vessel wherein structural integrity of all its elements is
essential to achieve normal or safe operation. It has one major handicap compared to
a pressure vessel, in that pressure vessels can readily be proof-tested, even on a
flight article, whereas the total TPS cannot. On the'orbiter, it must be capable of
successfully performing its function in 100 operational missions.

1.1-2
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The high level of reliability must be achieved while minimizing weight and cost. On

the orbiter, a typical total weight of the TPS can lie between 20,000 and 30,000 pounds,
with weight uncertainties on the order of 5,000 pounds., For the O40A orbiter with a
270 nm mission, this uncertainty represents approximately 25 percent of the total
payload. Thus, the system is quite weight-critical as well as being reliability sensitive.

A primary objective of the space shuttle program is — "development of an economical
general purpose transportation system.' Development and operation of the TPS of the
orbiter vehicle system is roughly estimated to represent 5 to 10 percent of total orbiter
program costs. Thus, the TPS has major influence on total-program economy, and at
the same time technologically represents one of the most critical subsystems in the
Space Shuttle System. Minimizing cost, therefore, is a primary consideration during
the TPS design selection process. Since a major portion of TPS program costs is
expected to be encountered in the maintenance and refurbishment operational activities,
the TPS life-cycle costs must be utilized as the cost basis for trade-study comparisons.

Requirements and criteria that influence design/development of the TPS are defined in
a variety of NASA and contractor documents. The criteria elements (Summarized and
identified by the sources by reference to the applicable documents in Ref 1-1) are as
follows: »

Space shuttle program requirements and criteria applicable to TPS

Space shuttle structural design criteria applicable to TPS
Design/development optimization criteria applicable to TPS

Spacecraft criteria and standards applicable to TPS

Loads and thermal environment data applica'ble to orbiter and booster TPS.

The '"applicable documents" are: (1) primary applicable space shuttle directives or
documents, (2) related space shuttle design criteria studies, and (3) space vehicle or
other potentially applicable design documents. The documents listed in these three
groupings ave identified in the text of Ref 1-1, where applicable. The same requirement/

criterion items often appear in two or more cited references.

lo 1-3
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Design Requirements.

Space Shuttle System requirements applicable to the TPS have been extracted primarily
from the Space Shuttle draft ""Statement of Work" and its technical requirement Appen-
dices. These are described in Ref 1-1, in the fullest detail available as determined
from the applicable studies and documents resulting therefrom, under the following
groupings: (1) System Requirements, (2) General Technical Requirements, (3) Thermal
Protection and Control, (4) Natural Environment Design Requirements, and (5) Manned
Spacecraft Criteria and Standards. -

Requirements that are especially pertinent to this development program are listed

below.

e The combined storage and operational service life of the Space Shuttle System
shall be a minimum of 10 years after the first manned orbital flight. Each
Space Shuttle System flight article shall be capable, with a cost-effective level
of refurbishment and maintenance, of a minimum operational lifetime of
100 missions.

o The Space Shuttle System flight hardware turn-around time from landing at
the launch facility to launch readiness shall be less than 14 calendar days.

o The orbiter vehicle and booster vehicle shall be insensitive to weather
conditions during pad preparations and standby periods.

e All TPS materials/systems will sustain 100 design missions. TPS design
for all missions shall assure crew safety for worst case abort entry.

e The TPS Shall be designed to the same criteria as the primary structure of

the airframe.

o External thermal coatings shall have a reuse capability of 100 flights without
significant deterioration or degradation. Coating systems requiring refur-
bishment shall be consistent with other repair/replacement/maintenance

requirements.

o The space shuttle shall be designed for 0. 95 probability of no puncture during
the maximum total time-in-orbit, using the meteoroid model defined in
par. 2.5.1 of TM-X-53957.
1.1-4
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Structural Design Criteria.

The basic structural design criteria applicable to the space shuttle TPS are specified

in the draft Space Shuttle Statement-of-Work, Appendix B, and explained (at least in
part) in NASA SP 8057. These criteria have been extracted and set forth in the fullest
detail available in Bef 1-1 under the following groupings: (1) Strength Requirements,
(2) Strength Allowables, (3) Design Load Criteria, (4) Rigidity Criteria, and

(5) Optimization Criteria. Structural criteria which are especially pertinent to this

development program are listed below.

Combined Stresses. The structural design shall exclude the use of pressure-
stabilized structures, with the exception of main propulsion tanks when
exposed to ascent flight loads. When the stresses due to internal pressuré
and thermal conditions are additive to the external flight loads, the ultimate
external load will be combined with the maximum regulated internal pressure
and the thermally induced load, times a factor of 1.5. When the stresses due
to internal pressure and thermal conditions are relieving (subtractive) the
external flight loads, the minimum thermally induced load and the minimum
regulated pressure (or zero pressure, if the operational capability of the
vehicle is not affected by the loss of pressure) will be combined with the
ultimate external load. No load conditions outside the crew safety envelope
shall be considered. In no case shall the ratios of allowable stress to com-
bined limit stress be less than 1. 35.

The design loads used for final vehicle design shall be based on a Monte Carlo
analysis in which the vehicle is flown analytically through a sufficient number
of profiles to statistically define the 99 percentile loads.

Aeroelasticity. Static and dynamic structural deformations and responses
under all conditions and environments shall not cause (1) a structural failure
or system malfunction, (2) impair the stability and control characteristics of
the vehicle, or (3) cause unintentional contact between adjacent bodies.

Dyramic Aeroelasticity. The orbiter vehicle shall be free from classical
flutter, stall flutter, and control-surface buzz at dynamic pressures up to

1.32 times the maximum dynamic pressure expected during flight. External

1. 1-5
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panels shall be free of panel flutter at 1.5 times the local dynamic pressure at
the appropriate temperature and Mach number for all flight regimes including
aborts.

e Basic Optimization Criteria. Three primary value elements are involved in
design-optimization and development-program-optimization of the TPS:
(1) struciural integrity reliability, (2) system weight, and (3) life-cycle costs.
All three of these have major influence on the Space Shuttle System total cost-
effectiveness. Trade studies invariably must involve two of the three elements,
and very often all three,

o A level of structural integrity reliability comparable to that achieved in a
commercial air transport is essential. Therefore, this element is presumed
constant, and at a level, which to all intents and purposes, is equal to 1.0.
Design-cohfiguration and program optimizations, therefore, are not concerned
about the numerical value of reliability, but rather the cost in dollars and
weight to achieve it. Safe-life designs may be traded off against fail-safe
designs to determine which produces the required level of structural integrity
assurance at the best combination of weight and cost.

® To achieve a bala.nced. design, the dollars expended to reduce weight enough for
increasing payload by one pound should be the same for all elements of the
Space Shuttie Vehicle Systems, provided that the technological (and cost) un~
certainties are essentially equivalent. If payload can be increased by weight
reductions in primary airframe (by use of exotic materials) at the same cost
as for a comparable change in the TPS, but with less uncertainty, then the
trade is in favor of the change in the airframe. Also, quite obviously, if it
requires 6 pounds of weight removed from the booster to increase payload by
1 pound, and it requires only 1 pound off of the orbiter to do the same thing,
then six times as much money can be spent for weight reduction on the orbiter

than on the booster.

Environmental Data.

Environmental data are presented in the following categories: ascent trajectory, entry
trajectory, peak temperature isotherms, differential pressures, and vibration/acoustics.
1. 1-6
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Attachment of RSI directly to primary structure mé.y be the final TPS design. In this
application, the strains and deflections of the structure will dictate the TPS attachment
design. Strains and deflections are dependent on vehicle loadings and configurations
as well as structural geometry. Primary vehicle loadings are not included due to this
dependence. Design for this application will be based on representative strains and
deflections derived from specific configurations and loading conditions, which do not
differ appreciably for the various vehicles and environments currently proposed.

Design environments for the prototype panels are not included in this section. These
conditions are presented in Section 6. 1. '

Ascent trajectories for the mated system booster and orbiter are shown in Ref 1-1 for the
LMSC, MDAC, and NAR configurations, respectively. All trajectories result in

orbiter injection to a 50 x 100 nm orbit with an inclination-angle of 28.5 deg. The

final design reference orbit was a circular orbit at 270 nm with an inclination-angle

of 55 deg.

Orbiter entry trajectories from a 270-nm orbit (LMSC) and a 100-nm polar orbit
(MDAC and NAR) are shown in Ref 1-1. The LMSC orbiter shown is a delta-body config-
uration, while both the NAR and MDAC orbiters are of the delta-wing category. All
trajectories generate about 1,100 nm of aerodynamic crossrange, but the LMSC tra-
jectory takes 1, 350 sec to reach 100,000 ft while the MDAC and NAR trajectories take
about 2,100 sec. The impact of longer reentry time is to increase the insulation
requirements of the TPS. All trajectories were generated under what essentially
appears to be the same philosophy. A choice of TPS material is made and heating
boundaries are generated for the orbiter lower centerline based on the temperature
capability of the chosen TPS material(s). An entry trajectory is generated using the
appropriate aerodyna.mic characteristics for each orbiter. The trajectory is maintained
above the heating boundary by use of bank angle and angle-of-attack modulation while
attaining 1,100 nm of aerodynamic crossrange. Orbiter peak-temperature isotherms
corresponding to the entry trajectories are depicted for the LMSC, MDAC, NAR and
GAC orbiters in Ref 1-1,

1.1-7
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The orbiter shell differential pressures have been obtained for three critical flight
phases for the delta~body orbiter maximum «q on ascent, during a 2.5 g subsonic
maneuver. These pressures are shown in Ref 1-1. To account for venting uncertainties,

+0.25 psi has been added to the differential pressures shown in this document.

The orbiter and booster thermal protection system will be subjected to various acoustic
and aerodynamic buffeting as well as mechanically induced random-vibration responses
during the mission profile. During liftoff, intense acoustic pressures are generated by
the booster engine exhaust turbulence. During transonic and maximum dynamic pres-
sure portion of flight, high unsteady aerodynamic pressures are experienced due to
turbulent boundary layer noise, separated flow, oscillating shock waves, and interaction
of shock waves and boundary layer. During reentry, both hypersonic and low-speed
aerodynamic noise is present. Acoustic environments encountered by flight test
‘vehicles during takeoff, landing, cruise, and maneuvers must also be considered. The
acoustic environments presented in Ref 1-1 are for launch, maximum dynamic pressure,
and reentry phases of the mission.

Typical booster entry trajectories, peak temperatures, and design loads are shown in
a series of six figures in Ref 1-1, ‘

Proof of Design.

A properly balanced development program will include some combination of the
following engineering activities: analysis, design, development testing, qualification
testing, acceptance testing, operational (flight and ground) testing, and/or special
testing. The scope of work undertaken in each of these activities influences to some
extent the level-of-effort warranted in the other activities, to achieve adequate proof
of design. Therefore, definition of the basic requirements for proof of design is an
integral part of design criteria. The responsibility for planning proof of design overall
rests with the vehicle contractor. Proof of structural adequacy of the TPS under all
anticipated lcads and environmental conditions shall be provided by appropriate
analyses and tests. |

1.1-8
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Reports shall be prepared on analyses and tests conducted to verify the structural
adequacy of the design. Assumptions, methods, and data used shall be defined. An
integrated plan, early in the Phase C Space Shuttle Program, shall describe the total
plan for verifying structural adequacy and shall include schedules for accomplishment.
The plan shall be revised as necessary to reflect changes in échedules, requirements,

objectives, design characteristics, and operational usage.

Reports shall be prepared to provide the following information concerning the TPS:
operating restrictions (limitations on preparation testing and operational use), inspec-
tion and repair, and operational~usage measuréments (systems for evaluating struc-
tural adequacy during operational usage).

Analyses in the areas listed below shall be performed to verify structural adequacy in
compliance with the design criteria defined in previous sections. Where adequate the-
oretical analysis does not exist or where experimental correlation with theory is inade-
quate, the analysis shall be supplemented by tests.

Design criteria (i.e., Ref 1-1 and its subsequent revisions)
Design loads
Thermal analysis

Stress analysis

The stress analyses shall verify structural adequacy in terms of the optimization
criteria defined in a previous subsection, Structural Design Criteria. Tests shall be
conducted to assist in defining or verifying static and dynamic design loads, pressures,
and environments that the TPS will encounter through its service life.

When structural material characteristics, including physical and allowable mechanical
properties and failure mechanisms, are not available in NASA-approved references,
tests shall be performed to characterize the materials in accordance with the specified

design criteria.

1.1-9
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Development tests, represented in part by the present program, shall be performed as
necessary to: '

e Evaluate design concepts
e Verify analytical techniques

e Evaluate structural modifications for achieving desirable structural -
characteristics

e Obtain data for reliability predictioné

@ Determine failure modes or causes of failure. .

Qualification tests shall be conducted on flight-quality hardware to demonstrate struc-
tural adequacy under more stringent loads than the worst expected loads. In defining
the number and types of qualification tests, the highest practical level of assembly shall
be used. Test conditions shall be selected to demonstrate clearly that all elements of
the structure satisfy design criteria. Tests shall be performed on representative sec-
tions of each of the TPS subsystems, to verify the following:

e Detrimental deflections do not occur under deformation-critical combined
limit-load/limit pressure and thermal conditions

e Rupture or collapse does not occur under critical combined ultimate-load/
ultimate-pressure and thermal conditions

e Neither detrimental deflections nor rupture occur under limit-load/thermal
exposure to specified life-cycle criteria.

" The foregoing tests shall demonstrate, as closely as is practicable, the structural
integrity for the primary design conditions, including demonstrations of cumulative
damage tolerance where applicable. ’

Acceptance tests shall be conducted on flight hardware to verify that the materials,

manufacturing processes, and workmanship meet design specifications.
Flight tests conducted for purpdsés of structural integrity evaluation shall include

veriﬁéation of limit-load/thermal conditions used in the design of the TPS and in the

1.1-10
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test conditions used in the TPS qualification tests. These tests shall specifically
include tests, with appi'opriate instrumentation, to collect data permitting evaluation
of at least critical heating and of refurbishment techniques. Prior to or in conjunction
with these tests, techniques for inspection of the TPS subsystems shall be developed
Ato locate hidden defects, deteriorations, and fatigue effects.

1.1-11
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1.2 DESIGN METHODS

The objective of this task is to develop a logical design path through the TPS system
variables and, thereby, arrive at an optimum thermal/structural design. The methods
of analysis have been identified and relationships between the RSI/booster/orbiter
parameters established. Detail guidelines are presented to substantiate the design of
the prototype panels fabricated and delivered under this contract. The effect of atmos~
pheric testing on RSI systems is important, i.e., LI~1500 heat conductivity is strongly
dependent upon environmental pressure. The so-called '"test'" (1 ATM) and ''flight"
(reduced pressure) prototypes are defined; these differ in required LI-1500 thickness.
Both sets of point designs have been analyzed in the midterm report. (1-2) Per NASA/
MSC direction, the deliverable panels are being fabricated using LI~1500 thickness
sized to be tested at reentry pressure levels, hence only the flight panels have been
reassessed in this report.

In establishing the design methods, effort has been concentrated on:

Metallic substrate design
Thermal sizing of RSI
RSI tile stress analysis
RSI attachment methods

Based on these studies, prototype panels designed to NASA specified conditions are
compared with metallic heat shield designs. Flutter and acoustic analyses are also
presented for the prototype panels. o

The design sequence is best illustrated in Fig, 1.2-1'.‘ First, the basic structural
sizing is done in conjunction with a thermal analysis that establishes required RSI
thickness. This optimization loop considers the tradeoff between heat sink effect of
structure versus insulation thickness. Next, the RSI system stress levels are deter-
mined through a second optimization loop in which bond thickness is varied to ensure
acceptable R3I stress levels under the environmental design conditions. Finally, a
complete verification of the design is made.

(1-2)1,MSC-A997045, "Midterm Summary Report, Space Shuttle Thermal Protection
System Development,' NAS 9-12083, 12 Nov 1971

1. 2_1

12<

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D152738
Vol I

Since the methodology employed is highly computer~oriented, the results cannot be
summarized at this time in a set of '"design curves" which would permit the selection
of all important TPS system parameters using this report alone. Rather, the work
presented here identifies the behavior of the TPS system under design load and heating
conditions and defines what constitutes critical conditions. This report outlines the
approach and required analytical tools which ﬁogether can be employed to arrive at
rational near-optimum designs for the flight and operational conditions.

1.2-2
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Section 2
RSI METHODS OF ANALYSIS

This section presents descriptions of the analytical techniques for the following:

e Thermal Analysis: Defining temperature distributions as a function of
time, vehicle location, and flight environment

e Substrate Analysis: Subpanels and primary structure

¢ Two-Dimensional and Three-Dimensional Analysis: Coating, RSI, bond,
and substrate composite

o Dynamic Analysis: Sonic fatigue and flutter stability

e Comparison of Methods with Experimental Results

In this report, reference is frequently made to the prototype panels designed and
fabricated under this contract. As mentioned previously, the so-called " flight' and
"test" panels differ only in LI~1500 thickness, due to its reduced thermal conductivity
at low pressure. Thus, LI-1500 thickness for a flight panel is determined by using
actual reentry pressure levels, while that for a test panel is sized for 1 ATM. Panel
designs numbered 1, 2, and 4 represent three alternatives for one vehicle location,
while panel no. 3 applies to a different area of the orbiter. The loading and environ-
mental conditions for these designs are discussed in detail in Section 6. It should be
noted that LI-1500 and bond thicknesses for a specific panel designation in some of the
following discussions may not agree with final designs as presented in Section 6, since
these seemingly inconsistent values'represent parametric studies and/or preliminary

designs.

2.0-1
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2.1 THERMAL ANALYSIS

Lockheed's THERM computer code was used to define temperature distributions in
the RSI panel. This code utilizes finite difference techniques to solve the transient
conduction equation for a one-, two-, or three-dimensional problem and has an
automatic plotting routine available to the user. The code handles other modes of
heat transfer such as convection and radiation.

The heat balance at each node, as programmed in the computer code, is given by:

. BTi . N n Ti'-T.
AVeCp 38 = %m - Yout =j2=:1 R,

where:

AV =  node volume
p = density

p =  gpecific heat
T = temperature
8 = time

q =  heat rate

R, . = thermal resistance between nodes i and j

i, j = node numbers

élin is the heat conducted to the node from adjacent higher temperature nodes and

é‘out is the heat lost by conduction to adjacent lower ‘temperature nodes. The temper-
ature of the surface node is driven to follow the temperature history of the desired
orbiter location.

The expressions for determining resistor and capacitor values are shown in Table
2.1-1. These equations are evaluated during each computer iteration, thereby
changing resistor and capacitor values as the node temperatures change to allow for
temperature/pressure dependent material properties. The resulting values are then
used to calculate the temperature response of the network for the next iteration.

2.1-1
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THERMAL RESISTOR AND CAPACITOR METHODOLOGY

TYPE

VALUE

COMMENTS .

"RESISTOR DESCRIPTION

Conduction

R =1/kA

k = f (Temp, Pressure)

Radiation

1
o(RADK) (Tf+ TJ?) (T; + Ty

R=

Where:
RADK = €, A F
ij i

and:

€. =
ij 1 + 1
—— _-1

T in °R

Parallel Plate
View Factor

Air Convection

0. 14k

h=__@ar 1/3
(GR PR)

)

' CAPACITOR DESCRIPTION

All

C = pfAcP

CP = { (Temp)

/A_L £ = Depth or length of conduction path

VY L A = Area of node perpendicular to
—r conduction path

o =0.478x10

€ = emittance

TNPICAL NODE

12 ptu/ft?-sec®r?

GR = Grashof number

PR = Prandtl number
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The following groundrules and assumptions were used in conjunction with the THERM

code for the basic insulation sizing of the prototype panel:
¢ One-dimensional analysis

e Radiation equilibrium temperature used as a surface~temperature boundary

condition
e Adiabatic substrate

e No ground cart cooling of substrate in either primary structure application
or subpanel application

¢ Thermal model including a node for adhesive

Thermal models considered for the sizing were divided into seven nodes as shown in
Fig. 2.1-1. The effect of lumping both the adhesive and substrate as one node was
investigated. It was found that for adhesive thickness (with RTV-560 conductivity of
0.18 Btu/ft-hr-oF) up to 0.20 in., the maximum transient difference between the
LI-1500 adhesive interface temperature and the adhesive substrate interface temper-
ature is about 20°F. Since it was desirable to compare transient temperature dif-
ferences between interfaces, the thermal model with the adhesive and substrate
modelled individually was used. For adhesives with lower thermal conductivity or
thicknesses greater than 0.20 in., the adhesive node should be included in the thermal

model.

Effect of LI-1500 Sizing With Two-Dimensional Thermal Models -

To check the adequacy of the one-dimensional LI-1500 sizing and to obtain transient
temperature differences for various elements of the TPS, two-dimensional thermal
models were generated. LI-1500 sizing was performed with the THERM computer

code.

The thermal model used for test panels Nos. 2 and 4 is shown in Fig. 2.1-2. Dimen-
sions shown are for the titanium panel. The thermal model for the beryllium test
panel is shown in Fig. 2,1-3. The LI-1500 thickness can be easily changed for

2.1-3
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consecutive computer runs. As in the one-dimensional sizing discussed previously,
an adiabatic boundary condition was used. An isotropic thermal conductivity for 1
ATM air was used for this model. The thermal conductivity and specific heat values
for LI-1500 are given in Section 6.2.

A comparison of the LI-1500 thermal sizing between a one- and two-dimensional thermal
model for the titanium test panel with a 0.030 bond is shown in Fig. 2. 1-4 (as discussed
later, the final design thickness is 0.090 in.). The results are shown with a plot of
maximum titanium face-sheet temperature versus LI-1500 thickness. The results indi-
cate that the one-dimensional model is conserirative, but there is a negligible difference
in LI-1500 thickness (0.10 in.) at the titanium design temperature of 600°F. Larger
adhesive thickness than that shown will not change the results, since the LI-1500 thick-
ness will be reduced in accordance with a tradeoff factor which will be discussed in
Section 4. Temperature histories for the titanium face sheet and stiffener are shown

in Fig. 2.1-5. Large transient temperature differences are indicated (50-7 5°F), but
these eventually decrease as the TPS approaches its maximum values. These transient
temperatures are used to determine temperature-induced bending loads in the panels.

A comparison of results between the one~- and two-dimensional thermal models for
the aluminum test Panel 2 is shown in Fig. 2.1-6. The maximum backface temper-
atures are nearly identical, which ascertains the adequacy of the one-dimensional
thermal model for the TPS sizing studies on the aluminum panel.

The effect of the thermal model on the maximum substrate temperature for the
beryllium test panel is shown in Fig. 2.1-7, These results indicate the one-dimensional
thermal model is adequate for insulation sizing.

Also, the results show the effect of backface boundary conditions on the inaximum
panel temperature. -If the panel is sized with an adiabatic boundary condition for a
600°F temperature and tested with a nonadiabatic boundary condition, the maximum
temperature will be about 490°F. The same result is shown in Fig. 6.3-14 for the
one-dimensional model. The same comparison between the one- and two-dimensional
thermal models would exist for the flight panels with either adiabatic or nonadiabatic

assumed boundary conditions.

2. 1‘-7
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2.2 STRUCTURAL CONSIDERATIONS FOR LI-1500 SUBSTRATES
Methods of Optimization and Analysis

Subpanels. In this TPS concept, easily removable units called subpanels are mounted
above the vehicle primary structure. These subpanels, which are covered with
LI-1500 tiles, are designed to carry only airloads over spans which generally corre-
spond to major frame or rib spacings. Because only minor support is provided at the
panel edges that are perpendicular to the frames or ribs, simple beam analysis is
used in the design and analysis. Bending stresses obtained in this manner based on
simply supported edge conditions, are compared with local instability allowables for
the extreme fiber elements in compression and with the material ultimate tensile
properties for the extreme fiber elements in tension. Also, attention is directed to
the maximum deflection of the panel and the effect of this deflection upon the design
of the LI-1500 tiles.

Panel designs somewhat lighter than those developed here could be achieved if local
instability criteria on the skin were relaxed. This could be done to some extent,
since the bond and the LI-1500 tile act to stabilize the skin. However, the extent of
stabilization is likely to be small and would involve an added analysis effort as well
as one more optimization loop in the overall TPS design. In addition, further testing
would be required. At this time, LMSC does not consider possible skin buckling to
be compatible with a substructure that must maintain close tolerance tile alignments

to prevent local increases in heating and erosion.

This type of analysis is easily coded for the computer to perform structural optimization
studies. LMSC has developed a code, called SUBPAN, which has been used in the pre-
sent program. The code may be used to optimize several subpanel material/config-
uration combinations. Mechanical properties for a number of materials are stored

in the program as a function of temperature. These materials include titanium,
beryllium, graphite-epoxy, and aluminum. Alternately, mechanical properties for
other materials may be read in. The configurations that may be called include zee-
stiffened subpanels, trapezoidal corrugation-stiffened subpanels, honeycomb-sandwich
subpanels, integral L-stiffened subpanels, and plane trapezoidal corrugated subpanels.

2,2-1
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Data needed to operate this code include panel length, design temperature, and pressure
(burst and/or collapse), plus definition of the practical restraints involved and the
selection of material and configuration. The practical restraints generally include
specification of the minimum gages permissible and the widths of section elements
that are fixed by practical considerations (e.g., zee-stiffener attach-flange width).

The code is patterhed after work reported in the literature on the optimization of beams,
which has shown that, for practical designs, the analysis must be set in terms of both
permissible deflection and permissible bending stress. Beams optimized to a deflection
criterion alone tend to be deep with thin sections, while beams optimized to a stress
criterion alone tend to be shallow and flexible. In the LMSC code, the deflection cri-
terion is stated as é maximum permitted at the center of the panel, under the applica-
tion of limit loads, .and it may be varied as desired. Because the subpanels must

have a capability for carrying burst pressures as well as collapse pressures, and some
configurations are unsymmetrical, both tensile and 6ompressive outer-fiber sfresses
are computed on either side of the neutral axis to ensure that allowable stresses are

not exceeded. The search for the lightest design meetingthe criteria established,

while satisfying the constraints imposed, is limited to standard sheet gages. Also,
properties for a number of standard commercially available honeycomb cores have

been stored in the program to ensure this standardization feature for honeycomb-
sandwich subpanel optimization. ’

Primary Structure. LI-1500 is also proposed for direct application to primary struc-

ture. These panels carry direct axial loads, both tension and compression, in addition
to airloads. For the purposes of this program, the primary structure panels are con-
sidered to be flat and very wide in comparison to their length; therefore, the conditions
along the unloaded edges are not impbrtant and the panels may be analyzed as beam
columns. An appropriate closed-form solution for uniformly loaded, simply supported,
beam columns of uniform cross-section may be found in Timoshenko's "Theory of
Elastic Stability." This type of edge support is probably conservative for most appli-
cations, pariicularly those in which the panels are continuous over intermediate
supports. However, the use of more realiétic edge conditions depends upon the detail
definition of the intermediate supports and their resistance to rotation under load.

2,2-2
28<

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D152738
Vol I

Stresses applied to the cross-section are equal to the sum of the direct stress plus
bending stress due to the beam-column action. These stresses are compared with
compressive and tensile stress allowables at the section outer fibers as described

above for subpanels. In a similar way, the effect of deflection due to beam-column
action upon the LI-1500 tile design also is considered.

Data for use in the design of beam-columns are shown in Figs. 2.2-1 and 2. These
figures yield stiffness requirements as a function of the uniformly applied pressure p,
axial line load P, and the maximum deflection Ama.x' Intercept points along the
ordinate correspond to Euler-column stiffness values; the bottom curve represents

a beam subject to uniform lateral pressure alone. Although the beam-column analysis
itself is nonlinear, these curves are extremely close to being linear. Hence, the
required stiffness can be very closely approximated as the sum of that necessary to
limit the deflection due to the pressure and that required to resist column buckling,

i.e.,

. splt __m?

EI 5
384 A T
max

reqd

Beam-column analysis has been computerized at LMSC and used in the design and
analysis of the prototype panels. This code, PRIPAN, has been integrated into the
existing computer program for the structural optimization of subpanels by merely
redefining the stiffness requirements for the section and utilizing the existing search
techniques. Before this work was completed, structural optimization of primary
structure panels was performed using wide-column minimum weight solutions that
were perturbed according to a fixed interaction equafion to account for pressure
effects. Beam-column analysis checks subsequently were performed to verify and/or

modify the resulting designs.

Comparative results between the two methods are shown in Table 2.2-1 for the three
deliverable panels. In each case, the attach flange dimension, a,, was specified
and held constant through the optimization process. The designs labeled (a) represent

the wide-column optimum, whereas the designs identified by (b) were generated by the

2,2-3
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beam-column optimization analysis. It is interesting to see that the latter method
produces a design very close to that from the wide-column method (except for panel

4) but that a lighter (smaller —t') design exists with thinner gauges and a closer zee-
spacing. Although t is less, the rivet weight has not been included in the calculation,
and it may well be that the additional rivets needed would offset the expected reduction
in weight. As it is, the close zee-spacing would preclude the use of such a design,
since it would be difficult to insert the rivets. In addition, the number of stiffeners

would be increased for a given panel, resulting in a cost increase.

For panel 4, the results seem to indicate that the design obtained originally is not
conservative. Comparing this design with the resuits from the optimization computer
code (the 'b' designs), it appears that the skin b/t ratio is too large. Reexamination
of the analysis for this design shows that skin buckling has been based on an assumption
of greater-than-simple support of the skin at the stiffeners. This was considered
acceptable, because the stresses are due to pressure loads that are assumed to force
an inward buckle pattern between stiffeners in all bays. In the optimization computer
code, simply supported edge conditions are assumed in order to eliminate any un-
certainty on this point. As a result, higher t's are obtained, which are probably more
realistic for vehicle hardware designs.

