https://ntrs.nasa.gov/search.jsp?R=19750064451 2020-03-22T18:39:40+00:00Z

LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A RECTANGULAR, ASPECT-RATIO-6, SLOTTED SUPERCRITICAL AIRFOIL WING HAVING SEVERAL HIGH-LIFT FLAP SYSTEMS

by Kenneth W. Goodson Langley Research Center Hampton, Va. 23365

DOWNGRADED TO DALADSSIFICATION BY AUTHORITY OF NASA CLASSIFICATION CHANGE NOTICES NO.240 DATED 30.55076 ITEM NO.25

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. * AUGUST 1971

CONFIDENTIAL		an 199 - 1	1	v	<u></u> .
1. Report No. NASA TM X-2317	2. Government Access	io No:	3	. Recipient's Catalog	No.
4. Title and Subtitle LOW-SPEED AERODYNAMIC	CHARACTERIS	RISTICS OF A		5. Report Date August 1971	
CRITICAL AIRFOIL WING HA	AVING SEVERAL	HIGH-LIFT	6	. Performing Organiz	zation Code
7. Author(s)			8	. Performing Organiz	ation Report No.
Kenneth W. Goodson				L-7639	
Q. Performing Organization Name and Address			10	. Work Unit No.	
S. Performing Organization Name and Address			ļ	760-73-01	
Hampton, Va. 23365	er		11	. Contract or Grant	No.
		<u></u>	13	. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address				Technical	Memorandun
National Aeronautics and Spa Washington, D.C. 20546	ce Administratio	n	14	. Sponsoring Agency	/ Code
		- APOUM I D	, ~~ 100		And the second s
aspect-ratio-6 wing which ha several high-lift flap systems addition to the slot which exis and single-slotted flaps were 40-percent-chord plain flap y	d a supercritical s: plain flap, sin sts in this early v 40-percent chor vith a 15-percent	airfoil section gle-slotted fl version of the d. The doubl chord vane.	on. The ap, and superc: e-slotte All the	wing was fitte a double-slotte ritical airfoil. d flap consiste flap configura	ed with ed flap, in The plain ed of the tions were
aspect-ratio-6 wing which ha several high-lift flap systems addition to the slot which exis and single-slotted flaps were 40-percent-chord plain flap w tested with a wing-leading-ec to the wing-chord line. Test flaps could be set at angles for each segment of the wing and	d a supercritical s: plain flap, sin sts in this early v 40-percent chorvith a 15-percent lge slat set at van s were made ove rom 30° to 60° . flap at a midsen	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of Pressure dis nispan station	on. The ap, and superc: ae-slotte All the vn angle -attack	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s $(0^{\circ} \text{ to } 60^{\circ})$ w range of -4° to ns were measu	ed with ed flap, in The plain ed of the tions were ith respect $0 20^{\circ}$. The ured on
aspect-ratio-6 wing which ha several high-lift flap systems addition to the slot which exis and single-slotted flaps were 40-percent-chord plain flap v tested with a wing-leading-ec to the wing-chord line. Test flaps could be set at angles for each segment of the wing and	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ⁰ to 60 ⁰ . flap at a midsen SUE SUE SUE TWO DEC	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of- Pressure dis- nispan station VELED BY. COMATICALLY O-YEAR INTER LASSITION	on. The ap, and superc: e-slotte All the vn angle -attack stribution	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measu DECLASSIFIC. ORDER 11 AT EMBER 31,	ed with ed flap, in The plain ed of the tions were ith respect o 20 ⁰ . The ured on <i>DMAR-2</i> , ATION 652.
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap with tested with a wing-leading-ed to the wing-chord line. Test flaps could be set at angles for each segment of the wing and 17. Key Words (Suggested by Author(s)) 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ⁰ to 60 ⁰ . flap at a midsen SUE SCE AUT TWO DEC	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of Pressure dis- nispan station UETED BY. BJECCOP COMATICALLY D-YEAR INTE CLASSING 12 OF	on. The ap, and superc: e-slotte All the on angle -attack : tributio:	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measu 22.144 DF ASSIFIC ORDER 11 AT EMBER 31,	ed with ed flap, in The plain ed of the tions were ith respect o 20°. The ured on <u>NASC-2</u> ATION 652.
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap with tested with a wing-leading-exist to the wing-chord line. Test flaps could be set at angles for each segment of the wing and 17. Key Words (Suggested by Author(s)) High-lift flap systems Superarities limits 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ⁰ to 60 ⁰ . flap at a midsen SUE SUE SUE DEC	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of- Pressure dis- nispan station VFIED BY. SIECE COMATICALLY O-YEAR INFO LASSITURD 10 Stribution S Confiden	on. The ap, and superc: e-slotte All the vn angle -attack stribution	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measu 2252(25) DECLASSIFIC. ORDER 11 AT EMBER 31, Available to U.	ed with ed flap, in The plain ed of the tions were ith respect 0.20° . The ured on <i>DMAR-2</i> , ATION 652. S. Governme
