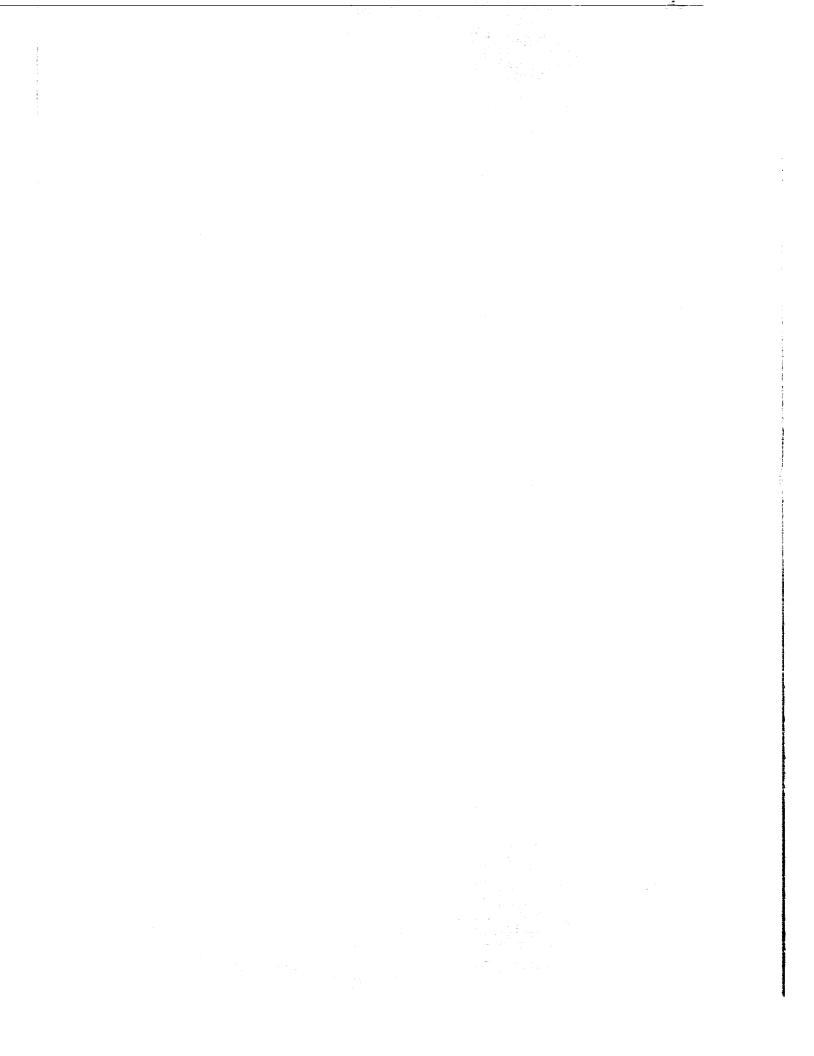


SPECIAL RELEASE


Not to be indexed, referenced, or given further distribution without approval of NASA.

COMPATIBILITY OF MATERIALS WITH LIQUID OXYGEN

by C. F. Key and W. A. Riehl George C. Marshall Space Flight Center Huntsville, Ala.

FOR INTERNAL U. S. GOVERNMENT USE ONLY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . AUGUST 1964

COMPATIBILITY OF MATERIALS

WITH LIQUID OXYGEN

By C. F. Key and W. A. Riehl

George C. Marshall Space Flight Center Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

.

TABLE OF CONTENTS

	Page
SUMMARY	1
SECTION I. INTRODUCTION.	1
SECTION II. TEST METHOD	2
A. Equipment B. Sample Preparation	
1. Solid Materials	-
 Liquids	3
C. Acceptance Criteria	Ĵ
SECTION III. RESULTS	Ŭ
SECTION IV. DISCUSSION	-
A. Lubricants	5
B. Sealants and Threading CompoundsC. Thermal and Electrical Insulation	
D. Elastomers, Plastics, AdhesivesE. Gaskets and Packing	8
F. Metals, Alloys, Solders, and Surface Treatments.G. Dye Penetrants.	8
1. Qualitative Studies	9
 Quantitative Studies	
H. Solvents, Cleaning Agents, and Miscellaneous	11
REFERENCES	72

LIST OF ILLUSTRATIONS

.

Table

.

Figure	Title	Pa	ge
1.	LOX Impact Sensitivity Tester	•	1
2.	Details of Striker, Sample Cup, and Sample (Impact Sensitivity Tester)	•	2
3.	Samples in Test Cups	•	3
4.	Grease Insert Cup Holder	•	4
5.	Sample Freezing Box	••	4
6.	LOX Impact Reactivity of Mylar, Nylon, and Typically Hazardous Materials	•	7

LIST OF TABLES

Title

Page

I	Lubricants	12
п	Sealants and Threading Compounds	22
ш	Thermal and Electric Insulation	25
IV	Plastics, Elastomers, and Adhesives	30
v	Gaskets and Packings	48
VI	Metals, Alloys, Solders, and Surface Treatments	55
VII	Dye Penetrants	61
VIII	Chemicals, Solvents, and Miscellaneous	67

COMPATIBILITY OF MATERIALS WITH LIQUID OXYGEN

BY

C. F. Key and W. A. Riehl

SUMMARY

The test instrument and procedure developed by Lucas and Riehl (Ref. 1) was used to determine the compatibility of a wide variety of materials with liquid oxygen (LOX). This method is based upon the tendency of materials to react with LOX on impact and is commonly known as the "ABMA Tester". Within the past eight years' use, over 100,000 individual test drops have been made on approximately 1,000 different materials.

Pertinent data from these tests have been compiled, and the findings are presented in this report. Recommendations are made for the guidance of designers and others in the selection of safe materials for use in oxygen systems. Materials are discussed according to the following classifications: (1) Lubricants, (2) Sealants and Threading Compounds, (3) Thermal and Electrical Insulation, (4) Elastomers, Plastics and Adhesives, (5) Gaskets and Packing, (6) Metals, Alloys, and Solders, (7) Dye Penetrants, and (8) Solvents, Cleaning Solutions, and Miscellaneous.

SECTION I. INTRODUCTION

Liquid oxygen is one of the most important oxidizers in missiles and space vehicles and is the only propellant common to all of the "building block" stages of the Saturn I, Saturn IB, and Saturn V space vehicles (S-I, S-IV, S-IB, S-IC, S-II, S-IVB). It is well known that many materials in contact with liquid oxygen (LOX) are capable of exploding and/or igniting when subjected to mechanical shock or some other sudden energy surge. Organic materials of the type conventionally used as fuels, lubricants, gaskets, etc., are particularly hazardous. The environmental and structural démands imposed on space vehicle systems make it impossible to rigidly exclude all materials that fall within these categories. Accordingly, a LOX impact test device (Fig. 1) was developed to provide information on the relative hazard presented by these materials. This instrument has been in use for over eight years on a continuous basis to assess the hazard associated with products and materials contemplated for use in space vehicle LOX systems at the George C. Marshall Space Flight Center (MSFC). The development of this method and device was described by Lucas and Riehl (Ref. 1).

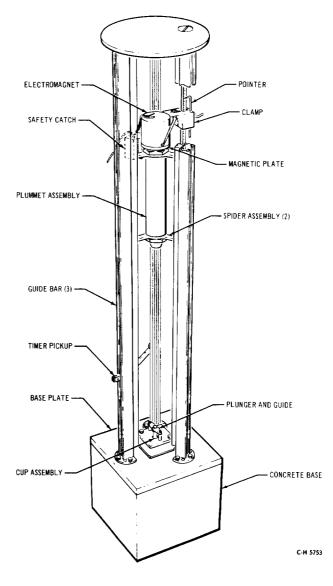
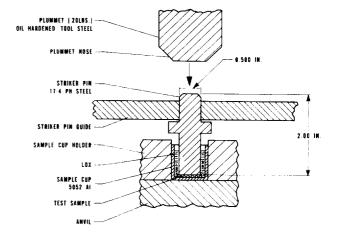


FIGURE 1. LOX IMPACT SENSITIVITY TESTER

A previous report listed data accumulated over the first several years of testing and presented general conclusions and/or indications (Ref. 2). At this writing, over 100,000 individual tests have been made on approximately 1,000 different materials at this Center (or its organization predecessor).* The object of this report is to provide the results of over eight years of testing and general information gained therefrom. Recommendations are made for guidance of designers and others in the selection of safe materials for use in oxygen systems. These recommendations generally apply also to systems containing other gases (air, helium, nitrogen, etc.) that are intended for purging or pressurizing LOX systems. Any impact sensitive lubricant, sealant, or other material employed in a purging or pressurizing system could possibly be swept into the LOX equipment and might introduce a serious hazard.

This report supersedes that of Curry and Riehl (Ref. 2).


SECTION II. TEST METHOD

A. EQUIPMENT

The apparatus used for all of the tests reported herein was the "ABMA Tester".

The mechanical features and operations of the ABMA LOX impact tester have been described comprehensively in other reports and will not be stated herein (Ref. 1 and MSFC-SPEC-106 [Appendix]). It should be noted, however, that experience gained throughout this program has confirmed consistently the absolute necessity of guarding against contamination in the test equipment if meaningful results are to be obtained. Special cleaning practices are followed in preparing the test equipment, and it has been found that any deviation from these procedures usually is reflected in anomalous results during subsequent tests.

In principle, this test procedure involves dropping a standard plummet of known weight (9.04 Kg) from known heights (up to 1.1 meters) under near-frictionless conditions. This plummet strikes a plunger which is resting on a layer of the material being tested in the bottom of an expendable aluminum alloy cup. The remainder of the sample cup is filled with liquid oxygen. Details of striker cup and sample are shown in Figure 2. During a series of such tests, a material capable of reacting with LOX under these conditions will explode and/or flash brillantly. The highest energy level withstood by a given material without an indication of sensitivity in twenty trials is considered an indication of hazard associated with the material under test.

FIGURE 2. DETAILS OF STRIKER, SAMPLE CUP, AND SAMPLE (IMPACT SENSITIVITY TESTER)

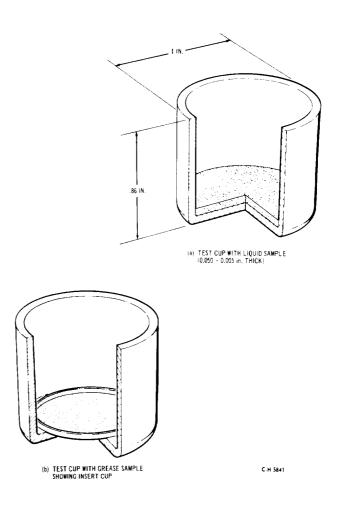
B. SAMPLE PREPARATION

It has been found in previous work (Ref. 1 and 2) that sample preparation is a very important factor if reproducible test results are to be obtained. With all samples tested, LOX impact sensitivity varies with thickness. Reactivity generally increases as the sample thickness is decreased. However, this relationship cannot be assumed to be directly proportional and may actually reverse with some materials. For example, with some sheet titanium samples, there appeared to be a trend toward increased reactivity with thicker samples (Ref. 3). It is quite difficult to ascertain the inherent relationship of thickness and sensitivity to impact because multiple factors usually are involved, such as sample hardness, flexibility, ductility, etc., at LOX temperatures.

^{*} Prior to July 1, 1960, this Center was the Development Operations Division of the Army Ballistic Missile Agency. As the test method and instrument were developed several years ago under the cognizance of the Army, and since the instrument has since become widely known as the "ABMA Impact Sensitivity Test Instrument," it will be referred to as such in this report, even though this instrument is now used under cognizance of Marshall Space Flight Center.

Another factor of importance is the state of the materials which are frozen by the LOX, especially liquid samples. The state of subdivision of the sample also is important. For example, even stainless steel will react with LOX if it is in the form of fine wool.

1. Solid Materials


All solid materials (metals, gaskets, plastics, etc.) are tested in the form of 11/16-inch diameter discs in the specific thickness intended for use. Pressure sensitive tapes, coatings, surface treatments, etc., are tested after applying them to test discs of the metal or other substrate upon which they will be used in service. When hard or granular materials are to be tested, a type 347 stainless steel insert is placed as a false bottom in each sample cup. This technique was necessitated by the early discovery in the program that some hard materials (silica, carborundum, etc.) could give a false indication of impact sensitivity under the conditions imposed by this test procedure. Such hard materials are driven into the aluminum sample cup by the plunger, causing extreme local deformation of the metal. The heat liberated at microscopic points of contact between the aluminum and the granular material is in some cases sufficient to trigger a detectable reaction between the fresh aluminum surface and the LOX. (Data showing this effect were reported in Ref. 1 & 2).

2. Liquids

Materials such as lubricants, sealants, etc., whose thickness is not dictated by the intended application, are normally tested in thicknesses of 0.050 inch. This thickness was selected on the basis of providing a condition to which test results are most sensitive to variations in materials (Ref. 1). This thickness can be attained readily in the case of liquid materials by metering individual samples into the test cups from aburette. It has been ascertained that 0.50° cc of liquid will produce a 0.050 inch (± approximately 0.005 inch) layer in the bottom of the test cups (Fig. 3).

3. Semi-Solids

Greases, caulking compounds, and other semi-solid materials are tested at a thickness of 0.050 inch by use of special cup inserts. These inserts are fabricated from type 5052 aluminum and have an internal depth of 0.050 \pm 0.005 inch (Fig. 4). A series of twenty of these are placed in a special holder (Fig. 4). Sufficient material is pressed into the cups with a clean stainless steel spatula until a smooth surface, flush with the top, is obtained. The insert cups then are removed and placed in the bottom of the regular specimen cups with tweezers (Fig. 3).

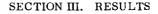


FIGURE 3. SAMPLES IN TEST CUPS

A freezing technique has been developed which provides uniform frozen samples of both liquids and semi-solids. The test cups, containing the samples, are placed in a special freezing box (Fig. 5). LOX is poured into the bottom, and the samples are slowly frozen by the vapors. After freezing, sufficient LOX is introduced to overflow and fill the test cups. Any samples that crack and float in the LOX are discarded.

C. ACCEPTANCE CRITERIA

In order to acceptance-test a material for use in LOX systems, twenty separate samples of the material submerged in LOX are subjected to 10 kg-m (72 ft-lbs) impact energy delivered through a 1/2-inch diameter area. More than one indication of sensitivity is cause for immediate rejection. A single explosion, flash, or other indication of sensitivity during the initial series of twenty tests requires that an additional forty samples be tested without incident to insure acceptability of the material.

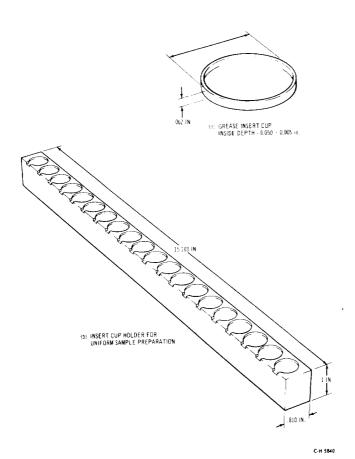


FIGURE 4. GREASE INSERT CUP HOLDER

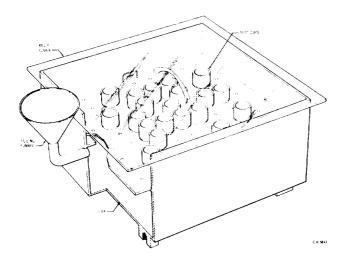


FIGURE 5. SAMPLE FREEZING BOX

The results obtained by application of the foregoing test procedure to a wide variety of proprietary products are tabulated according to categories in Tables 1 through 8. The materials are rated according to the test results as follows:

- S Satisfactory for LOX service if cleaned and/or processed by applicable MSFC standards
- BT Satisfactory as stated above, with the provision that each manufacturer's batch of the product must be individually tested and found acceptable
- C Conditional, insufficient test experience to rate sample adequately
- U Unacceptable, capable of vigorous burning or exploding in contact with LOX

Two notes of caution are in order. (1) Wherever possible, a complete identification is made of the materials tested. Although some general conclusions can be drawn relative to certain classes or chemical families of materials, it is definitely unsafe to predict the behavior of any totally new product on this basis. Even materials normally inert to LOX can be rendered unsafe by minute amounts of processing additives, pigments, etc., that may be favored by one manufacturer or processor. It is equally unsafe to define a material for a specific application in liquid oxygen solely on the basis of a military or other specification for a general purpose product, since most of such specifications do not limit sufficiently the chemical constitution of the product. (2) Assuming there is freedom from deleterious additives or contaminants, the chemical nature of the product primarily governs its behavior toward LOX. For these reasons, the tabulated test data are applicable only to the specific proprietary products mentioned and may not apply to other similar materials or to other products meeting the same specification.

An additional factor that must be kept in mind in evaluating the data is <u>only the chemical compatibility</u> of the material with oxygen systems is reported herein. This criterion will apply to all materials which may contact oxygen. However, many other factors usually must be considered before a final material selection can be made. For example, if a lubricant were to be used on an O-ring in a valve in an oxygen system at low temperature, at least four additional factors must be investigated as follows:

1. Corrosivity of the lubricant and metal

components which it may contact during storage and use

2. Compatibility of the lubricant and elastomer O-ring or other seals

3. Low temperature behavior of the lubricant

4. Lubricity of the material under operating conditions

Naturally, the factors to be considered in final selection of any material are dependent upon the service intended. Selection and evaluation of these factors will vary widely. Thus, it is not feasible to attempt to provide in this report <u>all</u> of the information necessary to assess fully the adequacy of a material for specific applications. However, unless extenuating circumstances exist, this Center will not approve the use of any material listed as "Unsatisfactory" in the attached tables in oxygen systems.

The selection of the specific material to use among those rated as satisfactory will depend upon the particular application intended. This Center should be consulted directly for such assistance.

SECTION IV. DISCUSSION

A. LUBRICANTS

Lubricants tested for impact sensitivity in LOX are shown in Table 1. It is realized that none of the fluids or greases that withstood the impact test would actually function as lubricants at LOX temperature $(-297^{\circ} F)$. However, all materials withstanding this test are considered safe for use in gaseous oxygen, which also is a hazardous environment. The only type of lubricant capable of functioning at LOX temperature would be a solid or solid film lubricant. Although a number of these appear insensitive to impact, their adhesion and functional characteristics at LOX temperature have not yet been proven through use at this Center.

All petroleum-derived lubricants tested to date have proven to be impact sensitive, as expected. The conventional silicone greases and fluids constitute a similar hazard.

All completely fluorinated and/or chlorinated fluids and greases tested to date have proven satisfactory for LOX service from the standpoint of impact sensitivity. This includes materials now being marketed under the trade names of "Fluorolube." "Kel-F," and "Halocarbon."* However, any specific flourocarbon lubricant for which no data are tabulated should be tested prior to use to insure that its inherent compatibility will not be affected adversely by additives that may be present.

Chlorofluorocarbon oils and greases ("Fluorolubes," "Kel -Fs," and "Halocarbons") are not sensitive to impact in LOX (at 72 ft.-lbs). However, under conditions of high shear involving aluminum in the presence of these agents, explosions can occur in the absence of liquid oxygen. These conditions have been created experimentally by forcing a rotating aluminum or steel rod, chucked in a drill press, into contact with an aluminum plate which has been smeared with the chlorofluorocarbon under investigation. Explosions have been triggered in this manner with a number of aluminum alloy-chlorofluorocarbon combinations. These conditions may appear more stringent than normally would be encountered in lubricant or thread sealant applications. However, the availability of other materials not subject to this behavior is believed to warrant the exclusion of chlorofluorocarbons from lubricant or sealant applications involving shear loading with aluminum. It is interesting to note that no explosions have been produced with fully fluorinated hydrocarbons. Apparently, chlorine substitution is required to render the fluorocarbon susceptible to reaction with aluminum under shear conditions.

There are indications that fluorination of organic groups attached to silicones decreases the sensitivity of the parent silicone to impact in LOX. Two particular materials of this type, Dow Corning FS 1280 and 1281 (formerly manufactured as "QC-2-0026" and "QC-2-0093"), appear to be less impact sensitive than conventional silicone fluids. Since the impact sensitivity of these two greases has been found to vary batchwise, each manufacturer's lot should be tested prior to use. In many cases, these materials are insensitive in twenty trials (at 10 Kg-m) impact at the normal test thickness of 0.050 inch. However, when thin smears (approximately 0.005 in. thick) are tested under the same conditions, reactions frequently occur. Such is not usually the case with fluorocarbon materials.

On the other hand, the fluorosilicones (FS 1280 and 1281) did not explode or react when tested under high shear loading in contact with aluminum.