2,2-7
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2.3 RSI STRESS ANALYSIS AND MODELING

The work described here is an outline of the development of a linearized two-dimensional
model to approximate the behavior of the RSI panel under combined mechanical and
thermal loads. Included is a discussion of the two-dimensional (2-D) finite element
code, WILSON, and its subsequent application to modeling of the panel. This method
represents the baseline analytical technique used for the RSI stress analysis. The
three-dimensiona! (3-D) program, SAP, which is being used to verify the validity of

a 2-D analysis, also is discussed, and comparisons of the two methods are presented.
The manner of temperature-profile modeling through the RSI thickness is discussed
as well as the effect of using isotropic material properties for LI-1500 early in the
program before data were available fo show the orthotropic nature of the material.
Finally, nonlinear beam-column effects are discussed.

2-D WILSON Program

This code is a two-dimensional finite element program, capable of performing either
plane-stress or plane-strain analyses for orthotropic temperature-dependent material
properties. The version in use incorporates double precision arithmetic to account
for the wide range of elastic and geometric properties of the materials in the TPS
‘panel design. Program parameters are given in Table 2. 3-1.

2-D RSI System Model

The way in which one half of the TPS panel is modeled for the WILSON code is shown
in Fig. 2.3-1 where it is noted that the panel is assumed to be simply supported. The
substrate stiffeners and skin are replaced by an effective substructure material whose
elastic properties are those of the substrate but with thickness based on the bending
stiffness of the actual panel substrate*, As seen in the model, two layers of elements
are used for the effective substructure, one layer for the bond, eight for the LI-1500,
and one layer for the coating., The reason for different size elements in the LI-1500
is that if the coating is lapped over the edges, numerical inaccuracies can occur due
to elastic and geometric property mismatch. The effect of element aspect ratio also
has been studied to minimize these sources of inaccuracy.

*This is the thickness listed with all stress analysis results in this report, in contrast
to an effective thickness based on weight which is used for thermal analyses.

q<
2,3-1

LOCKHEED MISSILES & SPACE COMPANY



LMSC-D152738

Vol I

O/ S¥H §10 (M3N) NOIS¥IA
NdD SY¥H 01:0 2ad dn Q33ds
O/ S¥H E€0
NdD S¥H LE:0 2ad NOISY¥3IA 10
NdJ SYH Gt = 8011 (W3I180Ud TVDIdAL) IWIL NNY
896€ = . WOQ3344-40-53N9O13a
z9¢ = . 'H1AIMAONVE
8€91 = _ SIQON 40 JIAWNN
1414 = SINIW3III 31V1d SWD 40 ¥ISWNN
096 = SIN3IWII2 @-€ 40 ¥IIWNN

(300D 4VS) SISATYNY TYNOISNIWIG-33UHL
O/1 S¥H 81 :10°0

NdD S¥H 91 €0°0 8011 (W31803d TvDIdAL) IWIL NNY
- T6ET = ! WOQa3iz¥d 40 $3NO3a
9611 = SIAON 40 Y3IIWNN
2601 = SIN3IW3IT3 4O ¥IIWNN

(3002 NOSTIM) SISATVNY TYNOISNIWIG-OML

SY31IWVHVd 300I dVS ANV NOSTIM 40 AdYWWAS

I-£°C QL

(D 9et1L0a

.3-2

35<

™



LMSC-D152738

Vol

(1) 886%0Q
_ 1-¢°¢ ‘314
3 Qs
| B
T T @—(SSINF41LS ONIAN3E
I ™ NO a3sve) SSINMDIHL
aNos | 3NLONYLSANS IAILDIAHI
,a;_
005 1-1 1 T
Mt i
L i L .
ONI1VOD | 1304dns 1404dNs
INVYS vid
f——— 1 —— v m%hu:&s:mN : ozomN miq

et
|0
2.3-3

005 1-11 \
7 o
ONILVOD .

S1INVd Sdl 40 ST1IQOW TYNOISNIWIQ oMl b .

-o<

Lad
[



LMSC-D152738
Vol I

To determine stress variations in the direction perpendicular to the stiffeners, a
different model for the WILSON code is necessary (see Fig. 2.3-2). Here the discrete
stiffeners are replaced by springs having the stiffness associated with bending of the
actual stiffeners at midspan.

Due to mechanical and thermal loads, fhe panel experiences bending, but it is found
that the in-plane strain of the substrate is the primary source of RSI stressing. It
has been ascertained that the effective thickness model has negligible effects on the
location of the neutral axis of the overall RSI system model in the bending mode.
In-plane line loads in the primary structure panels are proportioned to the effective
thickness so that in-plane substructure stress and strain levels are those of the
actual panel.

Effect of Orthotropic LI-1500 Material Properties

Isotropic elastic moduli were assumed for initial parametric studies. After the ortho-
tropic data were obtained, a comparison was drawn to see what effect the use of iso-
tropic data would have on the early parametric studies. The results of this check are
shown in Table 2.3~2, which presents the RSI system stress ievels of interest. Maxi~
mum effects are noted in coating stresses that go down markedly, but some LI-1500
stress components do go up somewhat. Although stress magnitudes are dependent upon
anisotropic effects, the general conclusions of the initial parametric studies carried
out with isotropic data continue to hold; all subsequent studies and prototype panel
verification calculations utilize orthotropic property data.

Plane Stress/Plane Strain Comparison

Plane-stress analyses were used to accomplish initial studies in the TPS program;
however, a plane-strain solution was used for direct comparison. The case studied

is for a beryllium subpanel with 600°F backface temperature and a 1. 14 burst pressure.
The analysis assumed isotropic LI-1500 elastic properties with E = 60,000 psi, and the
expansion coefficients of each materia'l-‘-.in the third direction have been set to zero. The
comparisons are shown in Table 2, 3-3, where it is noted that there is very little
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difference in the two solutions except, of course, for the normal stress in the third

direction, o This stress is due to the restraint of Poisson effects in the third direc~

T.
tion and would apply only for a tile infinitely long in that direction. Hence, Poisson
effects can be bounded by the two solutions, although it is expected that they are of

less importance than other three-dimensional effects.

Linear/Nonlinear Temperature Study

Temperature distributions through the LI-1500 thickness during reentry are nonlinear,
while those of the ground conditions are linear. To determine what effect the nonlinear
distribution has on the RSI stress levels, the most nonlinear case has been compared
with a linear distribution joining the same surface and backface temperatures. These
results are reported in Table 2.3-4, where it is seen that all stress levels are within
5 percent, with the exception of coating stresses, which are greater in the linear case,
although they are not critical. These results do not affect present stress analyses,
since the actual temperature distributions are used. However, Table 2. 3-4 indicates
that a linear approximation could be made without impacting RSI panel designs.

3-D SAP Program

The program used for the three-dimensional analysis of the therrhal protection system
test panels is a version of SAP, a general finite element program developed by E. Wilson
of the University of California at Berkeley. -1) Two types of elements are available in
this version: a four-node numerically integrated plane stress quadrilateral (QM5) and

an eight-node isoparametric hexahedral element (BRICK8). The BRICKS element,

was modified to include a general temperature distribution within the element.

Although the program may be run on either the UNIVAC 1108 or the CDC 6600 com~
puter, increased numerical accuracy due to a larger word size makes CDC the first
choice.

@ -l)SAP, A General Structural Analysis Program, E. L. Wilson, Report to Walla Walla
District's U. S. Engineer's Office, Structural Engineering Laboratory, University
of California, Berkeley, California, Sep 1970
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3-D RSI System Model

The case chosen for analysis is a 24 x 24 in. beryllium subpanel. Since the panel is
symmetrical in two directions about its center, only one quarter of the panel was
modeled. E-aqh panel is composed of four 12 x 12 in, LI-1500 tiles, so only the beryl-
lium substructure is assumed continuous across the symmetry planes and the panel is
simply supported along its unstiffened edge. Six layers of BRICKS8 elements are used
in the model — four layers through the LI-1500 insulation, one layer through the bond,
and one layer through the beryllium. Along the stiffened edge of the panel, an additional
layer of BRICKS8 elements is used to model the edge stiffener base. Plane stress QM5
elements are used to model the coating on the outside of the LI-1500 and the longitudinal
beryllium stiffeners. The completed model is illustrated in Fig. 2.3-3 with a view
looking up under the panel. SAP code parameters for this model are summarized in
Table 2.3-1.

Temperature for the problem was assumed to be 600°F throughout the beryllium and
the bond, and decreasing linearly from 600°F to 75°F through the LI-1500 with the
stress-free temperature being 75°F. A burst pressure of 1, 14 psi was applied to the

beryllium panel.

2-D, 3-D Stress Analysis Comparisons

Results of a 3-D SAP analysis of the RSI panel are given in Figs. 2,34 through 2,3-9
with comparisons from the 2-D WILSON analysis using the model of Fxg 2.3-1 for
stress variations in the direction of the stiffeners and that of Fig. 2.3-2 for stress
variation in the direction transverse to the stiffeners: The maximum longitudinal '
stress in the LI-1500 is shown in Fig. 2.3-4 where it is seen that the 2-D analysis
tends to underestimate that of the 3-D analysis. This is not unexpected as the 2-D
results represent some averaged behavior of the panel, whereas the 3-D results shown
are maximums at the center of the tile. In addition, the 2-D analysis cannot represent
the temperature effects in the third direction and, of course, this comment applies to
comparison of other stress components as well. Although the results for the stiffener

2.3-10
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direction differ to a greater extent than those for the transverse direction, this
difference does not affect panel designs, because the maximum LI-1500 longitudinal
stresses occur in the transverse direction and the 2-D and 3-D results are much
closer here.

LI-1500 shear stress is presented in Fig. '2,3-5 where it is noted that the results are

in good agreement and that the 2-D analysis tends to overestimate the maximum shear,
hence lending some conservatism to the panel designs since the LI-1500 -shear stress

is a critical design quantity. This overestimate is typical as stress singularities in
two dimensions are stronger than in three dimensions, because there is an extra dimen-
sion in which the stress can decay in this case.

LI-1500 peel stress (i.e., the normal stress component perpendicular to the plate) is
shown in Fig. 2,3-6. The three curves in this figure cannot rigorously be compared
with one another as will be explained; however, they provide a means of assessing
2-D analysis methods as applied to the RSI plate. The solid curve represents the 2-D
analysis in the stiffened direction while that indicated by circles is for the same
direction but is an average taken in the transverse direction of the 3-D results.. Hence,
this repi'esents some mean or uniform behavior which is what a 2-D analysis should
predict. As can be seen, the curves agree reasonably well except at the ends where
2-D analysis overestimates this average 3-D behavior. However, the maximum peel
stresses that occur at the ends of the tile are greater than the 2-D results and the
curve marked with triangles shows the variation along one edge of a tile in the trans-
verse rather than the stiffener direction. Thus, 2-D analysis underestimates the
maximum peel stress. ‘

Since the peel stress arises due to equibrium conditi(l)ns involving shear stresses that
occur in both the stiffened and transverse directions of the panel, the total peel stress
at a corner is actually due to shear components in both these directions. Therefore,
a 2-D analysis in the transverse direction will produce peel stresses which should be
additive in some way at the corner to the 2-D results from a stiffened direction
analysis. This sum is shown as the two points marked with squares in Fig. 2.3-6 at
either end of the tile; as can be seen, the correlation is relatively good. Although 2-D
analysis is not capable of determining the actual variation of peel stress across the

2.3-18
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panel in both directions shown m Fig. 2.3-7 (as determined from the 3-D analysis), the 2-D
method is apparently able to estimate maximum values reasonably well for this stress

component,

Comparisons of coating stresses are given in Fig. 2.3-8, where it is noted that 2-D and
3-D results agree quite well for the stiffener direction. The discrepancy in the trans-
verse direction is due to the sensitivity of the spring-mounted model of Fig. 2.3-2.

The springs tend to perturb some stress components near the center of the tile leading
to dubious values there. To correct the situation, a means of improving this 2-D
model is being sought,

A final result of the 3-D analysis is the deflected shape of a quarter panel shown in
Fig. 2.3-9 where a magnification of 100 has been applied to the deformation field.

The thermal expansion interaction with bonded tiles and unequal panel stiffness in the
two directions leads to an anticlastic surface which is not déterminable by 2-D methods,
On the other hand, 2-D methods Would‘apply if only mechanical pressure and axial
loads were to act, to the exclusion of the temperature field. Hence, 2-D analyses

must be conducted in both directions to ensure adequate TPS panel designs, since

the substrate experiences significant temperature increases.

RSI Panel Response to Substrate Strain

This section considers the physical behavior of an RSI panel which experiences
thermal straining of the substrate. Referring to the series of sketches in Fig. 2.3-10,
the unloaded panel is shown in (a.). Under the temperature rise from ambient given

in (b.), the tile and substrate would expand in a stress-free manner if the bond were
not present. One affect of the bond causes the tile to be loaded by shear stresses
aiong its lower edge.and leads to longitudinal tensile stresses ,cT,whicAh are maximum
at the center of the tile near the bondline as shown in (c.). The shear stresses are
maximum near the ends of the tile. To conform with the lack of curvature in the
expanded substructure, self-equilibrating normal stresses develop and are transmitted
through the bond,causing a reverse bending of the tile as shown in (d.). These are

also maximum near the ends of the tile. This reverse bending gives rise to longitudinal

2.3-19
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compressive stress, o C yat the bondline. The total state of stress in the tile is then

a summation of (c.) and (d.) as shown in (e.).

The resultant longitudinal stress is always tensile and maximum at the bondline for
the temperature distribution shown in (b.). The reverse bending due to normal stresses
‘merely reduces the intensity of the longitudinal stresses.

It is important to note the role of the bending stiffness of the substructure on this
final state of stress. For very émall El values, the substrate would conform to the
tile curvature with little normal stress arising; hence, the maximum longitudinal
stress would not be reduced and this stress component would be a driving parameter
on tile designs. On the other hand, for very high EI values, the tile would be pulled
back to conform with the undeformed substrate, cémsing large normal stresses which
would reduce the magnitude of the longitudinal tensile stress. Since maximum shear
stresses in the LI-1500 are due mainly to the differential expansion of the panel com-
ponents and not on the substructure bending stiffness to any marked degree, this case
would lead to critical states of shear and normal stress near the ends of the tile.
Hence, two failure modes of the tile are possible:

e Stiff substrate conducive to combined normal stress/shear stress failuré

mode near ends of the tile

° Flexible substrate conducive to longitudinal tensile stress/normal com-

pressive stress failure mode at center of the tile

Each of these possible modes must be considered in rational TPS panel design. This
is particularly important, since the designs incorporate stiffening in one direction
only, thus lending a preference to one failure mode or another depending upon direction
in the plane of the pgnel.

A comparative 2-D WILSON study showing these effects is given in Tabie 2.3-5, The
panel geometry is that used for the 2-D, 3-D comparisons discussed earlier. The
first case in Table 2.3-5 represents the panel in the stiffener direction while the
second case considers only the plate thickness (t = 0.040 in.) of the substructure |
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(an extreme case for the transverse direction). A more realistic third case in this
direction was analyzed which considered the spring supports provided by the longitudinal

stiffeners.

A final comment must be made on these results and their associated failure modes.
The presence of a small normal compressive stress at the same location as a large
longitudinal tensile stress as shown in Fig. 2.3-10e would not be expected to affect
LI-1500 allowables so that the uniaxial strong-direction tensile allowable given in
Table 6.2-1 could be used for désign. However, this conclusion does not necessarily
apply to the combined normal stress/shear stress state near the ends of the tile;
hence, combined stress testing is necessary to establish the interactive effect of
these stress components on LI-1500 failure. Preliminary results of such testing

are discussed in Section 2.5.

Beam-Column Effect on RSI Stresses

To accounf for the magnification of deflections and bending moments in the RSI panel
when a éompressive in-plane load acts in conjunction with a uniform pressure field,
several runs were made for the worst case shown in Table 2.3-6. This is panel

No. 3 for which a linear analysis preducts a maximum deflection of 0.016 in.,

whereas the nonlinear beam~-column solution shows that this value is actually amplified
by a factor of 5.2 giving a result of 0.087 in. To account for this increase in deflection
in the 2-D linear WILSON analysis of the RSI tile, several runs were made in which the
pressure applied to the panel was multiplied by this factor. Clearly, such a procedure
would lead to higher than actual stress levels; however, as seen from Table 2.3-5, the
stress levels are still very low and indicate that beam-column bending effects on the
RSI tile are overshadowed by the in-plane strain effects.
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2.4 DYNAMIC ANALYSIS

Sonic-fatigue and flutter stability analyses are required to verify TPS panel integrity
under flight loading/environment criteria. RMS stress levels are found for panel
substrates due to acoustic excitation of the lowest structural mode. The methodology
employed is discussed in Appendix D where results for the deliverable panels are
developed.

Also, flutter analyses, with results, are presented in Appendix D. These consider
both the complete panel mode as well as the inter-stiffener flutter case.

aS8<
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2.5 COMPARISON OF METHODS WITH EXPERIMENTAL RESULTS

Thermal Analysis

Temperature predictions were performed for the 100-cycle LI-1500 tests described in
Sectjon 3, Volume I, of this report using the following groundrules and assumptions:

a. THERM computer code
b. One-dimensional thermal model

c. Variation of thermal conductivity and specific heat from Tables 6.2-5 and
6.2-6, density = 15 Ib/ft>

d. Input measured surface temperature as boundary condition
e. Adiabatic substrate

f. 0,030 in. RTV-560 adhesive between LI-1500 and aluminum substrate

The measured temperature histories are shown in Figs. 2.5-1a, b, ¢, and d for the
instrumented LI-1500 specimen with the 0042 coating (TT-42-6). Data are plotted forA
the 4th, 47th, 75th and 100th thermal cycles. The consistency and repeatability of the
measured temperature data are noted in these figures. Also, the repeatability demon-
strates the thermal stability of the LI-1500.

Fig. 2.5-1a shows a comparison of measured and predicted temperatures at various
locations within the LI-1500, Since the specimens were bonded to 0.125 in. aluminum
substrates, which were placed on a second piece of 0.125 in. aluminum, the predictions
were made for two substrate thicknesses. As shown, the effect of the substrate upon
the predicted temperature becomes negligible at depths between 1.3 and 2.09 in. The
effect is small at a depth of 2.09 in. The predictions also were complicated by the

fact that thé contact resistance between the two 0.125 in. aluminum plates was not
known and the adiabatic boundary condition was not met.

A summary of the peak-predicted and measured temperatures for the 4th, 47th, 75th,
and 100th cycles is shown in Fig. 2.5-2., showing excellent overall correlation.

o93<
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Figs. 2.5-3a, b, ¢, and d show measured temperature histories for specimens TT-42-4,
the integral silicon-carbide coated specimen, for the 4th, 47th, 75th, and 100th cycles.
The first thermocouple failed sometime after the 47th cycle, and no data are shown for
the 75th and 100th cycles.

The excellent repeatability of the measured data is also shown in Fig. 2.5-4 where the
peak measured temperatures for the 4th, 47th, 75th, and 100th cycles are compared
to the predicted values.

Even after 83.3 hours of accumulated thermal exposure with about 4. 17 hours at the
peak temperature of 2500°F and 14 hours above 2300°F, the use of the as-fabricated
thermal conductivity values results in good agreement between the measured and pre-
dicted temperatures for both instrumented specimens TT-42-4 and TT-42-6.

RSI Failure Analysis

Potential failure mode characteristics of the LI-1500 coating and attachments are to

be identified through both testing efforts and analytical investigations. The efforts per-
formed under this task have concentrated on the overstress mechanical and thermal
loading of the composite TPS as a primary failure mode. However, under actual flight
conditions, the LI-1500 will be subjected to combined stresses,‘ and the value of uni- '
axial allowable results are somewhat questionable for the actual use conditions. To
become fully acquainted with a new material's capabilities, it is necessary to first
establish its uniaxial properties. Once these properﬁeé are established, combined
stress states must be investigated. Although LMSC is not completely satisfied with

the uniaxial resuilts and realizes more data points are required, a series of combined
shear and tension tests have been performed in an effort to determine the allowables

in the weak shear/tension directions (i.e., shear parallel to the fiber-orientation
direction and tension normal to the fiber-orientation direction). This particular com-
bination of stress components is one critical design condition and occurs near the ends
of a tile. Room temperature tests were performed in the torsion tester (described in
Section 4 of Vol I) through a modification of the test fixture that allowed a predetermined
tension load to be put on the shear specimens prior to application of the torque load.

63<
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Of course, the results of these tests suffer from the same conditions of nonuniformity
of the state-of-stress as discussed in Section 4 of Vol I. However, the results provide
lower bounds on the failure envelope and offer preliminary guidelines for future work.

Ideally, such tests should be carried out on thin-walled cylinders in a combined tension-
torsion mode; however, due to basic LI-1500 charécteristics,. such cylinders would
have to be at least 4-in. long with a 3 to 4 in. outer diameter and a 3/8-in. wall thick-
ness, minimum. Such dimensions would require large quantities of LI-1500, and the
close tolerance machining required for meaningful data might not be practical.

The results of preliminary testing are summarized in Fig. 2.5-5 and Table 2.5-1.
These apply to LI-1500 of various densities for a restricted range of weak direction
tension o, which was dictated by test apparatus limitations for the denser materials.
The data appear to correspond to a linear failure criterion, which is not precluded by
any theoretical considerations but seems to indicate a large degree of interaction be-
tween these stress components. By way\\of contrast, no interaction would be charac-
terized by a rectangular profile joining the uniaxial allowables.

To demonstrate the combined shear[normal stress failire mode and verify analytical
techniques, a test specimen has been fabricated and tested. Fig. 2.5-6 shows a sche-
matic of the test specimen, which consists of two small LI-1500 tiles (with the 0042
coating) bonded to an aluminum substrate. The bonding agent is RTV-560 and was
sized to 0.020-in. thickness to ensure LI-1500 overstress conditions at loads below
the aluminum yield.

A stress analysis was performed, using the methods discussed in Section 2.3 for tensile
loads in the aluminum plate. The specimen was then pulled to a load sufficient to
severely damage the LI-1500, and the results of this test are shown in Fig. 2.5-7.

Photographs of the specimen (before and after) are shown in Fig. 2.5-8a and b, while
acoustic emission data for the test are shown in Fig. 2.5.9. The spike in the center

2.5-9
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of the oscilloscope trace represents the first sign of failure although no visual cracking
was noted. This phenomenon was audible to test observers. As seen from Fig. 2,5-17,
this spike occurred at a load corresponding to the combined shear and normal stress
criterion, although the ultimate strength was not reached until twice this load, Stress
levels at ultimate are recorded in Table 2, 5-2, while the combined stress-failure point
is shown in Fig. 2, 5-5,

The test results seem to substantiate the analytical predictions in that some initial
cracking evidently occurred at the predicted combined shear and peel stress allowable
cutoff, However, it is rather difficult to draw conclusions on the basis of only one test.

Similar results hé.ve also been noted concerning a titanium wing panel designed under

the preceding contract (NAS 9-11222). This panel withstood an axial line load equivalent
to 60, 000 psi with a backface temperature of 320°F without experiencing the failure mode
discussed here, -1 Stress levels computed for this test are summarized in Table 2. 5-3,
and the state of combined stress is also shown in Fig. 2.5-5 as the point not only outside
the linear interaction curve but the,tno-A-i'ﬁteraction curve as well,

A final example of analysis/experimental comparison concerns Aluminum Flight Panel
No. 2 discussed in Section 5. 1 of Volume 1. The panel was safely subjected to a thermal
environment alone and the corresponding maximum stress levels predicted by a 2-D
WILSON analysis are shown in Table 2. 5-4, Comparison of the shear/normal stresses
of this table with the linear interaction curve of Fig. 2.5-5 shows that the associated

stress point falls inside the line in this case.

It is concluded that more testing must be conducted for analytical verification and failure
mode analysis.

- Dpata according to NASA document ES65-9/2/71-099 supplied by ES6/Chief,
Structural Test Branch, G. E, Griffith
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Section 3
PARAMETRIC STUDIES

Variables of both material and application must be considered in the methodology
effort. This section presents the studies performed by LMSC considering the variables
expected to influence. TPS design. Variations due to the following parameters are
presented: : |

¢ Thermophysical/Mechanical Property Variations
a. Substraté Material Parametric Studies
‘b. Effect of LI-1500 Conductivity on Required LI-1500 Thickness
c. Coating Modulus Effects on RSI Stress Levels
d. Effect of LI-1500 Modulue on RSI Stress Levels
e. Effects of Bond MOd:lli Variation on RSI Stress Levels
f. Integral Coating Concept ' '
g. Effects of Thermal Cycling on LI-1500
e Design Details 'Variatioris
a. Substréte Conﬁéuration Paramétric Studies
b. Effect of Bond Thickness on Required LI-1500 Thickness
c. Effect of Coating Thickness on RSI Stress Levels
d. Stress Variations due to LI-1500 Thickness
e. Bond Thickness Effects on Stress Levels
f. Gap and Joint Studies
g. Effécts of Coating Texturing and Discontinuities on RSI Stress Levels
h. Effects of Partial Bonding and Bond Discontinuities on RSI Stress Levels

i. Mechanical Fastener Study

3.0-1
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J.  Tile Size Influence on RSI Stress Levels

k. Effects of Different Coating Configurations on RSI Stress Levels
1. RSI Tile Bonded to-Corrugated Substrate

m. Effect of Tile Size on Coating Weight
: n.A " Strain Arrestor Plate

0. Lightweight Core Conéept

pP. Effe-ctlof Contaét Conducfance on Stiffener Temperatﬁres

q. Effect of Discontinuous Bond on Substrate Temperatures

r. Thermal Analysis of FI-600 Filler Strip

® Environmental Variations
a. Coating Stress Durmg Re‘entry
b. Orbital Cold Soak Condition

It should be noted that substrate thicknesses listed with stress analyses in the studies
are based on the bending stiffness of the substrate. This is in contrast to the effective
thickness based on weight which is used in the thermal analyses. |

Application of RSI to both subpanels and primary structure is considered. The impor-
tant variables examined here are listed in Table 3, 0-1 while the results of the studies
are summarized in Section 3. 4, '

3.0-2
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3.1 THERMOPHYSICAL/MECHANICAL PROPERTY VARIATIONS

Substrate Material Parametric Studies

To provide insight into the selection of materials for optimum subpanels and primary
structure weight, ratios can be presented in the form:

i
: Wx _ Px <ﬁE1 >n
W "o (T
where
W = T.p= weight per unit surface area
T = weight - equivalent flat - plate thickness
P = material density
T = Ep/E

Ep is the tangent modulus at a stress level corresponding to a given constant axial line
load. The value of the exponent n is usually 2.0 for oonventionally stiffened configu-
rations composed of straight elements but is smaller for configurations with curved

elements.

This equation, which corresponds to wide column structural optimization data (see
Section 3.2), may be rewritten using beryllium as the base material:

1
n
E
Wy = Px The
YBe Ppe \ T

Beryllium has heen used for convenience in presenting the results as it turns out to
be a lower bond for the other materials considered. The above form of the equation
permits the comparison of a number of materials in both the elastic and plastic stress
ranges for a given value of n. Using n = 2, the results shown in Figs. 3.1-1 and
3.1-2 are obtained. These figures have been developed for room temperature and
600°F material properties, respectively. ' '

3.1-1
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Parallel lines in the figures represent complimentary areas of elasticity in the materials
while curved lines represent plasticity effects. The majority of the curved lines are in
a downward direction indicating plasticity in the beryllium. The lone exception is
HM21A-T8 magnesium, curving upward, indicating plasticity in the magnesium at cor-
responding stresses in the beryllium which are elastic. It is clear from the figures

that beryllium is the most efficient material among those studied when the optimum =
st:i‘ess is below the proportional limit for beryllium. At optimum stresses above this
point, beryllium's ad_vanta.ge drops off rather rapidly.

The data of Figs. 3.1-1 and 3.1-2 must of course be interpreted qualitatively inasmuch
as subpanels and primary structure panels ‘are not classed as wide columns. However .
in primary structure panels the difference lies only in the added bending due to air
loads; thus, it would seem logical to view these figures.in terms of the maximum outer
fiber compressive stress rather than a uniform compressive stress. The same analogy
may be applied to subpanels.

In the case of primary structure pasnels l\mder moderate axial loads_ (1500-3000 ppi),
the stress corresponding to optimum design for panel lengths of about 25 in. is above
the proportional limit for beryllium. The additional compressive stress due to bending
under air loads essentially eliminates beryllium from consideration due to the high
degree of plasticity. Figure 3.1-1 shows that fibrous graphite systems are better
candidates in these applications at room temperature, followed by aluminum, titanium,
and steels in that order. For immediate design use, aluminum and titanium are prime

choices.

The situation with regard to subpanels is different in that the total compressive stress

is due to bending from airloads. In this case, stresses for optimum design, while
usually in the plastic range for beryllium, are sufficiently low that beryllium is the best
choice of material. The stress level for optimum design is controlled to some degree
by the constraint on maximum deflection which prevents shallow, highly stressed '
designs. The curves in Figs. 3.1-1 and 3.1-2 show that graphite polyimide is pro-
jected to be very competitive with beryll;um in this application; however, LMSC does

not consider G/P to be a production material at the present time due to lack of test

data and problems of quality control.

3- 1-4
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it is of interest to note that charts of this type show greater spread between curves
when drawn to represent more efficient structural configurations. @¢-1) Thus, the
position of beryllium in the elastic stress range improves relative to other materials
for configurations without flat sheets (see Fig. 3.2-1).