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap were 40-percent-chord plain flap were tested with a wing-leading-ed to the wing-chord line. Test flaps could be set at angles file each segment of the wing and 17. Key Words (Suggested by Author(s)) High-lift flap systems Supercritical wing Low-speed aerodynamic chart 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lge slat set at van s were made ove rom 30 ^O to 60 ^O . flap at a midsen SUE SUE SUE SUE SUE SUE SUE SUE	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of Pressure dis- nispan station UFIED BY. SJECCE OF COMATICALLY O-YEAR INTE CLASSIFIED 10 stribution S Confiden	on. The ap, and superc: e-slotte All the on angle -attack tribution tribution	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measured DEC ASSIFIC. ORDER 11 AT EMBER 31, Available to U, s and Their Co	ed with ed flap, in The plain ed of the tions were ith respect o 20°. The ured on <u>MAE 2</u> ATION 652. S. Governme ontractors On
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap were 40-percent-chord plain flap were tested with a wing-leading-ed to the wing-chord line. Test flaps could be set at angles for each segment of the wing and 17. Key Words (Suggested by Author(s)) High-lift flap systems Supercritical wing Low-speed aerodynamic char Pressure data 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ^o to 60 ^o . flap at a midsen SUE SUE SUE SUE SCE AUT TWO DEC	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of- Pressure dis- hispan station UFIED BY. SJEC VEDULE OF COMATICALLY D-YEAR INT LASSI Confiden	on. The ap, and superc: e-slotte All the vn angle -attack tribution tribution	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) we range of -4° to ns were measure 2252(252) DECLASSIFIC ORDER 11 AT EMBER 31, Available to U. s and Their Co	ed with ed flap, in The plain ed of the tions were ith respect 0 20°. The ared on
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap were 40-percent-chord plain flap were tested with a wing-leading-ed to the wing-chord line. Test flaps could be set at angles for each segment of the wing and 17. Key Words (Suggested by Author(s)) High-lift flap systems Supercritical wing Low-speed aerodynamic char Pressure data 19. Security Classif (of this report) 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ^O to 60 ^O . flap at a midsen SUE SUE SUE SUE SUE SUE SUE SUE	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of- Pressure dis- nispan station SJECCE EDULE OF COMATICALLY O-YEAR INTER CLASSING 10 Stribution S Confiden	on. The ap, and superc: e-slotte All the vn angles -attack stribution	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measu 225222777 DECLASSIFIC ORDER 11 AT EMBER 31, Available to U, s and Their Co	ed with ed flap, in The plain ed of the tions were ith respect o 20°. The ured on ATION 652. S. Governme ontractors On
 aspect-ratio-6 wing which has several high-lift flap systems addition to the slot which exist and single-slotted flaps were 40-percent-chord plain flap were 40-percent-chord plain flap were tested with a wing-leading-ed to the wing-chord line. Test flaps could be set at angles for each segment of the wing and 17. Key Words (Suggested by Author(s)) High-lift flap systems Supercritical wing Low-speed aerodynamic char Pressure data 19. Security Classif. (of this report) 	d a supercritical s: plain flap, sin sts in this early v 40-percent chor- vith a 15-percent lige slat set at van s were made ove rom 30 ^O to 60 ^O . flap at a midsen SUE SUE SUE SUE SUE SUE SUE SUE	airfoil section gle-slotted fl version of the d. The doubl chord vane. rious nosedow r an angle-of- Pressure dis- nispan station VETED BY. SJECCOF COMATICALLY -YEAR INVE CLASSIC D 10 stribution S Confiden of this page) ed	on. The ap, and superc: e-slotte All the on angle -attack stribution <u>IT /m</u> WERAL WERAL ON DEC Statement ntial – Agencie	wing was fitted a double-slotted ritical airfoil. d flap consisted flap configura s (0° to 60°) w range of -4° to ns were measu 22.5444777 DF ASSIFIC ORDER 11 AT EMBER 31, Available to U, s and Their Co 21. No. of Pages 53	ed with ed flap, in The plain ed of the tions were ith respect o 20°. The ured on ATION 652. S. Governme ontractors On 22. Price

LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A RECTANGULAR. ASPECT-RATIO-6. SLOTTED SUPERCRITICAL AIRFOIL WING HAVING SEVERAL HIGH-LIFT FLAP SYSTEMS*

By Kenneth W. Goodson Langley Research Center

SUMMARY

Tests were conducted in the Langlev high-speed 7- by 10-foot tunnel on a rectangular aspect-ratio-6 wing which had a slotted supercritical airfoil section. The wing was fitted with several high-lift flap systems: plain flap, single-slotted flap, and a doubleslotted flap, in addition to the slot which exists in this early version of the supercritical airfoil. The plain and single-slotted flaps were 40 percent chord. The double-slotted flap consisted of the 40-percent-chord plain flap with a 15-percent-chord vane. All three flap configurations were tested with a wing leading-edge slat set at various nosedown angles $(0^{\circ} to 60^{\circ})$ with respect to the wing-chord line. Tests were made over an angleof attack range of -4° to 20° . The flaps could be set at angles from 30° to 60° , except for the double-slotted flap which was tested up to 70⁰ deflection. Pressure distributions were measured on each segment of the wing and flap at a midsemispan station. The pressure data obtained on this model are believed to represent the two-dimensional data closely since the aspect ratio is relatively large and the wing is rectangular in planform. The results show, as expected, that a leading-edge slat or other device is essential if high-lift capability is to be achieved. The maximum lift coefficient of the flapped system varies from about 2.85 for the plain flap to about 3.65 for the double-slotted flap for flap angles of about 50° with the leading-edge slat at about 40° .

Sample pressure distributions showing overall trends are presented for the basic wing and for each type of flap. The tests were made primarily at a Reynolds number of approximately 1.05×10^6 .

INTRODUCTION

In recent years, interest has been focused on improving the aerodynamic characteristics of aircraft in the high subsonic and transonic speed range. Aircraft utilizing conventional high-speed airfoil sections are penalized at these high speeds because of the

*Title, Unclassified.

CONFIDENTIAL.

drag rise associated with shock-induced separation which results in high thrust requirements. Recent high-speed wind-tunnel work (ref. 1) by Richard Whitcomb and associates has shown that special contoured airfoils (supercritical airfoils) provide considerable improvement in the lift and drag characteristics at transonic speeds. These aircraft, however, must be able to land and take-off from reasonable length runways without undue penalty. For this reason the present investigation was undertaken to study the low-speed aerodynamic characteristics of several high-lift flap systems on an early slotted version of the supercritical wing. Subsequent tests at high transonic speeds on supercritical airfoils have shown that the slot in the airfoil is not needed.

The investigation was conducted in the Langley high-speed 7- by 10-foot tunnel on a rectangular aspect-ratio-6, supercritical airfoil wing which was fitted with several high-lift flap systems: a plain flap, a single-slotted flap, and a double-slotted flap. Each flap configuration was tested with and without a leading-edge slat. The flap systems included the slot which exists near the trailing portion of the basic supercritical airfoil. Pressures were measured on each segment of the wing-flap system at the midsemispan station.

SYMBOLS AND COEFFICIENTS

The measurements of this investigation are presented in the International System of Units (SI), the U.S. Customary Units being indicated in parentheses. The measurements and calculations were made in the U.S. Customary Units. Details concerning the use of SI units, together with physical constants and conversion factors, are presented in reference 2. (Also, see appendix.)