Perfluoro-trialkylamine based lubricants generally were LOX compatible. Some lubricants based on

^{*} The names of the manufacturers of all proprietary products mentioned in the text of this report are provided in Tables 1 through 8.

these base fluids have been reported compatible with a wide variety of propellants (Ref. 4). Two in particular, "PD-817" and "PD-788," were tested also with respect to lubricity, corrosivity, and compatibility with elastomers. These materials appear particularly promising as "universal" lubricants for use in a wide variety of applications in different propellant systems. However, they usually dry out to a powdery Teflon residue within several weeks' exposure to the air.

B. SEALANTS AND THREADING COMPOUNDS

Sealants and threading compounds listed in this category are those materials which are applied to connections or threaded fittings for the dual purpose of preventing seizing or galling during assembly, and minimizing leakage in use. "Sealants" are defined herein as materials which do not normally harden or set and are employed in non-permanent applications. "Threading compounds" are those which harden and and for use on permanent type joints. Until recently, efforts to locate a consistently satisfactory LOX thread sealant from a proprietary source have not been successful. Most commercial sealants formulated specifically for LOX service are mixtures of commercial-purity graphite and chlorinated aromatic compounds. Early experience with sealants having this basic composition indicated that trace impurities in graphite may render the final product impact sensitive. Only a special grade of graphite purified by acid treatment was found to give consistently satisfactory results when formulated into a sealant and tested as described. For several years, a LOX sealant for use at this Center (designated "AR-1F" sealant) was formulated internally, and each batch was tested on an individual basis to insure conformity to our requirements.

Recently, a thread sealant manufactured by the Acheson Colloids Company (EC 1730) has become available. A number of batches of this product have been tested thus far, and all were approved for LOX use. This material is recommended as a replacement for "AR-1F" LOX sealant. However, batchwise acceptance testing by MSFC-SPEC-106 is still necessary to insure product quality.

One other proprietary sealant, "Anderol X-133," is available which is satisfactory from the standpoint of LOX compatibility. It has not been recommended for use at this Center because it is highly corrosive to aluminum alloys 5086, 6061, and 2024, which are used widely in LOX piping.

A number of threading compounds are cited in Table II as being satisfactory for LOX service. These are primarily inorganic silicate cements.

C. THERMAL AND ELECTRICAL INSULATION (TABLE III)

A number of thermal insulations have been tested although they would not normally be in direct contact with LOX. All foam plastic and mastic types of insulation investigated have been impact sensitive with the exception of Dynatherm D-65. The latter is an intumescent coating containing approximately 66% inorganic filler materials. Dynatherm D-65 should be tested batchwise (in the use thickness) prior to any application where it may ultimately contact liquid oxygen. The moisture protective overcoating for Dynatherm D-65 (i.e., D-904) has been found impact sensitive.

Several bulk fiberglass insulations also appear unsatisfactory, due probably to additives employed to control fiber or matt properties. Subsequent heat treating frequently renders these materials satisfactory. Two bulk fiberglass insulation materials appear satisfactory for LOX service (Glass Fiber "B" 621, J. M. Microfiber Felt No. 108). It is stressed that each batch of these materials should be tested for LOX compatibility. Two varieties of cellular glass, Foamsil and Foam Glass, have proven satisfactory when tested for LOX compatibility.

A study currently is underway to investigate the LOX compatibility of organic insulation materials used in liquid hydrogen systems. This occurs because air usually is condensed on the surface from the atmosphere by the extreme low temperature. Re-evaporation and re-condensation processes probably will occur to varying degrees within external insulation thereon. Upon evaporation, liquid air becomes enriched in oxygen content.

Consequently, impact sensitivity of thermal insulation materials used externally in liquid hydrogen systems is being investigated as a function of LOX concentration in LN₂. Results of these tests will be reported subsequently.

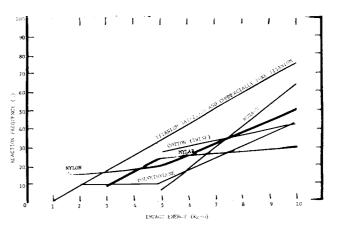
A number of Teflon and Kel-F type electrical insulations were tested and proved satisfactory. Any insulation which actually contacts liquid oxygen should be tested to insure safe use. A word of caution is in order concerning the pigments used to color-code electrical insulation. Tests have shown that addition of organic pigments to Teflon may transform a normally acceptable material to one which is highly sensitive to impact in LOX.

D. ELASTOMERS, PLASTICS, ADHESIVES (TABLE IV) <u>Elastomers</u> - All natural and non-fluorinated synthetic rubbers tested to date, including a number of silicone elastomers, have proven impact sensitive to varying degrees. The most generally satisfactory elastomers tested to date have been plasticized Kel-F, Fluorel, and Viton A. However, the impact sensitivity of these materials varies markedly with the nature and extent of plasticizer and additives used. Thus, batchwise testing per MSFC-SPEC-106 is necessary to insure LOX compatibility of these elastomers.

<u>Plastics</u> - Most common plastics are impact sensitive to varying degrees. All phenolic plastics tested to date have proven impact sensitive. Polyethylene, Nylon and Tedlar are not recommended.

During the past six years, thirty-one various types and thicknesses of Mylar have been tested for compatibility with LOX by the procedure described in MSFC-SPEC-106. Sample thicknesses ranged from 0.001 to 0.010 inch. Aluminum vapor coated Mylar and Mylar tapes also were tested. By summarizing the results of a combined total of 559 individual impact tests on these materials, the following conclusions are made:

a. All samples were impact sensitive at the acceptance level specified in MSFC-SPEC-106, i.e., 10 Kg-m.


b. Of thirteen samples that were tested at 5 Kg-m impact energy, eight were still sensitive. This shows that over 60 per cent of the samples were in a class of reactivity considered highly sensitive to impact.

c. Of those samples tested over a range of impactenergies, the following average per cent reactions (No. Fires/No. Tests X 100) were obtained:

The above data are plotted in Figure 6, along with similar test results for Nylon, Buna-N, cotton, titanium, and polyethylene. This figure clearly illustrates that Mylar is in the same category of LOX reactivity as materials which reportedly have caused major catastrophies in the missile and space industry.

The sensitivity of two new Du Pont plastic films, types ML, & Happears to vary directly with thickness. Therefore, the actual thickness proposed for application should be tested for sensitivity to impact in LOX.

Of all materials tested thus far, Teflon TFE, (tetrafluoroethylene), Teflon FEP, (fluorinated ethylpropylene), Aclar, and unplasticized Kel-F are the most insensitive to impact in LOX. One or more of these materials usually will suffice where a plastic is needed for engineering use. However, these materials normally are inert to LOX only as long as they are free of contamination, pigmentation, or fillers for reenforcement. Glass or asbestos fillers usually do not render such fluorocarbon materials sensitive to LOX.

FIGURE 6. LOX IMPACT REACTIVITY OF MYLAR, NYLON, AND TYPICALLY HAZARDOUS MATERIALS

Adhesives & Tapes—No fully satisfactory adhesive has been found for LOX use. All organic adhesives. tested were incompatible.

In particular, epoxy resins and cements are violently sensitive to impact and must be excluded completely from LOX service. All silicone adhesives that have been examined are impact sensitive. Due to this susceptibility of adhesives, all known pressure sensitive tapes are sensitive to impact, including "Teflon" and metal foil backed tapes. This sensitivity is manifested even when the tapes are applied to metal discs which would insure minimal contact between the adhesive and LOX.

Some inorganic cement types of "adhesives," i.e., "Sauereisen," are insensitive. However, these generally are sodium silicate based and provide only comparatively weak bonding, and are quite brittle. A dental cement (CuO, phosphoric acid base) reportedly has been used in some instances but is highly corrosive.

An attempt to develop a satisfactory adhesive for LOX service now is underway by the Narmco Division of Telecomputing Corporation, under contract NAS8-11068 to this Center. Initial studies will be directed toward consideration of fluorination of common resins while still retaining adhesive characteristics.

E. GASKETS AND PACKING (TABLE V)

<u>Gaskets</u> - A common type of general purpose gasket material is composed of a fibrous or spongy material impregnated with natural rubber or a synthetic elastomer. Asbestos is a popular fiber source and is available in combination with virtually every common rubber or plastic. The inherent impact sensitivity of the particular binder employed thus is conferred to some extent upon the finished material. The impact sensitivity of these asbestos composites varies considerably from batch to batch but is usually significantly less than an equivalent thickness of the binder material. At best, however, these materials range from marginal to unacceptable, depending upon the binder composition and proportion.

The earlier statements on the effect of sample thickness, as originally deduced from tests on thread sealants and lubricants, also apply to these composite materials. "Allpax 500," an asbestos-synthetic rubber mixture as supplied by the manufacturer, gives an average of two fires or detonations per test series in the 1/16-inch thickness as compared with approximately fifteen reactions per series when tested in a 1/64-inch thickness.

It has been found that the impact sensitivity of these products can be lessened by impregnation with one of several chlorofluorocarbon oils. These fluids are highly insensitive to impact in LOX and, apparently, tend to quench the impact sensitivity of other materials capable of absorbing them. The "Allpax 500" product mentioned above is processed routinely at this installation for LOX service by controlled impregnation with a chlorofluorocarbon fluid. Posttreatment impact testing is done on each processed batch to verify the adequacy of the treatment. Details of this process and the circumstances prompting its developmentare described in another report (Ref. 5). It is interesting to note that Bell Aircraft Corporation employed a similar process to render leather suitable for LOX service. The unprocessed leather is highly sensitive to impact.

The problem of finding a compatible gasket material that will seal at the relatively low flange pressures generally associated with MSFC flight hardware has proven difficult. The most unreactive nonmetallic materials, "Kel-F" and Teflon," are difficult to utilize because of low temperature brittleness, cold flow, or other mechanical deficiencies. A wide variety of fluorocarbon based gaskets filled with asbestos, ceramic, or glass fibers for re-enforcement are available commercially. Most of these are LOX compatible and have physical sealing characteristics greatly improved over the parent plastic. However, they still do not provide the sealing capability necessary for MSFC flight hardware. Fluorogreen E-600 appears almost, if not, as good as treated Allpax and tentatively has been approved for use. However, much still is desired to provide a gasket material fully satisfactory with respect to both LOX compatibility and sealing capability in MSFC hardware. The Narmco Division of the Telecomputing Corporation currently has a contract from this branch to develop such a material.

<u>Packing</u> - A large number of braided and solid "Teflon" packings has been found satisfactory. One asbestos type packing, "JM 177J7," generally is compatible and has a satisfactory record of service at this Center. At least one manufacturer, Crane Packing Company, processes and packages certain packings specifically for LOX service when requested. "Flexrock 420" also is used currently by MSFC.

<u>Caution</u> - It is stressed that even the recommended packing and gasket materials vary in acceptability from one batch to another; therefore, samples from each batch intended for LOX service should be tested and qualified prior to use. This is to insure that variations in manufacturer's processing methods do not introduce contamination or adverse chemical compatibility.

F. METALS, ALLOYS, SOLDERS, AND SUR-FACE TREATMENTS (TABLE VI)

All ferrous and aluminum based alloys tested to date are considered compatible with LOX, provided requisite cleaning procedures and other safeguards are followed. This included a sample of a new maraging steel (Bethlehem heat no. 120D163). Freshly abraded aluminum or aluminum which has been stripped of its protective oxide film is impact sensitive. Thus, although the natural oxide film on aluminum is sufficient to make it impact insensitive, any action which breaks or removes the film from aluminum while submerged in LOX constitutes a hazardous situation. Exactly such conditions are believed to have caused an explosion in a filter in a LOX ground supply line recently (Ref. 6). This was ascribed to the loosening of the mounting fixtures for the filter cartridges, which allowed chattering of the top of the stainless steel filter cartridge and the aluminum support plate. Since this condition was on the upstream side of the filter and small hard particles undoubtedly were present (because of the basic function of the filter), it was deduced that the explosion probably was initiated by abrasion of the surface of the aluminum by such particles while

in contact with LOX. Because of the possibility of reoccurrence of these conditions in such filters, it was recommended that the aluminum components therein be replaced by stainless steel.

It is stressed that the conditions required to cause explosions with aluminum and LOX are extremely severe. These findings do not detract in any way from the proven serviceability of aluminum alloys now in use for missile LOX tankage and piping, provided all such equipment has been cleaned and protected in accordance with applicable MSFC standards and maintained under such conditions. Test results showing that stainless steel wool and ordinary steel wool are impact sensitive reflect the greater amount of active surface available for chemical combination in these cases and do not detract from the proven serviceability of steels in massive shapes for LOX service. However, these results suggest caution in the use of metal wool for cleaning LOX hardware.

The inherent compatibility of the common aluminum alloys is not affected adversely by anodizing or by two proprietary surface treatments ("Iridite" and "Alodine"). However, some samples of aluminum which have been anodized and dyed have proven to be impact sensitive. This sensitivity was traced to improper sealing during the dyeing process. Any dyed aluminum or new processes of dyeing and/or conversion coating aluminum should be tested to insure LOX compatibility.

All titanium alloys tested have been extremely sensitive to impact. Because of a special interest in this material, the reactivity of titanium with oxygen was studied by several test methods and under a variety of conditions associated with space vehicles. The impact sensitivity method was used to study the effects of surface treatments, coatings, and numerous other factors upon the reactivity. Punctures resulting from bullets, darts, pins, or artificial meteoroids usually caused explosions. Coatings which reduced titanium reactivity in impact or shock tests were not beneficial under puncture conditions. Aluminum and stainless steel failed to react on impact or puncture.

The shock stimuli produced by small detonator caps alone were sufficient to initiate explosive reaction of titanium in contact with oxygen. An extremely heavy shock was necessary to cause aluminum to react under the same test conditions, and stainless steel did not react under the most drastic shock conditions employed. The titanium/oxygen combination is considerably more susceptible to spark initiation than aluminum/oxygen. A detailed report on the "Reactivity of Titanium with Oxygen" has been issued separately (NASA-TR-R-180), (Ref. 3). Table VI shows results obtained by testing 1/16inch thick magnesium alloys in accordance with MSFC-SPEC-106. Limited tests also have been made to investigate the tendency of magnesium (HK-31) alloy to react with oxygen upon puncture and when subjected to shock. Taken overall, these data indicate that magnesium alloys generally are somewhat more susceptible to reaction with oxygen than aluminum but far less than titanium. It cannot be stated categorically that magnesium alloys should not be used in LOX systems. However, the alloy composition, surface treatment, and application intended must be evaluated carefully prior to assuming the somewhat greater degree of risk than would occur under similar conditions with aluminum alloys.

Electrodeposited coatings on steel generally are LOX compatible (cadmium, copper, nickel, chrome). However, tin plated materials have been impact sensitive.

All high melting silver solders tested have proven satisfactory. Any soft solders intended for application on LOX hardware should be tested individually.

G. DYE PENETRANTS (TABLE VII)

Dye penetrants are widely used for detection of cracks and other surface defects in materials. Normally, these are applied in liquid form and the excess wiped or washed off. Residual penetrant entrapped in defects renders these visible by normal or ultraviolet illumination.

1. Qualitative Studies

When evaluating such materials for compatibility with LOX systems, the penetrant is tested first in the form as received, and as recommended by the manufacturer for application, such as various dilutions with water. This is done by placing a 1/2-cc of the liquid directly into the test cup. As mentioned previously, this produces a 0.050 inch thick layer in the specified cup. Since in use the thickness probably will be less than 0.050 inch, those samples passing this test are subjected to impacts at a thickness of only 0.025 inch (1/4-cc).

Almost all penetrants, emulsifiers, and developers have been tested initially by this procedure. Penetrants, emulsifiers, and developers which have been found unacceptable in this initial screening test, and others, are listed in Table VIIA.

In order to evaluate the potential hazard of surface residues resulting from dye penetrants, 1/2-cc samples of those materials passing the initial screening test were evaporated just to dryness (or constant volume) at 100° C prior to impacting in LOX. Because it was unknown whether this treatment would thermally decompose some of the test materials, duplicate sets of samples also were prepared by vacuum drying at room temperature. Based on results of these tests (Table VIIB), four promising penetrants were selected; Shannon Glo P-236 and P-505, and Magnaflux Z L42 and SKL-4 (3:1 use dilution).

Four batches of Shannon-Glo P-236 were impact tested in both the liquid form and in various amounts of residues on drying. All passed MSFC-SPEC-106. However, this penetrant was found severely corrosive to aluminum alloys, types 5052, 2219, 6061, and 5456, and, consequently is not approved for use on aluminum components in either LOX or fuel system hardware. Thus, no further evaluation tests were made on this material with respect to LOX compatibility.

In evaporating the liquid samples in vacuum, it is extremely difficult to prevent mechanical loss of sample by eruptions occurring at the start of evaporation. Furthermore, whether oven or vacuum drying is used, an appreciable and somewhat varying amount of sample is deposited on the sides, rather than the bottom, of the cup during evaporation.

The most realistic means of testing probably would be by intentional entrapment in metal inserts with reproducible cracks in the surface. However, because of the difficulty in obtaining such sample "carriers" and the large amounts that would be necessary for testing, this method was not considered feasible. As a substitute, a porous inert material was chosen. A proprietary asbestos fiber paper, 0.020 inch thick, "Novabestos" 7511T, was selected as a carrier. One-half inch squares of this material were soaked in the penetrant for one hour, drained three hours, and tested before and after drying at 60°C (140.0°F) for 30 minutes.

Results of tests on samples prepared by the carrier technique are shown in Table VIIC and reconfirm the compatibility of Magnaflux ZL42, SKL-4 (3:1 use dilution), and Shannon P-505.

Tests on Shannon Glo P-505 currently are inconclusive. Only a limited amount of this material has been tested thus far, and one fire was obtained in twenty trials on the vacuum dried residue. An additional sample is being requested for complete evaluation.

Both Magnaflux ZL42 and Shannon Glo P-505 require the use of an emulsifier and developer for effectively determining surface defects in materials. Magnaflux ZL43 emulsifier and ZP45 developer are recommended by the manufacturer for use with ZL42. Emulsifier E-159 and D-498 are recommended by Shannon Glo for use with P-505 Penetrant. SKL-4 is a water base penetrant and needs only a developer, SKD-W, in use. The developers of all three penetrants are LOX compatible (Table VIIB). However, emulsifiers (ZL43 and E-159) were sensitive to impact in LOX in the wet form, 0.025 inch thick (Table VIIA), residues (Table VIIB), and gave 20 fires in 20 trials by the carrier method (Table VIIC).

Thus, as far as LOX compatibility alone is concerned, the Magnaflux SKL-4 (3:1 dilution) Penetrant/ SKD-W Developer system appears to be the most nearly satisfactory. However, even this material can introduce a hazard. Residues from 1 cc or more of the 3:1 dilution of SKL-4 are impact sensitive (3 fires/20 tests/10 kgm).

2. Quantitative Studies

Using Magnaflux Penetrant no. 137-115 as an example, an investigation was made of the ease of removal of dye penetrants and the minimum quantity of residue which will present a hazard. Samples of aluminum castings, sheet aluminum with fine scratches $(125\mu \text{ wide } \times 200\mu \text{ deep})$, and sheet aluminum after grinding with an emery wheel were treated with penetrant, emulsifier, and developer in accordance with the manufacturer's directions. Tests also were made without the developer but with thorough water washing. In every case of the latter technique, the samples were still highly sensitive to impact in LOX. Developing before rinsing assisted much in removing residual dye. However, even this treatment did not consistently render the surface impact insensitive to LOX.

This difficulty in cleaning is not surprising. Since the functional design of penetrants is to penetrate the slightest crevice, it is necessary to employ cleaning agents or techniques of even better penetration characteristics in order to effect efficient removal of residues.

By simply placing decreasing amounts of penetrant in the test cup and evaporating to dryness, it was found that residues (from Magnaflux 137-115 Penetrant) containing as little as 7.5 micrograms of dye still were sensitive to impact in LOX.

3. Future Work

On the basis of the preceding tests, three dye penetrant systems have been selected for further evaluation from an overall viewpoint.

a. Magnaflux SKL-4 Penetrant/SKD-W Developer

b. Magnaflux Z L42 Penetrant/Z L43 Emulsifier/Z P45 Developer.

c. Shannon Glo P-505 Penetrant/E-159 Emulsifier/D-598 Developer

A test program recently has been established by the Materials Division to determine the best overall choice of dye penetrant systems. These will be evaluated with respect to the following criteria:

a. Least sensitivity to impact in LOX

b. Good flaw detection sensitivity on metal surfaces

c. Compatibility with aluminum and steel alloys in use

d. Ease of cleaning.