Effect of LI-1500 Conductivity on Required LI-1500 Thickness

As noted from Fig. 3.1-3, at 2000°F the vacuum thermal conductivity of LI-1500 is
about 45 percent of thé 1- ATM value. Hence, the sizing for flight panels assumes
that the pressure within the LI-1500 during entry equals the local static pressure at
the edge of. the boundary layer (see Section 6.3). During entry, a préssure lag will
probably exist, allowing the actual pressure within the LI-1500 to lag the local static
pressure; therefore, use of the local static pressure will result in conservative
'LI-1500 thickness requirements. '

Figure 3.1-4 shows a comparisdn of the LI-1500 thickness requirements for a beryl-
lium flight and 1 ATM test panel. The flight panel results were obtained using the tem-
perature and pressure histories for Area 2 (shown in Fig. 6.3-5) to determine the
thermal conductivity of LI-1500. The test panel results utilized the 1-ATM thermal
conductivity values.

For example, with a maximum substrate temperature of 600°F, the LI-1500 require-
ments are reduced about 31 percent from 2.1 to 1.45 in. of LI-1500, as seen from
Fig. 3.1-4, Similar reductions can be obtained for the other three flight panels.

Table 3.1-1 shows a comparison of LI-1500 thickness and unit weight between the
flight and test panels. In all cases, the flight panels require about 24 to 38 percent
less LI-1500 and are 10 to 17 percent lighter in unit weight than the 1 ATM test panels.

-1 Crawford, R. F. and Burns, A.B., "Strength, Efficiency, and Design Data for
Beryllium Structures', ASD TR 61-692, February 1962
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Table 3.1-1
COMPARISON OF PROTOTYPE PANELS FOR TEST AND FLIGHT

LI-1500 Panel Unit
Panel | Thickness~in. | Weight ~1b/ft?
Design
Temp |Test! | Flight2
Panel | Panel

Panel ‘ e _ Orbiter
No. Description Area

Test! | Flight2’

1 |Beryllium Subpanel 2 | 600°F| 1.89| 1.25 | 3.6 | 2.8
Application t = 0,064 in,, ' (5.2)*| (4.6)*
0. 090 in., RTV-560 Adhesive _

2 |Aluminum Primary Structure | 2 300°F | 3.34| 2.52 | 6.6 | 5.7
Application t = 0.125 in.,
0.090 in., RTV-560 Adhesive

3 Alumimim Primary Structure 1 300°F 1.85] 1,40 5.2 4,8
Application t = 0.154 in., :
0.090 in., RTV-560 Adhesive| -

4 Titanium Primary Structure 2 600°F | 2.00| 1.35 5.4 4.7
Application T = 0.097 in., :
0.090 in., RTV-560 Adhesive

1LI-1500 thermal conductivity is a function of temperature only ‘(pressurve =1 atm)

2LI—1500 thermal conductivity is a function of temperature and pressure
*Value includes the weight of a t =0, 114 in, aluminum primary structure

3. 1-8
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Coating Modulus Effects on RSI Stress Levels

Variations of coating modulus are primarily reflected in coating stress levels. The
results of this study are summarized in Fig. 3.1-5 for a beryllium subpanel using an
isotropic plane stress WILSON analysis. From these curves, it is apparent that the
"driver' is principally the thermal loading, although the direction of the applied
pressure is important. In effect, the temperature rise induces a tensile field in the
coating while bending effects due to the pressure field either add or subtract from the
thermal effect. These general conclusions are also representative of other panel

configurations.

Effect of LI-1500 Modulus on RSI Stress Levels

The effect of varying Young's modulus for an assumed isotropic LI-1500 material is
summarized in Figs. 3.1-6 through 3.1-9. These studies were carried out early in
the program before anisotropic data on LI-1500 were available. Some comparisons
of isofropic versus anisotropic anaIysis are presented in Section 2.3. The curves
show increaéing LI-1500 stress with increasing modulus, which is consistent with

the substrate strain being the driving variable. On the other hand, the RTV-560 peel
stress appears insensitive to LI-1500 modulus. As might be expected, coating stress
decreases as the LI-1500 and the coating moduli tend toward each other. Finally, the
maximum prihcipal tensile stress and the maximum shear in the RTV are seen to
increase with increasing LI-1500 modulus. A beryllium subpanel with a 600° F backface
temperature and a 1. 14-psi burst pressure was chosen for this study.

Effect of Bond Moduli Variation on RSI Stress Levels

The sensit{ivity of RSI stresses to variations of Young's modulus, ERTV’ and Poisson's
ratio, BRTV’ are summarized in Tables 3.1-2 and 3.1-3. As would be expected,
lower values of ERTV provide more effective strain isolation as seen in Table 3.1-2,
indicating a factor of approximately 2 in LI-1500 stresses for the values investigated.
These changes amount to about 20 percent when Poisson's ratio is varied over the
range chosen. It is expected that ppow, for RTV-560 is closer to 0.5, which is the

3. 1-9
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theoretical value for an incompressible material. These tables have been constructed
with data corresponding to a critical loading case of an aluminum primary structure
panel; similar results would be expected under other conditions.

.

Integral Coating Concept

Since LI-1500 can be locally densified in a surface layer, a study was performed to
ascertain what effects this might have on an RSI system design. In Fig. 3.1-10 are
shown typical boundihg profiles of density variation; Figs. 3.1-11 and 3.1-12 present
strong direction elastic modulus and strength of LI-1500 as functions of density.
Comparative results for'a beryllium subpanel (Table 3.1-4) show that there is virtually
no difference in stress ievels foi' the thin or thick profile, except for the coating
(densified layer) stress. It is noted that the integral coating or local densification
concept results in lower coating stresses than a system with an add-on coating, in
this case, chrome oxide. The large change here is due to the difference in elastic
moduli. It can be tentatively concluded that a thin profile integral coating is best
under the conditions presented here, offering a weight savings over the thick profile.

Effects of Thermal Cycling on LI-1500

As discussed in Section 4, Volume 1, thermal cycling of LI-1500 apparently leads to

a higher modulus in II-1500. The effect of these changes in a thin layér under the
coating was investigated for an aluminum fuselage pé.nel and compared with results for
virgin LI-1500. These are summarized in Table 3.1-5, where it is noted that there is
little change in stress level and that the cycled LI-1500 experiences little or no stress.
From this example, it may be tentatively concluded that the thermal cycling to maximum
surface temperatures of a thin layer under neath the coating does not degrade the mechan-
ical capability of the RSI system.

3.1-17
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3.2 DESIGN DETAILS VARIATIONS

Substrate Configuration Parametric Studies

The studies performed for Contract NAS 9-11222 and for the present contract indicate
that subpanel and primary structure con.figurations may be qualitatively compared,
utilizing wide column structural optimization data that have been reported in the
literature. These data are of the general form:

n o= Ep/E
where

Nx = given axial load

¢ = a measure of efficiency of a given configuration

T = an effective plasticif.;y reduction factor, ratio of tangent modulus at a

stress level corresponding to Ny to initial modulus
4 = length of the panel ' '
t = weight - equivalent flat-plate thickness

The value of the exponent n is usually 2.0 for conventionally stiffened configurations
composed of straight elements but is smaller for configurations with curved elements.

Several configurations are shown in Fig. 3.2-1. Observe that the configurations without
a flat sheet or skin are more efficient (lighter weight) than the others - for example, the
corrugated configuration which is discussed later in Table' 3.2-13. Also, configurations
with curved stiffening elements are more efficient than those with straight stiffening
elements. Phase B studies have indicated that manufacturability of these sections is
difficult in a structure of changing dimension. In addition there is lack of adequate

test data for some of the sections, hence, only those configurations that do include a
flat sheet or skin are studied here. Among these configurations, the zee-stiffened
configuration is most efficient. Other configurations that are more efficient than the
zee-stiffened configuration may be identified — for example, the integral "L' or "T"

3.2-1
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configuration, but the increase in efficiency is only about 10 percent as seen from
Table 3.2-1. LMSC has not pursued such configurations here; however, related pro-
grams have indicated that availability and manufacturing capabilities preclude their
usage at this time. Likewise, honeycomb-sandwich construction is less efficient than
zee-stiffened construction, principally because of the difference between the true
optimum core weight and that which is prabtical to handle and fabricate.

Effect of Bond Thickness on Required LI-1500 Thickness

Another tradeoff in the design methodology logic is the variation of bond thickness with
LI-1500 thickness. As the bond thickness is increased to produce allowable stress
values within the LI-1500 or on the surface coating, the LI-1500 thickness may be
reduced. This effect is shown in Fig. 3.2-2 where the variation of bond thickness
with LI-1500 thickness is plotted for various beryllium effective thicknesses for a
beryllium temperature of 600CF. For the 0. 064 in. beryllium (which corresponds

to test panel No. 1), an increase in bond of 0. 075 (from 0. 025 to 0.100 in.) allows a
reduction in LI-1500 thickness of 0, 32'(ﬁ'om 2.25 to 1.93). This amounts to a thick-
ness tradeoff of 4 to 1. For example, an increase of bond by 0.010 in. would allow

a decrease of 0.040 in. in the required LI-1500 thickness.

Similar results are shown in Figs. 3.2-3 through 3.2-5 for test panels Nos. 2, 3, and
4, respectively. Tradeoff factors have been determined from cdmputer runs that
considered various adhesive thickness for a constant substrate thickness. The trade-
off factors are dependent on the density-specific heat products of the adhesive,
LI-1500, and the substrate material. Approximate tradeoff factors of 4.5, 3.5, and
4.0 were determined for test panels Nos. 2, 3, and 4 from the data of these figures,
respectively. Hence, an average tradeoff of abouf: 4, 0 could be used for all four test

panels.

3.2-3
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Figures 3.2-6 through 3.2-9 are tradeoff curves showing the relationships between
LI-1500 and RTV-560 thickness for the four flight panels. Also parametric data used
to generate the tradeoff curves are shown in these figures. Approximate tradeoff
factors, based on a linear variation (of LI-1500 thickness with RTV thickness) from

0 to 0.20 in. of RTV-560 for all four panels, are 3.3, 4.1, 3.0 and 3.3 for panels 1
to 4, respectively. Use of the tradeoff curves results in a lowér unit weight than
would result if a constant LI-1500 thickness was used with increasing adhesive thick-
ness. By comparing the far righthand column in Tables 3.2-2 and 3.2-3, it is seen
that the use of the tradeoff factor could account for a 0.84 lb/ft2 decrease in unit
weight if the required adhesive thickness for strain isolation considerations increased
to 0.200 in. These tables, for the aluminum flight panel No. 2, are constructed from

the equation:
(W/A) Total = (W/A) LI-1500 + (W/A) RTV-560 + (W/A) Coating,

using 0.10 lb/ft2 for 0042 coating.

Table 3.2-2 |
UNIT WEIGHT OF TPS USING TRADEOFF CURVE
'RTV-560 | W/, RTV t11-1500 W/ L1-1500 | W/a Total
(in-) (lb/2) (in.) W/8t%) (b/ft)
0. 030 0.221 2.80 3.50 3.82
0. 090 0.663 2.52 3.15 3.91
0.200 1.472 2.13 2.66 4.23
Table 3.2-3
UNIT WEIGHT OF TPS WITHOUT TRADEOFF CURVE
'RTV-560 | W/, RTV t11-1500 W/a L1-1500 | W/, Total
. 2 : 2 1b/£t2
(iu.) (Ib/1t%), (in.) (b /t*) ( )
0. 030 0.221 2.80 3.50 3. 82
0.090 0.663 - 2.80 3.50 4.26
0.200 1.472 2.80 3.50 5. 07
3.2-9
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In other words, if 2.80 in. of LI-1500 was required for thermal considerations to
restrict the backface temperature to 300°F with an adhesive thickness of 0.030 in. and
structural consideration dictated an increase in adhesive to 0.200 in., a unit weight
savings of 5. 07-4.23 = 0,84 Ib/ft? could be realized by using the tradeoff factor. Use
of the tradeoff factor reduces the required LI-1500 as the adhesive thickness is
increased. Similar trends would apply for other panel configurations.

Effect of Coating Thickness on RSI Stress Levels

The results of this study are presented in Figs. 3.2-10 through 3.2-13 for an assumed
isotropic LI-1500 materidal, Inspection of these curves indicates that coating thickness
variation does not affect stress levels in the LI-1500 or the RTV-560 bond. However,
coating stress decreases with increasing coating thickness, indicating that, although
the line load carried by the coating increases with increasing thickness, it does so at
a lower rate than the thickness itself. Hence, a lower coating stress is evident in

this case.

Stress Variations Due to LI-1500 Thickness

These isotropic analytical studies are summarized in Figs. 3.2-14 throug'h 3.2-17,
where bond and LI-1500 stress levels are not affected by Li-1500 thickness. However,
coating stresses decrease with LI-1500 thickness for the worst possible case shown
here. Essentially, thermal expansioh and burst pressure induce tensile loads in the
coating. In addition, the thermal load causes the substrate to bend in such a direction
so as to cause a compressive stress in the coating. This latter stress is dependent
upon the distance of the coating from the location of the neutral axis of bending, which
is in the substrate. A thicker layer of LI-1500 thus results in higher compressive
bending stresses, which have a net effect of subtracting from the dominant tensile load
in the coating due to substrate expansion.

3.2-14 -
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Bond Thickness Effects on Stress Levels

Isotropic WILSON stress analyses using a constant LI-1500 thickness were carried out
for a beryllium subpanel; the results are shown in Figs., 3.2-18 through 3.2-21. Itis
evident from these curves that bond thickness is a critical variable in RSI design.
Effectively, a thicker bond offers more strain isolation from the deformations of the
substrate than a thin bond.

A similar study is shown for the Aluminum Test Panel No, 2 in Figs; 3.2-22 through
3.2-27 although, in this case, an orthotropic WILSON analysis was used., In addition,
the LI-1500 thickness was varied in accordance with previously discussed heat sink
trade-off factors as the bond thickness was changed to keep the substrate temperature

at 250°, The results again indicate the sensitivity of RSI stress levels on bond thickness.

Gap and Jdi.nt Studies

The effect of joint design on stress levels and gap dimensions between tiles has been
investigated for a beryllium subpanel configuration. Table 3. 2-4 summarizes a num-
ber of WILSON analyses for this stﬁdy, in which the adjacent surfaces in the joint have
been modeled in various ways. Case A represents a bgseline configuration with sur-
faces never in bearing contact whereas Case B assumes that adjacent surfaces are
partially continuous, due to bearing forces that lead to stress concentrations. Similar
resﬁlts are experienced in C, Case D'represents the joint being filled with a material
possessing LI-1500 elastic properties, except that the shear modulus has been assumed
to be zero, simulating a frictionless joint, This case effectively behaves as a 12-in.
tile, which leads to higher stress levels over the Case A baseline 6-in. tile, Case E
is included for comparative purposes only, since it is not a suitable joint for other
reasons as well as leading to slightly higher stress levels than the baseline joint.

Case A is clearly superior, since thé bonded length of tile is less than 6 inches and
the stress levels are comparable to a shorter tile length. Similar results are shown
in Table 3. 2-5.

Studies of gap motion for an open joint during reentry are presented in Figs. 3.2-28
and 3. 2-29 for a beryllium subpanel with 6-in, tiles and an aluminum primary structure
panel with 4-in. panels. In the former case, high temperature conditions at the surface

3.2-23
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initially tend to close the gap followed by domination of the substrate expansion. Maxi-
mum gap opening occurs at the panel ends, and the 50-mil enlargement (which occurs

at touchdown following reentry) shown for the beryllium panel is the total opening due

to both panels at the common support as shown in Fig, 3.2-30. Results for the aluminum
panel are qualitatively similar, although the maximum in this case is approximately 65
mils, From these studies, it appears that the baseline joint is most desirable in that
large gaps directly open to the bondline are not possible during reentry.

Initial closing of the baseline joint is presented for the beryllium subpanel in Fig.
3.2-31 where appropriate gap dimensions for zero bearing forces érg- deduced. Mini-
mum required gaps for other configurations are also summarized in Table 3.2-6. Since
the primary difference in test and flight panels is one of LI-1500 thickness, it is seen
that gap size is linearly related to LI-1500 thickness. This is plausible since collapse
pressure induces overall panel bending.

Effects of Coating Texturing and Discontinuities on RSI Stress Levels

The desirability of a waved-surface coating to reduce stress has been investigated.
Results shown in Fig. 3.2-32a and b indicate wide fluctuations in coating stress, prin-
cipally caused by local bending effects due to eccentric load paths through the coating.
These fluctuations depend on the wave length of the texturing and, for the case shown,
there is approximately a 10-percent decrease in maximum coating stress. In effect,
the texturing acts to lower the overall extensional stiffness of the coating, hence there
is a lower stress for a given strain, |

Studies of discontinuous coatings are presented in Figs, 3.2-33 through 3.2-35, The
overall effect on coating stress is essentially the same as that due to texturing, although
the coating stress must go to zero at the discontinuities. However, asnoted in Fig. 3. 2-33,
the maximum stresses in the LI~1500 at the discontinuity are magnified approximately
five times over those corresponding to a continuous coating. This is cléarly unaccept-
able, hence the use of this concept is precluded. These conclusions apply to the

general case, although these studies were carried out on a specific beryllium subpanel
configuration.

3. 2-38
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Effects of Partial Bonding and Bond Discontinuities on RSI Stress Levels

An investigation was made to evaluate the effects of partial and discontinuous bonding.
The effects of partial bonding are summarized in Table 3. 2-7; a magnified computer
plot of tile and substrate deflection with partial bonding is shown in Fig. 3.2-36, In
general, stress levels decrease as the length of bond goes down, and it is noted that a
partially bonded 6-in. tile results in the same state of stress as a fully bonded 4-in,
tile for an aluminum panel with the loading conditions considered here. Hence, partial
bonding can offer some measure of strain isolation from the substrate material. How-
ever, dynamic effects must be empirically evaluated before acceptance as a viable
attachment method, Figuré 3.2-37 shows the results of a study that considers the
effects of bond discontinuity at the joints. In essence, a continuous bond allows a con-
siderable in-plane load to develop in the bond; this is transferred into the tiles starting
at the corners, thereby raising stress levels over those for a bond discontinuity at tile
joints. Similar results are shown for the baseline joint configuration in Table 3.2-8 in
which the filler block has been omitted for convenience. Hence, it is concluded that a
discontinuity in the bond at tile joints is a desirable design objective, '

Mechanical Fastener Study

Two WILSON analyses were conducted to ascertain the influence of a steel screw insert
on the stress levels in LI-1500 subjected to the design temperature profile. This pro-
file and related results are shown in Table 3,2-9, Note that high stresses are experi-
enced in the LI-1500 due to the large mismatch in thermal expansion properties of steel
and LI-1500. These results indicate that successful use of this method of attachment
requires fasteners which have a coefficient of thermal expansion close to that of LI-1500
(e.g., Invar, graphite epoxy, or quartz cloth), Further discussion of this and other
mechanical concepts is to be found in Section 5, 2,

Tile Size Influence on RSI Stress Levels

The general trend of RSI stress levels versus tile length can easily be seen from
Table 3.2~10. One major function of the bond is to provide strain isolation between
the LI-1500 and the substrate (the other major function, of course, is to hold the tile

3.2-47
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onto the vehicle). The longer the tile the more nearly the strain in the tile must con-

. form to the substrate; the gaps between the tiles'provide essential strain relief which
allows the bond to act more effectively as a strain isolator. Observe that no relief to
maximum LI-1500 stresses results by partially cutting through the tiles, although coat-
ing stresses are reduced.

Quantitative relationships for both aluminum and titanium primary structure panels are
established in Figs, 3.2-38 through 3, 2-46 for critical RSI system stress levels as a
function of tile length., It is seen that all these curves display a monotonically increas-
ing stress with increasing tile length,

Effects of Different Coating Configurations on RSI Stress Levels

A series of coating studies, summarized in the following figures, considers the two
basic cases of (1) local densification of LI-1500 to 60 pef, and (2) an add-on coating,
alone or in combination with densification. In fhe studies, the effects of two different
add-on coatings were modeled: A 0. Old-in. thick chrome-oxide coating used alone and
a 0,004-in, thick silicon-carbide coating used alone or with a 0.010-in. thick 60-pcf
LI-1500 densified layer. Typical beryllium subpanel configurations under thermal
loading (surface at +75°F, substrate at +600°F) have been studied and results are pre-
sented in Fig. 3.2-47 through Fig. 3.2-52, In Fig, 3.2-52 is shown the shear stress
variation through the panel at the location of the critical shear stress in the LI-1500,
for a chrome-oxide coating alone. As might be expected, the shear stress is maximum
at the bondline and rapidly decays with distance from the bond. In Figs. 3.2-49 and
3.2-50 are shown, qualitatively, the same type of behavior for an all-around 60-pcf
densified layer of LI-1500 with a 15-pcf core. However, as noted, the maximum stress
in the LI-1500 has dropped about 30 percent, These two figures can be compared with
Figs, 3.2-51 and 3.2-52, in which the core density was reduced to 10 pef. From these
curves, it appears that core density in this range does not have any significant influence
on shear stress in the LI-1500. From Table 3. 2-11, it is noted that this lack of core
density influence is also carried over to other stresses of interest.

Another series of siniilar curves is presented in Figs. 3.2-53 and 3.2-54, which also
summarizes maximum core and coating shear stresses for a silicon-carbide add-on
3.2-54
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coating in conjunction with a 10-mil layer of all-around densified LI-1500, Again,
maximum stresses occur in the treated regions while core stresses are small. These
results are also summarized in Table 3.2-11.

Another set of similar curves is presented for an aluminum primary structure panel
configuration with a 15-pcf LI-1500 core in Figs. 3.2-55 and 3.2-56. Table 3.2-12

is a brief summary of selected results. This study indicates a qualitative similarity
with the previous beryllium subpanel results, but quantitatively the effect of the sur-
face densification in this case offers only about a 10-percent reduction in LI-1500

stress levels as compared with the baseline configuration of the add-on coating

alone. Local densificatioﬁ is less effective here, due to the fact that the substructure
strain is increased. Aluminum at 250°F experiences nearly as much thermal strain as
beryllium does at 600°F. In addition, the aluminum substructure must carry an in-plane
line load, which accounts for mechanical strain of the same order as the thermal strain. .
Hence, the aluminum pénel results correspond to a substrate strain state roughly double
that fdr the beryllium subpanel case. '

The conclusion to be drawn from these studies is that all-around densification may be
desirable for other reasons such as handling, but it will generally not offer significant
stress reduction. In addition, the total system weight will be increased.

RSI Tile Bonded to Corrugated Substrate

Table 3.2-13 is a summary of RSI stress levels that arise due to thermal expansion if
a 13-in. LI-1500 tile is directly bonded to a corrugated substrate. The tile is assumed
to be 4-in. long in the stiffener direction, and 2-D WILSON stresé analysis results are
shown fbr both directions in the tile. It is interesting to note that the RSI stress levels
are of the same order in both directions, primarily since the corrugation imposes a
condition of partial bonding on the tile. As discussed earlier, partial bonding acts to
reduce stress levels. The corrugation direction results here cannot be applied directly
to the actual behavior of a TPS panel as the support of the stiffeners is not incorporated
in the 2-D model as discussed in Section 2.3. This additional stiffness would generally

act to lower longitudinal stresses in the tile but leads to an increase in peel stress.
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Effect of Tile Size on Coating Weight

These results are summarized in Fig. 3.2-57 which applies to both the 0025 and 0042
coating systems. As would be expected, the number of joints has a significant effect

on coating weight, However, the use of the FI-600 filler strip (discussed in Section
5.3.9 of Volume I) more than bompensates for the added coating weight, since this
material has a density of 6 pounds per cubic foot. For all cases, the tile weight actually
decreases with decreasing tile size.” (The filler strip is'de_signed to be 1-inch wide and
half the tile thickness in all cases.) |

Strain Arrestor Plate

The baseline attachment scheme for RSI panels is direct bonding with a flexible bond
such as RTV-560 (baseline for this study) or one of the even more flexible foam bonds.
' This bond effectively isolates the tile from high substructure strains. It is within the
state-of-the-art, however, to use an additional technique in connection with bonding to
further reduce tile stresses. This is achieved by placing a high~modulus, high-strength,
thin plate between the tile and the substructure (see Fig. 3.2-58). For thermal appli-
cation, an additional requirement is necessary; i.e., the plate should have a thermal

" expansion coefficient approximately the same as the RSI tile.

The function of the plate is to act as a barrier between the substructure .and the RSI
tile. The barrier or arrestor action is accomplished by the high extensional stiffness
of the plate. Resulting strains are low even at high stress levels in the substrate.

There are two materials that are readily available for LI-1500 application. These
are: : -
1., Invar Steel
2. Graphite Epoxy Composite
(Thornel 75S/ERLB4617) laminates
Laniinate thickness = 0.0025 in.

30 2-75
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Both materials can be manufactured to possess thermal expansion coefficients matching
the LI-1500 coefficient. Table 3.2-14 gives readily available material properties for
these two materials. Tables 3.2-15 through 3.2-18 show computer results using
strain arrestor plates with different panel configurations. Comparisons also are made

using models without the arrestor plate.

As noted, LI-1500 stress levels decrease markedly when a strain arrestor plate is

used. The results of Table 3;2-18 show a possible orbiter temperature condition in
which the substructure is allowed to cool down to -200°F. Since the glassy transition
point of the RTV-560 is -165°F, without the strain arrestor plate, it is evident that the
LI-1500 would fail. Howéver, usage of this new concept could limit stresses to more
tolerable levels. Thié severe condition is due to the temperature dependence of RTV-560
elastic modulus given in Table 6.2-7, which indicates a value of E = 67,000 psi at
—200°F, effectively negating the strain isolation properties of RTV-560.

Thermal evaluation of the strain arrestor plate concept indicates that heat sink effects
of this additional layer can be utilized and that an overall TPS weight increase of
around 2 percenf would be expected for the aluminum primary panels and about an
8-percent increase for titanium. However, no weight increase would occur for the
beryllium subpanel. These conclusions represent the worst possible upper bound and

apply to a graphite~epoxy arrestor plate,
It should be noted that this comparison considers only the orbiter lower surface, and
such relationships may not be true for applications in areas with lower heating rates

and, hence, smaller LI-1500 thicknesses.

Lightweight Core Concept

This concept is somewhat similar to all-around densification except that, m this case,
the LI-1500 core is reduced below that of the surface léyer density of 15 1b/ft3. One-
dimensional thermal models were first constructed to determine the required insulation
thickness for test panel No. 2. The models consisted of a 0. 75-in. surface layer of
baseline LI-1500 over various thickness of 6-lb/ ft3 LI-1500 bonded with 0.090 in, of
RTV-560 to 0.114~in, aluminum. The results, shown in Fig. 3.2-59, indicate that

3.2-78
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4,3 in. of the 6-1b/ft3 LI-1500 is required to restrict the substrate temperature to
300°F. This is an increase of 1. 65 in. (including the 0. 75~in. surface layer) over the
3. 4~in. thickness requirement for the 15—1b/ft3 LI-1500 (see Fig. 3.2-3). The increase
in thickness is primarily due to the lower density-specific heat product which tends to
increase the temperature of the lower density material at a specified depth from the
surface.

Studies given in Tables 3.2-19 and 3.2~20 show that stress levels are reduced in the
tile (as indicated by é 2D analysis). However, stresses in the direction perpendicular
to the plane of the analysis in the 0.75 in. thick outer layer of the 15 pcf material would
still be of the order of the stresses in a solid 15 pcf tile of that length. Thus, tile
length is stress limited even though Table 3.2-19 shows a possible weight savings of
RSI material of 9 percent by using this concept. On the other hand, stress levels in

a 6 in. lightweight core tile would appear to be satisfactory, but Table 3.2-20 indicates
that the lightweight core concept for this tile length leads to a heavier TPS system.

Hence, it is tentatively concluded that no apparent advantage is gained from the usage
of this concept. Further evaluation of the lightweight core would necessitate the use of

3D studies for both the thermal and stress analyses.

Effect of Contact Conductance on Stiffener Temperatures

Since the fastening method for the titanium panel was riveting, a study was performed
to determine the effect of contact conductance upon face sheet and stiffener tempera-
tures at the interface between the face sheet and stiffener. The results for a range
of contact conductance values (3-2) and (3-3) are shown in Fig. 3.2-60. For the con-
‘tact conductance values expected on the titanium panel, 50-500 Bf:u/ft:2 hroF, the
maximum temperature difference between the face sheet and titanium stiffener is about

80°F.

(3-2)"Interface Thermal Conductance of 27 Riveted Aircraft Joints,'" M. E. Barzelay
and G. F. Holloway, NASA TN-3991, July 1957

(3-3)"Range of Interface Thermal Conductance for Aircraft Joints," M. E. Barzelay,
NASA TN-D426, May 1960 4
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For the weldbond technique used to fasten the aluminum panels, contact conductances
greater than 1000 Btu/ftzhroF are expected. Results for the aluminum test panel

No. 2 are shown in Fig. 3.2-61, where values of contact conductance from 50 to 1000 -
Btu/ftzhroF between the face sheet and stiffeners were considered. The maximum
temperature difference is about 10°F for the values of contact conductance analyzed.
Due to the high thermal conductivity of aluminum and the low rate of heat conducted
through the LI-1500 into the panel, the temperature difference between the top and
bottom of the stiffené: is less than 5°F.

Effect of Discontinuous Bond on Substrate Temperatures

Since a promising method of attachment appeared to be an interrupted bond, which

could reduce weight and stresses in the LI-1500, the two~dimensional thermal model
was used to show the effect of the adhesive void on the substrate temperatures.

Figure 3.2-62 shows temperature histories for an adhesive void located directly above
the location of the stiffener. The results indicate about a 20°F increase in the maximum
titanium temperature as compared to the results of Fig.' 2.1-15, where a continuous
adhesive was used.