The positive directions of forces, moments, and angles are indicated in figure 1. The data are presented about the stability axes with moments presented about the quarter chord of the mean geometric chord.

- A aspect ratio
- a₀ theoretical two-dimensional lift-curve slope
- b wing span, meters (ft)
- c wing chord, meters (ft)
- c₁ section of basic wing ahead of slot (0.858c) and section of basic wing ahead of various flap configurations (0.75c), meters (ft) (see table II)

^c 2	chord of flap leading section, meters (ft) (see table II)
c ₃	chord of basic airfoil segment aft of slot; also trailing section of flaps aft of slot (same as for basic wing), meters (ft) (see table II)
c ₄	chord of leading-edge slat, meters (ft) (see table II)
°5	chord of flap vane, meters (ft) (see table II)
C _D	drag coefficient, $\frac{Drag}{q_{\infty}S}$
c _{D,o}	profile drag coefficient
C_L	lift coefficient, $\frac{\text{Lift}}{q_{\infty}S}$
$\mathrm{c}_{\mathrm{L}_{oldsymbol{lpha}}}$	three-dimensional lift-curve slope
C _m	pitching-moment coefficient, $\frac{\text{Pitching moment}}{q_{\infty}S\bar{c}}$
c _{m,o}	pitching-moment coefficient at zero lift coefficient ($\alpha \approx 0$)
Cp	pressure coefficient, $\frac{p_l - p_{\infty}}{q_{\infty}}$
е	Oswald's wing efficiency factor, $\frac{C_L^2}{\pi A(C_D - C_{D,O})}$
p _l	local static pressure, newtons/meter ² (lb/ft ²)
₽ _∞	free-stream static pressure, newtons/meter ² (lb/ft ²)
\mathbf{q}_{∞}	free-stream dynamic pressure, newtons/meter ² (lb/ft ²)
R	radius, cm (in.)
S	wing area, meter ² (ft ²)
V_{∞}	free-stream velocity, m/sec (ft/sec)
x	distance along chord of selected wing or flap element (see tables I to IV), meters (ft)

ATTEND TO THE AT

 y_l lower ordinate y_u upper ordinate α angle of attack of wing chord line (also of fuselage center line), deg δ_f flap deflection referenced to wing-chord line, deg δ_s leading-edge slat deflection with respect to wing-chord line, deg δ_v vane deflection of double-slotted flap with respect to wing-chord plane, degSubscript:

max maximum

MODEL AND APPARATUS

A drawing of the rectangular aspect-ratio-6, supercritical airfoil wing model is presented in figure 2. The basic supercritical wing was fitted with several high-lift flap systems, one of which is also shown in the second end view of figure 2. The high-lift flap systems were formed by modifying the basic supercritical airfoil section to form a plain flap, a single-slotted flap, and a double-slotted flap. The plain and single-slotted flaps consisted of the aft 40 percent of the basic airfoil, the 0.375-chord nose of the flap being rounded off to conform to the leading edge of a modified 4415 airfoil to fit into the basic airfoil ordinates at the 0.75-chord station. The double-slotted flap was formed by adding a 0.15-chord vane (St. Cyr 156 airfoil) to the front of the plain 40-percent-chord flap. Coordinates for the basic supercritical airfoil are shown in table I. The details of each flap configuration and the coordinates of the various components are shown in figure 3 and table II. The flap angles could be set at the angles indicated in figure 3 through the use of fixed brackets. The wing was also fitted with a 15-percent-chord leading-edge slat having a St. Cyr 156 airfoil. (See fig. 3 and table II.)

The model had a minimum sized body to house the strain-gage balance, angle-ofattack indicator, and the pressure-measuring scanner valves. The basic wing was constructed of solid aluminum, whereas the body consisted of a 0.32-cm-thick (1/8-in.) fiber-glass-resin shell attached to the balance mounting block. The various components of the flaps and slat were constructed of steel. Each component of the wing-flap-slot system had pressure orifice tubes installed at the midsemispan station of the left wing panel for measuring pressure contours through the use of scanner valve transducers. The

chordwise locations of the pressure orifices are shown in tables III and IV. The model was mounted on a six-component strain-gage-balance sting support system. Photographs of the model mounted in the Langley high-speed 7- by 10-foot tunnel are shown in figure 4.