A separate report describing the results of this program will be issued subsequently. No <u>fully</u> satisfactory dye penetrant system is available currently or anticipated in the near future. It is expected that even after the completion of this evaluation program it will only be possible to recommend particular penetrants for specific uses in individual instances. Batchwise testing per MSFC-SPEC-106 and scrupulous monitoring of application and cleaning procedures will be essential.

H. SOLVENTS, CLEANING AGENTS, AND MISCELLANEOUS

A considerable amount of test work has been done on LOX cleaning and degreasing products. The actual solvents generally employed for degreasing are not inherently sensitive to impact. However, it has been demonstrated that the evaporation of a sufficient quantity of a degreasing solvent can leave an impact sensitive residue. This is particularly true of highly

stabilized grades of trichloroethylene. A series of samples was prepared by carefully evaporating appropriate aliquots of a solvent of predetermined residue content in order to yield 10, 5, 2.5, and 1 milligram quantities of residues in impact test cups. Results showed that as little as 1 mg. of residue in the test cup (bottom area of approximately 0.4 in.²) is sufficient to cause detonations. Assuming such solvents conform to local requirements of a maximum of 20 milligrams of non-volatile residue per liter, the unrestricted evaporation of only 50 milliliters of solvent per 0.4 in.² (or 125 ml per in.²) of under-lying surface would be sufficient to produce a potentially hazardous condition in LOX service. This figure may vary considerably with the specific chemical nature of the residue. Thus, appropriate precautions should be taken to avoid situations that could give rise to the concentration and deposition of such residues within LOX handling equipment. Rigid quality control of the solvent is essential in minimizing this risk, and the entire degreasing system should be free of materials capable of solution or dispersion in the solvent, which may be later deposited in the equipment being cleaned.

Similarly, most detergents and other cleaning compounds are capable of forming impact sensitive deposits if they are not removed. Adequate rinsing of all LOX equipment after treatment with cleaning agents of this type is essential.

A number of other miscellaneous materials that have been tested for various reasons are summarized in Table VIII. Some of the materials included here, due to incomplete identification or other uncertainties concerning their origin, conceivably would fall within categories surveyed earlier. A substantial number of these items (marked with an asterisk) are experimental products tested during a research program funded by this organization (at Frankford Arsenal), which was aimed at finding a "universal lubricant" (see page 6, first paragraph). TABLE I LUBRICANTS (Continued)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/E No. Tests	Energy Level Kg-M	Rating
Aerolon G Dry Film Lubricant	Acheson Colloids Company	4072	Colloidal graphite isopropanol and Freon 11 and 12	Spray coat on stainless steel inserts		0/40	10	Batch Test
Aerolon M Dry Film Lubricant	Acheson Colloids Company	407,4	Colloidal molydisulfide Freon 11 and 12, isopropanol and methylene chloride	Spray coat on stainless steel inserts		0/40	10	Batch Test
Anderol Jubricant L-118	Lehigh Chemical Company L	1445	Molybdenum disulphide and vehicie	Violent explosion	. 050	1/8 1/2 0/10	o n o	Unacceptable -
Anderol Grease L-182	•	1336			.050	2/5 1/15	10 5	Unacceptable -
Anderol Solvent Resistant Grease L237		1452			.050	0/20	Ś	Unacceptable
Anderol Synthetic Multi-Purpose Grease 1278		1446		Test halted because of reaction violence	. 050	1/4	10	Unacceptable
Anderol Grease L-419		1338		Violent explosion	. 050	1/2 1/1	10 5	Unacceptable -
Anderol Low Temperature Oil L-451		1335			. 050	1/2	ں م	Unacceptable -
Anderol Thixotropic Grease 1730		1443			. 050	2/8 1/2 1/10	0 ° ~ 1	Unacceptable -
Anderol Synthetic Long Fiber Grease L-732		1447			. 050	1/7 0/13	<i>ч</i> с ~ 1	Unaccep tab le
Anderol Synthetic Long Fiber Grease L-754		1 444		Violent explosion	. 050	2/20	10	Unacceptable
Anderol Grease (MIL-G-15793) L-793		875			. 050	0/20	10	Incomplete
Anderol Grease L-795		1339			. 050	5/9	ŝ	Unacceptable
Anderol Fluid X-1368	Lehigh Chemical Company	1(8	Halogenated hydrocarbon	Experimental product	. 050	0/20	10	Incomplete
Apiczon L Greasc	A. H. Thompson Company	739	Long chain aliphatic		. 050	2/12 2/2 2/4	ဋ္ဌာက	Unacceptable - -
Apiezon M Grease	A.H. Thompson Company	740	Long chain aliphatic		, 050	2/12	10	Unacceptable
CBS Dry Film Lubricant 5940	Columbia Broadcasting Company Laboratory	2723	Copper, silver, and molydisulfide	Coating on stainless steel inserts		0/19	10	Batch Test

TABLE I LUBRICANTS (Continued)

Rating	Satisfactory	Unacceptable	Unacceptable	Unacceptable	Unacceptable -	Unacceptable	Unacceptable	Unacceptable	Unacceptable -	Incomplete	Batch Test	Unacceptable -	Batch Test	Unacceptable	Unacceptable -	Unacceptable -	Unacceptable -	Unacceptable -	
nergy Level Kg-M	10 Sa	10 Ur	10 01	10 Ur	10 5 1	10 Ur	10 Ur	10 Ur	10 Ur 5	n1 01	10 Ba	10 5 3	10 Ba	10 10	10 5 8 0	10 5	i Un	10 5	
No. Reactions/ Energy Level No. Tests Kg-M	0/20	2/5	4/20	3/20	2/5 1/4 1/6	1/1	2/6	2/11	2/9 1/11	0/20	0/20	4/20 2/5 0/20	0/20	01/1	2/6 4/10 1/14	3/13	2/2 2/6	2/3 1/17	
Thickness (Inch)		. 050	. 050	. 050		. 050	. 050	. 050	. 050						. 050	. 050	. 050	. 050	
Remarks	Applied to stainless steel inserts	Violent reactions	Violent reactions		Electrically conductive grease	Violent explosion		Violent explosions	Violent explosions	Applied to stainless steel inserts				Violent explosion					
Composition	Copper, silver, and molydisulfide									Colloidal graphite in alcohol	Colloidal graphite and Triclene D	Colloidal molydisulfide in isopropyl alcohol	Colloidal molydisulfide in trichloroethylene	Graphite and organic vehicle	Silicone	Silicone	Silicone	Silicone	
Test No.	3797	1057	1788	1616	600	1337	793	794	798	3451	3448	3453	3449	844	831	608	832	835	
Manufacturer	Columbia Broadcasting Company Laboratory	Celanese Corporation	Consolidated Electrodynamics Corporation		Conducto Lube Company	E. F. Houghton Company			E. F. Houghton Company	Acheson Colloids Company	•			Acheson Colloids Company	Dow Corning Corporation			Dow Corning Corporation	
Material	CBS Dry Film Lubricant CLD 5940	Cellulube Oii 220	Celvacene Light Vacuum Grease	Compound Rust and Corrosion Inhibiting (MIL-C-12178)	Conducto Lube Grease	Cosmoline Grease 1044	Cosmolube No. 1 Grease	Cosmolube Grease 101	Cosmolube (MIL-L-4343A) 615	Dag Dispersion Dip Coating 154	Dag Dispersion 155	Dag Dispersion 210	Dag Dispersion 211	Dag Dispersion 217	Dow Corning Grease 3	Dow Corning Grease 4	Dow Corning Grease 5	Dow Corning Grease 6	

TABLE I LUBRICANTS (continued)

.

Material	Manufacture r	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Test Kg-M	Energy Level Kg-M	Rating
Dow Corning Grease 7	Dow Corning Corporation	930	Silicone		. 050	2/2 2/3 0/15	0 ú v	Unacceptable -
Dow Corning Grease 11		445	Silicone		050.	2/3 0/15	10 5	Unacceptable
Dow Corning Grease 33 (Light Consistency)		159	Silicone		. 050	2/11 1/6 0/20	0 is %	Unacceptable -
Dow Corning Grease 41		829	Silicone		.050	2/20	10	Unacceptable
Dow Corning Grease 44		158	Silicone		. 050	2/20	10	Unacceptable
Dow Corning Grease 55		420	Silicone		. 050	1/2 1/6 0/8	0 10 71	Unacceptable - -
Dow Corning Fluid 200 (200 cs)		177	Silicone		. 050	7/20	10	Unacceptable
Dow Corning Fluid 550		838	Silicone		• .050	2/8	10	Unacceptable
Dow Corning Fluid 702		383	Silicone		. 050	2/9	10	Unacceptable -
Dow Corning Fluid 705		384	Silicone		050.	2/4	10	Unacceptable
Dow Corning Fluid 710		181	Silicone		. 050	2/6 2/4		Unacceptable
						0/20	n nı	
Dow Corning Valve Seal A		444	Silicone		. 050	2/20	10	Unacceptable
Dow Corning High Vacuum Grease	-	213	Silicone		. 050	10/20	10	Unacceptable
Dow Corning Electric Motor Grease	Dow Corning Corporation	593	Silicone		050.	1/6 1/20	10	Unacceptable -
Drilube 701	Drilube Company	2116 1469	Molydisulfide in ethyl alcohol and ethyl acctate	Spray coating on stainless steel inserts		0/35	10	Batch Test
Drilube 702		1650	Molydisulfide in chromous and phosphoric acid		. 050	0/20	10	Satisfactory
Drilube 703		825	Molydisulfide in chromous and phosphoric acid		. 050	0/20	10	Satisfactory
Drilube Dip Coating 90	Drilube Company	1368		Dip coating on stain- less steel inserts		2/3	10	Unacceptable -

TABLE I LUBRICANTS (continued)

•

Material	Manufacture r	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
Du Metal	Garlock Packing Company	814	Teflon and sintered metal	For bearing surfaces	. 003	0/20	υI	Šatisfactory
Dumore "O" Cool Bearing Oil	Dumore Company	1334			.050	171	o ⊡ vi	Unacceptable
Duo Vacuum Pump Oil	Welch Scientific Company	376			.050	1/9 0/11	<u> </u>	Unacceptable
Electroilm 2006	Electrofilm Incorporated	ю 4	Molydisulfide, synthetic graphite with silicone and formaldehyde resins	Violent explosions		2/2 2/2 1/3	0	Unacceptable - -
Electrofilm 4396		2724	Molydisulfide and graphite with vinyl binder		100.	7/20 4/20 3/20 0/20	0 0 0 0	Unacceptable - -
Electrofilm 1000		535	Ceramic bonded molydisulfide	Spray coating		0/20	10	Unacceptable
Electrofilm 66-C		1310	Molydisulfide and organic vehicle	Spray coating		1/80	10	Batch Test
Electrofilm 17-S	•	981	Solid film lubricant with thermosetting resin			2/20	10	Unacceptable
Electrofilm 2396	Electrofilm Incorporated	4256	Molydisulfide and graphite with sodium silicate	Coatiny applied to stainless steel inserts	. 001	0/40	10	Batch Test
Everiube 811B	Everlube Corporation	4306	Molydisulfide and sodium silicate	Coating applied to stainless steel inserts		0/20	10	Batch Test
Everlube 811	Everlube Corporation	1829	Molydisulfide and sodium silicate	Dip coating, cured at 400°F		0/20	10	Batch Test
Esso Grease M-100 Super MIL ASU	Esso Oil Company	1317		.	. 050	3/10 1/10	2 io	Unacceptable -
Fel Pro C-100	Felt Products Company	3.161	Molydisulfide and organic vehicle		. 010	2/3 1/4 1/55 0/7	5 7 m N -	Cnacceptable
Fluorochemical FC-75	Minnesota Mining and Manufac - turing Company	448	Fluorinated cyclic ether		.050	0/20	0	Satisfactory
Fluorochemical FC-101		939			. 050	0/20	10	Satisfactory
Fluorochemical FC-43		147	Heptacosarluorotributyl- amine		. 050	0/20	01	Satisfactory
Fluorinated Grease		2149			. 005	0/20	10	Satisfactory
Fluorochemical FX-45	Minnesota Mining and Manufac- turing Company	3233			. 050	0/20	10	Satisfactory

TABLE I LUBRICANTS (continued)

Rating	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Batch Test	Unacceptable		¢	Batch Test	Batch Test	Satisfactory	Satisfactory	Unacceptable -	Unacceptable	Unacceptable	
	Sat	Sat	Sat	Sat	Sat	Sat	Sat	Sat	Ba	C ^{ne}			щ	Bal	Sat	Sat	'n	C.P.	nn	
Energy Leve Kg-M	10	10	10	10	10	10	10	10	10	10 5	ŝ	1	10	10	10	10	10	10	0	
No. Reactions/ Energy Level No. Tests Kg-M	0/20	0/20	0/00	0/20	0/20	0/20	0/20	0/20	0~5/20	4/9 4/9	3/24	11/11	0/20	0/20	0/20	0/20	2/5 2/10 0/5	2/10	1/20	
Thickness (Inch)	. 050	. 050	. 050	. 050	.050	. 050	. 050	.050	. 050	, 005			. 050	. 002	. 050		. 050	. 050	. 050	
Remarks			Three batches tested	Four batches tested			Two batches tested		Sensitivity varies from batch to batch							Two batches tested			Violent reaction	
Composition	Chlorofluorocarbon	Chlorofluorocarbon	Chlorofluorocarbon	From Allpax treating bath	Chlorofluorocarbon	Chlorofluorocarbon	Chlorofluorocarbon	Chlorofluorocarbon	Fluorosilicone	Fluorosilicone					Chlorofluorocarbon	Teflon-Freon		Petroleum base grease		
Test No.	437	1173	1852	3335	3760	2208	3876	2528	3621	4308			3873	3874	4355	1876	908	599	611	
Manufacturer	Hooker Chemical Company						-	l Hooker Chemical Company	Dow Corning Corporation				Minnesota Mining and Manufac- turing Company	Minnesota Mining and Manufac- turing Company	Hooker Chemical Company	Chemplast Incorporated	Sta-Vis Oil Company	Socony Mobil Oil Company	Warren Refining and Chemical Company	
Material	Fluorolube G.R. 362	Fluorolube T-45	Fluorolube T-80	Florolube T-80	Fluorolube 350	Fluorolube GR-544	Fluorolube LG	Fluorolube GR-362	FS 1281 Grease (Lot 28)	FS 1281 Grease	(TTOL 79)		FX 46 Grease (Lot 1)	FX-46 Grease (Lot 1)	Fluorolube S-30	Fluoro-Glide	Grease (GAA-MIL-C-10924)	Grease (GLT-MIL-G-3278A)	Grease, Lubricating. O.D. No. OO	

TABLE I LUBRICANTS (CONTRACTION)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
Halocarbon Grease 13-21,	Halocarbon Corporation	989	Chlorofluorocarbon		. 050	•	01	Satisfactory
Halocarbon Oil 11-21		1287	Chlorofluorocarbon		. 050	0/20		Satisfactory
Halocarbon Grease 25-20MB		1262	Chlorofluorocarbon	Contains rust inhibitor	. 050	0/20		Satisfactory
Halocarbon Grease 25-20MA		1261	Chlorofluorocarbon	Contains rust inhibitor	. 050	0/20	10	Satisfactory
Halocarbon Grease 25-20MZ		1244	Chlorofluorocarbon	Contains rust inhibitor	. 050	0/20	10	Satisfactory
Halocarbon Grease 25-10MZ		1243	Chlorofluorocarbon	Contains rust inhibitor	. 050	0/20		Satisfactory
Halocarbon Grease 25-20M-5A	Halocarbon Corporation	1831	Chlorofluorocarbon with a barium sulfonate inhibitor		. 050	0/20	10	Satisfactory
Houghton Hi-Temp Grease 2409	E. H. Houghton Company	4421	Polyglycol		. 050	3/20	10	Unacceptable
Kel-F-10-200 WAX	Minnesota Mining and Manufac- turing Company	356	Chlorofluorocarbon		. 050	0/20	0	Sutisfactory
Kel-F Oil No. 1		451	Chlorofluorocarbon		. 050	0/20	01	Satisfactory
Kel-F Polymer Oil No. 10	•	2744	Chlorofluorocarbon	Two batches tested	. 050	0/20		Satisfactory
Kel-F-90 Grease		3243	Chlorofluorocarbon	Two batches tested	. 050	0/20		Satisfactory
Kel-F Polymer Oil KF-3		2721	Chlorofluorocarbon	Contains rust inhibitor	. 050	1/60	10	Batch Test
Kel-F Polymer Oil KF-1		2722	Chlorofluorocarbon	Contains rust inhibitor	. 050	c /20	10	Satisfactory
Kel-F Polymer Oil Lot 1006-1		2897	Chlorofluorocarbon		. 050	0/20		Satisfactory
KX-262 NB-1247-36		3604	Chlorofluorocarbon		. 050	0/40	10	Satisfactory
KX-245 Lot 2	Minnesota Mining and Manufac turing Company	3606	Chlorofluorocarbon		. 050	0/40	10	Satisfactory
Lapping Compounds 38-1200	United States Products Company	1960			. 050	2/4 2/16	ب ۲	Unacceptable -
Lube Rex	General Cement Company	597	Hydrocarbon grease		. 050	2/6		Unacceptable
Lubriko MD-T-419	Masden-Lubricant Company	588	Hydrocarbon grease		. 050	3/12		Unacceptable
Lubriplate	Fiske Brothers Incorporated	643	Hydrocarbon grease		. 050	2/10	10	Unacceptable
Lubriscal	A. H. Thomas Company	637	Hydrocarbon grease		. 050	2/6	10	Unacceptable
McLube 99	McGee Chemical Company	3895			. 050	0/ 40		- Satisfactory

TABLE I LUBRICANTS (conterated)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (lnch)	No. Reactions/ No. Tests	Energy Level Kg - M	Rating
McLube 2010	McGee Chemical Company Incorporated	3896	Molydisulfide with graphite and Fluorolube		. 050	0/20	01	Batch Test
McLube 2023	McGee Chemical Company Incorporated	3897	Molydisulfide with graphite and Fluorolube		. 050	0/20	10	Batch Test
Metco Valvelube	Metallizing Engineering Company	562	Hydrocarbon grease	Very violent reaction	. 050	1/20	2	Unacceptable
Midwest Research Institute Dry Film Lubricant	Midwest Research Institute	3614	Molydisulfides, graphite, and bismuth in sodium silicate 10:1:5/7			0/20	0	Satisfactory
Midwest Research Institute Dry Film Lubricant		3613	Molydisulfide, graphite, and bismuth in sodium silicate 10:1:2, 5/7			0/20	01	Satisfactory
Midwest Research Institute Dry Film Lubricant		3612	Molydisulfide, graphite, and bismuth in sodium silicate 10:1:5/7			0/20	10	Satisfactory
Midwest Research Institute Dry Film Lubricant	Midwest Rescarch Institute	3611	Molydisulfide, and graphite in sodium phosphate 10:1/7			0/20	0	Satisfactory
Mount Tanor Valueluhe	Metallizing Engineering Company	561			.050	2/20	01	Unacceptable
vieta Delevie internet 5-122	Miller-Stephenson Company	27.36				07/0	10	Satisfactory
Molvkote G Grease	Alpha Molykote Corporation	91- -	Molydisulfide and petroleum base oil	Violent reactions	. 050	3/4	01	Unacceptable
Molykote Grease M-55		n Tr	Molydisulfide and organic vehicle		050.	2/20	10	Unacceptable
Molykote Spray Lube		772	Molydisulfide with Freon propellant			0/20	c r	Batch Test
Malykote M-8800		3363				5/20 2/20 0/20	05.4	Unacceptable - -
Molykote X-15		3362	Sodium silicate, molydi- sulfide, Sodium silicate, and graphite			0/60	<u>0</u>	Batch Test
Molvkote Z		1655	Molydisulfide powder	Two batches tested		0/20	10	Satisfactory
Molykote Z	Alpha Molykote Corporation	1654		Without stainless steel inserts		770	01	
Molylube	Bell Ray Company	2735	Molydisulfide Freon propellant			0/20	07	Batch Test
Molylube AR	Bell Ray Company	5734	Molydisulfide and binder			8/80	10	Unacceptable

TABLE I LUBRICANTS (CONTINUES)