The effect of the face-sheet temperature distribution at various reentry times is shown
in Fig. 3.2-63 for the continuous and interrupted adhesive. The maximum face~-sheet
temperature difference occurs at about 4000 sec. The effect of the stifféner heat sink
is indicated at earlier times (2000 sec) by the lower temperature in the vicinity of the
stiffener, : ,

Thermal Analysis of FI-600 Filler Strip

A newiy developed (NAS 9-12137) flexible joint filler strip material (FI-600) has been
incorporated in the panel designs. To assess the effect of this low density strip a two-
dimensional thermal analysis was performed for one half of a 6 in. x 6 in. x 2.5 in.
tile for the Aluminum Flight Panel No. 2.
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The results of the analysis indicated a maximum panel temperature of 313°F for the
subpanel under the filler strip as compared with 300°F for the 15-pcf filler

block case. Hence, the usage of a low-density filler has a negligible effect on
temperature distributions in LMSC RSI panel designs. .

3.2-93
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3.3 ENVIRONMENTAL VARIATIONS

Coating Stress During Reentry

Rigidized Surface Insulation (RSI) component stresses have been investigated as a
function of reentry time, using design flight loadings and temperatures. Study results
are presented in Tables 3.3-1 and 3.3-2 and their companion Figs. 3.3-1 and 3.3-2,
where coating stress is plotted as a function of reentry time for both beryllium and
aluminum flight panels. Maximum loads and surface temperatures employed are
shown in Figs. 3.3-3 and 3.3-4. In addition, the elastic modulus of fused silica,
E=10.6x 106 psi, has been used to simulate the worst possible case of coating
modulus. Qualitatively, the coating first experiences compressive stresses, since
only the coating is first heated and is restrained from expanding by the LI-1500.
Later, as the LI-1500 begins to heat, the coating goes into tension due to the expansion
of the LI-1500 being greater than that of the coating*. Finally, as the substrate heats
up with the surface cooling, the panel _bgws , agé.in developing compressive coating
stresses. The net effect of this thermal sequence in combination with applied loads
results in a final net coating compression for the beryllium panel at 3600 sec. The
aluminum panel experiences a relatively low net tensile stress in the coating at this .
time, due to high in-plane thermal expansion. Variations of other stresses in the RSI
system are shown in the tables also as a function of time where it is noted that the
ground condition, t = 3600 sec, is critical for the LI-1500, -

Additional comparative data for 6- and 12-in. tiles with 0025 coating under thermal
load only are shown in Table 3.3-3.

Orbital Cold Soak Condition

As per NASA request, a -200° TPS cold soak temperature condition after approximately
10 orbits has been assumed. Such a severe condition could arise due to adverse vehicle

*Coating tests completed just prior to publication of this book indicate that the
coefficient of thermal expansion of the coating is 4 x 10-7 in. /in. /°F which is slightly
higher than the value for LI-1500.

3.3-1
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orientation in orbit, although only minimal attitude control would be necessary to avoid
this situation. The resulting RSI stress levels are shown in Table 3.2-18, and it is
noted that these are very severe and would cause failure of the LI-1500. This is
primarily due to the high modulus of approximately 67,000 psi for the RTV-560 at
-200°F, essentially negating the strain isolation characteristics of RTV-560. However,
the usage of the strain arrestor plate concept discussed earlier would act to reduce
LI-1500 stresses to tolerable levels as shown in the same table even in this extreme
orbit condition. S

Without the arrestor plate, additional analysis has indicatéd that if RTV-560 modulus
is restricted to less than 1200 psi (approximately —150°F) then LI-1500 stress levels
would not exceed allowables.

3. 3-2
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3.4 CONCLUSIONS — PARAMETRIC STUDIES

Parametric relationships have been established between mechanical properties, design
details, and environmental conditions with their consequent effects on Rigidized Surface
Insulation (RSI) system design. These relationships can be summarized as follows:
¢ Required LI-1500 thickness varies directly with environmental pressure,
surface temperature, and total heat.

® Required LI-1500 thickness varies inversely with bond thickness and substrate
thickness.

RSI system stresses vary directly with tile length.

RSI system streéses vary inversely with bond thickness.

RSI stresses vary directly with modulus of elasticity of the material.
'Coating stresses vary inversely with RSI modulus of elasticity.

Thickness of RSI material does not appreciably alter RSI stresses. However,
coating stresses vary inversely with RSI thickness.

Coating stresses vary inversely with coating thickness. Other stresses in the
RSI are not affected. .

Coating stresses vary directly With coating modulus of elasticity.
Integral coating (densified insulation material) is. structurally feasible.
Reduction in bond modulus of elasticity reduces RSI system stresses.
Bond discontinuity at tile joints reduces RSI stresses appreciably.
Textured coatings do not appreciably lower coating stresses.

Intentional cracks (discontinuities) in the coating decrease coating stresses.
However, RSI stresses are increased considerably due to stress concentration
effects. Both stresses approach zero as the number of discontinuities in the
coating is increased.

o Stresses in the RSI system are mainiy due to inplane deformation of the
substrate (mechanical and/or thermal loading).

e Common metal mechanical fasteners inserted in LI-1500 induce large stresses
due to difference in thermal expansion properties. Use of Invar or graphite~
epoxy fasteners avoids such thermal problems.

e Under normal reentry ground condition is the worst case for LI-1500
stresses., :

Use of strain arrestor plate results in large reduction of LI-1500 stresses.
Lightweight core concept does not appear feasible.

For convenience, some of the more important relationships are presented in Table 3. 4-1.
3.4-1
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Section 4
OPTIMIZATION STUDIES

This section presents the thermal/structural/weight optimization techniques developed
for RSI system design and specifically addresses the following topics:

Stiffener configuration

Stiffener material

Vehicle frame spacing

Subpanel/primafy structure tradeoff

Heat sink effects/substrate effective thickness
LI-1500 conductivity (flight vs test panels)
Panel weight

The studies reported here represent the brocess by which the deliverable prototype
panels have been designed in accordance mm load and environme_ntal‘criteria discussed
in Section 6.

4- 0-1
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4.1 SELECTION OF OPTIMUM SUBPANEL CONFIGURATION

A comparison of several material/configuration combinations, structurally optimized
to sustain the design loads for prototype panel No. 1 when utilized as a subpanel, is
shown in Fig. 4.1-1., These results were obtained from the SUBPAN computer code
which was discussed in Section 2. All designs have been optimized for the burst/collapse
pressures shown, which, as noted previously, occur during ascent when the subpanel
is at room temperature. The panel span was kept constant at 25 in. and no constraint
was placed on the maximum allowable deflection, Note that graphite epoxy is included
for comparative purposes even though its acceptability at temperatures approaching the
maximum backface temp,éramre of 600°F is doubtful. Graphite-polyimide was not in-
cluded, because it is not considered to be a material that is sufficiently developed for
the manufacture of panels within the time available on this program.

Most of the designs shown in the figure have been constrained by minimum gage require-
ments specified in the computer code input, This gage for beryllium is 0.016 in. except
in the honeycomb designs where it is 0. 010 in. In the conventional constructions, the
minimum gage for titanium and graphite-epoxy is 0.012 in. and in honeycomb sandwich
construction it is 0.008 in. Because of the thin gages involved, the graphite-epoxy pro-
perties have been selected to represent quasi-isotropié layups rather than unidirectional
layups. Note also that the attach—-flange widths have been assigned fixed, realistic
values, and that commercially available honeycomb-sandwich cores have been specified
(with the exception of the beryllium honeycomb core). These cores are the lightest
which can be handled and utilized without adverse structural effects.

The maximum compressive stresses due to bendin§ afe considerably higher for the
bgryllium designs than for either the titanium or graphite-epoxy designs. This indicates
that beryllium satisfies stiffness requirements with less material volume than its
competitors. The maximum compressive stress for beryllium is in the range of

44-52 ksi for the four beryllium configurations, generally increasing as weight decreases.
This stress is in the range 27-33 ksi for titanium, and 18-24 ksi for graphite epoxy.
Referring back to Fig. 3.1-1, obsérve that the material weight ratios illustrated in

this figure are reasonably accurate for a given configuration. Scatter in the ratios is
present, but this is due in part to the effect of the constraints in reducing ideal

40 1-1
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configuration structural efficiency. Whereas Fig. 3.1-1 assumes the same maximum
compressive stress in the two materials being compared, this situation does not

develop in the comparison presented here. Thus, Fig. 3.1-1 tends to yield conservative
weight ratios when the abscissa is entered with the maximum compressive stress of the
beryllium, In a similar manner, the configurations comparison shown in Fig. 3.2-1 is
also seen to yield reasonably accurate, qualitative projections for a given material.

In summary, this comparison shows that zee-stiffened beryllium construction is the
optimum configuration' for the substrate of prototype panel No. 1. This configuration,.
therefore, has been selected as a basis for subsequent steps in the design/analysis
process. Other beryllim configurations are competitive; however, these competitors
are more difficult to manufacture in addition to being heavier. The present comparison
is probably. somewhat a function of the loads, constraints, and panel span specified here.
Interchanges in the position of various material/configuration combinations may occur
for other loads and constraints, but no mgmﬁcant changes are anticipated in the range
of orbiter airloads currently cited.

The effect of panel span upon weight may be studied thrbugh charts of the type shown

in Figs. 4.1-2 and 4. 1-3. - These charts show total system weight as a function of the
sum of the weights of the individual parts. Here the aluminum primary structure has
been sized using optimum wide column analysis to carry the in-plane loads in Area 2
as listed in Table 6.1-13. Note the effect of the tension load requirement in overriding
the compression load requirement in Fig., 4.1-2. Fuselage frame weights have been
calculated(4_1) for inertia requirements together with web and flange stabj.lity criteria
for establishing area. These data do not consider curvature effects; in addition, they
are dependent upon intermediate support points which for example might be provided
by keels, longémns, floors, spars, or struts. In the figures, the assumed support
point spacing of 50 in. has been arbitrarily selected to result in a reasonable frame
weight while maintaining an acceptably large support point spacing.

Since the above curves show a strong influence of the high design loads (specified for
this study) on structural design and weight, additional design trades for the current
040A-L2 delta wing orbiter are shown in Figs. 4. 1-4 through 4. 1-6.

(4- 1)Emero, D.H. and Spunt, L., "Wing Box Optimization Under Combined Shear and
Bending, "' Journal of Aircraft, March-April 1966, p. 130-141
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The beryllium subpanel weight shown in the figures is constant over the span of frame
spacings of interest because it is a thermo-structurally optimized weight. As noted
previously and discussed later in this section, lower total system weights are obtained
when beryllium in excess of that required for structural purposes is added to the system,
used as a heat sink, and traded off against LI-1500 weight, Structural requirements do
not exceed the thermo-structural optimization requirement until frame spacings greater
than 40 in, are studied. 4

The LI-1500 thickness shown in Fig. 4.1-2 has been sized to limit the in-flight tem-
perature of the aluminum primary structure to 300°F. The beryllium subpanel, while
capable of temperatures to 600°F, does not reach this temperature because of internal
radiation between the beryllium subpanel and the aluminum primary structure which
causes the aluminum to reach 300°F before the beryllium reaches 600°F,

Figure 4.1-2 shows that the optimum frame spacing is about 30 inches. The total
weight curve, however, is rather flat with respeét to frame spacing in the range of
values shown. Therefore, it is concluded that a span of 'approximately 25 in, for
prototype panel No. 1 is representative of optimum frame spacing under the present
design conditions. ’ '

In comparing Figs. 4.1-2 and 4. 1-3, it is apparent that for the present design conditions,
the use of more efficient primary structure configurations does not produce a more effi-
cient design because of the in-plane tension loads. The influence of these loads tilts

the total weight curve so that the optimum frame spacing is in excess of 40 inches.
Again, however, the total weight curve is rather flat with respect to frame spacing.
These charts demonstrate that optimum frame spacihg is highly dependent upon the
vehicle loads and the character of the parts which compose the system. Note also that
the weight of the LI-1500 material is roughly equivalent to the weight of the remaining
parts. Thus, efforts to minimize structural weight must be dramatically effective if
substantial overall weight reductions are to be obtained.

4,1-9
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4.2 SELECTION OF OPTIMUM PRIMARY STRUCTURE CONFIGURATION

Using the analytical techniques described in Section 2, several candidate primary
structure configurations were optimized as beam columns, The design loads for vehicle
area 2 were used in this study; all configurations were assumed to be fabricated from
7075-T6 aluminum inasmuch as material selection was not an open parameter. Also,

a design temperature of 250°F was used, since this is the maximum temperature that
the panels are subjectéd to in flight (the structure actually reaches a peak temperature
of 300°F about 30 minutes after landing). See Appendix A for the detailed analysis of
each configuration. '

The results., presented in Fig. 4.2-1, show the zee-stiffened configuration to be the
lightest configuration. Again, the relative standing of the four configurations is reason-
ably well predicted by Fig. 3.2-1. Of interest in Fig. 4.2-1 are the maximum com-
pressive stresses in the various conﬁgur?.tions. “The trapezoidal corrugation-stiffened
configuration maximum stress is apparently the result of the relatively shallow section

in bending. Such a section is necessitated by b/t limitations on the greater number of
thinner elements making up the section. The high maximum stress in the honeycomb-
sandwich configuration is, of course, somewhat misleading, because the core does not
sustain any direct load, although it comprises one-third of the weight of the configuration.

The conclusions to be drawn from. Fig, 4.2-1 apply specifically to prototype panel No. 2,
but they may be applied also to prototype panel Nos. 3 and 4 as well. The stresses may
be seen to be essentially elastic; therefore, the same ordering of the configurations may
be anticipated for titanium optimum designs for profbt&pe panel No. 4. Prototype panel
No. 3, however, must be designed for the considerably higher in-plane compressive
line loads in vehicle area 1. As shown in Fig. 3.2-1, these loads result in highly plastic
stresses in optimum designs, with the result that weight becomes a function of total
available load-carrying material without particular regard to its geometric distribution.
In this situation, the honeycomb-sandwich configuration does not improve in standing
because of the nonload~carrying status of the core. However, the remaining configura-
tions tend to have equal weights. For reasons of material procurement and simplicity
of manufacture, therefore, the zee-stiffened configuration is again selected.

4,2-1
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Observe that the configurations considered in this comparison have been limited to
those with one or more flat surfaces on the premise that such a surface is required
for the attachment of LI-1500. This decision may involve an arbitrary weight penalty
to the system in those designs that are not critical for in-plane tension loads (see

Fig. 3.2-1). In prototype panel Nos. 2-4, the relative magnitudes of the in-plane
tension and compression loads result in little or no weight penalty, but there may be
other vehicle areas where this situation is not the case.. Also, note should be made of
the maximum deflections associated with the various configurations in Fig. 4.2-1.
Shown are values up to 0.31 in. which appear high for compatibility with LI-1500 tiles.’
While these values are based on simply-supported edge conditions, and thus may be
unrealistically high, it is apparent that some limiting deflection should be considered
in primary structure panels with direct-bonded LI-1500 tiles. The zee-stiffened con-
figuration in Fig. 4.2-1, notably, has the lowest maximum deflection of the configura-
tions studied.

Charts of the type of Figs. 4.1-2 and 4.1-3 may be prepared to illustrate the effect of
frame spacing upon total system weight' when LI-1500 is attached directly to primary
structure. An example chart is shown in Fig. 4.2-2. This chart represents a vehicle
area 2 design, using aluminum primary structure and frames, The frames have been
sized and suppbrted in the same way as described in the previous section. Note that
the optimum frame spacing in this case is approximately 25 in, which agrees favorably
with the span specified for the prototype panels. The total weight curve is ‘again rather
flat, indicating some variation in the frame spacing will not affect system weight

significantly.

The LI-1500 thickness shown in Fig. 4.2-2 has been sized to maintain the aluminum
primary structure at temperatures of 300°F or less. As a result, the weight of the
LI-1500 is somewhat in excess of the weight of the rest of the system. Observe that
the total system weight in Fig. 4.2-2 is greater than that in comparable designs utili-
zing subpanels as shown previously in Figs. 4.1-2 and 4, 1-3. The difference is due
principally to the heat sink capacity of the beryllium subpanel which allows a signifi-
cant reduction in the LI-1500 thickness (and hence, weight). The combined primary
structure/frame/subpanel weight in Figs, 4.1-2 and 4.1-3 is essentially the same as
the primary structure/frame weight in Fig, 4.2-2,

4. 2-3
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Of further interest in Fig. 4.2-2 is the trend in frame weight with frame spacing. The
downward trend with increased spacing is due to the fact that the frames are fewer in
number and their weight is being distributed over greater surface areas. However, the
trend also is influenced by the fact that the frame stiffness requirement is inversely
proportional to panel length; i. e., increasing panel stiffness with increasing panel
length tends to reduce frame stiffness requirements.

40 2-4
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4.3 THERMAL/STRUCTURAL OPTIMIZATION OF 1 ATMOSPHERE TEST PANELS

To accomplish the basic insulation sizing for prototype test panels, the thermal
properties of LI-1500 at 1 ATM pressure given in Section 6.2 are used. The thermal
properties of the panel materials are listed in Table 6.2-2, while the effective
substrate thicknesses for the panels are given below.

Panel Max. Surface Max. Substrate Effective Substrate*
No. Material Area Temp (°F) Temp (OF) _Thickness (in.)

1 beryllium 2 2300 600 © 0.064

2 aluminum 2 2300 300 - 0.114

3 aluminum 1 1480 300 0.143

4 titanium 2 2300 ' 600 ©0.090

Typical parametric sizing data for the beryllium panel for a constant adhesive
thickness are shown in Fig. 4.3-1. These data indicate the effect of beryllium sub-
strate thickness on the required insulation thickness. Parametric data for the titanium
test panel are shown in Fig. 4.3-2.

Data from Fig., 4.3-1 are used as the basis for TPS of:timization for the beryllium
panel shown in Fig. 4.3-3. The total unit weight, consisting of beryllium, LI-1500,
and adhesive, is plotted against the beryllium effective thickness for a maximum
beryllium temperature of 600°F. The unit weight of the surface coating and flexible
filler strip (approximately 0. 02 lb/ftz) is not included in the total unit weight (see
Fig. 3.2-51). | | '

While the strength requirement dictates a berylliuin thickness of 0.040 in., the mini-
mum weight system occurs at a thickness of about 0. 090 in. Although the total unit
weight curve is flat, - the data indicate that a lower weight system can be'achieved at
beryllium effective thicknesses up to 0. 16 in. Hénce, for beryllium, a stronger and
lighter TPS is attainable at larger effective thicknesses.

*The effective substrate thicknesses were increased slightly over the values shown
here prior to fabrication; however, initial thermal/structural sizing was carried out
using the values as shown. See Table 6.5-9 for final panel sizes.

4.3-1
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Figure 4.3-4 shows the effect of beryllium effective thickness on the total unit weight
for various RTV-560 adhesive thicknesses. Although a highly expanded ordinate is

used for total TPS weight, a larger adhesive thickness tends to shift the minimum
weight to smaller beryllium effective thicknesses. As adhesive thickness was increased
from 0.050 in. to 0.100 in., the minimum weight point shifted from 0.090 in. beryllium
to 0.060 in. beryllium. Also, there is an accompanying slight increase in the total unit
weight from 3.58 to 3.75 1b/ft2, or a 0.17 1b/ft? increment upon changing from 0.050 in.
to 0,100 in. of RTV-560 adhesive.

Figure 4.3-5 shows a thermal-structural optimization for the aluminum test panel
No. 2 at a maximum temperature of 300°F. Unlike the beryllium panel, the strength

requirement also results in the minimum weight system.

Figure 4.3-6 shows a thermal/structural optimization for Area 1, aluminum test
panel No. 3 at a maximum temperature of 300°F. Again, the strength requirement
corresponds to the minimum weight system.

Figure 4.3-7 shows a thermal/structural optimization for the titanium test panel
No. 4 at 600°F. As in the case of the aluminum panels, the strength requirement for
the titanium panel corresponds to the minimum weight system.

Hence, because of the high capacity of beryllium, it is the only panel that allows a
larger panel thickness than required by strength considerations, while decreasing the
total TPS unit weight.

4.3-5
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4.4 THERMAL/STRUCTURAL OPTIMIZATION FOR FLIGHT PANELS

LI-1500 sizing for flight panels considers the effect of local static pressure on the
thermal conductivity of LI-1500. At 2000°F, the vacuum thermal conductivity of
LI-1500 is about 45 percent of the 1 ATM value, hence flight panel design assumes
that the pressure within the LI-1500 during entry equals the local static pressure at
the edge of the boundary layer.

The parametric studiés of Fig. 3.1-4 show a comparison of the LI-1500 thickness
requirements for a beryllium flight and test panel. These flight panel results were
obtained using the tempefature and pressure histories for Area 2 (see Section 6) to
determine the thermal conductivity of LI-1500. The test panel results utilized the
1-ATM thermal conductivity values. . '

For a 600°F maximum temperature, the LI-1500 requirements are reduced about
31 percent from 2.1 to 1.45 in. of LI-1500. Similar reductions can be obtained for
the other three flight panels. ‘

TPS thermal/structural optimizations are shown for flight panel Nos. 1, 2, 3, and 4
in Figs. 4.4~-1 through 4.4-3. As indicated previous[y for the test panel, the beryl-
lium total unit weight curve is rather flat, and the minimum weight system occurs at
a larger beryllium thickness than that dictated by strength requireménts. Minimum
weight occurs at about 0.090 in. while the strength requireinent is at 0.040 in. beryl-
lium (Fig. 4.4-1). - For the aluminum and titanium flight panels (Figs. 4.4-2 and
4,4-3), the strength requirement corresponds to the minimum weight system.

4.4-1
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Section 5 ,
ATTACHMENT METHODS

Three attachment methods have been evaluated for the LI-1500 application

to the shuttle: direct bonding (with or without a "strain arrestor plate'),
mechanical strain-isolation téchniques, and partial support of tiles on external
vehicle stringers. These mathods are discussed in more detail below. One
of the best strain-isolation techniques is that used on prototypé panel No. 1.
The use of the beryllium subpanel isolates the LI-1500 from the high in-plane
loadings in the primary structure and results in a lower TPS weight.

.o =39<
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5.1 BONDING ATTACHMENT (BASELINE)

Lockheed's baseline attachment method is direct bonding with RTV-560. The bond

agent acts as a strain-isolation layer between the tile and substrate. Trade studies
on the prototype panel designs (typical of the orbiter lower surface) have shown that
as bond thickness increases, only a small portion of its weight is additive to the TPS

weights due to the heat sink effect (bond thickness has significant effect on upper
surface TPS weights however). Bonded LI-1500 material has been tested both by
LMSC and NASA, resulting in confidence in this proven system.

LMSC has considered a number of commercially avaﬂable adhesives for attaching
LI-1500 to substrate materials. The systems considered are shown in Table 5.1-1.
RTV-560 has been selected as the baseline adhesive because of its unique
characteristics, as follows:

® Relatively low stiffness with high strength

e Temperature range, -150° to 600°F

e Excellent adhesion to LI-1500 and metals

e Thermal stability and oxidation resistance.

BOND SYSTEMS EVALUATED
Systeni Evaluaﬁon ‘

HT-424 ' Not room curable; high stiffness
DC 96-052 Poor cure under tiles; inconsistent
RTV-30 | Low temperature limited (-90°F)
RTV-511 | Limited to 500°F
RTV-560 (Sheet) Lower shear strength than liquid; same stiffness and weight
RTV-560 (Liquid) | Selected as baseline - '

Foam bonds, which offer even greater strain isolation than the RTV -560, look very
promising and are currently under evaluation. If a foam bond is selected to replace
the RTV-560, the bond line thickness can be reduced below the presernt 0.090 in
(thereby saving some weight on the upper surface of the orbiter) without increasing the

LI-1500 stresses.

A unique way' of improving strain isolation of the LI-1500 tile from the thermal and
mechanical expanSion of the metallic substrate is the "strain arrestor plate'" concept,
to be used on conjunction with RTV-560 bonding., In this scheme, a thin sheet of
' “36< 5.1-1
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high-modulus/high-strength material is attached to the lower surface of the tile with

a thin layer of bond. (Hard, temperature-resistant epoxy bonds such at HT-424 or
equivalent can be used.) This "arrestor plate” further must have thermal expansion
characteristics similar to LI-1500 so that a minimum of thermal stress can arise due
to differential expansion. With this hard undersurface, the tile is bonded with RTV-560
to the panel as in the baseline configuration; as an added feature, the tile handling
characteristics prior to installation are improved. The arrestor plate experiences very
small strains because of its high modulus, hence strain (and stress) levels in the
LI-1500 are much sxﬂaller than in the baseline case. |

Two materials show proxhise for this application, Invar sheet and a multi-ply
graphite-epoxy composite laminate. At this time, only numerical evaluation is avail~
able. Stress comparisons with and without the arrestor plate are presented in
Section 3.2, showing a large reduction in LI-1500 étress levels.

Thermal evaluation of this concept indica‘ttes that heat sink effects of this additional
layer can be utilized and that an overa.li TPS weight iﬁcrease of around 2 percent would
be expected for the aluminum primary panels and about an 8 percent increase for
titanium. However, no weight increase would occur for the beryllium subpanel.

These conclusions represent the worst possible upper‘bound and apply to a graphite-
epoxy arrestor plate. Test specimens incorporating this concept are planned.

The influence of bond thickness on overall TPS weight has been studied in

connection with the parametric studies reported in Section 3 (see page 3.2-9).
Although bond weight inci'eases with increasing thickness, less LI-1500 is necessary
‘to limit the substré.te to a specified thickness. Thése conclusions are summarized
in Tables 3.2-2 and 3. 2-3. '

5.1-2
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5.2 MECHANICAL ATTACHMENT

LMSC has considered many strain-relief attachment methods that utilize mechanical
fasteners. These methods can be considered in two general categories:
1. Carrier plates the size of each tileywhich are mechanically fastened to the
structure

2. Fasteners that are tapped into the LI-1500 and attached directly to the
structure.

A carrier plate could be either a solid or mesh type of material and should have
thermal expansion characteristics matched to those of LI-~1500, like the strain arrestor
plate concept. Testing of screen materials in this applicatidn is currently being con-
ducted under the related Material Development Contract, NAS-9-12137, and will be
reported separately. |

Various attachments have been designed; weights of selected configuratiohs are compared
in Fig. 5.2-1. Designs 1, 2, 3, 6, and 7 are the threaded type (2); design 4, 5, 8, and
9 utilize bonding to the carrier plate type (1). - | ' '

In Fig. 5.2-2 is shown a fastener concept that could be used in connection with a

carrier plate. For each tile, four of these fasteners would be used, one which is

rigidly attached to the carrier plate while the other three are free floating to allow

for manufacturing tolerances. During installation, the spring stud (3) is pressed into

a retainer attached to primary structure. To ensure positive locking, the spring-loaded
pin (8) then snaps into the central hole of (3) in its initially undeflected state. To replace
a panel with this attachment scheme, the LI-1500 must first be locally removed over the
fastener (i.e., a hole drilled through the LI-1500) -so that a punch can be inserted

in the hole in (3) to dislodge the pin (8). '

Figure 5.2-3 shows 'é concept with a carrier plate that is attached to primary structure
be stainless Velcro and Fig. 5.2-4 shows a hybrid concept with rails in LI-1500 which,
in turn, are mechanically attached to the structure with quarter-turn fasteners. These
last two concepts have been weighed and are compared to the baseline bonded system
in Table 5.2-1.

5,2~1
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WEIGHT OF VARIOUS ATTACHMENT METHODS

‘Weight (b/ft?)

Method Attachment LI-1500 + Coating * Total
Velero 0.48 3.90 | 4.38
Rail Support 0.41 3.90 4,31
Bonding = - - 0.66 © 8.53 4.19

* Lower Surface of Vehicle, LI-1500 thickness is 2. 50 in.
The values displayed show that LI-1500 is lighter for the dlrect bondmg systems as the

result of the bond heat sink effect previously noted. These various systems show
promise as an effective method of reducing LI-1500 stress levels. However, a
considerable test effort is required to evaluate the environmental effects.

Preliminary tests, performed under Contract NAS 9-12137, have shown that to increase
strength LI-1500 can be locally densified by either impregnated silica or resin.

Figure 5, 2-5 summarizes the results of eight pull-out tests on fasteners tapped into
LI-1500 with local resin reinforcement; the strength of this type fastener was not truly
demonstrated, due to the failure in the weak tensile directidn of the specimen.

Some analysis effort has been conducted on this type of mechanical system as related

in Section 3.2. These investigations showed that such fasteners when made from common
metals are not pract1cal because of the required close tolerance. One metal, Invar, is
suited for this type of application | Invar is 35-percent nickel and 65-percent
'1ron with a coefficient of thermal expansion of approximately 1.2 x 10 m. /in. /OF,

An analysis has been made for a 0.5-in. diameter Invar insert in undensified LI-1500

at 600°F with negligible resulting stresses.

" 5,.2-6
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5.3 PARTIAL TILE SUPPORT

The third method of strain isolation considered is that of supporting tiles on external
vehicle stringers. Figure 5.3-1 shows such a concept with 10-in, tiles, This concept
also can allow venting across the tiles into the chamber below to reduce design pres-
sures. LMSC has performed such a venting analysis, assuming a sealed chamber with

a 0.52-cu ft volume.

Various gaps widths were considered with a 10-in. gap length through which all air is
vented. For the NASA ascent pressure envelope shown in Section 6, 1 and using 0. 005-
and 0.0025-in. gap widths, the maximum differential pressures are 0.1 and 0. 25 psi,
respectively. An analysis of rapid external pressure changes are also performed; the
resulting differential pressures are quite low. For example, for the recommended
design condition with a pressure rate change of 2 psi/sec for 4 sec, a gap of 0,020 in,
would vent sufficiently to realize only a 0. 175—p§i differential pressure. ‘This study
has been documented and is included as Appendix E in this report.