TESTS AND CORRECTIONS

The investigation was conducted in the Langley high-speed 7- by 10-foot tunnel. Most of the tests were conducted at a dynamic pressure of 1915 newtons/meter² (40 lb/ft²). A 0.25-cm-wide (0.1-in.) strip of No. 60 carborundum (33 grains per cm or 85 grains per inch) was located on the upper surface of the wing and slat leading edges at the 0.06-chord position to fix transition and to improve the stall characteristics. The transition strips were used for all tests. The basic wing was tested through a Reynolds number range from 0.70×10^6 to 2.40×10^6 . All the flap tests were made at a Reynolds number of 1.05×10^6 at a dynamic pressure of 40 lb/ft² and a Mach number of approximately 0.17. The Reynolds numbers were based on the wing geometric chord of 30.48 cm (12 in.).

The plain and single-slotted flaps were tested at 30° , 40° , and 50° , whereas the double-slotted flap was tested at 50° , 60° , and 70° . The three flap configurations were tested with a leading-edge slat at various nosedown angles ($\delta_s = 30^{\circ}$, 40° , 50° , and 60°) measured with respect to the wing-chord line. The flaps were also tested with the basic airfoil slot sealed with transparent cellophane tape. Tests were made over an angle-of-attack range of -4° to 22° . Pressure distributions were measured on each segment of the wing and flap at the midsemispan station of the left wing panel.

Jet-boundary corrections (ref. 3) and blockage corrections (ref. 4) were applied to the measured force and moment data. The drag data were also corrected for base pressure measured on the small body.

PRESENTATION OF RESULTS

The basic-wing longitudinal aerodynamic characteristics are presented in figure 5. The aerodynamic characteristics of the flap configurations with and without the leadingedge slat are presented in figures 6, 7, and 8 for the plain, single-slotted, and doubleslotted flaps, respectively. These basic data have been rearranged to show a direct comparison of the various flaps at a given flap deflection and slat deflection as shown in figure 9. Results showing the effect of sealing the slot of the basic airfoil is presented in figures 10 to 12. A plot showing the best flap-slat combination for each flap configuration is shown in figure 13. Figure 14 compares the chordwise pressure distribution of the various flap configurations for a deflection of 50° with and without the leading-edge slat at several angles of attack.

DISCUSSION

Basic Wing

Low-speed results for the basic rectangular aspect-ratio-6 slotted supercritical wing show a lift-curve slope of about 0.082 per degree or 4.70 per radian. (See fig. 5.) By correcting this value to infinite aspect ratio by use of the equation (from ref. 5)

$$\mathbf{a}_{\mathbf{O}} = \frac{\mathbf{C}_{\mathbf{L}_{\boldsymbol{\alpha}}}}{\sqrt{1.0 - \left(\frac{2\mathbf{C}_{\mathbf{L}_{\boldsymbol{\alpha}}}}{\pi\mathbf{A}}\right)}}$$

a two-dimensional value of 6.64 per radian can be obtained which is essentially the theoretical value for an airfoil of this thickness (13 percent).

The data of figure 5 show a reduction in lift coefficient (at stall) with increase in Reynolds number, which is contrary to that normally expected at low speeds. It is probable that at the higher Reynolds numbers, compressibility effects coupled with the thickness of the present wing (13-percent chord) and the leading-edge airfoil contour could cause local separation that reduces the maximum lift coefficient. Note the negative angle of attack at zero lift coefficient and also note the negative $C_{m,0}$ resulting from the shape (camber) of the supercritical airfoil.

The merits of the basic slotted supercritical airfoil at high subcritical Mach numbers as substantiated by two-dimensional pressure measurements are presented in reference 1.