•

Material								
	Manufacturer	Lest No.	Composition	Remarks	I hickness (Inch)	No. Reactions/ Energy Level No. Tests Kg.M	Energy Level Kg-M	Rating
Molynamel E	Lockrey Company	3239	Molydisulfide. teilon, and toluene			7/60 2/20	0 ic	Unacceptable -
Parker "O" Lube	Parker Appliance Company	288			. 050	2/5	10	Unacceptable
Parker Water Oil Lube Grease 50	Parker Appliance Company	274			020	1/2 1/2 1/4	Q in m	Unacceptable -
P.D. 822	Frankford Arsenal	3996	Fluorinated polymer		. 050	4/20	10	Unacceptable
P.D. 821		3995	Fluorinated polymer		. 050	0/20	10	Batch Test
819		3993	Fluorinated oil and polymer gelling agent		. 050	0/20	01	Batch Test
P.D. 820		3994	Fluorinated polymer		.050	0/20	10	Batch Test
8]6		3991	Fluorinated amine oil and fluorinated polymer gelling agent		. 050	0/20	0	Batch Test
P.D. 817		3992	Fluorinated oils and polymer gelling agent		. 050	0/20	10	Batch Test
811		3570	Special grade graphite			07/0	10	Batch Test
812		3569	Perfluorotrialkylamine blend			0/20	10	Batch Test
P.D. 810		3564	Silica gelling agent			0/20	10	Batch Test
P.D. 809		3563	Silica gelling agent			0/20	10	Batch Test
P.D. 808		3560	Silica gelling agent			0/20	10	Batch Test
800		3561	Perfluorotrialkylamine base oil and silica gelling agent		.050	0/20	D I	Batch Test
797		3553	Perfluorotrialkylamine base oil and silica gelling agent		. 050	0/20	10	Batch Test
801		3552	Perfluorotrialkvlamine base oll and silica gelling agent		. 050	0/20	10	Batch Test
P.D. 791		2106	Purified sample of perfluorotrialkylamine		. 050	0/10	10	Incomplete
P. D. 787	Frankiord Arsenal	2105	Polytetrafluoroethylene gelling agent			0/20	01	Batch Test

TABLE I LUBRICANTS (Contrineed)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level K g- M	Rating
P.D. 788	Frankford Arsenal	2081	Grease consisting of P.D. 787 and P.D. 789		050,	0/20	10	Batch Test
P.D. 785		2079	Mixture of perfluoro- trialkylamines		. 050	0/20	10	Batch Test
P. D. 792		2078	Grease consisting of graphite gelling agent and perfluororrialkyla- mine base oil (P. D. 789)		. 050	0/20	10	Batch Test
P. D. 786		2080	Grease consisting of polytetralluoroethylene gelling agent (P. D. 787) and perfluorotrialkyla- mine oil (P. D. 785)		. 050	0/20	10	Batch Test
p.D. 789	Frankford Arsenal	2077	Mixture of perfluorotri- alkylamines		. 050	0/20	10	Batch Test
Delvelved 11-200 Lot 8-6	Dow Chemical Company	1940	Polyglycol		. 050	0/20	10	Incomplete
QC-2-0093	Dow Corning Corporation		Fluorosilicone	Sensitivity varies from batch to batch	. 050	0-5/20	10	Batch Test
QC-2-0026	•		Fluorosilicone	Sensitivity varies from batch to batch	. 050	0-3/20	10	Batch Test
QF-1-0065 Fluid (2500 cs)		1288	Fluorosilicone		. 050	3/12 0/8	20	Unacceptable -
	Dow Corning Corporation	4438	Fluorosilicone		. 050	0/20	10	Batch Test
ur - 1-0000 (1700 Cs) Sealube Grease	Parker Appliance Company	550			, 050	2/2 1/4 3/10	0 .c m	Unacceptable
		1442			.050	0/20	10	Incomplete
Semco No. 51	Anderson Chemical Company	4415			. 050	7/20	10	Unacceptable
Silgon 6 (1000 cs) Silgon Fluid 6 (300 cs)		965			.050	2/5 2/3	01 01	Unacceptable -
c:1 6 (500 cs)		4413			. 050	2/20	10	Unacceptable
Silver Graden 10	Anderson Chemical Company	4410			. 050	2/20	10	Unacceptable
Silicone Lubricant 398-38-1114	General Electric Company	955	Sílicone		. 050	2/3 1/1 1/5	10	Unacceptable -
Silicone Lubricant 20057	Electromechanics Corporation	478	Silicone grease		. 050	2/10	10	Unacceptable

TABLE I LUBRICANTS (concluded)

•

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
Silicone Lubricant 81717	General Electric Company	569	Silicone		.050	2/3	10	Unacceptable
Silicone Fluid SF 96 (275 cs)	•	564	Silícone		. 050	2/10 0/10	10	Unacceptable
Silicone Fluid SF 96 (100 cs)		565	Silicone		. 050	2/5 4/6	10	Unacceptable -
Silicone Fluid SF 96 (40 cs)	-	566	Silicone		. 050	2/6 2/6	ی ج	Unacceptable -
Silicone Fluid SF 81 (40 cs)	General Electric Company	493	Silicone		. 050	2/4 2/3	10	Unacceptable
Templube Grease 124	National Engineering Products Company	542			. 050	2/7	10	Unacceptable
Ucon Lubricant 50 HB-280X	Union Carbide Corporation	3214	Polyalkylene glycol		. 050	4/20 0/20	10 5	Unacceptable -
Ucon Lubricant 50-HB-280X	•	785	Polyalkylene glycol		. 050	2,'2 1/18	0 %	Unacceptable -
Ucon Lubricant 50 HB-280X		3207	Polyalkylene glycol		. 030	2/20	10	Unacceptable
Ucon Fluid LB-300X		4416	Polyalkylene glycol		. 050	5/20	10	Unacceptable
Ucon Fluid 50-LB-65	-	433	Polyalkylene glycol		. 050	1/3 1/3	0 2 2 2	Unacceptable -
Ucon Fluid LB-135	Union Carbide Corporation	434	Polyalkylene glycol		. 050	1/2	10	Unacceptable
Versilube Fluid F-50	General Electric Company	238	Silicone		. 050	2/2 2/2	10	Unacceptable
Versilube Fluid G-300	-•	270	Silicone		. 050	2/10	10	Unacceptable
Viscasil Fluid 5000	General Electric Company	552	Silicone	Violent explosion	. 050	1/20	10	Unacceptable
WD-40 Stoprust	Rocket Chemical Company	2667		Violent explosions	Spray Film	3/24 2/15	10 5	Unacceptable -
Whytekote 505	Alpha Molykote Corporation	3469			. 002	1/1 1/1 1/2	0 w m -	Unacceptable
Wire-lube Pulling Lubricant	Ideal Industries Incorporated	4080			. 050	0/20	10	Incomplete
XLE-42 Fluid	Union Carbide Corporation	926	Silicone		. 050	0/20	10	Incomplete
X520	• •	876	Silicone		. 050	2/20	10	Unacceptable
Sample IIF	Union Carbide Corporation	1449	70% Ucon 65LB		. 050	5/20 4/20	10	Unacceptable

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Anderoi 1333	Lehigh Chemical Company	704	Antimony compound in fluoro-silicone fluid	Corrosive to aluminum alloys	. 050	0/34	10	Unaccep ta ble
Anti-scoring Extremc Dressing Labo No. 3	Chicago Manufacturing and Distributing Company	3772			. 050	2/20	10	Unacceptable
Anti-scoring Extreme	Chicago Manufacturing and Distributing Company	3773			Thin film	10/20	10	Unacceptable
Anti-seize Compound 32-Z	Materials Division, P&VE Lab MSFC	2612			. 050	0/20	10	Batch Test
AR-1F (Lot 67)	Materials Division, P&VE Lab MSFC	1462	Arochlor 1254 and graphite		. 050	0/20	10	Batch Test
AR-1F	Hayes Aircraft Corporation	3129	Arochlor 1254 and graphite		. 050	0/20	10	Batch Test
Dag Dispersion No. 217	Acheson Colloids Company	84			. 050	1/10	10	Incomplete
E.C. 1730	Acheson Colloi d s Company		Arochlor 1254 and graphite	Thirty-three batches tested	. 050	0/20	10	Satisfactory
Fluroseal	Industrial Plastic Fabricators Incorporated	485	Water dispersion of Teflon and ammonia		, 050	0/20	10	Batch Test
Leak Lock	Highside Chemical Company Incorporated	545		Two batches tested	. 050	1/11	10	Unacceptable
Loctite A	American Sealants Company	827			. 050	2/2	5	Unacceptable -
LOX-Lube (Spec NA-2-20502)	North American Aviation	249	Graphite and chlorinated hydrocarbon	Sensitivity varies from batch to batch	. 050	10/20	10	Batch Test
LOX-Safe	Redel Incorporated		Graphite and chlorinated hydrocarbon	Sensitivity varies from batch to batch	. 050	2/20	10	Batch Test
LOX-Sealant (Spec NA-2-20502)	North American Aviation		15% Dixon 200-10 graphite, 85% Arochlor 1254	Sensitivity varies from batch to batch	. 050	2/20	10	Batch Test
LOX Sealant	Rolls Royce Limited	935	Graphite, chlorinated hydrocarbon		050.	0/20	01	Batch Test
Oxyseal	Parker Appliance Company	217	Graphite and chlorinated hydrocarbon		. 050	6/10 0/12	3	Unacceptable -
Permatex 1516	Permatex Company Incorporated	861	Graphite and chlorinated hydrocarbon		. 050	4/60	10	Unacceptable
Plastic Lead Seal No. 1	Crane Packing Company	234	Lead compounds in rubber binder		. 050	3/10 1/20 1/10	4 8 0	Unacceptable -

TABLE IL SEALANTS AND THREADING COMPOUNDS

TABLE II SEALANTS AND THREADING COMPOUNDS (CONTRACTION CONTRACTION)

Rating	Unacceptable	Unacceptable - -	Unacceptable	Unacceptable	Unacceptable	Batch Test	Unacceptable	Unacceptable	Batch Test	Unacceptable - -	Batch Test	Batch Test	Batch Test	Batch Test	Unaccepta bl e	Unacceptable - -
Energy Level Kg-M	10	 0	0 10	10	- C	10	- C	10	10	0 C 2 M	10	10 B	10	10 B	01	01 r 2 m
No. Reactions/Energy Level No. Tests Kg-M	2/6	2/3 2/10 0/10	3/1 1 1/20	2/10	1-5/20	0-2/20	3-5/20 1/12	2/2 1/18	0/20	1/1 1/1 1/2	0-2/20	0/20	0/20	0/20	2/37	1/2 1/2 1/2 1/2
Thickness (Inch)	. 050	0 <u>5</u> 0 .	. 050	. 050	050	. 050		. 050	. 050	. 050	. 050	. 050	. 050	. 050	. 050	. 050
Remarks						Sensitivity varies from batch to batch	Thin samples				Sensitivity varies from batch to batch					
Composition	Lead compounds in rubber binder	Lead compounds in rubber binder		Graphite and chlorinated hydrocarbon	Graphite and chlorinated hydrocarbon	Graphite and chlorinated hydrocarbon	Graphite and chlorinated hydrocarbon	<u> </u>			Graphite. aluminum silicate binder, and carbohydrate vehicle	Sodium silicate and graphite	Sodium silicate and talc	Tetlon-water dispersion		
Test No.	-14	236	520	169		245		744	351	289	241	280	723	820	507	273
Manufacturer	Grane Packing Company	Grane Packing Company	Carl Biggs Company	Rector Well Equipment Company Incorporated	Rector Well Equipment Company Incorporated	Redel Incorporated	Redel Incorporated	Sauereisen Cements Company	••	Sauereisen Cements Company	Macksons Company	Materials Division, P&VE Lab MSFC	Materials Division, P&VE Lab MSFC	Eco Engineering Company	Valley Products Company	Parker Appliance Company
Material	Plastic Lead Seal No. 2	Plastic Lead Seal No. 4	Potting Compound No. 420	Rectorseal 25X-1	Rectorseal No. 15	Reddy-Lube No. 2	Reddy-Lube No. 2	Sauereisen No. 1	Sauereisen No. 51	Sauereisen No. 52	Seal-Rite No. 5	Sodium Silicate and Graphite	Sodium Silicate and Talc	T-Film Thread Compound	Thread Compound No. 265	Thread Lube

			 	 	 	 	 	 <u> </u>
Rating	Batch Test	Batch Test						
Energy Level Kg-M	10	10						
No. Reactions/Energy Level No. Tests Kg-M	0/20	0/20					 	
Thickness (Inch)		050						
Remarks			 					
Composition	Teflon	Silicate cement						
Test No.	2554	641	 	 	 	 	 	
Manufacturer	W.S. Shamban and Company	X-Pando Corporation						
Material	Universal Thread Seal Teflon Ribbon	X-Pando						

, TABLE IT SEALANTS AND THREADING COMPOUNDS (COMPLIANCE)

TABLE III THERMAL AND ELECTRIC INSULATION (CONTENSED)

Rating	Unacceptable -	- Unacceptable	Unacceptable - - -	Batch Test	Batch Test	Batch Test	Incomplete	Unacceptable 	Unacceptable	Unacceptable	Unacceptable	Batch Test	Unacceptable - -	Satisfactory
Energy Level Kg-M	10	1/2	10 2 2 5 2 1 2 2	10	10	01	10	10 4	10 2	10	10	10	0 s m l	10
No. Reactions/ No. Tests	2/2 2/4 2/4 2/4	2/20	2/2 11/11 20/20 7/20 0/20	0/40	0/20	0/20	0/20	6/20 2/15 0/20	2/20 1/40	4/40	2/20	0/20	2/2 2/2 2/2 2/2	0/20
Thickness (Inch)			. 313	. 063	. 125	. 063	. 063	. 050	. 063				. 125	
Remarks		-				Aged 8 months	·	<u>.</u>		With aluminum foil backing	Heat treated inserts used	Heat treated 3 hours at 1000°F		
Composition	Aluminum and Mylar	Clinonstatite crystals	Phenolic resin, fiber - glass honeycomb, epoxy fiberglass sealer, epoxy adhesive	Polyurethane, sodium phosphate, sodium borate, and carbon	Polyurethane	Polyurethane	Mineral fiber	Mineral fiber	Mineral fiber	Glass	Cellular glass			
Test No.	3799	1006	3189	2321	3250	3255	3251	2323	1801	2355	2381	2410	3798	662
Manufacture r	Fibrous Glass Incorporated	American Lava Corporation	Convair Division General Dynamics	Dyna - Therm Chemical Corporation I	-				Dyna-Therm Chemical Corporation	Carborundum Company		T Carborundum Company	Fibrous Glass Incorporated	Pittsburgh-Corning Corporation
Material	Aluminum and Mylar Covering from Fibrous Glass Insulation	Alsimag Ceramic Insulation 196	Convair Liquid Hydrogen Insulation	Dyna-Therm D-65	Dyna-Therm D-65	Dyna-Therm D-65	Dyna-Therm D-65 with 904 Coating	Dyna - Therm D-904	Dyna-Therm D-100	Fiber Frax	Fiber Frax (XSW)	Fiber Frax	Fibrous Glass Insulation	Foamglass Insulation

Rating	Unacceptable -	Satisfactory	Unacceptable 	Batch Test	Unacceptable	Unacceptable.	Satisfactory	Satisfactory	Unacceptable	Unacceptable - -	Batch Test	Unacceptable - -	Unacceptable - -	Batch Test
Energy Level Kg-M	ہ ی 10	10	<u>⊃</u> 'n ^	10	0 s N	9 e e	10	01	0,01	0 .0 m N	10	- 10 - 9 - 9	0 5 7	01
No. Reactions/Energy Level No. Tests Kg-M	2/2 2/3 2/2	0/20	2/2 2/5 2/2	0/20	2/2 2/2 2/7	2/4 2/5 2/5	0/40	0/20	20/20 20/20 20/20 15/20	20/20 19/20 8/20 0/20	0/20	15/20 7/20 2/20	2/5 2/7 1/8	0/20
Thickness (Inch)							. 063	. 063	. 0é3	. 250		. 125		
Remarks														
Composition		Cellular glass					Glass	Glass	Honey comb phenolic and epoxy	Polyurethane	Lead oxide, cobalt oxide, nickel oxide, and bismuth oxide	Quartz spheres and cpoxy	Mineral fiber	Calcium silicate
Test No.	923	878	1017	016	1016	968	2357	2378	7534 75	3680	3220	3209	800	795
Manufacturer	Benjamin Foster Company	Pittsburgh-Corning Corporation	Benjamin Foster Company	•		Benjamin Foster Company	Owens-Corning Corporation	Owens-Corning Corporation	Hexcell Products Company	Hexcell Products Company	Physical Science Corporation	North American Aviation	Johns-Manville Company	Johns - Manville Company
Material	Foamseal Joint Scaler 30-45	Foamsil Insulation	Foster Fire Resistive Coating 60-30N	Foster Flexías Bonding Agent 82-10	Foster Fire Resistive Coating 60-65	Foster Scalfas Insulation Coating 31-96	Glass Fiber "B" No. 621	Glass No. 621	Hexcell 91LD	Hexcell Polyurethane Insulation 1414-2	Inserts, Fired Durock Type D117-063	Isowood	Johns-Manville Rock Cork Insulation	Johns-Manville Thermo- bestos Insulation

TABLE III THERMAL AND ELECTRIC INSULATION (CONTINUES)

TABLE TTTHERMAL AND ELECTRIC INSULATION (CONTINUED)

TABLE III THERMAL AND ELECTRIC INSULATION (CONTINUED)

ergy Level Rating Kg-M	10 Unacceptable 5	10 Unacceptable 5	10 Unacceptable 5	10 Unacceptable 5	10 Unacceptable	10 Unacceptable	10 Batch Test Batch Test	10 Batch Test	10 Unacceptable	10 Batch Test	10 Unacceptable	10 Unacceptable 5 - 3 - 2 -	10 Batch Test	10 Unacceptable 5 - 2 -	10 Unacceptable 5
No. Reactions/ Energy Level No. Tests Kg-M	2/2 2/2 2/3	2/2 2/4 0/14	2/20	2/3 2/4	3/20	2/20	0/20	0/20 1	3/20 1	0/20	3/20	2/2 2/2 2/10 1/6	1/60	2/2 2/2 1/1	3/4 1 2/15
Thickness (Inch)						Brush coat									
Remarks						Baked on stainless steel inserts									
Composition						Modified silicone	Aluminum phosphate, asbestos, and copper				Chromel - Alumel, Teflon and Nylon	Chromel - Alumel. Teilon, and asbestos	Copper. Constantan, and Teflon	Copper, Constantan, and polyvin y l plastic	
Test No.	788	747	602	921	616	4012	3197	1705	1778	1706	1691	1686	1687	1682	1681
Manufacturer	United Cork Company		L United Cork Company	Vimasco Corporation	Vimasco Corporation	W.P. Fuller and Company	General Electric Company	Hi-Temp Wires Incorporated	Hi-Temp Wires Incorporated	Suprenant Manufacturing Company	Revere Corporation of America		-	Revere Corporation of America	Alpha Wire Corporation
Material	Unicrest Insulation, Outer Covering	Unicrest Insulation	Unicrest Type S E Insulation	Vimasco Insulation Coating WC-1	Vimasco Carlon Insulation Coating 500	White Morcury Resistant Electrical Insulation Coating 168-W-20	AWG No. 22 Copper Wire Coated with Aluminum Phosphate Impregnated Felt Asbestos	Cable, Type 4TX-22-1934	Cable, Type 4TX-22-1934 Outside Covering	Cable Transonics, Type 1932	Chromel-Alumel, Teilon Singles, Nylon Wrap	Chromel-Alumel, Teflon Singles, Asbestos Jacket	Copper-Constantan Sinterex Teflon Tape Cover	Copper-Constantan Conductor with Polyvinyl Insulation	20-2 Conductor Standard No. 1741 Shielded

TABLE THERMAL AND ELECTRIC INSULATION (CONTRACTION (CONTRACT)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
Silvered Gage Twenty Four Conductor Wi re	Revere Corporation of America	1688	Silvered gage twenty- four conductor wire, finer wire insulation- revcothene. Outer covering Geon Shield-		4 6 7	2/2	10	Unacceptable
Teflon Type 2857, No. 18 Strained Copper, Silver Coated		1690	Linned Copper. Tefon, copper, and silver			0/20	10	Satisfactory
Tensolite Alpha Type 2812-2	Alpha Wire Corporation	1684				2/11 2/3 1/6	0 Y Y	Unac ceptable
Tensolite Alpha Type 2812-4	Alpha Wire Corporation	1683				0/20	10	Batch Test
Type 2TX-22-19342X Wite	Hi-Temp Wires Incorporated	1679	Stranded silver-plated copper conductor with extruded Teflon insulation, shielded in tinned copper. Outside polyvinyl chloride			2/2 1/1 2/12 0/5 2/11 2/11	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Unacceptable - - -
Wire, Ceramic Coated Nickel-Clad Copper	General Cable Corporation	3218	Ceramic coated, nickel- clad copper			23/40	10	Unacceptable
Wire, Ceramic Coated Nickel-Clad Copper	General Cable Corporation	3322	Ceramic coated, nickel- clad copper			20/40 9/20	10	Unacceptable
Wire Coated with ML Enamel		4009				0/20	10	Batch Test
Wire Coated with ML Enamel and Covered with Felt Asbestos		4008				0 (20	2	Batch Test