5.3-1
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5.4 REMOVAL OF BONDED LI-1500

One means of removing Li— 1500, once it has been bonded to a metallic substrate, is
shown in Fig. 5.4~1. In this scheme, a powered router is set in place over a tile

(or tiles) using tapered pins inserted in holes punched in the LI-1500 at predetermined
locations. The cutter is guided and the depth adjusted so that the joint filler blocks
are not disturbed during cutting. The remainder of the tile would then be cut away with
hand tools. The top portion of the bond line would be removed and a replacement tile

bonded in place. LMSC is pursuing evaluation of this type replacement in related in-house
efforts, |

5.4-1
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Section 6

PROTOTYPE PANEL DESIGN/ANALYSIS

‘Four prototype panels are to be 6ptimumly designed, analyzed, fabricated, and
delivered to NASA/MSC under this program. These panels are to meet the point

design requirements specified by NASA/MSC and shown in Sectioﬁ 6.1. In addition,

the four panels are to represent the application of LI- 1500 to both subpanels and primary
structure. The overall size of panels is to be nominally 24 in. x 25 in. in order to

be compat1ble with existing NASA /MSC test fixtures.

The materials to be used in the substrate for each panel, and the applications to be
represented by each panel, are shown below, These selections have been based on
prior studies performed at LMSC and NASA/MSC with regard to materials and the
anticipated usage of reusable surface insulation material on the space shuttle orbiter

vehicle:
' : Vehicle Maximum

Prototype ' Area Substrate
Panel No. Application Material Location* Temperature

1 Subpanel Beryllium 2 600°F

2 " Primary Structure Aluminum 2 300°F

3 Primary Structure Aluminum : 1 300°F

4 Primary Structure Titanium 2 600°F

* See Fig. 6.1-1

The point design -requirements are summarized in Table 6.1-1. Maximum differential
pressures occur during ascent while the substrate bé.ck—face surface is at room
temperature; maximum back-face temperatures noted above are not developed until
after landing. The maximum in-plane loads in vehicle Area 2 occur during landing;
also, this is true of Area 1 except that maximum compression load occurs during

6.0-1
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ascent. Observe that the in-plane tension loads exceed the in-plane compression loads
in vehicle Area 2 by a considerable amount; thus, the selection of substrate configuration
will probably not have impact upon weight for prototype panel Nos. 2 and 4.

The design/analysis process leading to a completely verified, optimum, LI-1500
substrate system is comprised of a number of specific steps that are interrelated with
each othe'r. The logic sequence for this process has already been presented in

Fig. 1.1-1. As indicated there, fhe design/analysis process begins with basic structural
optimization (sizing) of the panel substrates, which includes selection of the substrate
configuration. These results are preliminary in that they are thén used as input to a
thermostructural optimization loop for basic sizing of the LI-1500. Included in this
loop is a consideration of the heat-sink properties of the substrate. It has been shown -
in Section 4 that the LI- 1500 /beryllium subpanel combination for opfimum thermo-
structural design utilizes a beryllium subpanel that is somewhat heavier than the
beryllium subpanel develbped on the basis of si:ructural optimization principles alone.
This situation occurs due to the unique heat-sink properties of beryllium; other mate-
rials do not exhibit the same phenomenon. '

The last loop of the design cycle is concerned with tiie size/bond thickness/RSI
stress-level tradeoffs; with a tentative design established, verification is then made
of the structural integrity of the bond/LI-1500/coating system under critical loading/
environmental conditions. Ascoustic and flutter analyses also are presented for the
final designs as well as a discussion of panel critical failure modes.

To conclude this section, cost and weight comparisons with competing heatshield
concepts are given, which show that an LI-1500 system exhibits clear and distinct
advantages over other possible shuttle TPS systems.

6. 0-2
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6.1 PROTOTYPE PANEL DESIGN CONDITIONS

The point design requirements for the prototype panels have been specified by
NASA/MSC. (6-1) LMSC has complied with these requirements in the design effort.

Structural Design Requirements

Ultimate Factor -of-Safety: 1.5

Combined Loading: Summation of ratio of the allowable load
. to combined limit loads = 1.35

Panel Flutter: ' Flutter -free for 1.5 times local dynamic

pressures at any flight Mach number

Thermal Désigh Requirements

Design factors of safety are not applied to the heating rates for the specified vehicle
areas shown in Fig. 6.1-1. The heating rate for Area 2 has been perturbed to result
in a maximum surface temperature of 2300°F, as shown on Fig. 6.1-2. Adiabatic
conditions have been assumed for the panels in insulation sizing efforts.

Environments

Figures 6.1-3 through 6. 1-12 show the trajectories, loading, and environments to
which the prototype panels have been designed and/or analyzed. The combination of
conditions considered and the critical design conditions are summarized in Table 6.1-1.

(6-1) D. J. Tillian, NASA/MSC, to R. D. Buttram, LMSC, ""Point Design
Requirements for Two Orbiter Design Areas-Reusable Surface Insulation
TPS Development, Phase 2, "U.S. Government Two-Way Memo, 21 July 1971

6.1-1
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6.2 TPS SYSTEM DESIGN PROPERTIES

Table 6.2-1 is a summary of the mechanical and thermal properties of LI-1500 and the
two coating systems studied under this contract. The 0042 coating is the one used in
the point designs. Thermophysical properties of the metallic substrate materials are
given in Table 6.2-~2 while the mechanical properties of these materials are listed
with the RSI stress analysis summaries presented in Section 6,5. Tables 6.2-3 and
6.2-4 list thermal conductivity values of RTV-560 and the 0042 coating, respectively,
whereas in Tables 6.2-5 and 6. 2-6, LI-1500 conductivity and specific heat properties
are presented. The variation of Young's modulus with temperature for RTV-560 is
given in Table 6. 2-7,

All LI-1500 and coating design data have been generated by LMSC under this or
related contracts while properties for bond and substrate materials have generally
been taken from standard references or suppliérs' bulletins. In-house material
testing is described in Section 4, Vol I 6f this report.

Note that LI-1500 mechanical properties are shown only for room temperature. The
properties do change with temperature as shown in Volume I; however, since the modulus .
decreases and the strength inéreases with increasing temperature, the room temperature
values shown lead to conserative stress analyses and, hence, have been used in the
parametric studies.

6.2-1
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Table 6.2-3

THERMAL CONDUCTIVITY OF RTV-560
k
o . 2 o
Temperature ( R) (Btu-in. /ft"-hr-"R)
530%* 1.94
700 1.68

950 1.51

Density = 94 Ib/ft>

*Manufacturer's Data at 530°R, k = 2.16 (Btu-in./ft>-hr-CR)

Y

- Table 6.24 o
THERMAL CONDUCTIVITY OF 0042 COATING

k
Temperature (°R)  (Btu-in. /ft>-hr-°R)

460 6.48
860 6.48
1460 10.8
2460 14.2
2960 16.8
6.24
<68<
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Table 6.2.5
LI-1500 DESIGN VALUES ~ THERMAL CONDUCTIVITY
. 2 o
(Btu-in. /ft”-hr-"R)
Pressure
(mm Hg)
Temp 0.1 1.0 .10.0 100.0 760.0
CR)
460 1 0.17 0.19 0.28 0.32 0.35
760 0.21 0.23 0.31 0.34 0.37
1160 0.27 0.29 0.35 0.47 0.52
1860 0.45 0.47 0.60 0.90 - 1.00
2460 0.67 0.69 1.02 1.40 1.56
2960 : 0.92 0.94 1.35 1.88 2.09

Table 6.2.6

11-1500 DESIGN VALUES - SPECIFIC HEAT
(Btu/1b-°R)

Tem(%tg')ature (Bt u?lll))-oR)
360 0.0716
540 0.151
720 0.198
900 ‘ 0.234

1080 0.263
1260 0.280
1440 0.287
1800 0.294
2160 0.306
2520 0.316
2890 0.320

6.2-5
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RTV-560 YOUNG'S MODULUS VS TEMPERATURE

Table 6.2-7

T E*
°F) (PSD
-200 67, 000
-150 1,200
5 300
300 300
600 100

l

LMSC-D152738
Vol I

* Data obtained from ASTM D797 and in-house testing described in Section 3,

Vol 1 of this report.

Y
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6.3 THERMAL ANALYSIS

Ascent and Reentry Heating Environment

Ascent and reentry heat rates provided by NASA for Areas 1 and 2 of the delta-wing
orbiter, Fig. 6.1-1, are shown in Figs. 6.1-2 and 6.1-3. The perturbed heat rate
of Area 2 was used in these analyses. Calculation of ascent temperature histories
was based on a surface emittance of 0.8, the LMSC THERM computer code, and a
one-dimensional thermal model; results are shown in Figs. 6.3-1 and 6.3-2. Maxi-
mum surface temperatures of 495°F and 565°F are experienced by Areas 1 and 2,
respectively. The ascent heating environment is very mild; as evidenced by the
temperature distributions at orbit injection, shown in Fig. 6.3-3. The substrate
temperature has not increased from its initial value of 75°F.

The reentry heating and pressure environment for Areas 1 and 2 are shown in Figs.
6.3-4 and 6.3-5. Radiation equilibrium. temperétures, calculated with an emittance
of 0.8, and the heat rate histories of Figs. 6.1-2 and 6.1-3 are shown. Maximum
surface temperatures are 2300°F and 1480°F for Areas 2 and 1, reépectively. The
difference in the times of peak temperature for Areas 1 and 2 is associated with the
occurrence of boundary layer transition for Area 1 at about 2000 sec into the reentry.
As noted in Figs. 6.3-4 and 6.3-5, most of the reentry heat pulse occurs while the
local static pressure is less than 0.1 ATM. Hence, the pressure dependence of the
thermal conductivity of the LI-1500 rigid-surface insulation significantly affects the
thermal sizing of the RSI.

.Panel Temperature Distribution

Typical temperature histories and temperature distributions for 1 atmosphere for

test panel Nos. 1, 2, 3, and 4 are shown in Figs. 6.3-6 through 6.3-9, respectively,
as computed using a one-dimensional THERM model. All substrate tem'peratures
reach their maximum values after the assumed touchdown of 3600 sec. For Area 2
where the maximum surface temperature is 2300°F, the beryllium and titanium panels
(Nos. 1 and 4) reach 600°F at about 5000 sec. The aluminum test panel (No. 3) '

6.3-1
<71<
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reaches 300°F at about 8000 sec. For Area 1, where the maximum surface temperature
is 1480°F, the aluminum test panel (No. 2) reaches 300°F at 4500 sec. A nonadiabatic

. boundary condition for the substrate would result in peak temperatures at earlier times
and at lower temperatures for the adiabatically established 1I-1500 thicknesses.

Temperature histories and temperature distributions for the flight panels are shown in
Figs. 6.3-10 through 6. 3-13, respectively. The béryllium and titanium panels

(Nos. 1 and 4) reach their deéign temperature of 600°F at about touchdown (3600 sec),
whereas aluminum panels (Nos. 2 and 3) reach their desigr_l temperature of 300° at
about 6500 sec and 4000 sec, respectively. |

The temperature distributions for both flight and test panelé indicate that for a 2300°E
maximum surface temperature, only about 0. 15 in. of the matenal experlences

" temperatures greater than 2000°F,

Effect of Adiabatic Substrate on Test Conditions

The effect of an adiabatic boundary condition as specified by NASA, on the maximum
attainable backface temperature in a test fixture where the TPS substrate radiates

and convects to a 0.375 in. aluminum plate is shown in Fig. 6.3-14. A beryllium

panel sized adiabatically for a 600°F maximum temperature requires 2.3 in. of LI- 1500.
Allowing the panel to radiate and convect energy to a 0.875 in. test fixture will

limit the maximum berylhum temperature to 490°F, Hence, to achieve the des1gn
temperature on the beryllium panel during the test, the panel should either be

sized with a nonadiabatic boundary condition or a piece of low-density insulation

(i.e., dynaflex, fiberfrax, or LI-1500) should be attached to the bottom of the test
fixture to limit the energy loss. |

VAP A
6,03'2
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6.4 DESIGN AND ANALYSIS OF PROTOTYPE PANEL SUBSTRATES

On the basis of the data and results presented in the preceding sections of this report,
the following material/configuration selections have been established for the four proto-

type panels:
Vehicle
Panel No. | Area No. . Type Material Configuration
1 2 Subpanel Beryllium | Zee-Stiffened
2 2 Primary Structure | Aluminum | Zee-Stiffened
3 1 Primary Structure | Aluminum | Zee-Stiffened
4 2 Primary Structure | Titanium Zee-Stiffened

Detailed optimum design and analysis studies for the specific design requirements of
NASA/MSC have been performed on each of these selections and are discussed below,

The orbiter design conditions presented in Table 6. 1-1 may be summarized for
purposes of the present analysis in the form shown in Table 6.4-1. Three load |
conditions are shown for each vehicle area. Load conditions I and II occur when the
substrates are at room temperature, and load condition Il 'occurs when the substrates
are at or near the maximum temperatures shown in Note 1 to the figure. It has been
conservatively assumed in these studies that any combination of line load and pressure
for a given load condition may be applied simultaneously to the panel.

Optimum sizing of the four prototype panels was performed using the structural opti~
mization computer codes previously discussed, followed by perturbations on these
proportions as required for thermostructural optimization. The latter optimization
produced modifications only to the substrate for prototype panel No. 1. The designs

were subsequently subjected to a detailed stress analysis to determine minimum margins-
of-safety. These analyses are presented in Appendixes B and C for prototype panel

No. 1 and panel Nos. 2 through 4, respectively. Note that panel No, 3; representing
Vehicle Area 1, has been sized for a panel span of 20 in., whereas the remaining

panels have been sized for a panel span of 24 in,

6.4-1
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The minimum margins-of-safety for the four panels fall between 1 and 10 percent, as
shown in Table 6.4-2. Note that the minimum margin-of-safety for prototype panel
No. 1 occurs for loading condition I when the panel is at room temperature., Also,
the minimum margin-of-safety for panel No. 2 occurs when the panel is at room
temperature, but in the remaining two panels, the minimum margin-of-safety occurs
' when the panels are at or near the maximum temperature permitted. '

Results of the beam-column analysis performed on panels 2 through 4 are summarized
in Table 6.4-3. Note that maximum deflections between approximately 0.09 in. and
0.19 in. are predicted. Approximately one-half of the deflection is caused by bending
due to airloads in prototype panels 2 and 4, which represent Vehicle Area 2. Panel
No. 3, representing Vehicle Area 1, is subject to much higher axial loads over a -
shorter span; thus, the deflection due to airloads is a much smaller proportion of the
total deflection in this panel.

Table 6.4-4 summarizes the zee-sti.fféner sizes for panels 2, 3 and 4, The results
labeled (2) correspond to optimum sizes obtained by the wide-column analysis
discussed earlier, However, the weldbond method of attaching the zee-stiffeners to
the face sheet requires more flange width than that originally assumed in the
optimization process. This additional width allows full 'development of the spotweld
nugget without interference with the flange radius and provides sufficient distance

to the edge to preclude cracking. For the titanium riveted panel, a wider flange

also is required for manufacturing. The flange widths have been increased to an
acceptable dimension and are labeled as (c) in Table 6.4-4, As shown, these increases
result in a design slightly heavier than the structural optimum. The panels fabricated
for delivery to NASA/MSC utilize these wider flange widths.

Additional analysis were performed using the PRIPAN code (described previously) with
the attach flange width held constant at the manufacturing minimum. As shown for

the sections labeled as (d), the optimum with this constraint will incorporate a closer
zee-spacing. However, the weight differences will be minor and, as discussed earlier,

sections with very close zee-spacing must be discounted for manufacturing reasons.

6.4-3
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To conclude this subséction, the weights of the metallic portion of all four deliverable
panels (with no allowance for fasteners or closeouts) are summarized below:

Panel No. t (in. Panel Wt, (1b/ft2)
1 0.064 ‘ 0.57
2 0.125 1,83
3 0.154 2.24
4 0.097 . 2.23
6.4-7
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6.5 RSI TILE ANALYSIS

This section summarizes the final design of tile size and bond thickness for the
deliverable prototype panels. As shown in Section 6.2, LI-1500 conductivity is a
function of environmental pressure; therefore, different LI-1500 thicknesses are
required for a "flight'" panel as opposed to a 1 atmosphere ''test" panel. Eight panel
designs aré summarized here. Per NASA/MSC direction, the deliverable panels
are to correspond to flight environment; hence, only the flight panel designs have

have been reassessed since the midterm report.

At this point in the design, the metallic substrate already has been determined and
LI-1500 thickness/bond thickness requirements have been established in the form of
the heat sink tradeoff factor. The final step in the design process then consists of
choosing a balanced set of LI-1500 and bond thicknesses in conjunction with a tile
length that also satisfies stfess allowables. |

Final analysié results for the deliverable prototype panels are given in Tables 6. 5-1
through 6.5-4. Tables 6.5-5 through 6.5-8 represent previous analysis results of
the "test" panells, sized for 1 ATM conductivity values of LI-1500, Table 6.5-9 sum-
marizes required RSI system. thicknesses and lists weight comparisons between flight

and test prototype panels.

As compared with preliminary designs for the 4 Oétober review (and presented in
LMSC-A995708), tile length has been increased for all panels as has been discussed
in the midterm report. For the beryllium and titanium panels, bond modulus at
elevated temperature (500°F) is used, which is in contrast to the room temperature
properties temporarily assumed previously. Data given in Table 6.2-7 show reduced
moduli at temperature; hence, strain isolation of the RSI tile is improved.

For the aluminum panels, room temperature prdperties of RTV-~560 were used (as
before)due tc lack of data at 250°F and 300°F, leading to-a degree of conservatism,
Increase in tile length for these panels was permissible, since the LI-1500 weak-
direction shear allowable is actually larger than previously reported in LMSC-A995708.

<34<
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of course, this increase in a critical design parameter also contributes to the longer
tile lengths selected for the beryllium and titanium panels, '

Flight panel designs have been evaluated for stress levels associated with thermal
expansion in the direction perpendicular to the stiffeners. To accomplish this, the
spring-supported 2-D WILSON mddel, described in Section 2.3, was used. The
results of these calculations have no effect upon pa.nei designs as presented in the
midterm report. Although LI-1500 stress levels in the beryllium flight panel are
somewhat higher in that direction, they are within allowables, For the other panel
designs, transverse direction analysis leads to lower stress levels than in the
stiffened direction, due to the lack of an in-plane line load. This is readily seen
in Table 6.5-10 for the Aluminum Flight Panel No, 2 comparisons, Similar results
hold for ‘o.ther primary structure panels; hence maximum stress levels listed in
Tables 6.5-2 through 6. 5-4 correspond to 2-D analyses in the stiffener direction.

3-D Coating Stress Analysis

Because of possible cracking of high modulus surface coatings, which extend down the
sides of RSI tiles, NASA requested LMSC to determine coating stresses for a typical
LI-1500 tile. A two-dimensional thermal model was constructed for a 6 in. x 6 in.
tile, which included the 0042 coating, LI;-1500, adhesive, and the aluminum substrate
for flight panel No. 2. The LI-1500 thermal/mechanical properties were assumed to
be isotropic. The temperature distributions at 500 sec into the entry trajectory (see
Fig, 6.3-11) are shbwn for a location at the midpoint of the tile and for the corner of
the tile in Figs. 6.5-1. As would be expected, a large temperature gradient is indi-
cated through the LI-1500. This gradient is slightly less in the nodes adjacent to the
coating. From these results, the three-dimensional temperature field for the tile

shown in Fig. 6.5-2 was estimated.

Based upon Fig. 6.5-2, a 3-D SAP analysis was made of the tile/bond/substrate; the
resulting coating stresses are shown in Fig. 6.5-3. These results use the most recent
thermal expansion test data for the 0042 coating (reported in Section 4, Vol 1 of this

7 in, /in.oF as com-

report) which is somewhat higher than that previously used (4 x 10~
: 7

pared with 2 x 10”7 in. /in. oF). Since the thermal expansion of LI-1500 is 3 x 10°
in. /m °F, the coating in the present analysis is in compression and is well within the
allowables shown in Table 6.2-1, '
: 6.5-2
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6.6 DYNAMIC ANALYSES

f)ynamic analyses were performed on the prototype panels as indicated in the
analysis logic sequence diagram of Fig. 1.1-1. These analyses consisted of checks
of each panel design for flutter stability and sonic fatigue. Analysis details are
.presented in Appendix D, and results are summarized in Figs. 6.6-1 and 6, 6-2,
Figure 6. 6-1 shows the interstiffener panel flutter boundary for the weakest prototype
panel, which is panel No. 4. Note that this panel is clearly flutter-free when compared
to the dynamic pressures expected on the vehicle during launch and reentry. Flutter of '
the complete panel was also investigated and found to yield significantly higher flutter
boundaries for all panels than that shown in Fig, 6.6-1.

Sonic-fatigue analysis results are presented in Fig, 6.6-2, These results are based
on an experimentally determined panel damping ratio of 0.02. The data points shown
on the figure represent the anticipated life cycle of the panels multipliéd by a safe-life
margin of four. As may be seen, all four prototype panel points fall below their
respective allowable stress curves. ’

6.6-1"
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6.7 CRITICAL FAILURE MODES

Design validity for substrate configurations under static and dynamic loading conditions
has been discussed in Sections 6.3 and 6.6. In this section, brief comments are made
concerning RSI stress levels for the deliverable prototype panels summarized in

Section 6.5.

For the beryllium subpanel, both coating stress and LI-1500 longitudinal stress repre-
sent limitations on the design. For the other three panels, LI-1500 longitudinal stress
is the driving variable. - In each case, however, the combined nornial/shear stress
state, which occurs near the ends of a tile, has been compared with the results of
preliminary testing described in Section 2.5. It has been found that the critical stress
points for panel Nos. 1, 2, and 3 fall somewhat outside the linear interaction curve of
Fig. 2.5-5, but well within the rectangular uniaxial allowable criterion. As noted
earlier, the linear interaction criterion is the ljésult of very preliminary investigation,
and two counterexamples have been dempnstratéd which question the validity of such

a severe restriction. LMSC consideré iihe designs as presented to be sound and assigns
high priority in fature investigations to the establishment of a more realistic failure
condition for this state of combined stress. ' '

6.7-1
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6.8 TPS COST STUDY

Unit costs (dollars per pound and dollars per square foot) have been projected for the
first orbiter vehicle. These costs are based on extrapolations of present manufacturing
experience. During the first few months of 1971, LMSC brought the pilot plant manu-

- facturing facility into full operational status. While the material produced in the first 4
months of 1971 has performed well in arcjet and radiant heat tests, production scale-up
problems, combined with variability in raw fiber material, led to relatively expensive
processed tiles (approximatély $840/pound). During the past 6 inon'ths, the production
problems have been résolved and raw material consistency from lot to lot has improved,
reducing costs by more than one~third. Furthermore, changing from the pilot plant
operation to full-scale production will result in automation of various time-consuming |
hand operations that are now required and will reduce proéessing time by more than a
factor of 2. Projected manufacturing costs for processed LI-1500 range from $50 per
pound to $100 per pound. Machining the LI-1500 tiles to size and attaching (bonding) to
the vehicle will result in a total installed cost of $80 to $135 per pound. Fabrication
and installation data are shown in Table 6.8-1. Costs per pound and costs per sqﬁare
foot are shown as a function of tile sizé and thickness.* The range shown indicates the
éxpected cost bounds; the upper bound is used in all the following cost studies.

Cost estimates for a metallic thermal protection system are generated, using the stand-
ard cost complexity factors (C. F.) in Tables 6.8-2 and 6.8~3, which relate the
fabricated costs of each metal to that for a stiffened alumipum structure. The metallic
heat shield weights for the O40A delta wing orbiter (using a 2800-second reentry
trajectory with peak temperature of 2050°F) are shown in Table 6. 8-2.

Cost estimating Relationships (CERs) have been used to project the total TPS first
unit costs. These data are summarized in Table 6. 8-3 for three TPSs: LI-1500,
the SLA-561 ablaﬁor, and the metallic heatshield. As can be seen, the metallic
system is far heavier and most costly than the Li~1500. '

*See Figs. 6.8-1 and 6. 8-2

6.8-1
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Table 6. 8-1
LI-1500 TPS UNIT COST VERSUS TILE SIZE
: : : Number and Size of Tiles A
Labor Cost Element 4 16 36
' (12 x 12 in.) (6x6in.) - | (4x4in,)
Saw Cut Tiles to Size 0 0.4 0.8
Grind-Rout Edges - 0.8 2.4 : 4.0
Cut Seal Strips : 0.5 1.5 2.5
Bond Tiles to Structure 4.0 6.0 , 12.0
Labor Hours per Panel 5.3 10.3 19.3
Labor Cost ($/£t%) 2Lz a2 | 1.2
Total Cost ($/ft%) . 340 - 358 " 390
Total Cost ($/1b) 135 143 156

NOTES:

1. Estimate is based upon bonding material to primary structure, over an area
2 ft x 2 ft in size, with the LI-1500 material delivered in 12 x 12 x 2 in, tiles
shaped and ready for bonding.

W/A = 0.24 + 1.25(t) = 2.74 Ib/ft°

2, Tile size and assembly is illustrated below.

Ak i
o

3. Total costs include basic LI-1500 tilé and raw material as well as manu-
. facturing and installation labor.

6.8-2
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Table 6.8-2

040A DELTA WING ORBITER — METALLIC TPS SYSTEM - AVERAGE COMPLEXITY

FACTOR
Surface ' . . . .
Panel Surfact% Area Unit Weéght Weight C.F. YVelght
Material (£t%) (Ib/ft%) (1b) X C.F.
Cb 90 5.11 460 7.49 3, 450
TDNiCrAl 3,513 4.16 14, 630 3.37 49, 600
Rene 41 722 2,69 1,942 | 2.75 5, 340
™H 6,713 1.42 9,510 3.25 30, 900
Carbon/Carbon 177 3.50 620 7.50 4,150
> 11,215 (2.42) 27,162 - (3.44) 93,440
Table 6. 8-3
040A DELTA WING ORBITER — TPS COST SUMMARY
Total System ' First Unit Cost Per Cost Per.
TPS  Weight Sé'StFem Cost(1) Pound Sq Ft
| (1b) e ($M) ($/1b) ($/1t2)
LI-1500 21,870 0.8 3.5 144 312
SLA-561 21, 650 0.7 3.1 127 276
Metallic 27,162 3.5 16.2 596 1, 445

(D Manufacturing cost of total TPS for first orbiter:

c

6.

2.8 (1072) (W) 9 (C.F.) = $ Million

8-3
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A detailed comparison of the ablator and LI~1500 weights and thicknesses is presented
in Table 6.8-4 and forms the basis for the system costs projected in Fig. 6.8-3 .
The DDT&E (Design, Development, Test, and Engineering) and first unit costs are
shown on the figure. The total program costs are highly sensitive to the refurbishment
rates assumed and, hence, a range is shown. The present design guidelines call for
100-percent replacement of the ablator after every flight (upper bound). It is possible
that the ablator can be reused in regions where the maximum temperature is below
600°F. Hence, the lower bound shown in Fig. 6.8-3 is based on replacement over
70 percent of the surface area after every flight.

The LI-1500 rigid surfacé installation has a demonstrated reuse capability of 100 cycles

for trajectories having a- peak temperature of 2500°F. In order to project realistic pro-

gram costs, however, a reasonable refurbishment rate must be estimated. A refurbish-
ment rate of 5 percent of the surface of each flight is shown as the upper bound; a 2 per-

cent refurbishment rate is assumed for the lower bound in Fig. 6.8-3.

One remaining question to be answered is what method of attachment will result in the
least cost space shuttle system. Five primary structural materials have been consider-
ed for the orbiter (7075-T6 aluminum, 2024-T81 aluminum, magnesium, titanium, and
beryllium) in combination with three TPSs: direct bond of LI-1500 to primary structure,
LI-1500 bonded to'subpanels, and metallic heat shield (titanium or beryllium). for upper
- surfaces. The all aluminum structure with direct-bond LI-1500 TPS was selected as
baseline.

It is interesting that the lightest system (beryllium skin over titanium frames with direct
bond of LI-1500 results in 18, 000 1b reduction in S};stem weight) is far more expensive
than the baseline ($178 million increase in the total program costs). The least-cost
system is obtained by using LI- 1500 directly bonded to beryllium subpanels attached to
an all aluminum airframe. The system weight is reduced by 7000 Ib and total program
cost is reduced by $120 million. : A '

8.8-5
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Table 6. 8-4
040A ORBITER TPS WEIGHTS

. SLA-561 Ablator LI-1500

Location Surface Area | Thickness | Weight | Thickness | Weight
. (ft2) (in.) (1b) (in.) (Ib)

Body Lower Surface 1, 647 2.05 4,674 2.20 5,528
Body Upper Surface 4,757 1.05 7,257 0.65 6,293
Wing Lower Surface 1,956 2,05 5, 550 2.10 6, 308
Wing Upper Surface - 1,956 0.60 1,829 0.45 2,074
Tail (Sides) ' 722 1.20 1,244 0.75 1,050
Nose Cap _ 27 2.40 174 - 95
Wing Leading Edge 126 2.40 812 - 1. a4
Tail Leading Edge 24 y,  1.75 114 - 84
Total ' 11,215 o 21,654 | - 21,873

Ablator for nose cap and leading edge is 30 lb/ft3 ESA 3560 for other areas it is
15_1b/ft3.

Ablator weight loss during entry is 1515 1b.
- All thicknesses are averages for the surface areas indicated.
Weights include 5 percent non-optimum factor.

Thermal environment is based on LMSC high-crossrange trajectory, RE-230
(2000 sec reentry) (040A delta wing design trajectory).