Flapped Wing

The present flap investigation was undertaken to see whether there were any particular problems associated with obtaining high lift on the supercritical airfoil configuration. It was felt that maximum lift coefficients historically obtained on various types of flap systems should also be obtainable with the supercritical airfoil. Comparison of the basic flap data of figures 6, 7, and 8 shows that anticipated values of lift coefficient based on results of conventional airfoil flap data were, in fact, achieved. These data show that the maximum lift coefficient for the 40-percent-chord flaps varied from 2.85 for the plain-flap configuration to about $C_{L,max} = 3.70$ for the double-slotted-flap configuration, provided a leading-edge slat was used to prevent early wing stall. The data show that for very high lift the leading-edge slat is an essential component of the flap system in order to direct the large upwash at the leading edge properly. Comparison of different leadingedge slat deflection angles indicates that there is an optimum angle above or below which separation will occur from either the upper or lower surface of the slat. Separation

effects also become evident if the flap angle is too large; see figure 8 for the doubleslotted flap where the maximum lift coefficient for $\delta_f = 70^\circ$ is reduced to about 2.90 compared with the highest value of 3.70 at $\delta_f = 60^\circ$. It should be pointed out here that part of this high-lift coefficient is due to the slot (fig. 2) which exists in the basic airfoil (figs. 10 to 12). The positive lift increment due to the basic wing slot varies from about $C_L = 0.12$ to $C_L = 0.25$. For a more direct comparison of one flap with another, see figure 9 which compares the flaps at a given slat deflection.

To illustrate the maximum lift levels obtained, the best flap-slat combination of each flap system is presented in figure 13 along with the curve for the wing alone. Also shown in this figure is the lift-drag curve for each configuration and a comparison of that curve with the lift-drag curve obtained by use of the equation, $C_D = C_{D,O} + \frac{C_L^2}{\pi Ae}$, where the profile drag coefficient is taken to be 0.025 and the Oswald wing efficiency factor as determined from the basic aspect-ratio-6 wing results is 0.76.

The pitching-moment curves show the negative $C_{m,0}$ for the basic airfoil and the typically large negative pitching moment resulting from loading the aft portion of the wing through use of a flap system.

Chordwise Pressure Profiles

As previously mentioned, the model was instrumented to measure chordwise pressures on each segment of the wing and flap systems. To expedite publication of the force and moment data, only typical samples of the pressure profiles are presented herein. (See fig. 14.) Pressure profiles are presented for $\alpha = 0^{\circ}$, for $\alpha \approx 10^{\circ}$, and for $\alpha \approx 20^{\circ}$. To obtain an overall picture of how each flap component behaves, compare these pressure data with the force data of figures 5 to 8. Note that, with flaps deflected and without the leading-edge slat (fig. 14(a)), stall occurs at angles of attack less than 10⁰ (except for the basic wing). Notice that, in general, when the leading-edge slat is reasonably loaded, the remainder of the flap system tends to hold on to higher angles; this condition is especially true at the higher slat deflection. Comparison of figures 14(a) to 14(d) shows the benefit of having an optimum leading-edge slat angle and also the benefit of a vane in the flap system. Note the large lower surface negative pressure coefficients on the aft end of the wing leading segment of the single-slotted-flap configuration at both the $30^{\rm O}$ and $40^{\rm O}$ slat deflection angles (figs. 14(b) and 14(c)), and how this trend is very much improved when the slat is deflected 50°. Also observe that this large negative pressure coefficient on the lower surface forward section of the wing does not exist with the double-slotted flap configuration because the vane helps turn the flow. These results point out the necessity for having a leading-edge device deflected to an optimum angle and also the benefit to be derived from the more complicated flap-vane combination.

CONCLUDING REMARKS

The present investigation of several high-lift flap systems on a rectangular aspectratio-6 wing which has a supercritical airfoil shows that high maximum lift coefficients typical of good flap systems utilizing other airfoil sections are achieved. The maximum lift coefficient of the present investigation varied from about 2.85 for the plain flap to about 3.70 for the double-slotted flap. The present results emphasize the need for a good leading-edge slat or other device to handle the large upwash produced by a highly loaded flap system properly. The data also show that an optimum slat deflection is important to obtaining the largest increment of lift.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., June 9, 1971.