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Aclar Type 22A	Allied Chemical Company	3997	Fluorohalocarbon		005	0/20	10	Batch Test
Aclar Type 22A		3998	Fluorohalocarbon		. 002	0/40	10	Batch Test
Aclar Type 191 (MIL-F-22191)	Allied Chemical Company	4185	Fluorohalocarbon		0.02	0/20	10	Batch Test
Aero Quip Black		1012	Erradiated polyvinyl chloride	Liner for flex hose		2/4 2/12 0/4	0 v v	Unacceptable -
Aero Quip Orange		1101	Teflon	Liner for metal flex hose		0/20	10	Batch Test
Amco Adhesive F-88	American Consolidated Manufacturing Company	3404	Fluorohalocarbon		. 050	2/3 2/11 0/20	10	Unacceptable
Armstrong Cement	Armstrong Products Company	657			. 050	2/2 1/1	5	Unacceptable -
Araldite 6010 and Catalyst 125	CIBA Chemical Company	743	Ероху		. 050	3/3 2/4 2/2	10 2 3	Unacceptable -
B.F.C. Transparent Blue Liquid Envelope	Better Finishing Company Incorporated	3840		Film on stainless steel inscrts		2/10 2/13 0/20	0 5 4	Unacceptable
Biastguard Tape Grade AAA	H.K. Porter Cumpany Incorporated	2327		Treated pressure sensitive tape	. 125	12/20 2/11 0/5	014. 7	Unacceptable -
Blastape MX4647	Johns-Manville Company	2328			125	0/20	10	Batch Test
Buna-N Rubber		650				2/3	10	Unacceptable
Butyl Fairprene	E. I. du Pont de Nemours & Co. , Inc. Incorporated	618	Fabric impregnated with butyl rubber			4/6 2/20	0 s	Unacceptable
Coast Pro Seal 793	Coast Pro Seal Manufacturing Company	2759	Polyurethane		. 063	2/2	10	Unacceptable
Compound Rubber X-58	Bacon Industries Incorporated	280	Teflon impregnated silicone rubber			2/3	01	Unacceptable
Compound Th 1057	Steelman Rubber Company	2385	Fluoro-silicone		. 063	0/70	01	Batch Test
Crystal MG Inorganic Paper	Minnesota Mining and Manufacturing Company	3195			. 003	2/20	0	Unacceptable
Crystal MP Inorganic Paper	◆ _•	3196			. 003	0/20	0	Batch Test
Crystal M Inorganic Paper	Minnesota Mining and Manufacturing Company	3194			003	0/20	10	Batch Test

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (comminged)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
D.C. 274 Adhesive	Dow Corning Corporation	640	Silicone			2/8 0/12	0.10	Unacceptable -
Dip Pak No. 661	Fidelity Chemical Corporation	3762	Cellulose acetate butyrate		. 063	5/10	10	Unacceptable
Dip Pak No. 661	Fidelity Chemical Corporation	3764	Cellulose ačetate butyrate	Stainless steel inserts dipped in molten Dip Pak	100.	9/20 3/20 7/20 0/20	ວິ ທ າ-	Unacceptable -
Du Pont H Film	E.I. du Pont de Nemours & Co., Inc.	3647			. 002	0/20	10	Batch Test
Du Pont HT-1 No. 67011 (361A)		4192			. 002	14/20 2/20 2 /20 0/20	0 م س I	Unacceptable
Du Pont HT-1 No. 67014 (171A)		4198			. 010	4/4 4/4 2/8	1 2 0	Unacceptable
Du Pont HT-1 Felt No. 1280-74-0		4195			. 125	2/2 2/2 2/14 1/20	0 4 7 -	Unacceptable - -
Du Pont HT-1 No. 380 369-370		4197			. 030	2/2 2/2 2/2 3/3	0 4 7 1	Unacceptable - -
Du Pont No. 97-001A		3596	0.005 FEP laminated to TFE fabric and metal- lized with aluminum		010.	0/20	10	Satisfactory
Du Pont No. 506A112		3595	Armalon and FEP dispersion coated glass		. 006	0/20	10	Satisfactory
Du Pont ML Film		3558			. 008	2/20 0/20	0 s	Unacceptable
Du Pont ML Film		3536			. 004	0/40	10	Batch Test
Du Pont ML Film	E. I. du Pont de Nemours & Co., Inc.	3555			. 002	0/40	10	Batch Test
E-Bond Rubber Sealant	International Epoxy Corporation	4199	Epoxy and polysulfide	LP/32 activator	. 050	10/20 14/20 10/20	10	Unacceptable
Ec 1944 B	Minnesota Mining and Manufacturing Company	2745			. 063	3/20 0/20	10	Unacceptable
Ecco Bond No. 45 and Catalyst No. 15	Emerson and Cuming Incorporated	742	Epoxy Cement	Violent reactions	. 050	2/2 2/2 2/2	10	Unacceptable

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES (COMMING)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Epibond 123 and Hardner 952A	Furane Plastics Incorporated	741	Epoxy Cement	Violent reactions	. 050	5/20	10	Unacceptable
Epon Glass Terminal Board		659				2/3	10	Unacceptable
Epoxy Potting Compound	Bendix Corporation	1945	Epoxy		. 063	1/1	10 25	Unacceptable
Epoxy Filled Glass Fabric (MLL-P-18177)	General Electric Company	3790	Epoxy-Glass	Type G.E.E. Grade G-10	. 063	19/20 4/20 3/20 0/20	10	Unacceptable
Epoxy Filled Glass Fabric (MGL-P-18177)	General Electric Company	4289	Epoxy-Glass	Type G.E.E. Grade G-10	. 063	20/20	10	Unacceptable
Fibrous Glass Tubing	Taylor Fibre Company	3812	Epoxy-Glass		. 063	2/2 2/2 2/3	10 2 5	Unacceptable -
Fibrous Glass Tubing	Taylor Fibre Company	3810	E poxy-Glass		. 063	2/2 2/2 2/3	r 5	Unacceptable - -
Fluorel KX2141	Minnesota Mining and Manufacturing Company	2262			. 094	0/20	10	Satisfactory
Fluorel-Elastomer (orange, brown, black, white)	Minnesota Mining and Manufacturing Company	1318 1067	Chlorofluoro- carbon	Five batches tested	. 063	0/20	10	Satisfactory
Fluorolin Tape 101	Joclin Manufacturing Company	773	3 mil Teflon and 3 mil adhesive			2/3 2/17	10 5	Unacceptable -
Fluorolin Tape 303		270	6 mil Teflon impregnated glass fibers and 4 mil adhesive			2/2 2/6 0/12	0 2 7	Unacceptable ,
Fluorolin Tape 404	Joclin Manufacturing Company	771	3 mil aluminum foil, 4 mil Teflon, 2 mil adhesive			2/3 0/2 2/4	ں ہ ر 10	Unacceptable - -
FM 1000 Adhesive	Bloomingdale Rubber Company	4057	Nylon Epoxy	Violent reactions	010.	17/20 11/20 9/20	0 % %	Unacceptable -
G.E. Formulation II	General Electric Company	3861	Potting compound of Adiprene - L100 parts Castor oil - 10 parts Teflon 7X - 100 parts Quadrol - 5.7 parts	Sample A	. 018	2/3 2/2 2/11 2/11	ا م س س ا	Unacceptable - -

TABLE IX PLASTICS, ELASTOMERS, AND ADHESIVES (CONTER DEC)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests	Energy Level Kg-M	Rating
G.E. Formulation II	General Electric Company	3863	Potting compound of Adiprene L - 100 parts Castor oil - 10 parts Tefton 7X - 100 parts Quadrol - 5.7 parts	Sample B	. 028	2/2 2/8 2/9 2/9 2/10 0/20	0 n n n 1	Unacceptable - -
G.E. Formulation II		2952		Sample C	.034	2/5 0/20	10	Unacceptable
G.E. Formulation II		3866		Sample D	. 043	6/20 2/8 0/20	10 5 1	Unacceptable
G.E. Formulation II		2951		Sample E	. 063	0/20	10	Unacceptable
G.E. Formulation II		2955		Sample F	. 070	0/20	10	Unacceptable
G.E. Formulation		3869		Sample F aged l year	. 070	2/4 2/4 0/20	10	Unacceptable -
G.E. Formulation II		3871	Potting compound of Adeprene L- 100 parts Castor oil - 10 parts Teflon 7X - 100 parts Quadrol - 5.7 parts	Sample G	. 105	2/20 0/20	0 x	Unacceptable
G.E. Formulation II		2743		Sample H	. 125	0/20	10	Unacceptable
G.E. Formulation I		2945	Potting compound of Adeprene L - 100 parts Castor oil - 10 parts Quadrol - 5, 7 parts		. 063 . 125	2/11 1/3 3/0	0 v v 0 v	Unacceptable
G.E. Formulation III		2954	Potting compound of Adeprene L - 100 parts Castor oil - 4.5 parts Fluorolube - 30 parts		. 152	0/20	v 0	Unacceptable
G.E. Formulation III A	-	3040	ove inc:		. 063	6/20 2/7 0/20	0 in w	Unacceptable -
G.E. Formulation III A	General Electric Company	3041	Same as above except Fluorolube increased to 45 parts		. 032	10/20 2/4 0/20	10 	Unacceptable
Gen-Flex Plastic Tubing No. 603	General Cements Company	1678				2/4 2/2 1/14	10	Unacceptable
Glid Aır	Glidden Company	1 900			. 063	5/8 1/1 1/1	0000-	Unacceptable
Hypalon Rubber	E. I. du Pont de Nemours & Co., Inc.	1946			. 094	2/22/2	- 5mm v	Unacceptable

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (CONTINUED)

Rating	Unacceptable -	Unacceptable	Unacceptable -	Unacceptable	Batch Test	Batch Test	Satisfactory	Unacceptable	Satisfactory	Satisfactory							
Cnergy Level Kg-M	ر د بې م د د ب	10 2	0 w m m	10.5	01	10	10	10	10	10	10	10	10	10	10	10	10
No. Reactions/ Energy Level No. Tests Kg-M	2/3 2/5 2/6 1/8	2/10	20/20 20/20 6/20	2/3 2/4	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	0/20	2/60	0/20	0/20
Thickness (Inch)	.094	.063	. 013	. 050	. 032		. 005	. 005	.005	. 002	. 010	010.	. 005	. 063		. 063	. 063
Remarks			Violent reactions	Violent reactions											Sprayed on stainless steel inserts. Dried 72 hours		
Composition			Epoxy phenolic	Epoxy Coment	Polytrifluorochloro- cthylene	Polytrifluorochloro- ethylene	Polytrifluorochloro- ethylene	Polytrifluorochloro- ethylene	Palytrithuorochloro- ethylene	Polytrifluorochloro- ethylene	Polytrifluorochloro- ethylene	Polytrifluorochloro- ethylene	Palytrifluorochloro- ethylene	Polymer based on chlorotrifluoro carbon		Polytrifiuorochloro- ethylene	Polytrifluorochloro - ethylene
Test No.	1958	1959	4220	1003	3 520	822	9999	4006	4003	000t-	4004	4002	4001	3045	2601	1421	3060
Manufacturer	E. I. du Pont de Nemours & Co., Inc.		E. I. du Pont de Nemaurs & Co., Inc.	Houghton Labs Incorporated	Minnesota Mining and Manufacturing Company									Minnesota Mining and Manufacturing Company	Sprayion Products Company	Minnesota Mining and Manufacturing Company	Minnesota Mining and Manufacturing Company
Materjal	Hypalon Rubber	Hypalon-Asbestos	HT-424 Adhesive	Hysol Cement 6020	Kel-F (Plasticized)	Kel-F (Unplasticized)	Kel-F L-1380	Kel-F L1381	Kel.F Film Type 8105	Kel-F Film Type KX202	Kel-F Film Type KX8110	Kei-F Film Type 8210	Kel-F Film Type 8205	Kel-F8l Plastic	Kel-F800 (Pressurized can)	Kel-F800 Resin	Kel-F800 Plastic

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (CONHIDUED)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Kel-F800 Plastic	Minnesota Mining and Manufacturing Company	3319	Polytrifluorochloro- ethylene	Soaked in petroleum ether and dried	. 125	6/20	10	Unacceptable
Kel-F-PN25 Primer		1676		One coat sprayed on stainless steel inserts		0/20	10	Satisfactury
Kel-F PN25 Primer and NW-25TN Coating		1675		Two coats sprayed on stainless steel inscrts		0/20	10	Satisfactory
Kel-F Dispersion 625		3518	Polytrifluorochloro- ethylene	Film	. 005	0/20	10	Satisfactory
Kel-F Dispersion KX633		4005	Polytrifluorochloro- ethylene	Film	. 003	0/20	10	Satisfactory
Kel-F Elastomer		3852	Polytrifluorochloro- ethylene		. 125	0/20	10	Batch Test
Kel-F Elastomer	Minnesota Mining and Manufacturing Company	3853	Polytrifluorochloro- ethylene		. 063	0/20	10	Batch Test
Koroseal	B.F. Goodrich Company	4286	Vinyl rubber		. 125	2/20	01	Unacceptable
Krylon Crystal Clear Spray Coating	Krylon Incorporated	3226	Acrylic resin and aromatic hydrocarbons		. 002	2/3 2/6 0/20	0 v 1	Unacceptable
Kynar (RC-2525)	Pennsalt Chemical Company	2874	Vinylidene Fluoride		. 063	0/10	10	Incomplete
Lamicoid	Minnesota Mining and Manufacturing Company	3169	Teflon glass cloth		. 125	0/20	10	Satisfactory
Lexan Polycarbonate Resin	General Electric Company	2730	Polycarbonate resin		. 063	20/20 16/20 0/20 3/17	0 v v 4	Unacceptable - -
Liquid Envelope. Aluminum Cold Spray	Better Finishing and Coating Company	3854			. 050	2/2 2/8 0/20	0 v 2 -	Unacceptable
Liquid Envelope, Aluminum Cold Spray 675 -291 -A		3858			. 050	2/2 2/4 2/10	1 2 2 0	Unacceptable -
Liquid Envelope, Coverlac S. C. 224	Better Finishing and Coating Company	3856		Dip coating on stain- Icss steel inserts		3/20 2/14 0/20	0 C m	Unacceptable
Micarta	Westinghouse Electric Corporation	2530	Phenolic laminate, Iabric base		. 063	16/20 16/20 6/20 0/20	0 2 2 5 1	Unacceptable -

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (CONTENTED)

Manufacturer	rer Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
G. T. Schjeldahl Company	3989			. 006	0/20	10	Incomplete
G. T. Schjeldahl Company	.0665			.004	0/20	10	Incomplete
E. I. du Pont de Nemours & Co. , Inc. 3 1	3379 Poly	Polyester film		900.	2/22 2/28 0/20	10 9 9	Unacceptable - -
	3368 Poly	Polyester film		. 002	2/22 2/20 0/20	0 v n	Unacceptable -
	149 Poly	Polyester film			2/7 0/13	5	Unacceptable -
	726 Poly	Polyester film			8/10	10	Unacceptable
	147 Poly	Polyester film			1/2 1/3 1/5	un N P-	1 1 1
	148 Poly	Polyester film			2/2 1/6	10	Unacceptable
	724 Poly	Polyester film			2/2 2/13	10 ت	Unacceptable
	536 Poly	Polyester film			2/3 0/20	10	Unacceptable
	725 Poly	Polyester film			2/20	10	Unacceptable
	730 Pol	Polyester film			2/11	0 9	Unacceptable
	729 Pol	Polyester film			6/0	5 5	Unacceptaole
	731 Pol	Polyester film			2/20	10	Unacceptable
	736 Pol	Polyester film			07/7	2	ollacce praga
	734 Pol	Polyester film			2/4 2/3 0/12	r 20	Unacceptable -
- E. I. du Pont de Nemours & Co. , Inc.	735 Pol	Polyester film			3/20	10	Unacceptable

TABLE TE PLASTICS, ELASTOMERS, AND ADHESIVES (contented)

Rating	Unacceptable	Unacceptable	Unacceptable -	Unacceptable	Unacceptable č	Unacceptable	Unacceptable - -	Unacceptable - -	Unacceptable -	Unacceptable	Unacceptable	Unacceptable	Unacceptable - -
Energy Level Kg-M	10	10	10 % %	3 5 U	6 yr 9	10	0 n m	10	10 2 %	0 20 70	10	10 % M	05 0 2
No. Reactions/Energy Level No. Tests Kg-M	2/20	4/20	4/20 3/20 0/20	5/20 5/20 0/20	2/25 0/20 2/20	2/23 0/20	1/1 1/1 1/5	1/1 1/1 1/1 0/6	1/1 1/6 1/1	1/1 1/1 1/2 0/1	2/2 1/1 1/2 0/3	2/2 2/3 1/4	2/8 2/9 1/3 0/20
Thickness (lnch)		.001	002	, 006	. 002	. 006							
Remarks			· · · · · · · · · · · · · · · · · · ·										Three batches tested
Composition	Polyester film	Polyester film	Vapor coated with alum- inum on both sides 400 Å thick	Vapor coated on one side with 200Å aluminum, 400Å aluminum on other side	Vapor coated with 400 Å aluminum on one side	Vapor coated with 400 A aluminum on one side	Aluminized Mylar reinforced with No. 477 vedine adhesive between filaments	Aluminized Mylar reinforced with No. 476 Vedine adhesive between filaments	Aluminized Mylar reinforced with No. 52042	Aluminized Mylar reinforced with No. 15345	Aluminized Mylar reinforced with No. 15094	Aluminized Mylar reinforced with No. 482	1-1/2 mil Mylar between two pieces of 0.0035 aluminum polyester adhesive
Test No.	722	4545	3414	3444	3409	3442	3397	3398	3399	3396	3395	3394	3493
Manufacturer	E. I. du Pont de Nemours & Co., L _{ic.}					E. I. du Pont de Nemours & Co., Inc.	B. F. Goodrich Company					B. F. Goodrich Company	
Material	Mylar R22 Plastic Film	Mylar Film	Mylar Film	Mylar Film	Mylar Film	Mylar Film	Mylar, Aluminized	Mylar, Aluminized	Mylar, Aluminized	Mylar, Aluminized	Mylar, Aluminized	Mylar, Aluminized	Mylar

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES (contrined)

38	Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
	Mystik Foil No. 7402 Tape	Mystik Adhesive Products Company	835 426	Aluminum, silicone adhesive			2/3 2/3 1/14	د م ۲	Unacceptable -
~	Mystik Foil No. 7402 Tape	•		Aluminum, silicone adhesive	Baked 100°F overnight and stripped		0/20	01.	Incomplete
	Mystik Foil No. 7402 Tape	I Mystik Adhesive Products Company		Aluminum, silicone adhesive	Aged I week and stripped		1/20	10	Incomplete
	Narmco Experimental Adhesive No. J	Narmco Research and Development Company	4082	Chlorinated polyester cured with 2% MEK, peroxide and cobalt naphtenate		. 050	7/10 4/10 2/29 0/20	5 m m d	Unacceptable - -
	Narmeo Experimental Adhesive No. 2		4085	Chlorinated polyester with 33.3% antimony trichloride, cured with 2.0% MEK, peroxide and cobalt naphtenate		. 050	9/10 2/5 1/10 2/10 0/20	0 4 m 2 -	Unacceptable - -
	Narmco Expermental Adhesive No. 3		4088	ERL 0625 epoxy cured with 10.6 Phr meta- phenylene diamine		. 050	7/10 2/10 0/20	0 m a	Unacceptable -
	Narmco Experimental Adhesive No. 4		4090	ERL 0625 epoxy, cured with 14.5 phr chlorendic anhvdride and 0.5% beuc,1dimethylaminc		. 050	6/10 6/20 2/10 1/10 0/20	0 in m v -	Unacceptable
	Narmco Resin 3135		3624	Aluminum alloy 7075-76 cross laminated with layers of adhesive. two pieces of 1 mil FEP Type 544 between aluminum		020	2/20 3/20 2/20	0.0	Unacceptable -
	Narmco Resin 3135		3512	Adhesive consisting of 50% epoxy and 50% polyamide		. 050	3/3 2/2 2/7 0/12	10 2 1	Unacceptable
	Narmco Metlbond 3170		3508	Adhesive consisting of 50% filled epoxy, 50% filled polyamine		. 050	16/24 2/8 2/14 0/20	10 5	Unacceptable
	Narmco 2- Part Adhesive	Narmco Research and Development Company	3514	Adiprene L100 polvurethane prepolymer. Moca curing agent		050.	5/5 3/5 2/5	0 s w -	Unacceptable - -