These studies emphasize the fact that the lighﬁest system is not necessarily the cheapest,.
and one must consider the entire vehicle in reaching a decision as to. wluch approach to
adopt for attachmg the TPS to the structure,

6.8-6
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6.9 COMPARISON OF LI-1500 PANEL DESIGNS VS METALLIC HEATSHIELD DESIGNS

The LI-1500 prototype TPS panels designed and fabricated under this contract are
~ lighter and more economical than comparable metallic heatshield designs. In
" this subsection, current LMSC metallic heatshield designs are described and weight
* comparisons are presented. Two approaches to the design of metallic heatshields
have been studied at LMSC, These are as follows:
1. The metallic heatshield is supported by relatively closely
spaced standoffs that are attached to a subpanel with span
equal to the frame spacing. Flexible insulation is placed between
the heatshield and the subpanel; the depth of the standoffs is the
optimum derived from a consideration of the materials specified
for the design, the design environment, and the insulation properties.
2. The heatshield is designed with sufficient stiffness to span the
distance between frames directly; insulation and packaging is
~ placed underneath, between the heatshield and the primary structure.
Typical de51gns utilizing a coated columbium heatshield are shown in Fig, 6.9-1.
These designs have been developed for a short- pulse trajectory with maximum
temperature of 2300°F, as utilized in on-going LMSC space shuttle orbiter studies.
As shown in the figure, the subpanel approach yields the lightest metallic heat-
shield weight. .

The short-pulse trajectory is characterized by a substantially lower fotal heat input
than the trajectory for which the prototype panels have been designed. Selecting the -
subpanel approach as the optimum approach, heatshiel_d weights for other total heat
inputs have been determined as shown in Fig. 6.9-2, Noted on this figure are total
heat inputs for the NASA-MSC trajectory, both perturbed to 2300°F and unperturbed,
for Vehicle Area 2. Weights are shown for LI-1500 panel designs as well as metallic
heatshield designs. As a check on these results, a metallic heatshield data point,
obtained from a MDAC reference report, also is shown. Good agreement in terms of
unit panel weight may be observed. The curves in Fig. 6.9-2 emphasize the 'weight
penalty involved with the longer pulse trajectories as well as the relative efficiency
of metallic heatshields vs LI-1500,

6.9-1
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1t is apparent from Fig. 6.9-2 that care must be exercised to compare TPS designs
based on identical heat pulses. Several such comparisons are presented in Fig. 6.9-3;
these relate to the heat-pulses presented in Fig. 6.9-4. Heat-pulses are shown in
-Fig. 6.9-4 for the LMSC delta-wing orbiter protected by LI-1500 and by metallic
_TPS, Note that the LI-1500 heat pulse is of short duration and peaks at 2_300°F, while
the metallic TPS heat pulse is of long duration in order to limit the peak temperature
at 2000°F. The NASA-MSC heat pulse specified for this contract, also shown, is
seen to combine the higher maximum temperature with the long duration heat pulse.

The data in Fig. 6.9-3 relate to both Vehicle Areas 1 and 2. Area 2 results are
presented for both metallic and LI-1500 TPS designs for the following heat-pulses:

a. LMSC delta-wing orbiter, 2300°F maximum- temperamre
flight heat pulse (RE 214)

b, NASA-MSC unperturbed, 2050°F maximum temperature flight
" heat pulse S

c. NASA-MSC perturbed 2300°F maximum temperamre flight heat pulse

d. NASA-MSC perturbed, 2300°F maximum temperature test heat
pulse (one atmosphere env1ronment) '

The significant differences in these heat pulses are: (1) the designs for flight

heat pulses account for radiation to the primary structure in those designs specifying

subpanels, whereas the test heat pulse designs are based on an adiabatic back-face .
temperature; (2) the flight heat pulse LI-1500 designs utilize the lower thermal

| conductivity of LI-1500 in vacuum, whereas the test heat pulse designs do not;

and (3) the LMSC-RE214 heat pulse involves significantly lower total heat input.

Because Area 1 experiences a much lower maximum surface temperature, only

two heat pulses are considered; these correspond to the NASA-MSC flight and

test heat pulses specified for this contract.

6.9-4
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In Vehicle Area 2, it can be seen that the adiabatic back-face temperature stipulation
for test at one atmosphere is advantageous for the metallic TPS designs but dis-
advantageous for the LI-1500 TPS designs. In the latter designs, the lower thermal
_conductivity of LI-1500 in vacuum cannot be utilized. The lower thermal conductivity
of LI-1500 in vacuum more than compensates for weight penalties in a flight
~ environment in maintaining the aluminum primary structure temperature at or below
300°F; note that this requirement results in a weight penalty to the metallic TPS
flight designs. Thus, the test heat pulse comparison of LI-1500 and metallic TPS
designs results in a close comparison that is misleading in ternis of the true flight
environment. The same phenomenon is observed in the results for Vehicle Area 1.

The NASA-MSC 2050°F and 2300°F heat pulses yield metallic TPS designs that are
not significantly different from the designs for the LMSC-RE214 heat pulse. LI-1500
TPS designs show weight increases due principally to the need for more material

to absorb the added heat of the longer heat pulse. '

Note, in comparing the data of Figs. 4.1-2, 4.1-3, and 4.2-2 with the data of -

Fig. 6.9-3, that frame weights have been included in the former but not in the latter.
Also, the subpanel and primary structure weights calculated previously have been
multiplied by a nonoptimum factor to account for fasteners, closeouts, and other
details.

In summary, the data presented here show the LI-1500 TPS deSigns to be Iighter

than comparable metallic TPS designs, when both are designed to the same heat

‘pulse. LI-1500 TPS designs based on a 2300°F maximum temperature flight heat

pulse also are lighter than metallic TPS designs based on a 2050°F maximum temperature
flight heat pulse. The desirability of designing and testing LI-1500 TPS designs in

the true vacuum environment of flight when maximum temperatures are attained

also has been established. |
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6.10 PROTOTYPE PANELS

LMSC has designed four prototype panels in accordance with contract requirements

o point design conditions specified by NASA/MSC, The design effort was accomplished
" under Task 2. C as negotiated and reviewed in this report. These panels consist of

a metallic structure with 0042-coated LI-1500 bonded to one side with the RTV-560
adhesive system, -

Details of the prototybe panels are shown in Figs. 6.10-1 through 6.10-4. The
materials/applicationé/design areas for each panel are reviewed in Table 6. 10-1,
For vehicle application, the beryllium subpanel bolts directly to external vehicle
frames. The priniary structural panels will attach to fraines but will be continuous
over many spans. These panel designé utilize 6-pcf filler blocks in the joints,
FI-600. Thermal analysis has shown that temperature fields in the substrates

are perturbed to a negligible degree relative to those of a total LI-1500 system.
The design methodology used to design these panels has been discussed in detail

in the preceding sections. ' u '

Table 6, 10-1

PROTOTYPE PANEL CHARACTERISTICS

' Shown in Substfate '
Panel No. Fig. No. Material Application | Vehicle Area
1 6.10-1 Beryllium Subpanel 2
2 6.10-2 Aluminum Primary 2
3 6.10-3 Aluminum’ Primary 1
4 6.10-4 Titanium Primary 2
327<
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DESIGN AND ANALYSIS
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LMSC-D152738
Vol I

INTRODUCTION

Three primary structure concepts have been optimized (approximately)
and analyzed for Area 2 loads to provide weight 63} compariéons foi'
Prototype Panel Configuration No. 2 (t = 0.1144 in.). The three alter-
nate concepts and their t's are: |
a. Corrugation + Skin 1=
b. Honeycomb : t=0. 1472 in.
c. Integrally Stiffened T = 0.1329 in.

A-2
333<
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FORM LMSC 362 B-2

""""‘Q% % Date LOCKHEED MISSILES & SPACE COMPANY |Page Temp Pem.
A2

,0-7-7‘ A GEOUP DIVISION OF (LOCENEED AIRCRAPT CORPORATION

Checked by: Date Title Model
7 Qﬁﬂ,‘/ 1-9-21 PROTOTYPE FANELS . TPS
Approved br: B b DESIGN & ANALYSIS Report No.
MOMENT AMPLIFICATION FACTORS ~ Zf[)
Mumax = - X" 2 £ @) REF. TIMOSHENKD & GERE,
o) Vi TRELRY of ELASTIC STABILITY,
Y = 9 ()\[‘(«cj 2% EDp., ARTICLE 1.5
7 \E.IL
fau) =] -costh
Ut cos L

CORR. + SKIN _PANELS

'UI'-&( 2250 )llz 16 ‘M:ﬁl 383 {Ui(o=m) = 61°28

10.5(22,310) / |

U - z4< 2000 )= 1358  Us = 1844 3 2z (o=a) = T1°48'
l0.5(2z2,310)/ .

Ug = Z4< 3000 )“: 141G | Ux =2.005 , U (0£5) = 81°08'
.66 (22,3 10) ' : '

COND. | CosU II—CosuI‘L(‘Cosul + (W) 2 ()
1 |.3846 | .eis4 | 5319 | 1157 [ 2314
i 2113 | 1881 | .28%% | 2.0%4 | 4049
JT 1541 | 8459 | .2090 | 27138 | £.4715

HONENCOMB . PAMELS

Uz

2 Lt '
24 ( 2150 = LIOO § Uz =/ZI0  Uzloes)= 63702
Z \10.5(25,5600) _

Ur = 24 (__3000 )"2 1.270 5 Ur = 1.GI3 3 Uz (DE&)= T2°4¢]
1 \los(zs;so0) /.
Us = 24/ 3000 \'= 1324  Un =1753 ; Y Q&)= 15°57

A {\s.ee(?s,soo\

coND. | cosuU | 1-costl | Uz | £ | 2€@)
I 4535 | 465 | 5487 | .9%0| 1.932
I 2963 | 1031 | 4779 | 1472 | 2945
yiif 2447 | 1538 | 481 | 1765 | 3531

A-3
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FORM LMSC 362 B8-2

Prepared by: ' Date LOCKHEED MISSILES & SPACE COMPANY |Pase iomey Pem ]
“ﬁ'ﬁjh l1o-7-71 A3 |

A OROUP DIVISION OF L1OCENEED AIRCHAPT CORPODATION

| Checked bu Date Title Model
C 0 |1 9-72 PRCTOTY PE_PANELS .
Approved by: lDa'e DES!G/\' $ ANAL\./S ; S Report No.

MOMENT _AMPLIFICATION FACTORS ~ 2+ (u)

INTEG, STIF'F'D PANELS

_ﬁ( 2250 ) L0398 T Us = 1.o80 : Uz (oea) = 58°32
2 \16.5(28,580)
24 ( 3000 = 1200 ; U= [.440 ;, Ux (DEG) = G545’
7 \10.5(28, so\ _
_z,_( 3000 ) = 1251 } Um= 1.56S | Uxg (oeEs)= T1°4)
2 \9.66(28,580)
COND. | CosyY | |-Ccosuk 'M‘cosu! Fy | 24
L 1.50701| 4930 .5476 | .9003| 1.80]
I 3624 | 6316 | 5219 | (.zz1 | 2443
yuis 2143 | 6851 4019 1 L= 77188

535<
A4




FORM LMSC 362 B-2

[ =.05869 =0.2970 in 3 £ =.1976_ =0.1235 in

Crusa

1976

=0.2970 1n | Cmax = 7858+, 05|

l.GO

I, =.01T114+.003319 =.02:06 n*

ZDMAUL = OZ,OG =

.2970

071091 jn® 3 Fomu = .OZ106G
.53298

PER INCH of wiDTH

To = .0ZIOG, = .0I316 In‘/in | NoT _ADEQUATE ; SEE
_ l.Go . NEXT PAGE
Zomn= 07091 = .04422 inlm |RT. Per=2602Z lb/in
1.6O 250° Per=2394 lb/in
* Zowu =.03901 = 02438 n’/in
.GO o

A-5336<

-.2970 = 0.5398 In

=.0290! in°

Prepar Y . Qate LOCKHEED MISSILES & SPACE COMPANY |Poge . T,m" pormn..
cmkﬁ;&ﬂig | Sq) | SORNIRR ST SRR S [ A4l
G ) 0Zuin  |11-9-71 PROTOTYPE PANELS TPS
Approved by: Date DES’G.M & AMAL‘(S Is Report No.
CORR. + SKIN STRUCTURAL PANELS : £=124 in
SECTIOA PROFPERTIES ~PER . PITCH
poe—— .80 —> te=.040 1n
SCALE: %/ \ ts=.0S! in
}g Cos @=.15/8= 01875
‘ - a d=79°13
. SV\ w = 0.9873 '
_ . 4 A=.8sihd=01858 n
¢ Q‘ T £0=.50+110 = GO "
.10 >
Y Ay d Ad: T,
O08I6 | .0255 [.00Z08! | . 2SS |.006015[.0000]8
0320 | 4439 [.014205 | 146D |.000¢0! |.00164T
0320 | .4439 |.014205 | 1462 | .000691 |.001G4 7
.0220 | .83@8 [.0A118 | .5338 |.009324|, 000004~
0200 .OTO |.00142p | 7260 |.00l0ZT | .000003
1976 O58ED O14-{,003319




FORM LMSC 862 8-2

Prepared X,Q £ 2 Al%m’ea"” LOCKHEED MISSILES & SPACE COMPANY |Pose 5”;] i

A GROUP DIVISION OF LOCENERD AISCRAPT CORPOSATION

Checked byt Dote Title Model
2. 07&«4./ 9.7/ DROTOTYPE [ANELS . DS

Approved by: Date DE»S’GU $ A/UALYS)S Report No.
CORR.+SKIN STRUCTURAL PANELS

SECTIOM PROPERTIES ~ PER PITCH~REVISED GEDMETRY

LET O=loo & 0.,9:, £ @ CHANGE ACCORDINGLMN ©+ REST OF
GEOMETRY SAME As ol p. B4,

Cot @=.15/1=.1500 ;D= 81°28 ; Sih P = 0.9889 |, Cos P =0. 1484
Jo=ds=1/3in @ = Lol in

A d Ay d Ad* | T
Q86D | .07550 |.002081 | . 3553 |.01030 |,.0600018
04044 | .5510 |.ozzi8 | .\ |00l |.oo331
04044 | .5510 |.07228 | .\T0T |.0017 .ooazn\_
.02200 | .01 |.033263 | 6162 [.01437 | 000004
02000 | .OT100 |.001420 | 2098 |.0019T |.000003

AV 1.08169 028931 .006161

mm%wN~§

=.08169 =0.2808 in %t =.2|145 =O.134!| in
rAY-15) IN~Yo)
Crmin =0.3808 In 5 Cmax = [05]-.3808 = 0.6T0Z In
I.=.,02853+006167 = 03570 n*
Zome = . 08570 =.09315 %5 Zomw =.03510 =.05327 in°
. 38086 .BT707

- PER INCH of WIDTH:

S

I, = .03570 =.0223| int/in

_ .60

Zoww = .09215 = 05859 in’/in

_ 1.GO

Zomu=.05321 = .03329 in”/in
L GO

337<
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FORM LMSC 362 B-2

Deu

LOCKHEED MISSILES & SPACE COMPANY [Page Tomp. Pem.

Prepared by: .
p Kt’e‘% 9 ZB_7| A CGaovu DIVISION OFf LOCKENERD 1RCeAPT CORPOBATION 6
Checked byj Date Title Model
G d thown |na-71]  PROTOTYPE PANELS TPS
Approved by: Date Report No.

DESIGN & ANALYS|S

CORR. + SKIM_STRUCTURAL PAMELS

MATERIAL ~ ALl 10T5-TG , WELDBOND  CONSTRUCTION
FROM p.4> PROTOTYPE PAMEL AMNAINSIS

=
Fey
Fey
Ec

R.T~Ksi

T
61
8

10.5x10°

250°F ~ Ksi
3.1
57
60.5
9.66xI0°

LOADS ~AREA Z~ALL ULTIMATE VALUES
FRoml P.5, PROTOTYPE PANEL AMALISIS

CoNo. T :
(R.T.)

Conp. I -
(R.T.)

CouD. T
(250°F )

Nir = 345D ppi
Nvye= 7150 ppi

_ Nxr = 4050 PP‘

Nve = 3000 ppi

N~r = 6000 ppi
N+e = 3000 PF‘

'Pa = 4.5 psa‘
rpc_ = 6 PSI

~Pe =285 ps
Pe = 2.1 Psi

Po =015 psi
e = 3 psi

ALLOWABLE COLUMMN _ILoADS ~ EULER

ﬁcﬁ = W-LEQ :—fo =

T Ec ((02231) =

Ee

AT R.T.:

-0 9~

.91 (zaY

7380

Per 10,500 = 4412 bfir  Ger= 4412 = 32,900 psi

AT 250°F

/3::& = 96O = 4059 lb/in

C.7

2,380

2.380

1341

; Qce = 4059 = 30,270 psi

- |34

438<
. A-7




FORM LMSC 36282

Prepored by: - Date LOCKHEED MISSILES & SPACE COMPANY |Page [foo> P
}:ﬁw l 9 2-.8’7' A GROVP DIVISION OF LOCKWERD AIRCRAPY COAPORATION A_([

Checked bj: . Date tle Model
G 0o g 7 ™ PROTOTYPE PANELS TPS

REV. Y}, I?g'u xdl DESIGA & AMAL/SIS Report Ne.
COF?E?. + SKIA STRUCTUR. PANEILS

MAaX. STRESSEﬁ OM SECTIOM ~UKTIMATE

1. COMPRE SSION. : COMBIKE Nve & Pa~BEAM-COLUMN
AMALYS

Céumx = Ne +_Muwx = Nve 472020= 7457 Nve+ 21637 250D
£ Zoww 341 03319

COND. T': Otrine = 1457 (2250)+ 2163 (4.5 \2.314)= 16,180 +72,520= 39200 psi
COND. IL: Qemm = 1451 (3000 1+ 2163 (2.85M4.049\=22,3104+24,960 = 47,330 psi

CONO. T ; Ot wen = 1457 (3600)+ 2163 (0.75)6.415)=22,310+ 8887 31,250 psi

2. TENSIOA . COME]ME. Nvr & Pe ~ DIRECT SUDERP-D.i.iT?bﬂ\l

O%mar = NET + Minar = 7.451 /\1«47+a\c,3 e
'E zamm

COND. I = Grm = 7457 (34S0YF 2163( ) = 25,730 +12,80= 38110 psi
. COND. I - Grmma = 1457 (4050 )+ 2163(2:1) = 30,200+ S840 = 36,040 psi
COND. L Q¥ @ e * T.457T (6000) 2163(3) =44,7140+GC489 = 51,230  psi

LOCAL BUCKLING STRESSES ~ Ctey , IEMENT @
(REF :5.M. 80¢)

AT RT.C B, =. 0816 ' VK =1.90 (SmPLY SUPPORTED)
| n=1s TAB.Z b/t =.80/l04 =20
Fon=70 Ksi (bf)e= 20/1.9 = 16.53

S . o B =.086(10.53) = (O.859
F/Fona =095 (Fi&. 1) |

Oty =.95(10V2G6.5 Ksi

. ,A‘B
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Prepared hy: ‘ Date LOCKHEED MISSILES & SPACE COMPANY |Poge  Tomp Pem.
BLLHL |*B28 Ag |

A OROUP DIVISION OF LOCENEEID AIRCRAPT CORPOBATION

Checked b U Date Title Model
oo Clurs | eg-20] " PROTOTYPE PANELS 755

Date

REV.YRE.  |io-2-Tl DESIGN & ANALYSIS Report No.

com‘/:.+sgu STRUCTURAL PANELS
MARGINS of SAFETY

1. COMPRESSION ALONE ~ COND. IT CRITICAL , T=250°F

M.S. = Ber ~1=24059 -1=1353-1 =  +0.35
N~e 30006 | COLUMN BUCKUNG

2. COMBINED TEMSION & COLLAPSE PRESSURE ~ ConD. 1

, CRITICAL
M.S, = Feae -1 = @G3.1 —1=1232—! = + 0.23
Qrarmm &81.23 TENS.—ULT.

3. COMBINED CoMP & BURST PRESSURE ~COND. I CRITICAL

MS. =_Ctey —1=G6.5 -1 =1.405-1 = + 0.40
ez meax 41.33 : IOCAL BUCKLING

{FORM LMSC 362 B-2

) A-
340<"




FORM LMSC 362 B-2

Prepared Date Page Jemp., Pem.
GRS | SRR ML Sk Sy | 4
| Checked by: Date Title Model
a..J. Cﬁﬂ’f 11 -9-2/ PROTOTY PE- ZANELS | TPS
Approved by: Date DESIGM ¢ ANA LVS] 5 : Report No.

HOMENCOMB STRUCTURAL PANELS Q=24 in

_SECTIOMN PROPERTIES
Fuk SCALE

— , , tr=2.05!1 In
K ‘ S, *S ‘} a=1o n
5 - - = 3=0.%15 "
} ( ‘ te=.004 in (54— pc-ﬁ

£ = 2tr =2(051) = 0Q.1020 In (7#-15 i NOT FOR wasaHT)
To= te*/2=.051 (1.oY/2 =.02550 n*/in
Zo=2Te /a0 = 2(.02550)/1=.05100 in®/in

LOADS ~ SAME AS ON p.AG,CORR.+ SKIN STR. PAMELS
(AREA 2z LoADSI)

MATERIAL —»-FACE SHEETS ~1015-TG © PROPERTIES onl
PAG CITED ABOVE

AL,L_O\ALABL.E CORUIMNM 1.0ARS ~EULER

Pee =M Ee To =Tt Ec (O07550) = Ee

U-vv A+ Sl (za*T 2083
AT R.T." ' '
Per = 10,500 = 5041 lb/in ; O =5041 = = 49,420 psi
2.083 - «loZo
AT 250°F. o |
Per= 0660 = 4638 lb/in ; Or® 4638 =45410 pst
2.083 J020

FACE SHEET DIMPLING STRESS ~ Feea

Fero= 2mMEc (tr/s)  (REF. Mi-HDBK-234,EGN 471)
|-v* |
ATR.T.. Fero = 270(10.5%10%) (L0S1\" = 4217Mx]10° - NOT A FAILURE

91 (318) MORE FOR THIS
14d< A0 PANE L




. FORM LMSC 362 B-2

Prepared ,e [ Dm LOCKHEED MISSILES & SPACE COMPANY |Page  Teme.. rem.
Checked b%we Dato‘z'1 ‘l( Ti";o““' e Model A.O
J. C )= 9-7/ PROTOTYPE PANELS TRPS
m? ' ?S'fnz—'zi DESIGN & ANALYSIS Report Ne.
HONEYCOMB s-n:)um—uméE PANELS
MAX, STRESSES OA ECTICN ~ULTIMATE
" Gl = Nre +MMA¢ s )\h»c + T2 Pran-2¥00) = 9. 804N1Lc.+—l4—12 ’PMA\L 2440
T =s .00 -05100
Grvan= N¥ra Mmax = Avt 4+ 72FPwar = 9.804 N¢1-+'I4IZ'PMM.
£ Ze 020 .05100
eyt (e " Omax~ psi
COND.T . TENS, + 33,820 48470 +42,290
ComP. —22,060 . -16,880 -38,940
CONR.IL: TENS. +39,1l0 +40206 443,730
ComP. -29,410 -1,856 -41,260
CoMO. T TENS. +88,820 - 441406 +63,060
COMIP. -29410 = - (4960 -44,370

MARGINS of SAFETY ~ couo'. m: CRITICAL | T=250°F

1. CoOMPRESSION AL,OME -

- MLS. = Pc.r{ -l-%SB -l =1946 ~-| = + 0.59
N~e - 3000 COMIMN BUCKLING
2. COMBINED TENSION & PRESSURE

M.S.= _Fxy -l= 3.1 -l=lool-I + 0.0
' Ororpmasx G3.06 ‘ TENS. - UKT,

UNIT WEIGHT ~\Wir & WEIGHT BARF ~Zw

Wr = \/Jr (FACES) +Wr' (core)+\WT (BOND)
= (0.1 I6/in®) (1020 in) (144-in"/f4+) + (54 Ib/H3)G )+ 2 (0.1 Ib/44Y)
= 463 +0.450+0.200
Wr=2.19 |b/$&+*
Zw = 29 Ib/fF =O.147Z in’ WEIGHT EAUINALENT
(. Ib/in*)(144 In /) AVERAGE THICKAASS
| 5 42<' N ALUMIN UM

A-11




FORM LMSC 362 8B-2

P"”"'t;’ie‘eb‘e |°§'.'2_5 7] | LOCGKHEED MissILES & sPacE company Page N ']";wl =
Checked \Hy: 4] Date tle Modoi
1°85% el |5 -0-2™ PrOTOTYPE PAKELS TPs
Approved by: N L DESIGM & AMALYSIS Report No.
INTEG. STIFFD _STRUCTURAL pPANELS . 0=24 n

SECTION PROPERTIES ~PER PITCH

<120 > 4 1.99 ———>

FULL |

SCALE I [ ] +0=1.99+.120 = 2.1l in
- (425 : A

[

| o — S|t oss

ELEm. | A Y Ay d Ad® Ta

| JUO | Ne | 1218 L2614 |.01223 {02894
Z | 094 | .oU5 {.0020 |.4176 {.01910 {.00003
T | .z804 1.1248 1.02133 | .0z891

U=.748 =0.445) in | £ =,2804 =0.1329 |n
2804 2.11
Crime = 0.445] 10  Cmax = 1.425-.445] = 0.9799 1n
Lo =.03(33+.02819=.66030 in -
Zoma = . 06030 =O.1355 in® ; Zomn =.06030 =.06I54 in
44s) | 9199
" PER _INCH of WIOTH -

fo =. 06030 =.02858 M"/M

2.1
Rown® .1355. = ,0642L {n*/in
- Z.1
- Zoww® 06154 =.02917 I/ in
Z.1

A<
543 A1z




Prepared g‘,ﬁ)% Ig -28-1| LOCKHEED MISSILES & SPACE COMPANY

Page , Temp. Pem.

A GROUP DIVISION OF LOCENERD ANICRAPT COLPORATION

ecked by ate itle ol
el |-y |™ prOTOTYPE PAMELS | TPS

REY %‘Q‘Q- - DESIGN & AMALYSIS Report No.

10-12-71

INTEG. STIFFENED STRUCTURAL PANELS

LOADS & MATERIAL . Au. AS GNEN oM p.AG,

CORR.+ SKIN PANELS
(AREA 2 LOADRS 3710715-T6 MATR'L)

ALLOWABIE COLUMM 16ADS ~EUILER

.—/.

Per =T Ee Lo =T Eec (02858) =

CSILNA 91 (516) 1858
AT RT.: _
Fer = 10,500 = SGSI b/in § Qer = 5651 = 42,520 ps!
1.858 . 1329
AT 250°F -
Per = 9660 = 8199 lb/in ; Ger = 5199 = 39,120 psi
1.8658 : 1329

LMOCAL BUCKLING STRESSES ~ Qtry

. FORM LMSC 362 B-2

ELEMENT @_: REF. S TANG REFORT

ASSUME O= 0.5 § THEN kg- L4y @E/bY = (12/1.425Y = 1/141,0

Cery = berEe (t§ 2 1.4TT11:Q = Ec_ " NOT A FANURE
12.0- vt\ 1SV U4.0N hl.&  MeDE ~TriS SECTION

ELEMENT@)_ . ASSUME SIMPLE SUPPORTS

GJCRR =36E¢ (%)L 2‘3.6 Ea (To—g'g-) =
, ’ 363.6
AT RT. . Qwy= 10.5x10%= 28,880 pai

363.6

]

9.66x10°= 26,510 psi
363'6

AT Z250°F  Otr g




FORM LMSC 382 B-2

Propored b ° : Page Temp. Pem.
epa YQ'E"QULQ _15“25’71 LOCKHEED MISSILES & SPACE COMPANY 9_A ‘3 l

A OROUP DIVISION OF LOCENEED AIRCEAPT CORNPORATION

Checked byl Dc'o Title - - Model
@ J Q:;ﬂ vy -9-7/ PROTOTYPE PANELS | TRS

REV‘%EQ _75'-'12-71 DESIGN & AMNALYSIS Report Ne.

WTEGRALLY STIFFENED STRUCTURAL PAMELS

CRITICAlL STRESSES ON_SECTION ~ULTIMATE

1. COMPRESSIC)M OM _ELEM. @ CouD. L CRITICAL
(COMP. Ay & COAPSE )
Ctzwm = Ny e + Mms = 3000 +7Z(3)-2f@0) = 22, 510+3363 (2788)
£ Zomm 1329 .0G42L
Capax = 22,570+ 2311. = 31,950 psi

2. TENSION oM ELEM.(@_: COMD.IL CRITICAL
(TENS. Ny & COILAPSEP)
Onwax = Nt + Mmax =GO00 +72(3) = 45,140+ 7404
£ Fommi L1329  .0zS17
O"TIMA—)&‘-‘—SZ,54'O PSI

MARGIMNS of SAFETY~ COND. Il CRITICAL S T=250 °F.

{. comprEsSsSION ALONE

M.S. = pc&-[‘5138-1=1733-l = + ©.73
/\/u. ~ 3eoo COLUMAL BUCKIING

2. COMBIMED COMPRESSION & COMAPSE PRESSURE

.3
M.S. =Qecy ~|=26.57-]-0.8353 - = —O. |7
40”ch 3191 . A LOCAL BUCKIAG
3. COMBINED TENSION & COLLAPSE PRESSURE
M.S = Fu —l=63] -|=1203-1 = +0.20
OTimax 5245 TENS. -UKT.