CONVERSION TO INTERNATIONAL SYSTEM OF UNITS (SI)

Factors required for converting the U.S. Customary Units used herein to the International System of Units (SI) are given in the following table:

Physical quantity	U.S. Customary Unit	Conversion factor (*)	SI Unit
Area	$ \begin{array}{c} {\rm ft}^2 \\ {\rm lbf} \\ {\rm in.} \\ {\rm ft} \\ {\rm ft-lbf} \\ {\rm lbf/ft}^2 \\ {\rm ft/sec} \end{array} \end{array} $	0.0929 4.4482 2.54 0.3048 1.3558 47.8803 0.3048	meters ² (m ²) newtons (N) centimeters (cm) meters (m) meter-newtons (m-N) newtons/meter ² (N/m ²) meters/second (m/sec)

*Multiply value given in U.S. Customary Unit by conversion factor to obtain equivalent value in SI Unit.

CONFIDENTIAL

REFERENCES

- 1. Whitcomb, Richard T.; and Clark, Larry R.: An Airfoil Shape for Efficient Flight at Supercritical Mach Numbers. NASA TM X-1109, 1965.
- 2. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1969.
- Gillis, Clarence L.; Polhamus, Edward C.; and Gray, Joseph L., Jr.: Charts for Determining Jet-Boundary Corrections for Complete Models in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. (Formerly NACA ARR No. L5G31.)
- Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM A7B28.)
- Lowry, John G.; and Polhamus, Edward C.: A Method for Predicting Lift Increments Due to Flap Deflection at Low Angles of Attack in Incompressible Flow. NACA TN 3911, 1957.

TABLE 1.- BASIC WING COORDINATES

Airfoi	Airfoil leading section		Airfoll trailing section		
x/c	y _u /c	У ₁ /с	x/c	y _u /c	у _l /с
0	0.0146	0.0146	0.7630	-0.0195	-0. 0195
.001	. 0220	.0074	. 7640	0158	0215
.002	. 0248	. 0045	. 7660	0120	0215
.004	.0288	.0005	.7680	0090	0210
.0060	.0310	~.0022	.7700	0143	0200
.0080	. 0340	- 0020	7780	0011	- 0160
0100	.0383	0105	.7820	. 0068	0145
0180	.0402	0140	.7860	. 0100	0130
. 0220	. 0420	0172	.7900	.0129	0115
. 0260	. 0435	0197	. 7980	.0176	0087
. 0340	. 0458	0250	.8060	. 0212	0062
.0420	.04/6	- 0202	. 8140	. 0257	0045
0000	.0490	0357	8300	. 02.63	- 0010
.0700	.0515	0387	.8380	. 0267	.0007
. 0800	.0525	0417	. 8460	. 0266	.0017
. 0900	. 0532	0440	. 8540	. 0263	. 0028
. 1000	. 0540	0465	.8620	. 0259	.0037
. 1200	.0551	0510	.8700	. 0252	.0045
. 1400	. 0560	0247	. 8/80	0225	.0025
. 1025	.0505	- 0605	.0000	0225	.0000
.2000	.0578	0628	. 9020	.0213	.0072
. 2400	. 0586	0660	. 9100	. 0203	.0078
. 2800	. 0542	0680	. 9180	.0187	. 0080
. 3200	. 0596	0698	. 9260	.0173	.0081
. 3000	. 0599	0/00	.9340	. 0155	.0075
. 4000	. 0600	0708	0500	.0135	.0065
. 4800	.0600	0685	. 9580	. 0090	.0033
. 5200	. 0599	0665	.9660	.0062	.0010
. 5600	. 0595	0638	. 9740	.0030	0013
. 6000	. 0590	0600	. 9820	0005	0040
. 6200	. 0589	05/5	. 9860	0023	0055
. 6400	0583	- 0532	. 9900	0040	0070
6600	. 0581	0513	1 0000	- 0056	- 0110
. 6660	.0580	- 0500	1.0000		.0110
. 6720	.0578	0485	1		
. 6780	.0576	0473			
. 6840	. 05/5	0455			
. 0900	0573	- 0455			
.7020	. 0568	0397			
.7080	. 0566	0375	1		
.7140	. 0563	0345			
.7200	. 0560	0313			
.7260	. 055/	0275	1		
7380	.0551	0179	1		
.7440	. 0548	0101	1		
.7500	. 0545	.0001			
. 7560	. 0542	.0085			
.7620	. 0538	. 0154			
.7080	0531	. 0212	1		
.7800	. 0528	.0303			
.7860	.0524	.0338	1		
.7920	. 0520	. 0369			
.7980	.0515	. 0395	1		
.8040	. 0511	.0416	1		
8018	.0207	. 0433			
.0100	.0498	.0440	-		
.8280	. 0494	.0462	1		
.8340	. 0489	.0465	1		
. 8400	. 0484	. 0465	1		
.8460	. 0480	.0463			
. 6520	.04/5	.0460	1		
.0000	- 04F0	.042/	1		