TABLE IL PLASTICS, ELASTOMERS, AND ADHESIVES (CONTINUE)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Non-metallic Inserts (MSFC Stock No. 127-912-4200)		42.85			. 063	2/2 2/6 2/12	5.00	Unacceptable -
Nvlon Basket We ave No. 1803		2250	Polyamide		. 032	2/2 2/2 2/12	0 in N =	Unacceptable - -
Nyion Type 127-1		3545	Polyamide		. 250	8/20 1/1 1/2 0/20	0 10 20 1	Unacceptable - -
Nylon "C" Lot 8762		4184	Polyamide		001	13/20	10	Unacceptable
Nylon, Zytel	E. I. du Pont de Nemours & Co., Inc. 4180	4180	Polyamide		100.	10/20	10	Unacceptable
Nylon. Zytel		4183	Polyamide		. 002	3/20	10	Unacceptable
Nylon, Zytel	E. I. du Pont de Nemours & Co. , Inc.	4182	Polyamide		. 004	8/20	10	Unacceptable
Nylon Extruded Rod		855			. 063	2/2 2/2 2/3	0 W V	Unacceptable -
Parco "O" Rings 947-70	Plastics and Rubber Product Company	1430	Viton A		. 063	0/20	10	Batch Test
Permacel P421 Tape	Permacel Tape Corporation	1261				1/6 0/2	10 5	Unacceptable
Permafil		3529				7/20	- 10 M 20	Unacceptable -
Plaskon Alkyd 440 Sheet Plastic	Barrett Division Allied Chemical Company	1004	Glass and polycster			2/5 2/13 0/2	0 v -	Unacceptable
Plastic KF52 (MLL- B-131B Class 2)	Plastic Film Corporation	300		Lot No. 46		1/2 1/4	10	Unacceptable -
Plastic P35A (MIL- B-131B Class 1)	Plastic Film Corporation	301		Lot No. 150		1/2 2/2	10 5	Unacceptable -
Plastic Rod (MLL-P- 79B)		557		Electrical insulation		2/2 2/2 1/16	0 10 2	Unacceptable -
Plastic Plugs		3501	Dyed polyethylene		. 063	4/11 2/10 2/14 0/20	0 rr m 1	Unacceptable - -

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (CONTENT ACT)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
	Devcon Corporation	3390	80% Steel with epoxy binder	Violent reactions	. 050	5/5 5/5 9/12 4/20	10 5 1	Unacceptable - -
<u>, , , , , , , , , , , , , , , , , , , </u>		558		Three batches tested		2/2 1/3 1/4	9 1 0 0	Unacceptable -
Polyken No. 110 Tape	Kendall Company					2/2 2/2	10	Unacceptable -
		1698		_	. 0.32	4/7 2/19 1/3 0/17	0 0 0 1	Unacceptable -
Polyethylene Tubing		2627				2/11 2/10 2/20	10 2 2	Unacceptable -
Polyurethane Wiping Material		2502			. 016	2/3 2/9 0/20	10 1 1	Unacceptable -
Polyvinyl Chloride	Teledyne Corporation	3785			. 125	2/2 2/9 2/14 0/20	10 5 1	Unacceptable - -
Polyvinyl Chloride		4280		Tested in air 11/20 charge noted	. 050			
Polyvinyl Chloride		4279		Tested in air 8/20 charge noted	. 025			
Polyvinyl Chloride		3782		Cotton cloth coated with PVC 0.015 inches per side	. 050	2/2 2/2 2/5 1/20	0 10 10	Unacceptable
Polyvinyl Chloride Electrical Insulation	Revere Corporation of America	1692	Polyvinyl chloride		. 063	2/3 2/3 2/11 1/3	3 5 2	Unacceptable
	Bendix Corporation	1945	Epoxy		. 063	1/1 1/1 1/1 1/2	0 2 2 -	Unacceptable
PR341 Casting Resin	Product Research Corporation	713				3/3 2/3 2/7	0 m w	Unacceptable

TABLE IV PLASTICS. ELASTOMERS, AND ADHESIVES (CONTRINED)

 2939 Polyurethane 2932 Polyurethane 2935 Polyurethane 2935 Polyurethane
Product Research Corporation 3931 Gulf Pro Seal Corporation 3221
Product Research Corporation 4601
Product Research Corporation 492 4591

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES (CONTENSE)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
PRC 1955 with Top Coat P-81-208	Product Research Corporation	4582			. 050	2/2 2/8 2/5 2/10	10 8 4 4	Unacceptable
PRC 1955 with Top Coat P-81-2020		4584			. 025	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	n N O 8 0 4 N	Unacceptable
PRC 1955 with Top Coat P-81-2035	Product Research Corporation	4587			. 015	2/6 2/22 2/22 2/22 2/22 2/22 2/22 2/22	- 0.2040-	Unacceptable
PT-201 and Solvent PT-1001	Product Techniques Incorporated	1893	Phenolic epoxy			1/1	. 0 ° 2	Unacceptable -
PT-201 Coated Coil Spring		3615				3/10 2/9 0/4	0 9 9 9 9	Unacceptable - -
Pyro Prey AC-81 Type I Plastic	Cordo Molding Products Incorporated	916	Phenolic impregnated fiberglass	<u>.</u>	. 060	2/2 2/2 2/3	0 is m	Unacceptable -
Q9-0002A and B Adhesive Q-2-0046 Adhesive Q-2-0046 Adhesive	Dow Corning Corporation Dow Corning Corporation Rawtheon Company	3532 3339 3788 3853	Fluorosilicone rubber Fluorosilicone rubber Fluorosilicone rubber	RTV cured RTV cured RTV cured	.050 .050 .025 .125	0-2/20 1/140 38/40 2/20	01 01	Batch Test Batch Test Unacceptable Unacceptable
Red Wing Silicone Rubber		1907			. 063	20/20 20/20 14/20 1/20	0.5 m -	Unacceptable
Red Wing Silicone Rubber		1921		Two 0.063 inches stacked to make 0.125	, 125	17/20 4/20 0/20	0 m 1	Unacceptable
Relco A (50%) + Relco B (50%) Relco A $\stackrel{-}{\cdot}$ Relco B + Grit	Reliance Steel Products Company Reliance Steel Products Company	2962 2963	Epoxy Epoxy		. 063 . 063	2/20 3/5 2/5 1/8	10 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Unacceptable Unacceptable -
Ricote (MIP) 100-C-1	Modern Industrial Plastics Division of the Durison Company Incorporated	4010		Brugh coating on stainless steel inserts		7/20	0	Unacceptable

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES (CONTELIERS)

Material	Manufacture r	Test No.	Composition	Remarks	Thickness (Inch)	No.Reactions/ No. Tests	Energy Level Kg-M	Rating
Sauereisen Low Expansion Cement No. 29	Sauereisen Cement e Company	2495	Zirconium base		0÷0.	0750	10	Satisfactory
Scotch Tape No. Y - 9089	Minnesota Mining and Manufacturing Company	2853	Pluton fabric, neoprene base adhesive		. 063	20/20 2/2 0/20	0 4 4	Unacceptable -
Scotch Pressure Sensitive Tape No. Y-9050		2852				17/20 9/10 0/20	- v -	Unacceptable -
Scotch Electr ical Tape No. 27		631	White glass cloth with thermosetting adhesive		200.	4/5 5/6 3/3	0 5 - 1	Unacceptable -
Scotch Electrical Tape No. 33		516	Black vinyl plastic with pressure sensitive adhesive		.010	2/4 2/3 0/2	0 s v	Unacceptable -
Scotch Electrical Tape No. 60		496	Teflon and silicone adhesive		. 006	2/3 2/7	10	Unacceptable
Scotch Electrical Tape No. 61		1271	Teflon and silicone adhesive		. 006	2/2 2/4	10	Unacceptable -
Scotch Resin No. CRP-235		712	Epoxy	One part "A" and two parts "B" cured at 30°C for 1/2 hour		3/6 1/14	5 5	Unacceptable
Scotch Electrical Tape No. 27		517				3/4 2/2	10 3	Unacceptable -
Scotch Tape No. 506		630				3/4 2/5	10	Unacceptable -
Scotch Teflon Tape No. 536		149				3/10 1/1 1/7	0 ک م	Unacceptable -
Scotch Teflon Tape No. 547	-	37				0/10	10	Incompleté
Scotch Teflon Tape No. 549	Minnesota Mining and Manufacturing Company	786				2/2 2/5 1/13	0 v v	Unacceptable -
Silastic No. 50 Rubber	Dow Corning Corporation	736	Silicone rubber			2/2 2/6 2/4	0 v v	Unacceptable - -
Silastic No. 675	Dow Corning Corporation	163				2/3 2/2 1/1	0 m v	Unacceptable

TABLE IL PLASTICS, ELASTOMERS, AND ADHESIVES (CONTINUED)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
	Dom Corning Cornoration	514				8/10	10	Unacceptable
Silastic No. 50-24-480		164				2/10	10	Unacceptable
Silastic No. 80-24-400 Silastic No. 290-24-480	•	321				2/10 1/10	10	Unacceptable -
Silastic No. 916-4-480		980				2/2 3/15	10	Unacceptable -
Silastic LS-53		549				2/7 2/8 0/5	10 5 2	Unacceptable
Silastic LS-53-24-300		1007				2/3	10	Unacceptable
Silastic LS-13-8-400		547				2/8 3/10 0/2	10 5 2	Unacceptable -
Silastic S-2098-24-480		546				2/3 0/17	10	Unacceptable -
Silastic S-9711-2-480		545				2/2 2/2 0/2	0 5 M	Unacceptable
	1 Doue Cornoration	1232				3/20	10	Unacceptable
Silastic L2-63 Silicone Impregnated Fiberglass Panel			Silicone and glass			2/2 3/3 2/2	0.00	Unacceptable -
83-5 Silicone Rubber Flexible Tubing		2740	Silicone			5/5 5/5 5/5 5/5	01 20 20 1	Unacceptable - -
Silverprene Coated Asbestos	Jamac Incorporated	2877			. 015	2/2 2/2 2/5 2/6 1/20		Unacceptable - - -
Stycast 2651		2757	Epoxy		. 063	2/2 2/2 2/3 0/20	10 2 2 1	Unacceptable
Teflon	E. I. du Pont de Nemours & Co. , Inc.	3402	Polytetraíluoroethylene		. 002	0/20	10	Satisfactory
Teflon		3403	Polytetrafluoroethylene		900 .	0/20	10	Satisfactory

TABLE IV PLASTICS, ELASTOMERS, AND ADHESIVES (CONTENTED)

	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
ircı	U.S. Aircraft Products Company	1777	Po lytetrafluoroethylene	On 321 stainless steel inserts		0/20	10	Satisfactory
		3802	Polytetrafluoroethylene		. 020	0/20	10	Satisfactory
e Ca	Methode Cable Company	4287	Teflon and copper	Organic adhesive	. 028	5/40	01	Unacceptable
u Pon	E. I. du Pont de Nemours & Co. , Inc.	1308	Polytetrafluoroethylene	Applied to stainless steel discs		0/20	10	Satisfactory
Pont	E. I. du Pont de Nemours & Co., Inc.	1282	Polytetrafluoroethylene	Applied to stainless steel discs		0/20	10	Satisfactory
		1927	Polytetrafluoroethylene			0/20	10	Satisfactory
rodu	Alvin Products Incorporated	3850	Fluorocarbon	Spray film		0/20	10	Satisfactory
t Engi	Sargent Engineering Corporation	3775			. 050	າ ເຊິ່ງເຊັ່ງ ເຊິ່ງເຊັ່ງ	9 w m v न	Unacceptable
t Engi	Sargent Engineering Corporation	3778			. 050	0/40	01	Batch Test
		3875			. 063	11/20	10	Unacceptable
ncorpo	Orell Incorporated	1656				2/2 2/2 2/2 4/14	0.007	Unacceptable - -
ncorp	Oreil Incorporated	1657				1/1 1/1 7/7	10 2 1	Unacceptable -
Connecticut Company	Connecticut Hard Rubber Company	3643	Polytetrafluoroethylene with silicone polymer adhesive			3/20 2/20 3/20 0/20	0 0 4 1	Unacceptable - -
yd Ce	Vinylloyd Company	143	Chlorofluorocarbon		. 032	0/20	10	Batch Test
l Pon	E. I. du Pont de Nemours & Co. , Inc.	914			. 020	2/7 0/15	10	Unacceptable -

(Contin ied)
ADHESIVES
AND
ELASTOMERS, AND
TABLE IV PLASTICS, E

Test No.
3389 Polytetrafluoroethylene
3492 Polytetrafluoroethylene
3491 Polytetrafluoroethylene
1247 Fluorinated ethylene - propylene polymer
3489 Polytetrafluoroethylene
5128 Polytetrafluoroethylene
95 Polytetrafluoroethylene
96 Polytetrafluoroethylene
1830 Polytetrafluoroethylene
4190 Polytetrafluoroethylene
3527 Polytetrafluoroethylene
3366 Polytetrafluoroethylene
3367 Polytetrafluoroethylene
3365 Polytetrafluoroethylene
4188 Aluminum and Polytetrafluoroethylene
3516 Polytetrafluoroethylene
3641 Polytetrafluoroethylene
3504 Polytetrafluoroethylene
1597 Polytetrafluoroethylene
1596 Polytetrafluoroethylene

TABLE IT PLASTICS, ELASTOMERS, AND ADHESIVES (CONCIPACIES)

.

Work And Galaction E. L. du Phande Amount A. Ga, Ida 912 111 2, 2 12 101 Distribution 11 2, 3 2 2 1 Vision Distribution 11 2, 3 2 2 1 Vision Distribution 11 2, 3 2 2 1 Vision Distribution 11 2, 3 2 1 1 Vision Distribution 11 2, 3 2 1 1 Vision Distribution 11 2, 3 1 1 1 Vision Distribution 11 2, 3 1 1 1 Vision Distribution 2 1 1 1 1 Vision Distribution 2 1 1 1 1 Vision Distribution 2 2 1 1 1 Vision Distribution 2 2 2 2 2 2 Vision Distribution 2 2 2 2 <th< th=""><th>Material</th><th>Manufacturer</th><th>Test No.</th><th>Composition</th><th>Remarks</th><th>Thickness (Inch)</th><th>No. Reactions/ No. Tests</th><th>Energy Level Kg-M</th><th>Rating</th></th<>	Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ No. Tests	Energy Level Kg-M	Rating
on Diversion Electronice Electronice Electronice Verd Nytoin Verd	n A on Glass bers 85001	E. I. du Pont de Nemours & Co., Inc.				. 011	2/2 2/5 2/3	0 v v	Unacceptable -
Elatione E. J. du Punter Nemoera & Ca. Jud. Section Se	n A on Dac ron bric		е. С				2/2 2/4 2/11	01 د ا	Unacceptable -
vired Nyton 616 218 11 <td>a A Elastomer</td> <td>E.I. du Pont de Nemours & Co., Inc.</td> <td></td> <td>Copolymer of vinylidene fluoride and hexafluoropropylene</td> <td>Sensitivity varies from batch to batch</td> <td></td> <td>0-4/20</td> <td>01</td> <td>Batch Test</td>	a A Elastom er	E.I. du Pont de Nemours & Co., Inc.		Copolymer of vinylidene fluoride and hexafluoropropylene	Sensitivity varies from batch to batch		0-4/20	01	Batch Test
Cita Cita <th< td=""><td>l Covered Nylon</td><td></td><td>616</td><td></td><td></td><td></td><td>2/8 1/10</td><td>10 5</td><td>Unacceptable -</td></th<>	l Covered Nylon		616				2/8 1/10	10 5	Unacceptable -
Spectra Strip Wire and Calcoration 90 Spectra Strip American Ling Conpariton 210 Manufacturing Company 213 Ling 203 Manufacturing Company 203	l Tubing		674				2/8 3/5	10	Unacceptable
Minneenta Minnee	kote	Spectra-Strip Wire and Cable Corporation	976				2/6 4/14	10 5	Unacceptable -
	038	Minnesota Mining and Manufacturing Company	2748	Epoxy		. 063	2/25 0/35	10	Unacceptable -
				· · · · ·					
									
			<u> </u>			<u> </u>			

TABLE I GASKETS AND PACKINGS

Rating	Batch Test	Batch Test	Unacceptable - -	Batch Test	Unacceptable	Batch Test	Unacceptable	Batch Test	Batch Test	Batch Test	Batch Test	Batch Test	Batch Test
înergy Level Kg-M	10	10	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	000000000000000000000000000000000000000	10	10	10	10	10	10	10
No. Reactions/Energy Level No. Tests Kg-M	0/20	0/20	0-2/20 0-3/20 0-5/20 3-10/20 5-15/20	0/20 0/20 0/20 0-2/20	30/120	0-18/20 0-2/20 0-1/20 0-1/20 0-8/20 0-11/20 0-4/20	3/40	0/20	0/20	0/20	0/20	0/20	0/20
Thickness (Inch)	. 063	. 063	. 250 . 125 . 094 . 063	. 250 . 125 . 063 . 031	. 250	. 250 . 125 . 094 . 063 . 031	. 250	. 063	. 063	. 063	. 063	.010	. 125
Remarks		Two batches tested	Highly variable. Average range of test results shown for each thickness		Not Fluorolubed	Fluorolubed per MS 750. Highly variable. Test results show range of results for each thick- ness.	AR-1F treated		Aging test. Fluoro- lubed 3/9/'60. Tested 3/23/'61	Aging test. Fluoro- lubed 3/9/'60. Tested 4/19/'61	Aging test. Fluoro- lubed 3/5/'60. Tested 6/13/'62		
Compositon	Teflon and asbestos	Teflon and asbestos	Styrenc-butadiene copolymer with asbestos fiber	Styrene-butadiene copolymer with asbestos fiber	Styrene-butadiene copolymer with asbestos fiber	Styrene-butadiene copolymer with asbestos fiber	Styrene-butadiene copolymer with asbestos fiber	Asbestos-rubber composite				. 005 in. TFE fiber, . 005 in. FEP film	Tetlon TFE felt and FEP film
Test No.	1419	1421			1567		1572	1345	1899	2004	3560	3642	3517
Manufacturer	Armstrong Cork Company	Armstrong Cork Company	Allpax Company				Allpax Company	Anchor Packing Company				E. I. du Pont de Nemours & Co., Inc. 3642	
Material	Accopac No. 812	Accopac No. 816	Allpax 500 Superheat Sheet (as received)	Allpax 500 Superheat Sheet (impregnated with Fluorolube T-80)	Alipax 500	Alipax 500	Allpax 500	Ankorite 425	Allpax 500	Allpax 500	Allpax 500	Armalon 97-001	Armalon PDX 7550

TABLE $\underline{\mathbf{Y}}$ GAS KETS AND PACKINGS (continued)