# THE GEDMETRY SELECTED (p. All) IS NoT ADERUATE FOR THE
RESIEN ~OARS 5 HOWEVER, THE POINT 1S MADE THAT TS
CONELGURATION IS NeT MBORE EFFICIENT THAM THE 2- STIFFENED
PAUEL_S. P ) :

349° 4y
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FORM LMSC 362 8-2

Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY [Page gl fom
4_/ C'#,A/A/ 9_11—7/ A GROUY DIVIEION OF LOCEWELD AIECEATT CORPORATION /J
Cheé‘l‘tg by; Date Title : - | Modet
LS “@iz S-13-11 ﬂSKé.‘ PROTOTYPE FRNELS
mroved by: (@] Date Report No.
» .  DES/IGN E AMILYS/S
Be Jeezvie %/ ‘
“ 2
§__...__ 0/
) ~ ’ ‘Q l ,
S S T y
. 3 | \
H-\. T \
o o | Q
N \
13 'l"‘- o N
JLULS _xrj -
NN
'Z?ﬁl 0 '
<~ M S '
b)) \ .
1 oS
_ | § Q Q
" SR
9 X 0! N
™ Y |
ﬁ—-'_ —-«I- > N ‘Q
S BN S
d_ =y L
p— Ca X
Q
N IxY W
= N N
__I_ ‘\ ‘ [ 1}
11 R L
o WYIQ b
- M H :’) vV 1]
. % Q
| Q.
m -}
h)] ‘\r' N
- § 3 ~
i iy 8
) NN @
" S X
) )]
§ <
3 |
Oy~ .
e '
347<
B-2




Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY [Page - Tome Fem
l _/ C’M[‘IL I ?‘/ 7/ A GEOUP OIVISION OF LOCKNEED AIICRAIYT CORPORATION /32 l

Date Title Model
S-12-1 | 745k © . Peororyre AeNELS

et R,

M (@] Date Report No.
REV. %‘ﬁﬂe 13‘—“"’7‘ Desisn E 4nae yess ' i 'N_ :

. FORM LMSC 362 B-2

\V
Be JoBpenes 2/

TwlrS  PANEL et BE DES/ITAED LoR LRESLEE oy
LOADS

Asceny /a,;,_,p_,,_ = 4.0 /h‘i LoriT. Co.1 ©.0 psc #er,
/33;‘,# : 3,0/:;4 Lsnmy @/?Z} 4.5 Vdalit s

LeanTef  Frpiraprs 220 P brmrr @ ooy 3o uT,

A kéym:/ :0,5/.;,'. A/»;/f @ Goo:" 0,75/-;1 L)LT

Ay gyf/’fc/'/.a// - RLcaNs Lomo/ngS RRE Clrricde Fop ﬁéf/sz-

[/YIATERIAL [ROPERT/ES.

| C 27 | | @ Crof

Fru 7S oo Yt R 46 00T

£, 57800 Y+ 43 7y

£ 92,530 Yu 29300°Yn
CRITICAL STRMssES. | .

-F;rz K7 £, (-z?>z- | For /X0 EDsss [s 5«3i

Pore fese E0ca K 0.355

7-VE

REFERENCE. 348<

/ &my& LILr)  IN)E enfANICAL /9,20/°¢_‘£7/ DA74 A ,z/m, mae.cy
2 "STRENGIH Or rri4rEraLs” 8Y JHaNCEY, Phce G/

B-3



FORM LMSC 362 8-2

Prepored by:

Page . Temp.

Perm,

"0 Coton |Gy 7y | OSKHEED MISSILES % STACE comeany B3|
Checked/éy Dote Title Model
'% iS 2N | Jdsk G . FrozoryPE /RNECS
‘—/LJ Date Report Ne.
RCV:%“Q ]8 26-1| Desien & gwacysss,
Be Y Svsronee ¥ /
FACE JHEEy
| | w° o ] .
Ji Y J v J ' i J CONSIOER THE £ACE JVEET A4S
§" ' ' CONTING OoS ANO SPRNMNING OVER
L. A NumBsR pF Jimralrs
| 230 _‘ |
| a— —
LOADING = Q.0 "/,N* [uar.) ' Cryz
_ 12 _
. . W
FOR  CONSERVATIVE LERSonNS, LET (7 ERrry
G.0 x3.30° R 4
- /0 .
L €M ox 6534 '
Jé T 28 T e4ox.0¢0 T 24,500 on®
A Ly 2 | oo \* &
L = KE(T ) o3 xg28x08(E52) = 39340 Ui
wi . |
V= = ¢ 60;330 = 990 ¥/~
- 3 v _ .90 &
VEZ2F 5% 5a0 23U Y
.. .
4,-' W',Z__._ . 72X S.0 x 3.30 008“" .
. z, DA
wy 38461 354»' $2.5%/p x.M’ ' €

Feons £ ] B/-MmMZ-] ENTITLED,

" BeryLiivny CROSS- ,eac D

SHEL] DES/IGN DA 74 47 Koonry 7&/»7#5@47//4’5 AND Goa ,: Fr6./2,

HeE EFFEcr oF JINELASTIC BuckiNs REDVCES F.,

/%7, 8.

. 39500

2,500 " /" 4l

549<

B-4

7o 4 :,aa/v




| FORM LMSC 362 B-2

Prepgred by: Date LOCKHEED MISSILES & SPACE COMPANY |Page_ T*mp, Perm.
/ J‘ ﬂ”l‘//\/ l 7'/_‘ 7/ A GROUP DIVISION OF LOCENWEED AIGCRAFY COCPORATION 4 I
Checked by: | Date Title Model
v K. 1% 9-13-1 | 74sk¢ G- /’Zafaf;’ﬁz! AAnNEL s
; E Date Report No.
1REV. \ErIC. 9-26-1! Oesson E Huacysss

_Be Sesrgvze ¥/

ST/FLENERS
' o-'—”\; l Ledoav; =rQ>g Yonr @ 7.
N, | - -4 eelr
a _Jeofe § ~ 7 #
LTe™ S W .: GO x3.3= 19,80 *fw
) . B y
e e 45 x3.3: 14.68 2
. 500 '
b6 a4 Ly | Ay g (A I l1,+4(s")%
.26 040 ,om40 .0ZO |.000208 480 | .00239G .
.26 .o04o0 .o/o4o0 980 |.0/0/72 . 430 :oaz'socl; ‘
Tix.22 ,040__;02765':' . 500 ,0/332.5 N2 1 :,00¢¢_24 000060
040 .520 02080 .590 lreroop - aoc4e$ L
) 06925  .s00 |.p3¥625 B - 007744
FOR Coich g;a PRESS/RE l=23"

a
T’v: 0.385x %Zﬁwo,‘ 73-2‘5> :/!Z,ml%v”

wB*  19.80 23"

2 - e = ng
_ < _ [309x.500 _ £/ - ) |
’fn.z- z o, oo 9 7¢4 G—l) 170 /A/ | mS. +O.IZ_'
’zr ' ' . '040

Ferz 53,000 %yt

For ARBorsSy Pessspyes

_ . ‘ ¥/ . _ , ,

.,(”‘7 ;_g% xG1,i70 = 50,380 /A/ - m.s=40.05
/19 o

fya s D2 50200 Y mresasy

350< 5,




FORM LMSC 362 B-2

Prepared by: Dote MIS ES : Poge Temp. Pem.

4 Chown G271 | O o o hreanies aenar camarnY 3s |

Checked . Date Title Model
&“Q“QJL; S-e-M | 745K G . FPeororyPe FINELS

A”nnyod-bw \J Date - Report No.

REV.NPR. 92671 DESIGN & Angeysss. -

SBe “Suspanee */

S7/5FENER £ FACE JHEET

Fa,e Coudp.rd fgss

: 1309 " (Pest 4) . 4,:.295 4,s 746
da.vo,,va SSeESSES - :

‘an.wﬂ;' =, . 0I856 : 20,810 74* cormp. (ULT)

5
_ My,  1309x.745 "o
V[F/.mvﬂ'é’ = ‘Iz £ .OI856 he 52{5‘40 /ﬂ TENSson  [ULT.)
‘ s fod3
LONGITvp/NAL  JNERR AT JeNerwes
. Wl _ 198023 ¢
Ve =5 e > = 228 |
VB  228x.06/60x.215 o
Ve g e e = 208 7w (ULT)
S | 19.80
DépeEcrron  FORX L/miy L0640 wz s

v nd
/ sl £5x19.80x23°

H i - (N
38¢c I /5x33¢x¢25’x/o 01656 = 0.06l

poke  Buwesr /YESSIEE, 1[,,_““ s x52,54o : ’59,_406%/'

« t.__s_zér-esf_-@'/-fw- | |
|| G cemery. | t =.0e975+3.30(040) = . 06|10 in
N%*F . - 330,
| ' Ay R
o) -0
N3 ~N
\. 1
500
A Ly LAy |y [a)r| L Lerdon)®
Hce Sueer L5¢x.04 - O0ICO .5?0_,,,03203-2! .275 !,0046555
S rpseneR 06925 © ' o | 245 |.004187 009784
./8085 245 .o3z203z: j.OOIBE»ls'- ‘.01856__:“

3853 < B-¢ ms = +0.34




FORM LMSC 3062 B-2

Prepgsed by: Dgte SSILES & SPACE CO Page Tomp. Pem.
g’d/ d//”” I?' 2’7/ l:ooc.:t‘EnE.D“oMJ OF LOCKNEED AIRCRAPFY :onTﬁ?ut‘uY C l
Chec}(od Date Title Model
vk,(ja O\ | 74sk G ;. Peororyrs /ANELS
&ppu“od—hy.. Date Report No.
REV. %«E'@ S-26-7! Désrcn & ANdeyss
Be " Swponee %1
EDGE ANGLE. ) /5x.95 x.0¢0 Be
s fAcE o
Kf‘act
- =,
o AT74ENMENT Fo # : - Wy -
_ Y . TEST FIxTIRE —7 i 8,4 b4y 4 1
\‘I\? e ‘ 5 ; ; g ———
NN : ' ,» @ V i *
R L o | , 3 @ s.p:/5.0 4o _
Nyl s — - — A | o

PN . 7.0 -

e j r |
; ATTACHAIENT LAY UT AT
SJEecrron oF lzvszi Borron; OF 4nNGiE

¢ A 4 Y Ay gt )Y T It
0.9/0 e©.040 .03¢do 020 000728 222 .,00/774 .Mmas‘i
? 2209 0,040 _0/38z ./00 w0382 /4T 000277 600060

@080 0.7/0 02840 .S595 016898 353 .003537.00//;)_3%
0756c0 242 .0/%¢05 | ‘ ,0056/2 -jf00667o/

w,=/2x45 = 54 Yon Boesr Feess (wer))

me el . stused | oo, ¥

Uﬁlﬁf:pe.g z . 2 ) )
. MY,  356x.242 _ o
boWom seAncE v 4 - .00 GB87" - Iz 530 C7aw‘ )

{-fof s T 1 T 00687

,F:L’_ <o. 335x¢z5xxa ( "“") = 52,000 Uyt

CoRREe; EL For /av:m:r/c /ieoz/f ey,

-

My . 356x.708"_ 3¢ 600 Yw* (comr)

Fer = 44 oro ’%,/’ Aecowso

4/ s
36,690

-/s 0./2
352<

M_:S, =

B-7
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FORM LMSC 36282

- 554<

P D Rt |78 11q1 | LOSKHEED MISSILES & sPace company |Peee U7 T
. Choc@ by: o Date Title Mode!
. PROTOTYRPE PANELS =5
Approved br: pore DESIGN & ANALYSIS Report Ne-
TABLE of COMTENTS
(. (IQTRODUCTIOA Y
2. DESIGN LOADS ~ SUMNMARN 3
3. CONFIGURATION Ae. 2 ANALNSIS 4
4. CONFIGURATION No.3 ANALVEIS [l
5. CONFIGURATION No. 4 ANALISIS 17
6. MAXIMUN] SETRESSES~SUMMARNY ~LINEAR ANALYSIS 24
1. REFERENCES 25

C-2




Prepare: ate Page _Temp., Fem.
N {:’M |78 5-7/ | LOSKHEED MISSILES & SPACE SomPany | 27|
Checked @ Date Title _ Model
£ Qa.,.s. l0:12: 7/ PROTOTYPE PANELS TRS
Approved by: _ Date DES/GM ¢ AMA LYS IS Report No.

\\2\&(// !

N

N
=

N

W | INTRODUCTION
best Y2

THE STRUCTURAL PRO‘TOTYPE PANELS , CONFIGURATION

//Ah

NOS, 2,3, 8 4, WERE Opf/MAz.p( SIZED FOR THE DESIGA
LOAD COUDITIONS EY USE OF THE DIGITAL -COMPUTEF{,
THE FOLLOWING AAALYS/s OF THESE PMELS 15,'
TH‘EF?EFORE)_".EASIC‘ALLY AN /)uosp,e.uaéuf CHECK OF
THE COMPLTER ANEGIYSIS. THE Péz—:ssur{s LoADS
US’ED. N THIS .AAIALYS(SK ARE , 1N MOE..T‘ CAéss; S;\GH~T'L‘( |
LESS »‘H+A/u' THE VALUE'&. WHICH W.E_RE.'_ Uééo I ,‘sl_imia

| THE PAuéLs; THE SIzMG, HOWEVER, HAS Nor SEEAI

ALTE RE D.

THE PORTIONS OF THIS WORK, WHICH RELATE TO EEAR;A::,-;Q
FASTENER STRENMSTH, AND RIVET SPACING, WERE NoT

ING LUDED . IN -_n_#s' COMPUTER AMALYSIS,

THESE PAAELS HAVE BEEM FURTHER E‘VA_LUATE.D;AUD DEFLECT-
(ONS  OE TERMINED, UMDER COMBINED PRESSURE & Com-

DR’ESSNE LIME LOAD By USE Or THE "BEAM- COLUMM "

FORM LMSC 362 B-2

COMPUTER CODE. d55<

C-3



FORM LMSC 3062 B-2

"”‘”\"’.’f’.ﬁt | %5071 | LOSKHEED MisSILES & sracE compaNy 3
Cheche : ¢ Date Title o . Model-

' f"i.@..; Io.i2- 7| PROTOTYPE PANELS . - TPS
Approved by: Date . . Report No.

DESIGH LOADNS ~ SUMMARY

| (REF. -'No; sy |

LoD ||_int_PLANE LINE LOAD ~ Ib/in DIFFERENTIAL_PRESSURE~Ib/i'}
~ |coun. | TEMSION COMPRESSI0M_| BURST | COLLAPSE
! § em | uLr | UM. o ULT. LIM. | ULT. | M. UKT.
=§—_——-— — : — -
AREA 1 pg,gL_-:z_s
? : ‘ o o
I | 2400 | acoo .2__'100 3iso | 3.0 | 4.5 | 20 | 20O
| I 2100 [4650 |40007 | Gooo | 1.5 | 2.25 | 0.9 | 135
IL | 4000 | 6000 | 2000 | 3000 | ©.5 | ©15 | 2.0 | 3.0
RE.A 2 PANELS| - -
.I ’ 2300 | 3450 | 1§00 {2250 | 3.0 | 45 | 4.0 | 60 .
I || 2100 | 4050 200&:_ ‘3000 | 1.9 | 285 | 1.8 | 27
| I | 4000 |@ooo | 2000 | 3000 | 05 | 015 | 2.0 | 30
NOTES® B | .
- PROTOTYPE PAMEL.| LOAD AREA No.| MAX. TEMP. .
=3 COMFIGURATION fo:| . __. _ |couD.Dr~F
| | o 2-PRESOURE fli(| GOOD
- 2 2 260
' 3 l 250
4 A Qn’x'
2. LoaD couomous J 4 U AT ROOM TFMIOERATURE
3;qu LOADS AND PHESSURES ANT IN ANY
| cowaw.qwou ON PANE’L é‘auF)GuRATrons,z 3 84
- ]_4,‘»FAC'ror~7 of‘ SAFETY - |
1' S, ]
e Jbb< C_4 Y ¥} ———

RELRC S 2
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FORM LMSC 562 B-2

Date LOCKHEED MISSILES & SPACE COMPANY |Poge C.;Z:L""'“

) Pr.;.§:%,€ %

9—4’7! A GRQUP DtVISION. OF IOGI G0 AIBCRAPY CORPORATION
Checkedlby Date Title Model )
L L 10-42-7/ PF?OTOTYPE PANELS = | TPS
Approved by: Date DESIGN & ANALYSIS — |Revertie

CO&F!GURATIOM Ne, Z

" _SECTION PROPERTIES

ELEM.

_H.4o’<__
FULL I —% - o
SCALE | @7 AL £=.050 In
D/,U SK 909'(! Y, ' ' . R=0.12 m (MIND
36 .
. ' J___, i___‘_ _o 28-240 n .
' -;‘? - . wWreasI

‘g .
- 4ol 21440101V (. 1144)
| ,6-0__,.J Wr= 1.6e4 b /fr

A y |l ay | d | adv | T

MPO N ~

.0800 | .025 00200 | . 3968 |.01260 |.00002
o175 | .015 |.00131 | .3468 | .onzl0 | ——
0680 | 130 |'049#4 | .308Z | .00646 |.01046

.08 [1.285 |.o02424| 9637 |04 | ——

1830 | 01119 - |.03140 | .0l050.
g 01U =04218 (n ;£ =.1830 =0.1l44 in
. 1830 : l.co _
< I, =.037%40 +.01650=.04790 in*] L,2.04190-.02994
I, =.04790 =0.2G6!7T in" 16O m"’/in
A 1830

o =( mm 2 0. Sle i) Zomax =.07994/.4218 =.01098 in /m ‘
| Zorm =.02994/.98222.03048 ir’

' MATEF?')AL, ~‘(0‘(S— TG - ALUMINUM  ALLOY . REE N1lh-HDBK- 5A

. | | SecT. 3.2.7 |
. _RT_(re3170®) _250 °F (5 HRS. EXPOSURE)|
Few =TT Kei | (.82Y G3.! Ksi  (Fie.3.22.1l@)
Fty = @7 Ksi (.8%9) S1.0 Ksi  (FiG.32.7.1:0 (&)
Fey = 68 Ksi (.89Y | Go.5 Ksi (FIG 3.27.1.2@)
E = 103x10°Ks (92) | 9241x10® Ksi (F&.3.27.01.4)
Ee = 105x0Ksi | (92) |  9.66xI0° Ksi (Fia3.2.7.1.4)
Fory, = 146 Kﬂ} 22 | (.83) 121 Ksi  (FI&.3.21.1.3 @)
Fory = 10T Ksi .o 914 Ksi (FIG.3.27.1.3&d)
X = 0.0[ _Ib/in? R o potay

{0=§ GIa=




FORM. LMSC 302 B-2

+ Ny ~ TERS 1OM ;—Né\u# COMPRESS |OM
+vp ~ BURST ,-40 ~ COLLAPSE

ALLO\AJ COLUM/LI L_OAD-S ~ EULER

_Ec

N

Pu-mtEclo = 1994) =
R Gt -9\(24\‘ 1114
AT RT. _ |
T Per=10,500 = 5919 lk/in
- LT4 |
Oee = 5_9& = 5919 = 51,740 psi
| | x4 J144 |
AT go E:
 Pea= 9660 = 544‘5 le/in
R
- Gte= 5445 = 41,600 psl
' L1444 : 358< :

Pre 8] t_ Date HEED MISSILES & SPACE COMPANY [Page Tozf P
‘4 9 4— -7' anc.ﬁ' DIVISION OF LOCEMEED AISCRAPYT CORPORATION
- Choﬁd by JDG'O Title Model I
£.7. |0-r2-74 PROTOTYPE PANELS . PS
REV. \,4@‘4@ 92671 _DESIGN & ANAL.‘(SIS | Rerert e
COMFIGURATION Ko, 2. /
Dn;s,\su LOADS (AREA 2) (F?EF‘ No. 5)
ConD. /\/¥~PP’ 4O~ pSi
. LiviT UKT | LIMUT ULT
I | z200 3450 | 3.0 | 45 .
(RTY |=iseo0 |-2250 | -40 | -60-
I | 2loo | 4050 |- 1.9 285
(RTY | -2000 |-3000 | -|.8. -21
g 4000 G000 05 0.7
(es0°F) | -z000 - | - 3000 -2.0. -3.0
N o . | BURST
- 1] A4t ‘?’//,__ ____T__'__ |

Cs6




FORM LMSC 362 B-2

Prepgred * P Page Temp. Pem.
el % |-l | O T L et ety | ™ e 6 |
Checkyyd by Date Title Model
lgm.‘-'. 10-/2-7/ PROTOTYPE PANELS . TPS
R*’EV"’""!@&, 2. oG DESIGN & ANALYSIS Report No.

CONEIGURATION No. 2

MAX. ULTIMATE _STRESSES ~APPLIED -
1. LOMPRESSIVE Ny QBURST’FUJ MAX. Oc ou FREE LEG

F?EF TIMDSHE/JHO THEDRY of ELAsnc STABILITY, Z* ED.,

CHAPTER 4
GCMM( = .N‘\.‘c. <+ MMM ‘ ,
t ' E-OMIN
Mumax = PI% 2(-cost) = = 144, - £ (Equ 123, m-.ﬂ
& alcesu
U =2 A Nee (EQN l-ls,REF.‘) (L@ = - cos
z VETX, U™ CLosU
q -’ \ .
w=__ A4 _ (M~Lc.> - _24 (mc 5”; ‘ <AL~LCY
2 (T \Eexic®/ 2(79,5%0\Eext5 "/ AT\ Eexs” ) |
Ur=_} (JSO)’L—‘!O/S S UL =1 030
war\ io.s J
U = | (_39@03: 1.2 ;u;';: 1374
: . 1'4.41. ,005 Ve '
U= | (3000)2“,,112_ N ’u..m:-.-. 1.493
1447\ 9.66
oan | u | W |eesu | 1messu [dresu | £
Cowl.| RAD. | DES. , ‘
T | hors | 5809 | .S52117 | 47173 5435 | O.8620
T | LNz |60 | 3883 [ .eT. | .5235 | 141
@I | Lzer | 0fol’ | L3418 | G582 | .S103 | 1.790 -
Mirmax = 144 (45 W.8690) = 563l in-lb/in  (UbT)
Mwman = (44 (2.85)(104) = 4701 m-lb/m (0T
M~ 144 (©035)(1290) = 39.3 In-lb/m (uLT.)
359<




FORM LMSC 362 B-2

onporod by E !

Date

LOCKHEED MISSILES & SPACE COMPANY |Pose a'g'_;w, Perm.

Checkol?by ’ 2! , J Date

REV. K;-—Q')@

9'—_'-1‘ A GeOVU?P DJVIIIQU (-1 4 IDCIH_IID AIBCRAPY CORPORATION

Title Model
o2\ PROTOTYPE PANELS . TPs
lg:%e—ﬁt DESIGM & ANALYsSIS | N°'-.

COMFIGURATION No. 2.

LTUIIATE STRESSES ~APPLIED ~STIFFENER FRES LES
1. CoOMPRESSIE Ny EBURST P~ MAX. Oc OM FREEZ LE&

ConD. T° Qxumar = 2250 + Sa}L =19,610+18410 =38,140 psi (UKT)
_ 144 03048

COND. 11? Qttiar = 2000 +4107 = 26 zzo+15,440 4,66 o psi (VLT |

‘ a4 n304B : B

ConD. T Citmar = 3OO0 + {39.3 - = 26,220+ 45707 30,190 pst (LT

| | Jl4d 03048 ‘ ' |

2, TEMSILE ',‘\1_1 & COULAPSE. P~ MAX. O’—r OM -F'RE.E LEG

- USE D\REC,T SUPERPoslTIOLJ OF TEALS!DU & B~uowq

GT»n‘nkx-i N‘\‘T’ +MMA:/~ _N¥T~ +.'FM~1/Q- : N‘ir .\._(Z“Pm

£ 'Z.awu B BIom- . £ }.o M
COuo T Grmax = 3450 .;,72(6 o)= 30, leo+ 14110 = 44,330 p5\ (uL.T‘)
‘ N44 - 03048 _
© COMD. LY Gt = 4050 FTL(2T)F 35,400+ G318 = 41,780 ps S
' J44 | o3046
Coup LT Qi paan = £000 +7212.0) = 52,460+ 7081 = 59,540 psi (vrr)
W1¥é4 03048 ’

Az.uavq@w CRIPPLING _STRESSES ~ STIFFENER FREE LEG

REF. STRESS MEMD M. 126 + k/t=(40-.10/05=5.6
Fee =31 (FIG.I2, RER) (CONSERVATIVE 1 ):)
MCF :
TRT F'ca/Ec. 68/10,500 =.00648
Km=.0l90 (Fa./s5, REF)
- MCF=_0190 (68) = [.29Z
N F’cg=lzez( 31 VY=41.82 Ksr
AT z.so°F Feg [Ec = 60.5/9660 =.00626
Km =.0195 (FI5. IS, REF.)
MCF = .0195 (60.5)=.180 -
Fee = 180 ( 3\ V=437 Ksi
360<
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' FORM LMSC 362 B-2

Dcto

P""°’§ LOCKHEED MISSILES & SPACE COMPANY |Page Temp Pem.
s.—'-_" A GROUP DIVISION. OF LOCKENIED AIRCRAFPY CORPORATION
Check % Dote Titie Model )
10-12- 71 PROTOTYRPE PAMELS . TRPS
M Date ; . Report No.
RE\,&‘—RQ : S -26-11 DESIGN & ANALYSIS pert

CONEIGUR AT IO No. 2

MARGINS of ARGINS of SAFETY ~

. 1. max QC_DMDF?ES_“SIOU

~ ULTIMATE

OM _STIFFEMER FREE LIS

~1

M S. = Fec
GCMA—L(ULT\
CoND. I M.S. = 4‘(8 - =5L283- 1= -i 0.2
. 38. 3814 " CRIPPLING - ULT.
Cono. I M.5,= 478 - =147 —1= + O.15
' 41.66 : . CRIPRUNG-ULT.
CoND. IL° M. S, =431 -I1=1.49-1=  + O.42
30.19 '  CRIPPLING -ULT,
2. _MAX. TEMNSION . ON' STIFFENER -F—':’ss LEG
- M.S. = Ftu - /
G (UKT)
COMD I M.S.=_ 11 . = L7137 - = + O.74
- 44&5 - TENS. - ULT.
conp. Li M. S. = _71  ~-1=1843-1= + 0.864
4178 o TEMS. - UKT.
Couo. JIL: M.S, = @3\ _—| = |.060-I = + Q.06
o 59.54 ’ TENS. -ULT.
- 361<




Prepored "’ e {/;) |°°'° LOCKHEED MISSILES & SPACE COMPANY |Page "C';" pem.

9’-30-—[( A GEOUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION ~

Checked )U O Date itle . - Model .
4 42, ozl | PROTOTYPE PAKELS TES

Approved by Date DESIGi & AK—?LYS.‘S _ | Report No..

FORM LMSC 362 B-2

FCOAE FIGLRATION No. 2 _
MAX_FACE SHEET CoMIP STEAESCES ~ULTIMATE

COMBIME COMP. N~ & COLLAPS-E »

BEAM-CDLUMA! ANALNSIT (REF. P.6)

OICM“ —N‘V»c + MMA—K ; MMA(‘—'77_/P¢ 'Z‘F(’bﬂ

COlLC. *'Ocm 2250 +’»’¢." ,(1.738) = 19,670+ 10,580 = 30,250 o8l
L1144 07098 i)

COND. L " Cnn, = 3000 +72(zD(1294) = 26 220+ 3T = 297760 pe

1144~ .01098 I T
- COND. T Clue = 3000 + 7213 (2.680)= 262104 7852 = 34,010 p<!
1144 07098 o w

562<

Cc-10




FORM LMSC 382 B-2

P:w“ eraZ |87 8-/ | LOSKHEED MISSILES & ShacE ?,?.*:'.":.’:.* e ;Bé'[ -
Checkdd b Date Title —iodel

7 a'-/z- 7 PROTOTYRPE PANELS TFS
REV. &’Q-%.- 626l DESIGN_& ANALYSIS ——  [Reehe

CONFIGURATION Ne. 2

BEARING N STRIMGER EAMDS G MNo. 10 l0-BOLTS PER END

MAX. STRINGER JOAD ~ Prmax I ConD. I CRITICAL (REF. p. T)

AT 7Z50°F : PMK;K = Clax Astr ='5Z;450 (.IO3O\=54'OZ- Ik (U‘NT)

ALLOW. BEARING LOAD ~ PER END

Ao = GL150Y.050) = .05700 inT
AT 280°F. " Frauw=AstFire=.05700 (121x10°)= G897 b (UrT.)

MARGIAN of SAFETY

M°a£%$~ue&n4h¢m74.;'-+am
P 5301 . BEARING-UAT.

SKIN_STABILITY. AMAL‘/..;S couoﬂr CRITICAL . T= 250 °F

MAY_COME_STRESS , Ot mm = 34,010 psi (UL:T\ Q:Rom P-9)

SKIN BUCKLING ETRESS ~ feer, . REF. SM. 802
AT R.T.: b= 081G ;n=15; Foa=T0 Ksi (TaB. I, ReF)
b/t = ;c,o/oso 2z 1 VK = 2.51 (F!GB CASE ®, REF. )
(b/)e = 32/2.51=12.15
- B =.0816(1235)=1.040
FlRa= 0.84 (FIA. 7, REF)
F:.e.n.—084(70)"585 Kai ’ '
AT 250°F * Assume Feo o8 = chx Keer —588(923 54.] Ksi

Eeage (REF P‘4’) '
MARGIN of SAFETY
MS = Feen -1 = 541 -1= 1588 <] = = + 0.59

Clmax 34.01 1 BUCKMING -ULT.

363<

.19




|

fige flﬁ'ﬁi’@ |°%5.7.q) | LOCKHEED MISSILES & sPace company |Pesep 7T ™
. Checked b 7 Date Title Model

? 2 /./M /o'-cz..n ' PROTOTYPE PANELS TPS
Approved by: . Date DESIGN ¢ AHALYS } S ) Report No. .