11

TABLE 11.- FLAPPED WING COORDINATES

TABLE III.- PRESSURE ORIFICE LOCATIONS ON BASIC WING

ALC: NOT DEPARTMENT OF

TABLE IV.- PRESSURE ORIFICE LOCATIONS ON VARIOUS FLAP COMPONENTS

 $c_1 = 22.86(9.00)$ $c_4 = c_5 = 4.57(1.80)$ $c_2 = 7.87(3.10)$ $c_3 = 7.21(2.83)$

Airfoil leading section	Slat and vane	Flap leading section	Flap trailing section
x/c1	^{x/c} 4 or 5	x/c2	x/c3
0 . 0286 . 0571 . 0859 . 1144 . 1716 . 2288 . 2856 . 3432 . 4004 . 4576 . 5711 . 6863 . 8008-Top only . 9152-Top only . 9667-Top only . 9667-Top only . 9667-Top only	0 .075 .150 .200 .300 .400 .500 .600 .700 .800 .8611	0 . 0249 . 0501 . 0750 . 1001 . 1498 . 2000 . 2500 . 3001 . 3498 . 3998 . 5000 . 6001 . 6999 . 8001 . 8999 . 9499 1. 000-Top only	0 .0250 .0499 .0999 .1498 .2000 .2500 .2996 .4001 .5000 .5999 .7029 .7560-Bottom only .8263-Top only

MUDENTAL

Figure 2.- Three-view drawings of supercritical wing showing basic wing and a typical flap configuration. All dimensions are in centimeters; parenthetical values are in inches.

(a) Plain flap (Fowler type).

Figure 3. - Geometric characteristics at various flap configurations.

CONFERENCE

(b) Single-slotted flap.Figure 3. - Continued.

(c) Double-slotted flap.

Figure 3. - Concluded.

EDE NULLE

ONFIDEN

Figure 5.- Aerodynamic characteristics of the basic supercritical wing at several Reynolds numbers.

Figure 6.- Longitudinal aerodynamic characteristics of the supercritical wing with a plain flap (Fowler type) and various leading-edge slat angles.

(b) $\delta_f = 40^{\circ}$. Figure 6.- Continued.

(c) $\delta_{f} = 50^{\circ}$.

Figure 6. - Concluded.

Figure 7.- Longitudinal aerodynamic characteristics of the supercritical wing with a single-slotted flap and various leading-edge slat angles.

Figure 7.- Continued.

CONTRACTOR

(c) $\delta_f = 50^{\circ}$. Figure 7.- Concluded.

Figure 8.- Longitudinal aerodynamic characteristics of the supercritical wing with a double-slotted flap and various leading-edge slat angles.

(b) $\delta_{f} = 60^{\circ}$.

Figure 8. - Continued.

(c) $\delta_{f} = 70^{\circ}$.

Figure 8.- Concluded.

CONFERMENT

Figure 9.- Continued.

1.5

CONJET

Figure 9. - Continued.

(e) Concluded.

Figure 10. - Effect of sealing the supercritical wing slot on the plain flap configuration.

WIN HUND

CONLET

Figure 12. - Effect of sealing the supercritical wing slot on the double-slotted flap configuration.

A DESCRIPTION OF THE OWNER

COMPLETIAL .

Figure 13.- Highest lift curve for best flap-slat combination of each type of flap.

ş

Figure 14.- Comparison of sample chordwise pressure distributions of the various flap configurations. (For flapped configuration, $\delta_f = 50^{\circ}$.)

- - INTOTED IN NO.

이 같은 것은 것이 없어?

Figure 14.- Continued.

NASA-Langley, 1971 — 1 L-7639

"The aeromantical and space activities of the United States thall be conducted to at to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space." The Administration shall provide for the undest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL ABBONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 30546