Manufacture	er Z	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
E. I. du Pont de Nemoui I	rs & Co., Inc.	1689	Teflon and glass		.016	0/20	10	Batch Test
		1674	Teflon and glass		. 016	2/2 2/5 1/13	10 3 5	Unacceptable - -
		762	Fluorocarbon felt	Bleached sheet	. 063	0/20	10	Batch Test
ours &	E. I. du Pont de Nemours & Co., Inc.	1070	Fluorocarbon felt	Unbleached sheet	. 063	2/4	10	Unacceptable
Asbestos Textile Company		1343			. 063	0/20	10	Batch Test
		1344			. 063	2/20	10	Unacceptable
Asbestos Textile Company		1342			.063	2/6 0/14	10	Unacceptable
	~~~~	2220	Asbestos	Stainless steel inserts used		0/20	10	Batch Test
	N	2151	Asbestos and synthetic rubber	Samples from Test Division	. 063	2/120	10	Incomplete
	~	2157	Asbestos and synthetic rubber	Samples from Test Division	. 063	0/60	10	Incomplete
Kalendex Corporation		1008	Fiber coated with Buna-N		. 032	2/4 2/3 0/13	۵ م به	Unacceptable -
		565	Fiber core coated with Buna-N		. 093	2/3 2/2 2/4	10 %	Unacceptable -
		922	Fiber core coated with Buna-N		. 063	2/2 2/3 0/15	10 3 3	Unacceptable
Kalendex Corporation		166	Fiber core coated with Buna-N		. 063	2/2 2/2 2/3	10 35 E	Unacceptable -
A. W. Chesterton Company	~	1162		Very violent reaction	. 250	1/1	10	Unacceptable -
Convair Division General Dynamics Incorporated		1285	Metal gasket with green coating		. 063	2/2 0/18	10 5	Unacceptable
Convair Division General Dynamics Incorporated		1280	Metal gasket with brown coating		. 062	0/20	10	Batch Test
						•		

TABLE  $\underline{\mathbf{Y}}$  GASKETS AND PACKINGS (continued)

20 Material	Manufacture r	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Durabia Gasket Material	Durabla Manufacturing Company	2491	Compressed asbestos and fluorosilicone rubber	Sensitivity varies from batch to batch	. 063	3/40 0/20	0 x	Batch Test
Durabla Gasket Material	Durabla Manufacturing Company	3506	Compressed asbestos and fluorosilicone rubber		. 032	2/19 2/19 0/20	ပိုက္က	Unacceptable - -
Duroid Sheet 900	Rogers Corporation	1346	Cellulose fibers and Buna-N		. 032	2/2 2/2 2/16	o w m	Unacceptable
Duroid Sheet 910	•		Similar to Duroid 900		. 032	2/2 2/2 2/16	0 n w	Unacceptable -
Durvid Sheet 3102		1347	Neoprene latex and asbestos fibers	Conforms to (MIL-G- 7021 Class 2)	. 032	2/3 2/2 0/14	0 in m	Unacceptable -
Duroid Sheet 3110		1349	Similar to Duroid 3102		, 032	2/2 2/2 1/16	10 9 2 0	Unacceptable -
Duroid Sheet 3200		1351	Buna-N latex and asbestos fibers		. 032	2/2 2/2 2/3	10 ° ~ ~	Unacceptable
Duroid Sheet 3210		1352	Similar to Duroid 3200		.032	2/2 2/2 2/10	0 de M	Unacceptable -
Duroid Sheet 3300		1353	Buna-5 and asbestos fibers		. 032	2/2 2/2 0/16	9 G w	Unacceptable -
Duroid Sheet 3310		1354	Similar to Duroid 3300		. 032	2/3 2/3 0/14	10 10 10	Unacceptable - -
Duroid Sheet 3350		1355	Similar to Duroid 3300		.063	2/2 2/6 0/11	م م س	Unacceptable -
Duroid Sheet 3400		1473	Viton A and asbestos fibers		.063	0/20	10	Batch Test
Duroid Sheet 5600	-	480	Teflon and ceramic fibers		. 063	0/20	10	
Duroid Sheet 5613	Rogers Corporation	765	Similar to Duroid 5600: contains molybdenum disulfide		. 063	2/6 0/14	0 7	Unacceptable -

TABLE  $\underline{\mathbf{V}}$  GAS KETS AND PACKINGS (continued)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/Energy Level No. Tests Kg- M	Energy Level Kg- M	Rating
Duroid Sheet 5650	Rogers Corporation	481	Similar to Duroid 5600; has higher Teflon content		. 063	0/20	01	Batch Test
EOR 76574-3 Teflon coated Naflex gasket	Orbit Machine Corporation	2383			. 063	2/20	10	Unacceptable
EOR 76574-5 Teflon coated Naflex gasket	Orbit Machine Corporation	2384			. 063	5/20	10	Unacceptable
"E" Felt	Unit Cork Company	209			.063	2/20	10	Unacceptable
Flexitallic Gasket	Flexitallic Gasket Company	348	Stainless steel and Teflon		. 063	0/20	01	Batch Test
Flexitallic Gasket	Flexitallic Gasket Company	349	Stainless steel and blue asbestos		. 063	0/20	10	Batch Test
Flexrock Packing 420	Flexrock Company	2887	Braided Teflon		. 250	0/20	10	Batch Test
Flexrock Packing 420		2886	Braided Teflon		. 500	0/40	10	Batch Test
Flexrock 420 Packing		2376	Braided Teflon	Stainless steel inserts used	. 188	0/20	10	Batch Test
Flexrock 420 Packing		2377	Braided Teflon	Stainless steel inserts used	. 313	0/20	10	Batch Test
Flexrock 420 Packing		2880	Braided Teflon		. 125	0/40	10	Batch Test
Flexrock 420 Packing	Flexrock Company	2884	Braided Teflon		. 375	0/40	10	Batch Test
Fluorobestos LS-7598	Raybestos-Manhattan Incorporated	2068	Teflon and asbestos		. 030	0/20	10	Batch Test
Fluorobestos, Unsintered	Raybestos-Manhattan Incorporated	1918	Teflon and asbestos		.063	0/20	10	Batch Test
Fluoroblue Sheet	John L. Dore Company	1391	Compounded Teflon		. 063	0/20	10	Batch Test
Fluoroblack Sheet	John L. Dore Company	1312	Compounded Teflon		. 063	0/20	10	Batch Test
Flourogold Gasket Material	Fluorocarbon Products Company	3336	Chlorofluorocarbon		. 125	0/20	10	Batch Test
Fluorogreen E-600	John L. Dore Company	3372	Teflon and inorganic filler	Seven different batches tested	. 063	0/40	10	Satisfactory
Fluorogreen E-600	John L. Dore Company	2066.	Teflon and inorganic filler	Seven different batches	. 063	0/20	10	Satisfactory
Garlock 605 Sheet	Garlock Packing Company	1230	Wire reinforced asbestos		. 063	2/2 2/5 0/13	0 v v	Unacceptable -
Garlock 900 Sheet	Garlock Packing Company	315	Asbestos - rubber composite		. 063	2/2 2/3 2/4	0 2 2	Unacceptable -

### TABLE $\underline{\mathbf{Y}}$ GASKETS AND PACKINGS (continued)

Energy Level Rating Kg-M	10 Batch Test	10 Batch Test	10 Batch Test	10 Batch Test	10 Unacceptable 5	10 Unacceptable 5 2	10 Batch Test	10 Batch Test	10 Unacceptable 5	10 Unacceptable 5	10 Batch Test 10 Batch Test	10 Unacceptable 10 Unacceptable	10 Unacceptable 5 - 3 -	10 Unacceptable 5	10 Batch Test	10 Batch Test	0 10 Batch Test
No. Reactions/ No. Tests	0/20	0/20	0-2/20	0-5/20	2/3 0/17	2/2 2/2 0/16	0/50	0/20	2/4 1/16	3/9 3/11	0/20 0/20	2/5	2/2 2/2 2/2	2/3 0/11	0/20	0-13/20	5-13/20
Thickness (Inch)	, 250	. 025	. 063	.063	. 063	. 063	. 032	. 063	, 250	. 063	. 063	. 032	. 063	. 063	. 500	. 375	. 313
Remarks			Variable	Variable					Formerly known as Johns-Manville MX 3681 Packing						Variable	Variable	Variable
Composition	Braided Teflon	Braided asbestos lubri- cated with Teflon suspen-	Compressed asbestos with binder	Compressed asbestos with binder	Chrysolite asbestos cloth with Teflon suspen- soid	Crocidolite asbestos cloth with Teflon suspensoid	Teflon reinforced with glass fiber	Teflon-ground glass			Compressed asbestos with binder	Compressed asbestos with binder			Compressed asbestos with binder	Compressed asbestos with binder	Compressed asbestos with binder
Test No.	0162	2909		1360	1059	1203	1673	1673	1585	1652	1474	1926	1653	1649	1589		
Manufacturer		Crane Packing Company Crane Packing Company	Johns-Manville Company														Johns-Manville Company
.Material		John Crane Style C-30 Packing John Crane Style C-94 Packing	Johns-Manville No. 60 Sheet	Johns-Manville No. 76 Sheet	Johns-Manville Style 91 Sheet	Johns-Manville Style 92 Sheet	Johns-Manville Lo Flo Sheet	1	Johns-Manville Lo Flo Sheet Johns-Manville Style 2024 Packing	Johns-Manville No. 61 Sheet	Johns-Manville No. 76 Sheet	John <b>s-</b> Manville No. 76 Sheet	Johns-Manville No. 84 Sheet	Johns-Manville No. 219 Sheet	Johns-Manville MX-3681	Johns-Manville MX-3681	Johns - Manville MX - 3681

### TABLE $\underline{\mathbf{Y}}$ GASKETS AND PACKINGS (continued)

s/ Energy Level Rating Kg-M	10 Unacceptable 5 - 1 -	10 Unacceptable 5 -	10 Unacceptable 5 1	10 Batch Test	10 Unacceptable 5	10 Batch Test	10 Batch Test	10 Batch Test	10 Unacceptable	10 Unacceptable 5	10 Unacceptable	10 Unacceptable 5	10 Unacceptable 5 -	10 Batch Test	10 Unacceptable 5 -	1 10 Unacceptable
No. Reactions/ No. Tests	2/2 2/3 2/2 0/2	2/2 0/14	2/2 2/2 2/2 1/2	0/20	2/20 0/10	0/20	0/20	0/20	4/20	2/4 0/16	2/20	2/3 2/17	2/2 2/4 0/4	0-5/20	26/40 5160	3-7/20
Thickness (Inch)	. 063	. 063	. 063	. 063	. 063	. 250	. 250	. 250	. 063	. 063	. 063	.063	. 063	. 250	. 188	. 125
Remarks	Violent reactions		Violent reactions					Sensitivity varies from batch to batch						Variable		Variable
Composition	Asbestos-rubber composite	Asbestos-Neoprene rubber	Blue asbestos-rubber composite	Glass-filled Teflon	Compressed asbestos with binder	Braided Teflon	Braided asbestos lubricated with Teflon suspensoid	Braided asbestos over graphited asbestos core	Compressed asbestos with binder	Chemically treated compressed vegetable plant fiber	Compressed asbestos with oil resistant binder	Asbestos with heat resisting binder	Similar to Style 2150	Compressed asbestos with binder	Compressed asbestos with binder	Compressed aspestos
Test No.	1231	1395	1229	3321	1340	442	5062	839	6611	1211	1213	1214	1212			1944
Manufacturer	Garlock Packing Company			l Garlock Packing Company	Gatke Corporation	Crane Packing Company						•	Crane Packing Company	Johns-Manville Company	• •	Johns-Manville Commany
Material	Garlock 7021 Sheet	Garlock 7228 Sheet	Garlock 7705 Sheet	Garlock 8573 Sheet	Gatke Buna-PAK I-26 Sheet	John Crane Style C-30 Packing	John Crane Style C-94 Packing	John Crane Style 177J7 Packing	John Crane Style 333 Sheet	John Crane Style 444 Sheet	John Crane Style 888 Sheet	John Crane Style 2150 Sheet	John Crane Style 2151 Sheet	Johns-Manville MX-3681	Johns-Manville MX-3681	1976 AM «[[]]

### TABLE $\underline{\Psi}$ GASKETS AND PACKINGS (court ideal)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
K & M 238 Sheet	Keasby and Mattison Company	1332			. 063	2/4 0/11	10	Unacceptable -
K & M 239 Sheet	Keasby and Mattison Company	1333	Asbestos with GR-S elastomer	Meets MIL-A-17472	.063	4/20	10	Unacceptable
Leather Chrome-Tanned	Obtained from Bell Aircraft Company	1201	Leather	Violent explosions	. 125	2/5 2/7	10	Unacceptable -
Leather, Chrome-Tanned, Fluoro- lube Impregnated	Bell Aircraít Company ("Turkhide")	1202			, 125	0/20	10	Batch Test
Naflex Seal with Teflon Tape and Adhesive	Rocketdyne	3696	Teflon, silicone adhesive	Seven batches tested (typical data)	090.	2/4 2/2 2/12 0/20	0 0 m m -	Una¢ceptable 
Novabestos 7511T	Raybestos - Manhattan Incorporated	6212	Dispersed asbestos fiber paper		. 020	0/20	10	Batch Test
Parco O-ring Sheet No. 945-70	Plastic and Rubber Froducts Company		Fluorinated elastomer		.063	0/20	10	Batch Test
Raybestos-Manhattan Fluorobestos Sheet	Raybestos-Manhattan Incorporated	1918	Teflon impregnated asbestos	Available as special LOX grade	. 063	0/20	10	Batch Test
Raybestos-Manhattan K-68 Sheet	•	1924	Asbestos with sulfur- free neoprene binder		. 063	0/20	10	Batch Test
Raybestos-Manhattan K-68 Sheet		1923	Asbestos with sulfur - free neoprene binder		. 094	4/20	01	Unacceptable
Raybestos-Manhattan 655 Sheet		1209			. 063	2/8 1/12	10 8	Unacceptable -
Raybostos-Manhattan 670 Sheet		1140		Violent reactions. Should not be confused with Raybestos - Man- hattan 607	. 063	2/4 2/3 2/5	0 8 N	Unacceptable 
Rabestos-Manhattan 673 Sheet		1207			. 063	2/4 1/16	10 8	Unacceptable -
Raybestos-Manhattan 10, 000 Sheet		1069	Crude asbestos fibers with binder		. 063	2/2 2/2	10 8	Unacceptable -
Ravbestos - Manhattan RL-395	,	2067	Teflon asbestos cloth	-	.063	0/20	10	Batch Test
Raybestos-Manhattan RL-80		2474	Teflon impregnated asbestos cloth		. 125	0/40	10	Batch Test
Raybestos-Manhattan RL-80	•	2476	Teflon impregnated asbestos cloth		. 063	0/40	10	Batch Test
Raybestos-Manhattan RL-1356	Raybestos-Manhattan Incorporated	2069	Asbestos sheet with 0, 009 in. Teflon film		. 063	0/20	10	Batch Test
Sacoma 715 Packing	American Asbestos Company	556		Variable	. 250	0-2/20	10	Batch Test

TABLE YI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS

Rating	Batch Test	Batch Test	Satisfactory	Satisfactory -	Satisfactory -	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Incomplete	Batch Test	Incomplete	Unacceptable -	Satisfactory	Satisfactory	Satisfactory	Satisfactory	Satisfactory
Energy Level Kg-M	10	10	10	10	10 5	10	10	0] v	0 10	10	10	10	10	10	10	10	10	01
No. Reactions/ Envrgy Level No. Tests Kg-M	0/20	0-1/20	1/100	0/120	0/100	0/100	0/20	1/147	1/120 0/80	0/19	0/60	1/20	2/3 9/17	01/0	0/20	0/20	0/20	0/20
Thuckness (Inch)	063	.063	. 003	. 025	. 010	.063	.094	. 063	. 063			.125			. 063	. 063	. 063	. 063
Remarks						Hand deburred		Hand deburred	Hand deburred	Anodized Type II soaked in nickel acctate for 10 minutes. Stainless steel inserts used	Iridited 14-2				Stainless steel inserts used	Stainless steel inserts used	Stainless steel inserts used	Stainless steel inserts used
Composition	Aluminum allov 5052	Aluminum alloy 5052												5086 aluminum	2024 aluminum, alodine 1200	5086-E34 aluminum, alodine 1200	6061 aluminum, alodine 1200	6061 - To aluminum, Sandor black BK nickel acetate sealer
. Test No.	1511 and after		2969	3084	3110	2854	3616	2869	2771	1840	2826	2845						
Manufacturer															American Chemical Paint Company		l American Chemical Paint Company	Sandoz Chemical Company
Mate rial s	Aluminum Cups, Vapor Degreased, Alkaline Cleaned and Acid Etched	Aluminum Cups	Aluminum Alloy, 2014-T6	Aluminum Alloy, 2014-T6	Aluminum Alloy, 2014-T6	Aluminum Alloy, 2014-T6	Aluminum Alloy, 2219-T87	Aluminum Alloy, <b>508</b> 6-H34	Aluminum Alloy, 5456	Aluminum Alloy, 6061	Aluminum Cups	Aluminum Disks, Anodized and Conversion Coated	Alpha 238 Solder	Aluminum Alloy	Aluminum Alloy, Alodincd	Aluminum Alloy, Alodined	Aluminum Alloy, Alodined	Aluminum Alloy. Anodized

TABLE TI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS (Continued)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Aluminum Alloy, Anodized	Sandoz Chemical Company		6061-T6 aluminum. Sandoz blue B (MLA-6625A, Type II) nickel acetate scaler		. 063	0/20	10	Satisfactory
Aluminum Alloy, Anodized			2024-T3 aluminum, Sandoz green AX	Steel inserts	. 063	0/20	10	Satisfactory
Aluminum Alloy, Anodized	Sandoz Chemical Company		6061 aluminum, Sandoz green AX (MIL-A-8625A, Type II) nickel acetate scalcr	Steel inserts	. 063	0/20	10	Satisfactory
Aluminum Alloy, Anodized	Eaton Chemical Company		6061-T6 aluminum, scarlet anodized nickel acetate scaler	Steel inserts	. 063	0/20	10	Satisfactory
Aluminum Alloy, Iridited	Allied Research Products		lridite No. 14-2. nickel acetate scaler	Steel inserts	.063	0/20	10	Satisfactory
Aluminum Alloy, Iridited			5052 aluminum		.063	0/20	10	Satisfactory
Aluminum Alloy, Treated			Soaked 24 hours in 0.1% H ₂ SO ₂ followed by 24 hours in 0.02% Sodium dichromate		. 063	0/20	10	Satisfactory
Ampco-24 Alloy		3481	5% iron, 15% aluminum, 80% copper		.063	0/20	10	Satisfactory
Brass Inserts		3016	65% copper, 34% zinc. 2% lead		. <u>0</u> 63	0/20	10	Satisfactory
Beryllium		3125			. 063	0/20	10	Batch Test
Black Anodizing on Aluminum Disks		3165			.063	2/20 1/20	10	Unacceptable -
Bronze Filter (Sintered)		2517	Bronze			0/20	10	Satisfactory
Cadmium				Electroplated	. 001	0/20	10	Satisfactory
Cerrobend Low Melting Alloy			Contains bismuth, lead, tin	Low Melting Alloy		2/3 1/17	10 5	Unacceptable -
70-30 Cupro-Nickel Alloy No. CN- 346	International Nickel Company	3849	Copper - 70% Nickel - 30%		. 050	0/20	10	Satisfactory
Cyanamid Black W. A.		1842		On 6061 Aluminum inserts		0/20	01	Batch Test
Eutectic Rod 115 B Solder and Futectic 151 B Flux	Eutectic Welding Alloy Corporation 2903	2903				13/60	01	Unacceptable

TABLE YI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS (CONTINUED)

Rating	Unacceptable - -	Satisfactory	Batch Test	Unacceptable	Incomplete	Batch Test	Batch Test	Batch Test	Satisfactory	Unacceptable - -	Unacceptable	Unaccentable	Incomplete	Unacceptable	Unacceptable -	Unaccentable	Satisfactory	Batch Test	Unacceptable
Energy Level Kg-M	10 2 3 2 2	10	10	10	10	10	10	10	10	۵ م م م ق م	10	10	10	10	ء ہو ا	n 0	10	10	10
No. Reactions Ænergy Level No. Tests Kg-M	3/4 2/3 2/7 0/6	0/20	0/20	3/20	1/20	0/20	0/20	0/40	0/20	2/3 1/2 1/12 0/20	1/2	2/2	0/20	2/20	2/3 1/4	2/20	0/20	0/20	4/20
Thickness (Inch)									. 063	. 063	. 063		. 063	. 063	. 063				
Remarks			Coating on 6061 Alu- minum																
Composition	Silver alloy (low melting)	Silver alloy						Nickel, lead, and silver alloy on 304 stainless steel	Nickel, cobalt, iron				Magnesium, thorium, zirconium alloy	Magnesium, aluminum, manganese alloy	Magnesium, zinc, manganese alloy	1/5% manganese			
T _{est} No.			3851	1732	1734	1844	1845	2141	962	1222	1221	540	1703	1702	1701	1702	3848	1735	1733
Manufacturer	Eutectic Welding Alloys Corporation	Eutectic Welding Alloys Corporation		Krieger Color and Chemical Company Incorporated		-	Krieger Color and Chemical Company Incorporated	Karl Harrison Company					Dow Metal Products Company		Dow Metal Products Company			Sandoz Incorporated	Sandoz Incorporated