CONFIGURATIOMN No.3
SECTION PROPERTIES

| 48 f“*— : _
- FuLL , , ALL T=.063 In
. scALE T | 5 - R=0.1G in )
D/ SK 2107 ® 4y A=20.0n
_ : 120 . ‘L |
- . o :
g | g . - '
—>-I 4-8 f W= 145 (o (1430 |
IGO . Wr= 2 08 b/t
ELEM.| A Ad d .Ad" - Ti

.1008 .o_sxs .00318 | .3563 | .01280|.00003
0163 | .05 | .0024d| 2906 | .0072T| —
L0156 | 663 | .0501Z| .2119 | .005BA | 00907
0263 | 1.23¢ | 03240 | .B469 |.01886 |
| .22%0 08819 |.03372}.00910

Mbhe N -

§=.08813 =0.385 n T =.22190 =0.143lin

2190 B ' 6O :
0 =g=0.2851 mn; Ce=1263-4=0.8179 in
To=.039771+.00910=.04887 in*
T.=.04882 =.0305] in*/in

[.GO .
| %OMM =.0305] =.01923 in/n
- 385 | |
ZFormw = .03051 = 03475 1n/in
| .8719

MATERIAL ~ T076-T6

PROPERTIES GIVEM OM P-4 FOR ROCM TEMP. § 250°F,

FORM LMSC 382 B-2




Prepar bY'Q Q b Date LOCKHEED MISSILES & SPACE COMPANY |Page  Temp  Pem.
9 -z —,‘ A GROUP DIVISION OF LOCKHEED AIRCRAPT CORPORATION
Chock;}gy Date Title Model l
|_£7.. Jpenin | s0-12-11 PROTOTYPE _PANELS TS
21y} %-—@—Q 8261 DESIGN & ANALYSIS Report No.

CONF IGURATION ANo. 3

DESIGN _LoADS (AREA 1)

(REF. No. 5,

COND. Nx~ppi. __ P~psi
LIMIT UL LIMIT - ULT.
I | 2400 300 | 3.0 4.5
(rT) | -2100 | -31s0 | -2.0 -30
I 26 | 4050 15 | 225
(RTY . |-4000 | -Gooo | -09 -1.35
I | 4000 | @oeo 0.5 015
(250°F) | -2000 | - 3000 -20 | -30

SEE p.2 FOR SiGA CONVEATIONS

ALLOW. COLUMA L_oAD'i—w EULER {(REF. p.5)
AT RT. : Per= 1*00.5x10*)(30.51\= 8681 |b/in
. Ql @ooy
Qer= 8687 =60,700 ps‘
o143

AT 250°F % Pee = .92(8687)=1905 |b/in
'GJQ{‘(‘; 1965 =-55.2.4O p.‘:i
_ 42 -
AL_L.OW. CRIPPLING s-rREsssgasTn:psusn FREE |LEG

 FORM LMSC 362 B-2

b= 48 R-£=.48-16-063 =267 in tb/= 257/.063 = =4.08

Fee = 475 Ksi (REF. S.M.126, FIG. I2) |
MCF
AT R.T. . MCF= .29z (FRoM p.4)
Fee = 1.292 (41.5)= Gl.4 Ksi .
AT 250°F: MICF= [.180 (FRom p.4)
- Fee =

1186 (41.5) = 56.0 Ksi

- 365<

c-13°



Page Temp., Perm.

)

Date

LOCKHEED MISSILES & SPACE COMPANY
‘3 -30-7I

A GEBOUP DIVISION OF LOCKHEED AIRCRAFY CORPORATION

Prepared by{ f[@

‘Checked I{% //

Date Title Model

(0-12- 11 PROTOTYZE PANELS =iy

Approvod by: Report No.

DES!IGN &

oo £ ANALYS!S

FORM LMSC 362 B-2

CONFIGURATION ANo. 3

MAX. BENDING MOMENTS ~EFOR_Covi Ny & suRsT £

‘BEAM - COILUMA! ARAIS!S (REF. p-8)

- |-CosU
'241 CosUU

L\[’\Lc \)l

&
IAl‘\l.c = 20 | ‘ .<M"¢:> = i
> 1747 Ewo
049

Minax = MJ'.»Q Z-{:('u\ = SO*ps RSN 5 2 =

i

2 \Ede) .7 (20,510V" \Eexis
Uy = - | (3150 =0.9914 4 YUz =0.9830 | 'uluea\ =
17.47 10.S
Ur= L (Gooo>-/"68 ‘Mu ‘1.871",2&(5‘56.\,:78 22!
17.47\ 0.5 |
Ug= _(3ooo>’=r.ooe;um 21,008 : U (s =
(7.47\9.66

= 5774

U

| cosut

I-CosU

UNtensih

—F (u‘,&

2L

$6°48'

78° 23

£7°4¢

. 5476
.2014

S220

4S74

1986
4674

. 5303

L3170

5470

.8d04
2.118
L3620

L.6S]
4,737

1,724

(ULT.
(ULT)
(ULT)

so (4.5 (l.e8l) = 3718.2
50 (225 4.2231) = 476.7
50 (05) (1.724) = G4.¢

[h"b/fh
m-1b /in

m-lb/in

MIMA:_(' =
MII MAY
Mz max

U

MAX. FACE SHEE COMP STRE ;:,vi?;'; ~ CONIP /Jx'& COLLAPS;E'P,
M’\Lc + Mwu

Z , zﬂMﬂ‘k

Clnas = = Nac +50R 4@

A3 Q7923

3150 +so(3\(l 68l) = 72,010 + 3133 = 25,190 Ps‘ LT
1431 maza

K @:l&m =

COMD, I

COMD. 17 G’CnMM = OO0 +50(135\(4m) 41, 9"0-}—3610 As, 54o pei (T
1431 07823

COMD Flige G'Cm»m = 3000 +50(32) (l 724\ 70, %O+a;64 24,220 psi (UkT)
, 1431 973 | |
: usé‘: '

C-14




' FORM LMsSC 362 B-2

pr.pmagt £ M

LOCKHEED MISSILES & SPACE COMPANY

%811 | LOSKHEED MISSILES & SPACE COMPANY |Fes Tm_[ -
ct-.:k:}&}?' : I;;c:/e’?‘ Title PROTOTYPE PANELS Modol_rps
m«g [ DESIGM & ANALYSIS Report No.
COMFIGURATION No. 3

MAX. ULTIMATE srmssses~Appusa~s-m=Fsum FE:<
1. MAX, COMPRESSIVE STREssESMG‘CMMVO‘\! FREE IEQ

|
[a - |

COMBINE comp. N~ & auzsrvpz EEAM—COLUN’WAMAL‘/SIS

{ Mmax FROM) 'p.l?;

Gemax = N¥e + anx
‘ ‘E EOMIU
Conp, I C)"crwu- 8\5’0 4+ 318.T
S .43L . 03478
COND. 11: Ot vax = GO00 + 4161
1431 O34
conn. 1 Gm max = 3000 + . 4.6
143\ 03415

S

2._MAX. TENSILE STRESSES ~Crmm ~ON FREE LEG

COMBINE TeMs, N+ & COLLAPSE P DIRECT SUPERPOSITION |

O.,TMA-X = N‘L‘r + 50’f>ca. A
t Zopm

Conp. T G‘umu 3600 +50(3.0) = 25, IGO+43]‘I 29,480 psi (um

.13l . _p34s

cono. I

ConD. 1!1 Qrapax= G000 +50(3.0) =41,920+4311= 4@ 250 psi (uz:r) ~

. 1431 034715
142103415
5367<

T Qrrmea= 4050 +50(135) = 28,300+ 1842= 30,240 psi (UiX) |-

=22 oio+lo,880 3z ,830 psi (w.ﬂ -
= 4\, 930+)3'110 55,650 psi (UKT)

= 20,960+ 1852= ZZ,BZO psi (ueT)

C~-15



"”P‘"#Z,Q,eé Dgte LOCKHEED MISSILES & SPACE COMPANY Page | T2P P
9 8 7‘ A OCROVU DIVISION . OF LOCKMNERD AtECRAFY CORKPOR ow clsl
Checked\by: I Date Title Model
7 e ™ PROTOTYPE PANELS TPS
PEVORR. - |3z DESIGN & ANALYSIS |t

CONEIGURATION No. 3

MARGMJ'S o~F SAF'ET‘/ ~UL.T‘IMATE<

1 _max COMPRCSSIOAJ om VTJCFE_/\:-.':» FREE 1ca

M S Fe -1
Clemax (viT)
conp.I: M.S. = _6l4 -] =1BeT-1= _+0.87
- . 32.89 - " GRIPPLING - U
cono. IL: M,S.= Gl4 -| =1.103-1 = +0.]0
S ) 55.65 . CRIPPLING - ULT.
COND. IT- M.S. = _560 -I =2454-1= _+1.5
- 2z.82 o 4 CR;bnuuefu;:r.
2. _NMAX. TENSION OM “STIFFENER E&ri [£a

"MLS.= Feu o }
CT max (T

COND.T M.S.= T1 -1 =2¢gi2-1= + L6

- 2548 . TENS: -ULT.

ConD. ILIvM.S. = 17 -1 =254-1= + |.§
| 30.24 | . TENS.-UANT,

ConD. JL.M.S.= @31 -] =13c4-1 = +0.36
o 4¢.25 o . TENS- UKT.

FORM LMSC 362 B-2

C-16



R ARl |"Sien | SR MRS SASK sy [e B T
Checke Date Title Model )

2% /,Q&. bor2-21 | PROTOTYPE PANELS TPS
A R A DESIGN_& ANALYSIS — [vrr™

CONFIGURATION No. 3

BEARING N STRINGER EANDS

MAX. STRINGER LOAD ~ Pisx : CoAlD. T CRITICAL (REF. p.I4)

AT Z50°F. : -pmu-.f-' O‘MnAsm=4l,9~3o(;/zaz)=53‘(6 b (ueT)

ALLOW. BEARING -LOAD ~ PER ERD

- Ao = 6(190)(.062)=.0TI82 in"
AT 2S0°F.° Fhram= Apr Foru =.07182 (12IxIC) = 8690 Jb (uLT.)

MARBGIN of SHAFETY

M.S. = Pmm_q-seeo =16~ = 4062

Phnax 5356‘ o  BEARING- ULT.

SKIN_ STABILITY AMALYSIS : C‘oNo. T CRITICAL JT= é.‘r.

MAX. COMP_STRESS, Otmas =45,540 psi (WY~ (FROM p. 13)

SKIN_BUCKLING STRESS ~ Fen © REF. S.M.806¢ -

kbeo=.08G yn=IS ; Fer=70 Ksi (TAB. I, REF)
b/t=160/063=254 /K =25 (FIa.3,CASE @, REF.)

(/e =254/2.51 =01 | |

B =.08IG (lo.11)= 0.816

F/Faq = ©0.97 (FIG.Z, REF.)

Feer = 0.97 (10)=G1.9 Kai

MARGIN of SAFETY

Ms Fécg -l = ©19 —l— 491 - = 4048

G'c MAX 4s, 54' . . : BUCKLING=ULT.
369<

FORM LMSC 362 B-2

C-17




FORM LMSC 362 8-2

Preporoé{b:ﬁeA _’e‘z

Date

LOCKHEED MISSILES & SPACE COMPANY

Page 'Iomp.l Perm,

9‘8'7‘ A GROUP DIVISION OF LOCKNEED AIRCRAAFYT CONPORATION
ecke : Y ate itle . odel
- k?’?;&,é l/:’49_12-7( b PROTOTYPE PANELS " TFS
Appasiadbie Date Report No.
REV. S0P S-2c-7I DESIGN & ANALYSIS P

CONFIGURATION Ne. 4

SECTION PROPERTIES

- = 4l | X .
FuLL - 3 r_*_ | ALL T=.040 n
| SCALE T | }‘D R=0.7 in
D/J sk 91311 - @7 Y A=240 m
: : |.24 S J ‘_
2 |OA- - °f
| R) WT—Z-Om b/~P+’
ELEm. | A 4 Ay d | Ad” |- Ii
! .0640 | .OZO0 (.00128 | -3540 | .00820 .0000!
A 0148 | .060 |.0008%| .3140 |.00l46 ) —
3 | .04% | 660 |.03114 | 7860 | L0406 .00636
4 | .0148 | 1.260 |\01865| .8860|.01162| — |
P 1432 05356 ‘02534 006371

[=.05356 =0.2140in 3 € =.1432 =.08950 ‘In

1432

- Le= 02171 Io

In

[.GO

03171 /l.eo=.01982 m“/m

Zomw =.01982 /3140 05299 in’fin} 71.om- 01982 /900 =.07188

n*/in

MATER!AL. ~ @AL-4V ANMNEALED - TITANIUM  ALLOY
REF. MI|L-HDBK-SA, SECT. 5.4.¢

RT. (TAB.5.4.6.1@)

| GO0°F. | g
CFu= 134 Ksi (74 99.2 Ksi (FI6. 54621 @Y
Fiy: 126 - Ksi (.61 84.4 Ksi (Fig.54.62.10))
Fey= 132 Kasi LG8 . 898 Ksi (FI6.54.61.10)
E= leowo Ks | (.82) 130 X0 Ksi (FIG. S4.6.2.4)
Ec= 16.4x10° Ko | (.82) 1340 Ksi (Fig. 5.4.6.2.4)
Fuw= 252 Ksilewg | (75) |89 Ksi  (FIg: s.4.6.230)
Fory = 208 Ksi (.69) 156 Ksii (FI6.54.6.2.300
¥ = 0.160 Ib/in® - | o
' 37 0<




" FORM LMSC 862 B-2

Prepared.by: Date LOCKHEED MISSILES & SPACE COMPANY |Page Teme Pem.
oL  |%8e ' Ci8

A GEOUP DOIVISION OF LOCKNELD AJECRAPY CORPORATION

ecked by: ate itle ode ‘
Pz e o] PROTOTYPE PANELS | TPS

REV QR |36l DESIGN & ANALYSIS —  |ReermNe

CONFIGURATION No. 4
DESIGN _LOADS (AREA 2)

SAME DESIGA |oAD CONDITIONS AS FOR CONFIGURATION
NO. 2, GIVEN OMN P.5, EXCEPT THAT FOR LOAD
CONDITION JIE THE MAX TEMP. 15 Go0° F.

ALLOWABLL—. COLUM/\} LOADSNEULF.’“_ (REF. p.5)"

TRT.. P =T (164xno3)(rsea\ —G\Z\ lb/in
. S1{ST6) .
Ow = Glzl  =GB390 psi
08950 .
AT @oO°F . P =.82(6I21)=5019 lb/in
Qer= 2019 = 56,080 pai
- .08%950 ‘

: Yy _ _
AL,_L,OWAELE Cmpﬁ’uue STI?ESSE_S STIF'F'BU"R FR"‘LEG

REF S.m. 12

k=.4]-.12= O 29 tn L b/t=.19/04= 725 (Conz !:FZVAr JE
Fee  =29.0 Ksi (FI& .17, REF) ot b)
MCF ’

AT RT. - MCF = 2,234 (TAB.I,REF)
Fee = 2.234-(&9.03 = G479 Ksi

&TG O0°F. - MCF-IGSS (Tas. T, REF.)
- Fee = 1.659(22.0) = 48.11 Ksi

371<

c-19



""”"‘@:eqe% |20 -7) | LOSKHEED MISSILES & seace company |Per ) ™™
Checked bYy: Date Title ’ Model
S’Y?.jﬁt«'-. o1z PROTOTYPE PANELS TPS
Approved by: LDate DES'GM ¢ ANA L\/ s ]S Report No.

COMF‘IGUF?ATIOAJ No.4

MAX. BEMDING MOMENTS ~FOR COMF’ My & BURST .

BEAM = COLUMA_ANALISIS (RCF'p!B)

A/hnax -.4AJ‘—Q 7';¥1A\-'-72~435 L4¥ﬂ&\\ 4:ﬁM\ = |- COSU_

b U Cos U
U= 4 /wc\‘_zz; [ .(m¢> =1 [ Nac y
Z\EeIo) o 2 (19,820 | Ecxio) 1173\ EexiB
Uz =_ I zzso>‘ 209986} U =0.0912 5 Uz (DEBN= 517°1%
13\ 164/ |
Ug = | (MZI 533 Us = /323 L U (251= 66204
1!73 6.4~ ‘
Um= | ) 12765 Unt Le2B L Y (256 ,= 72007
EE 134
| cosu } i—cost | mrement | Lp 2420
s1°12' | .S4l5 | 4585 | .s400 | 843l | 1.698
cetod' | L4051 5943 L5292 | L1oT 2204
73° 07 2904 | .7096 4715 - 1.501 3.00L
Mz = T 46\(1698\ §50.Z in-lb/in QLT

Mizmas = 72{285)(27204)\=452.2  n-lb/in {veT)
Miimex = 72 (035)RB002)= 162.1  In-lb/:n (VLT

FORM LMSC 382 B-2

MAX. FACE f‘:HEEI COMP STRESSE S ~COwmiP, M- & COLLApucs«p

- Ocpar = Alne + MMM& = N’K—e B 72 'pc. Z:F(’LQ ‘
t Zoman 08950 032389

Lo.uo T Cama= 226 0 +72(6)(1638) = 25,140+13,840= 38,980 Pﬁ\ s | |

HBBS0O 05299

CouD. I (e ma = 300D +72 (22)2264)= 33, 5“o+8o&o 4610 psi (LT
' 08950 OJZSQ '

Coun. A :Bemmam = 3000 +‘12(3\(3.ooz\=5%;5(;o*r2,7.4o=45,7éo Psi (uety
: - .0B950 05299 ' 4 | '
Q7L<

C-20




FORM LMSC 362 B-2

P'”‘"ﬁby;g % IDm LOCKHEED MISSILES & SPACE COMPANY |Page Tems. Pem.

'3'—” A GEOUP DIVISION OF LOCKMEED AIBCRAIY CORPORATION C 2.0

¥ D 1™ ™ proTOTYPE PANELS " TRS

"”""‘g‘lp—ﬁ 8% DESIGN & ANALYSIS —~— |Rerertie

CQMF’IGURAT/OM No. 4 :
MAX. ULTIMATE STHRESSES ~APRLIED ~ STIFFENER FRKEZ W54
1 MaxX. COMPRESSINE STRESSES ~Qlemar ~0OM FREE LE&

Comama Covif. N+ & BURST P ! BEANM- COLUMAL ANALME S

G’c;wu- N +MMM T Mma FROM p. 19
_ t Zorm ' ’

ConD. LY Qamx = 2250 + 50,2 =25,140+25,160=50,290 251 (ULT)
o . .08s0 01188 ' _
Cono. IL* chrwu— 2000 +_452.3 =323,520420,610 =54,130 @51 (ULT)
08350 .OTIA8 ‘ - : S
"Cond. IT-Cemmar® 3000+ [62.1 =33,520+ 1409 = 40,920 pY (ULT)
08950 .02188 ' :

Y
2. MAX. TENSILE STRESZES ~Ormax ~ON FREE IEG

COMBIMNE TENS. Nx & COlLAPSZ 0~ DIRECT SUPERPOZIT IO

O = Nir + Mk = Nvr + T2Pea
£ Zomn 08950 .02188

CoNo.T: O'Trqu" 3450 + 72(60) - 38550+~19‘t4o 58,290 psi (k)
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08350 - .0T188

 Coup. TLiChgme = GOOO + 72 (3.0) =GT,040+ 3872 = 16,910 psi ( um

| o - .08950 .02I88 | | -
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NASA CONTRACT ENGINEERING MEMORANDUM
TITLE: EM NO. - SSD/451
DYNAMIC ANALYSIS OF TPS PANELS | REF: -
PREPARED BY: A. D. Houstoz;/ F. R. Mason DATE: 25 Oct. 1971
CHECKED BY: R. Buttram ' APPROVAL:

Refs: (1) U. S. Government Two-Way Memo, dated 7/21/71, "Point Design
Requirements for 2 Orbiter TPS Design Areas - Reuseable Sur-
face Insulation TPS Development Phase 2."

(2) NASA TN-D-4S1, "Flutter Research on Skin Panels, Kordoes,
Tuovilla, and Guy, Sept. 1960.

(3) IMSC/AB1LO9L, SS-1106-5522, "Sonic Fatigue Analysis C-5A
Program," D. M. Wong, 28 April 1966. -

(4) Mc Donnell-Douglas Tech Report AFFDL-TR-67-38, "Déesign Fabri-
e;g.ion, and Test of Aerospace Planes Beryllium Wing Box," March
1967.

(5) Lockheed-califomia COmpany, SIM #17, "Structural Life Assurance
Manual. '

- .
PURPOSE ¢ _

"To verify by analysis that the four panel- deslgs submitted satisfy the dynamic
requirements for sonic fatigue strength and flutter resistence described in
Reference (1). '

DISCUSSION:

(1) - Panel Flutter Ana;x sis
Two panel flutter modes were examined g complete panel flutter and inter stringe:
flutter. The experimental data conta_.ined in the Reference (2) document was
used to demonstrate that the panel flutter - requirements of Reference (1)
were met. S

(&) Complete Panel

The effective stiffness for a stiffened panel is given by:

| D% - |
.13 L
fare = D2C1-0—=]" 0,
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DISCUSSION: (continued)

For all of the four panels examined, the length/width (1 ) ratio is approxi-

w
mately 1.0. Hence from Figure 2 of Reference (3), we haves

i h . o
g e @

Substituting from (1)

1 ' _
[4/"” E2q0)E]’ s >os

. z< qc.’m‘-:'(i-u)LLE

3

The panel with the lowest value of bending stiffness . (Ix) is Panel #1, with
a value of 0.0l in.3 Teking Poisson's ratioV as 0.3, E = 42 x 1o6 1b/in°
and length (£) = 24 inches, q «< 380,000 / M2-l

" Clearly, the panels are flutter free in the gémpléte panel bending mode.

(b) Inter Stiffenmer Panel Flutter

Panel #1 is the most critical of the four panels in this mode, with a i/w
Refering to Figure 2, Reference (2) , the following
flutter stability criterion applier

(/—”——) va > onig

ratio of (22.5/3.3) = 6.8.

L Z

Vmil,

QUUJ{J

The panel with the minimum Ft3 is panel #4, with a value of 920 1b in. There-

fore q<<” 3440/ ;4-2-1 for no flutter.

581<

The flutter stability curve for this
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DISCUSSION: (continued)
mode is plotted in Figure 1, demonstrating that a flutter margin in excess
of :I_..S times the maximum dypamic pressure exists at any Mach number along

the design trajectories.

(2) - Papnel Sonic Futigue Analysis

The method described in the Reference (3) document was used to evaluate tﬁe
sonic fatigue characteristics of the four panels. This simplified analysis
method developed in Reference (3), provides root mean square stress generated
in a panel by aéoustic excitation at its fundamental natural vibration mode

given by: : .
Y LA YT
o = "—{/4_—? ()]
wvhere:
o = rms stress (psi) _
e unit psi stress (psi/psi)
S = damping ratio
2 = panel primary natural frequency (Hz)
si(f) = pressure power spectral density (p2/Hz)

From Reference (3),
. b.;(/} = 1/3 octave decibel level + 6.38 decibels
From Reference (1), maximum 1/3 octave level is 150 decibels, therefore

156.38 decibels

/f_ st (£) = 150 + 6.38 =
con =  0.19 psi

From stress analysis of the panels, the following unit pressure stresses are

as shown in Table I, together with computed values of RMS stress assuming
$= 0.02,

38<<
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TABLE I - RMS STRESSES GENERATED IN PANELS
Unit Pressure
Panel Stress(psi/pst) RMS Stress(Psi)
Ca Stringer Skin
# Stringer  Skin
#1 . .
Beryllium 8800 3460 10,400 k120
#2 .
T075-T6 2360 1000 2,800 1190
#3
T075-16 1kko 630 1,700 - TS0
#u
Titanium . 3150 1330 3,750 1580
(6a1 uv)

Discrete frequency S-N curve fatigue data for 7075-16 (Aluminum) apd -6AL
kv Pitanium Alloys were obtained from the Reference (5) document and data

for Beryllium sheet from the Reference (4) document.

A modified Miner cumu-

lative fatigue damage rule is used and the number of cycles to failure NR :

is given by:
kN
-k
where: P(z) T xe ®

square stress.

= C headd
TN
o

3

o is the Rayleigh probability
distribution of stress peaks, and .t = ratioc of peak stress to root mean

For various values of rms stress, the values of NR were obtained and ran-

dom S-N curves constructed from the discrete frequency S-N curves.

are shown in Figures 2, 3.and 4. Estimates of the number of cycles of ex-

These

posure have been based upon the Reference (i) data, which provided an environ- .
ment history for a particular mission. For one mission the environment was
betveen the maximum value and 20 decibels below the maximum value for & period
of 35 seconds. Assuming 100 missions, a csafe life margin of 4 times service
life, and an average panel natural frequency of 200 Hz, the design life cycles

D-5
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DISCUSSION: (contained)
(Nn) are:
N - L x 35 x 200 x 100 = 2.8 x 1° cycles

CONCLUSIONS :

'Figure 5 shows induced RMS stress plotted for each panel and each are less

than allowable randam S-N curve allowables.

Therefore, it is concluded that all four panels have adequate fatigue strength
to withstand the Reference (1) design environments.

384<
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ENGINEERING MEMORANDUM

TITLE: - EM NO:
VENTING CHARACTERISTICS OF LI-1500 |res: _
TILES WITH STRAIN ISOLATION oate: 15 October 1971
AUTHORS: - : APPROVAL:
’ . R ENGINEERING
R. Diggins SYSTEM ENGRG

REFERENCES

1. Drawing No. SKJ-205007, "TPS Mechanical Attachment for LI-1500 Tiles With Strain .
Insulation, " 27 September 1971

2. U.S. Government Two -Way Memo, "Point Design Requirements for Two Orbiter TPS
Design Areas — Reusable Surface Insulation TPS Development, Phase 2," Tillian to
LMSC, 21 July 1971

PURPOSE:

To investigate the venting characteristics of the thermal protection system (TPS) configura-
tion shown on Reference 1. .Specifically, as requested, the analysis was performed to
determine maximum differential pressures across the TPS tiles, under the assumption that
each panel assembly (approximately 10 in. by 30 in.) is hermetically sealed from adjacent
panels. . Y

TECHNICAL DISCUSSION:

It has been established that the maximum differential pressures on vented compartments occur
during the transonic phase of ascent, rather than during reentry. An ascent venting analysis -
has been performed, using the digital computer program "VENTRX". In this program, a -
venting model is set up to describe the volume(s) of air to be vented, orifice areas (external
and/or between compartments), and external pressure fields for all external orifices. Sharp-
edged, circular orifice flow coefficients are used, as modified to account for the effects of

an external velocity field.

The calculated volume of air under each panel assembly is 0.52 cu ft, and the external vent"
area (in square inches) is 37 times the average gap width (in inches) between TPS tiles.
External pressures have been taken from the Area 2 data of Reference 2, and these pressure
histories (in envelope form) are shown in Fig. 1. For this analysis, it has been assumed
that these pressures (identified as differential pressures in Reference 2), represent the
difference between the external surface pressure (py) and local ambient pressure (po) .
Ascent venting simulations were run for both the positive and negative pressures shown in

Fig. 1, using average gap widths of 0.005 and 0. 0025 in. The maximum resultant
differential pressures are 0.1 and 0.25 psi, respectively. However, with this. -

venting configuration (individual panels sealed off), since the internal air pressure very nearly
follows the external surface pressure, the primary load-carrying structure in ""Area 2"

must withstand differential pressures similar to (within 1.0 psi) those shown in Fig. 1.

Also, the supporting rib structure between adjacent panels must be capable of withstanding up -
to 8 ps1 differential in certain locations.

39152
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Because high differential pressures are produced by rapid external pressure changes, which
are not defined by the pressure envelopes of Fig. 1, an analysis was performed to determine
the effects of such changes on maximum differential pressures. In interference regions
"~ such as "Area 2," where local surface pressures are affected by the presence of an adjacent
. body (tank or booster), theoretical techniques during transonic flow are inadequate, and
wind-tunnel data are not available to define the maximum rates of change of surface pressures.
Therefore, these rates have been analyzed parametrically, using rates of 2 and 4 psi/sec.
With each rate, total pressure changes of 4 and 8 psi have been considered. The resulting
pressure history for the most severe case (4 psi/sec for 2 sec) is shown in Fig. 2.

The relationship between external, internal, and ambient absolute pressures is shown in
Fig. 3, for a gap width of 0. 005 in. It is seen that the differential pressure across the
thermal-protection surface continues to increase as the external pressure decreases; this is
typical for each of the cases examined.

A summary of the maximum differential pressures across the TPS panels is presented in
Fig. 4 as a function of gap width, rate of change of external pressure and length of time over
which rates are applied. In order to arrive at a maximum differential pressure suitable for
design purposes (in lieu of test data), some judgement must be applied. It is considered
that 2 psi/sec is a conservative value for change rate; this is approximately twice that used
in venting analyses on several SSD programs. Applying this rate for 4 sec reduces the
external pressure to less than 1 psi absolute. Thus, the ¢urve noted on Fig. 4 is recom-
mended for use in design analyses. It is emphasized that these pressures apply only for °
the condition in which it is assumed that each panel assembly is completely sealed from
adjacent panels. Should this not be the case, it may be assumed that, for relatively un-
restricted flow between panels, the internal pressure (air between TPS and primary structure)
will be local ambient +1 psi. In that event, the maximum TPS differential pressures
(depending on location) will be as given in Fig. 1, plus or minus 1 psi.

CONCLUSIONS:

Design differential pressures on the TPS panels are relatively low (less than 1 psi for an
average gap between tiles greater than 0.005 in.) if the entire surface is constructed such
that each panel assembly (approximately 10 in. by 30 in.) is hermetically sealed from adjacent
panels. This scheme, however,; imposes high differential pressures on primary structure
(as much as 5 psi) and on support ribs between panels (as much as 8 psi). In addition,

high costs would be incurred in manufacture and testing.

Alternatively, if air flow is allowed between panels, differential pressures on primary
structure and TPS support ribs would be reduced to less than 1 psi, while differentials across -
the TPS surface would be increased to as much as 5 psi in certain areas, possxbly requiring -
structural reinforcement in the form of bonded screen or solid subpanels. .
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