Material	Eutectic No. 157 Solder	Eutectic No. 1801 Solder	Iridite 14-2 plus Cab-o-Sil Coating	Krieger NR/5285 on 6061 Alumimum Alloy	Krieger Blue-B (4 gram/liter) on 6061	Krieger Blue-B on 6061 Aluminum Alloy	Krieger Black BK-NR 15285 on 6061 Aluminum Alloy	K6 Alloy	Kovar "A"	Magnesium-Lithium Alloy CA-91	Magnesium-Lithium Alloy LA-141	Magnesium Cups, Untreated	Magnesium Alloy HK 31	Magnesium Alloy M-1	Magnesium Alloy AZ-31	Magnesium Alloy M-1	P/N 455224 Shim Spacer Lox Inducer	Sandoz Yellow 2D on 6061 Aluminum. Alloy	Sandoz Black V-Orange 3A on 6061 Aluminum Alloy

TABLE VI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS (CONTINUED)

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
	Sandoz Incorporated	1726				5/40	10	Unacceptable
	-	1847		On 6061 aluminum alloy		0/20	10	Batch Test
		1737				3/20	10	Unacceptable
	*	1846		On 6061 aluminum allov		0/20	10	Batch Test
Sandoz Gold Orange 3A Gold S Black V	l Sandoz Incorporated	1841		On 6061 aluminum alloy		0/20	10	Batch Test
	United Wire and Supply Company	758				0/20	10	Batch Test
Silicon Carbide Abrasive in Bottom of Aluminum Cup		3173		150 mesh	.032	0/20 0/20	0 %	
щ U	Eutectic Welding Alloy Corporation I	3534	90% tin, zinc, nickel		. 032	10/20 3/20 0/20	04 0	Unacceptable -
		3538	90% lead, $10%$ silver		.032	3/20 2/22 0/20	0 0 7 0 7 0	Unacceptable -
	Eutectic Welding Allov Corporation	3541			.032	2/35 2/20	10	Unacceptable *
		 .4	50% tin, 50% lead	No flux		3/5 0/5	0 ic 1	Unacceptable
		26	60% tin, $40%$ lead			2/6 1/6	9 m	Unacceptable
			$o0^{\pi_0}$ tin, $40^{w_0}$ lead	With flux		3/5 0/5	10	Unacceptable
		×		Paste heated to 1000° F 5 minutes. Droplets degreased with tri- chloroethylene		0/20	10	Satisfactory
Stainless Steel Wool No. 4-33		379			. 50	1/2 0/12	01	Unacceptable ⁻
		380				3/4	10	Unacceptable -
Stainless Steel 301 Alloy		2829			. 012	0/100	0 5	Satisfactory -
Stainless Steel 301 Alloy		2818		Hand deburred	. 063	0/200	2 0	Satisfactory
Stainless Steel 302 Alloy		3603			1.60.	0/20	10	Satisfactory

TABLE YI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS (Continued)

Rating	Satisfactory	Satisfactory	Satisfactory	Unacceptable	Unacceptable -	Unacceptable -	Unacceptable -	Unacceptable -	Unacceptable - -		Unacceptable - -	Unacceptable 
Energy Level Kg-M	01	10	10	01	10	10 8 5	0 % 4	10	0 20 10 10 10	0 ~ 1	0.0. m N -	0 ° N -
No. Reactions/ Energy Level No. Tests Kg-M	0/20	0/20	0/20	2/20	2/20 0/20	3/20 1/20 0/20	2/5 1/20 0/20	2/5 3/18 0/20	7/40 1/2 2/3 2/60 0/20	18/20 8/20 1/20	2/2 1/1 2/5 1/3 0/4	15/20 1/20 2/20 0/20
Thickness (Inch)	. 062	. 063	. 063	. 063	. 125	. 125	.125	. 125	. 063	. 250	. 063	ç 90
Remarks									Deburred	Deburred	Deburred	Deburred
Composition												
Test No.	3631	2449	3018	1612	2244	2246	2235	2230				
Manufacturer												
Material	Stainless Steel 347 Alloy	Silver Plated Stainless Steel	Steel Inserts MXB 1113	Tin Plate (. 004 in.) on 421 Stainless Steel Inserts	Tin Plate (.001 in.) on Stainless Steel Inserts	Tin Plate (. 002 in. ) on Stainless Steel Inserts	Tin Plate (. 0005 in. ) on Stainless Steel Ingerts	Tin Plate (. 00025 in.) on Stainless Steel Inserts	Titanium Alloy, 6A1-4V	Titanium Alloy, 6Al-4V	Titanium Alloy, 4A1-3 Mo-1V	Titanium Alloy. RC55

# TABLE TI METALS, ALLOYS, SOLDERS, AND SURFACE TREATMENTS (COMPLIANCE)

•

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Titanium Alloy, 13V-11 Cr-3AL				Deburred	. 063	15/20 5/20 2/20 0/20	1 0 7 6 7 0 0 7 0	Unacceptable - -
Titanium Alloy. 5Al-2.5 Sn				Deburred	.125	15/20 17/20 8/20 1/1 2/20	р и е и ц	Unacceptable -
Titanium Alloy, 5AI-2.5 Sn				Deburred	. 063	11/20 3/20 1/20 1/20 0/20	1 0 0 0 1	Unacceptable - -
Titanium Alloy, 5 Al-Z.5 Sn				Deburred	.063	4/20 1/20	10	Unacceptable -
Titanium Alloy, 5A1-2.5 Sn				Deburred	. 025	7/20 2/20 0/20	10	Unacceptable -
Titanium Alloy, 5A1-2.5 Sn				Deburred	010.	2/40 2/20 0/20	سى 10	Unacceptable -
Titanium Alloy, 75A	Allegheny Ludlum Steel Corpora- tion			Steel inserts		2/2 2/2 2/4	0 0 0 0 0	Unacceptable -
Titanium Alloy, 140A	Allegheny Ludlum Steel Corpora- tion			Steel inserts		4/4 2/3 2/3	0 r m	Unacceptable
Titanium Alloy	Ram Cru		Ram Cru-245	Steel inserts		2/2 2/3 1/15	0 <b>1</b> 0	Unacceptable - -
Washer AN960PD416		2143	Anodized Type II Aluminum			1/60	10	Batch Test
Young's Alloy Metal Washers	Ardel Corporation	3825			. 063	0/20	10	Batch Test
Zirconium		3648			. 083	14/20 8/20 2/20	° ≥ 0	Unacceptable - -
						2/20 0/20	~ -	1 )

TABLE YII DYE PENTRANTS

∢

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions / Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
	Shannon Luminous Material Company	N/A		Tested in wet form	. 050	2/14	10	
	Magnaflux Corporation	-		Tested in wet form	. 050 . 025	0/20 3/20	10	
Fluorocheck Penetrant W W	Turco Paint and Varnish Company Incorporated				. 050	2/4	10	
Fluorocheck Penetrant Regular					. 050	2/6	10	
Fluorocheck Penetrant High Sensitivity					. 050	5/20	01	
Fluorocheck Emulsifi <b>er</b>	Turco Paint and Varnish Company Incorporated			Tested in wet form	. 050	2/13	01	
	Shannon Luminous Material Company			Tested in wet form	. 050	2/4	10	
	Shannon Luminous Material Company			Tested in wet form	. 050	3/8	10	
	Magnaflux Corporation			Tested in wet form	. 050 . 025	0/20 2/10	10	
				Tested in wet form	. 050	6/20 2/10	10	
Penetrant (concentrate) SKL4				Tested in wet form	, 050 , 025	0/20 2/20	10 10	
				Tested in wet form	. 050 . 02 <b>5</b>	2/6 1/5	10	
				Tested in wet form	. 050	2/3	01	
		-		Tested in wet form	. 050	2/6	10	
	Magnaflux Corporation	V/N		Tested in wet form	. 050	2/3 2/4	10	
			<u></u>					

TABLE YII DYE PENTRANTS (Continued)

1	ľ	ì	

Material	Manufacturer	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Magnafiux 2L-4B	Magnaflux Corporation	N/A		Oven dried at 100° C for 7 hours	. 050	2/20	01	
		<b>4</b>		Vacuum dried (room temperature) for 1-1/2 hours	. 050	3/20	0	
Magnaflux ZL-44				Oven dried at 100°C for 11 hours	. 050	2/20	01	
				Vacuum dried (room temperature) for 1-1/2 hours				
Magnaflux Z.L-44B				Oven dried at 100°C for 7 hours	. 050	0/20	10	
				Vacuum dried (room temperature) for 1-1/2 hours	. 050	3/20	10	
Magnaflux SKL-4 (3:1 dilution)				Oven dried at 100°C for 2 hours	. 050	0/40	10	
				Vacuurn dried (room temperature) for 1-1/2 hours	. 050	0/20	10	
Magnaflux SKD-W Developer (for use with SKL-4)				Oven dried at 100°C for 2 hours	.050	0/20	10	
				Vacuum dried (room temperature) for 2 hours	. 050	0/20	10	
Magnaflux ZL-42				Oven dried at 100°C for 11 hours	. 050	0/20	10	
				Vacuum dried (room temperature) for 1-1/2 hours	. 050	0/20	10	
Magnaflux ZE-43 Emulsifier (for use with ZL-42 Penetrant)	Magnaflux Corporation	N/A		Oven dried at 100°C for 3 hours	. 050	6/20	10	
				Vacuum dried (room temperature) for 1-1/2 hours	. 050	2/20	10	

(Continued)
PENTRANTS
TABLE YII DYE

6	ľ	0	Ì.	

	r								 	 		 
Rating												
Fnergy Level Kg-M	10	10	10	01	10	0	01	10		 	 	 
No. Reactions/ Finergy Level No. Tests Kg-M	0/20	0/20	1/20	1/20	5/20	2/10	0/20	0/20				 ·
Thickness (Inch)	. 050	. 050	0.20	. 050	. 050	. 050	. 050	. 050				
Remarks	Oven dried at 100°C for 3 hours	Vacuum dried (room temperature) for 2 hours	Oven dried at 100°C for 1 hour	Vacuum dried (room temperature) for 1/4 hour	Oven dried at 100°C for 1 hour	Vacuum dried (room temperature) for 2 hours	Oven dried at 100°C for 1/2 hour	Vacuum dried (room temperature) for 3/4 hour		 		
Composition												
Test No.	N/A	•			·		N/A			 	 	 
Manufa eture r	Magnaflux Corporation		Shannon Luminous Material Company	-			Shannon Luminous Material Company					
Material	Magnaflux ZP-45 Developer (for use with ZL-42 Penetrant)		Shannon P-505 (25-7-5)		Shannon 159 (25-7-5) (for use with P-505 Penetrant)		Shannon 492-A Developer (24-44-4) (for use with E-159 Penetrant)					

Rating										
						<u> </u>				
Energy Leve Kg-M	10	10	10	10	01	10	10		10	9
No. Reactions/ Energy Level No. Tests Kg-M	0/20	20/20	0/20	14/20	0/20	0/20	3/20	20/20	0/20	18/20
Thickness (Inch										
Remarks	Novabestos soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes	Novabestos soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes	Novabestos soaked in Penetrant for 1 hour. Drained for 3 hours	Novabestos soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes. Left in over with heat off, over night	Novabestos soaked in Penetrant for 1 hour. Drained for 3 hours	Soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes. Left in oven with heat off overnight	Novabestos soaked in Penetrant for l hour. Drained 3 hours	Soaked in penetrant for 1 hour. Dried at 60°C 30 minutes. Left in oven with heat off overnight	Novabestos soaked in Penetrant for 1 hour. Drained for 3 hours	Soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes. Left in oven with heat off overnight
Composition										
Test No.	N/A								V/N	
Manufacturer	Shannon Luminous Material Company	Shannon Luminous Material Company	Magnaflux Corporation						H Magnaflux Corporation	
Material	Shannon Glo P-505 (25-7-5)	Shannon E-159 Emulsifier (25-7-3)	Zyglo ZL-4B		Zyglo ZL-42		Zyglo ZE-43 Emulsifier		Zyglo ZL-44B	

TABLE **VII** DYE PENTRANTS (Continued)

U

#### TABLE YIL DYE PENTRANTS (Continued)

υ

r	<b>.</b>		 	 		 	 	
Rating								
Energy Level Kg-M	10	10		 	 	 	 	
No. Reactions/ Energy Level No. Tests Kg-M	0/20	0/20		 		 	 	
Thickness (Inch)							 	
Remarks	Novabestos soaked in Penetrant for 1 hour. Drained for 3 hours	Novabestos soaked in Penetrant for 1 hour. Dried at 60°C for 30 minutes.	 	 		 	 	
Composition					 	 	 	
Test No.	N/A			 <u> </u>	 	 	 	-
Manufacturer	Magnaflux Corporation		 					
Material	Zyglo SKL-4 (3:1 dilutions)							

Rating													
Energy Level Kg+M	10	10	01	. 10	0	10	10	10					
No. Reactions/ Energy Level No. Tests	4/20	5/12	2/9	2/11	1/7	2/6	2/6	0/40	 		 	 	
Thickness (Inch)													
Remarks	lcc saturated solution evaporated to dryness	Residue from 0.5 cc of saturated solution in methyl isobutyl ketone	Residue from 0.5 cc dissolved in trichloro- cthylene. Dried 48 hours	Full strength	2-1/2 cc of 5% water solution evaporated to dryness	2-1/2 cc evaporated to dryness	2-1/2 cc evaporated to dryness	0.5 cc - wet					
Composition													
Test No.	N/N							N/N	 				
Manufacturer	G. W. Gates Company			Magnaflux Corporation			•	Magnaflux Corporation					
Material	Florescing Agent GPC	Oil Red "O" Dye	Oil Red "O" Dye	7110 Colorless Dve	ZL-10 Colorless Dyc		ZL-4A Penetrant	ZP-5 Developer				 	

### TABLE YII DYE PENTRANTS (CONDITION)

### TABLE YIII CHEMICALS, SOLVENTS, AND MISCELLANEOUS

Rating	Unacceptable	Unacceptable	Satisfactory		Batch Test	Unacceptable	Conditional	Satisfactory	Satisfactory	Satisfactory	Unacceptable _	Sewisfactory	Satisfactory	Unacceptable	Unacceptable	Satisfactory	Unacceptable	Unacceptable	Unacceptable	Incomplete	Incomplete	Unacceptable 	đ 1
Energy Level Kg-M	10	10	10	10	10	5 0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	5 0	2
No. Reactions/Energy Level No. Tests Kg-M	6/20 0/20	2/10	0/20	9/20	0/20	2/2 1/18	0/10	0/20	0/20	0/20	2/2 2/2	0/20	0/20	0/10	1/7	0/20	2/20	2/10	1/20	0/20	0/6	1/1 2/2	2/2 2/6
Thickness (Inch)			. 050	.050												_							
Remarks				Sample paper thin	Steel samples heated to 100°C in cleaner, rinsed, and dried	50% solution evapo- rated dry		Residue from 5 ml.	Evaporated to 5% original weight				<u> </u>										
Composition			Chlorinated hydrocarbon																				
Test No.																							
Manufacturer	Witco Chemical Company Incorporated		Monsanto Chemical Company	Monsanto Chemical Company	Narda Ultrasonic Corporation	Narda Ultrasonic Corporation	Fisher Scientific Company	• • •	Fisher Scientific Company	Dow Chemical Company			Halocarbon Corporation		Hercules Powder Company							American Abrasive Metal Company	
Material	Aluminum Octoate	Amyl Acetate, Normal	Aroclor 1254	Aroclor 1254	Blast 3 Untrasonic Cleaner	Blast 3 Ultrasonic Cleaner	Carbon Tetrachloride, Technical Grade	Carbon Tetrachloride, C.P.	Carbon Tetrachloride	Chlorothene Solvent, 1, 1, 1 Trichloroethane	Chlorinated Polyether	Chloroform	Chlorotrifluoro Hydrocarbon	Chromic Acid Anodizing Solution	Chlorinated Paraffin	Corning Glass Type 9010	Diak No. 1	Dioctyl Phthalate	Ethylene Gylcol	Ethylene Glycol, 25% Water Solution	Ferrite Cone Material 3c	Ferrox Safety Floor Covering	

# TABLE VIII CHEMICALS, SOLVENTS, AND MISCELLANEOUS (CONTINUED)

Material	Manufacture r	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
Fluorescein			Disodium salt	2 1/2 ml of 5% solution evaporated to dryness		2/2 2/5	10	Unacceptable
Fluoroalkyl Camphorate	E. I. du Pont de Nemours & Co., Inc.					2/14 0/6	5 O	Unacceptable -
Fluorosilicone Polymer, Distilled						2/2 2/9 0/9	د ج 10	Unacceptable -
F-33 Detergent	Dow Chemical Company					0/20	11	Batch Test
Hexafluoropentamethylene Adipate Polyestor	Hooker Electrochemical Company					2/11 0/9	10 5	Unacceptable
Ink, Tech Pen, Black	Mark-Tex Corporation					3/17	10	Unacceptable
Joy Detergent, 5% Solution Evaporated to Dryness						2/2 2/5	10 5	Unacceptable -
Methyl and Fluoro Silicone Copolymer						2/2 2/4 2/7	10 % 2	Unacceptable - -
Morhand Caulking Compound	Moore-Handley Hardware Company					19/20 10/20 9/20 0/20	0 0 0 -	Unacceptable - -
Magnesium Oxide						0/20	10	Satisfactory
Oxylene Evaporated to 5% Original Volume	John B. Moore Corporation		Freon 11 and Methylene chloride			0/20	10	Satisfactory
Perchloroethylene, Liquid	Hooker Electrochemical Company					0/20	10	Satisfactory
Perchloropentacyclo Decane	Hooker Electrochemical Company					0/20	10	Satisfactory
No. 67 Purified	Pittman-Dunn Laboratory					0/20	10	Satisfactory
Perfluorotributylamine, (Purified)	Pittman-Dunn Laboratory					0/20	10	Satisfactory
Perfluorotributylamine and Chlorotrifluorohydrocarbon (1:1)	Frankford Arsenal •					0/20	10	Satisfactory
Primer, Zinc Chromate				Air dried		0/20	01	Conditional
Primer, Zinc Chromate (MIL- P-6889 Type A)				Dried at 80°C		1/20	10	Incomplete

TABLE YIII CHEMICALS, SOLVENTS, AND MISCELLANEOUS (community)

Rating	Incomplete	Unacceptable	Incomplete	Incomplete	Unacceptable	Unacceptable	Satisfactory	Unacceptable , -	Unacceptable ,	Satisfactory	Unacceptable	Unacceptable -	Batch Test	Satisfactory 	Batch Test	Satisfactory	Satisfactory	Batch Test	Unacceptable	
H	Incor	Unac	Incor	Incor	Unac	Unac	Satis	Unac	Unac	Satis	Unac	Unac	Batcl	Satis	Batc]	Satis	Satis	Batcl	Unac	
Energy Level Kg-M	10	10	10	10	10	10	10	1 0 1 2	10 7	10	10	10 5 .75	10	10	10	10	10	10	10	
No. Reactions/Energy Level No. Tests Kg-M	07/1	2/12	0/20	1/20	2/20	2/2	0/20	12/20 13/20 13/20 3/20	1/4 0/20	0/20	1/9	1/1 2/2 4/20	0/40	0/20 0/40	0/40	2/20	0/60	0/20	3/20	
Thickness (Inch)																				
Remarks											Extremely violent explosion								•	
Composition		Polyoxyalkylene ethers with methyl side chains and terminal hydroxyl groups		Polypropylene glycol	Polypropylene glycol	Polypropylene glycol											<b>Ch</b> lorinated hydrocarbon			
Test No.		<u></u>																	· <u> </u>	
Manufacturer	Dow Chemical Company			-		Dow Chemical Company		DAP Incorporated	Monsanto Chemical Company			Minnesota Mining and Manufacturing Company	Semco Sales and Service	Fisher Scientific / ompany		E.H. Sargent and Company	Magnaflux Corporation	Nuclear Products Company	Bodishe Awilin-Soda Fabrik	
Material	Polyglycol 11-200, Lot 261	Polyklycol 15-200	Polyglycol 166-900	Polyglycol 174-500	Polyglycol P-400	Polyglycol P-2000	Quartz (Clear Fused) Sample I-1551-A-20X	Rely-On Caulking Compound	Skydrol 500	Sodium Dichromate	Stoddard Solvent	Safety Walk Type B	Semco Bubble Check DPS 4. 905	Sodium Silicate	Sherlock C G-1 Bubble Tester	Silica Gel, Indicating 6 - 16 Mesh	Spotcheck Cleaner Type SKC-2-1	Snoop Leak Detector	Thermocolor Number 34 Tempera- ture Sensitive Point	

# TABLE VIII CHEMICALS, SOLVENTS, AND MISCELLANEOUS (CONTINUED)

And interpretation         O/20         10         Incomplete           2 mil 1% solution         4/20         10         Unacceptable           Four batches trated         2/17         10         Unacceptable           Four batches trated         2/17         10         Unacceptable           Four batches trated         2/17         10         Unacceptable           Inquid         0/20         10         Satisfactory           10 mg         10 mg         2/15         10         Unacceptable           5 mg         10 mg         2/15         10         Unacceptable           10 mg         5 mg         2/16         10         Unacceptable           10 mg         2/20         10         0         Unacceptable           10 mg         2/20         10         Satisfactory           10 mg         2/20         10         Satisfactory           10 mg         1/20         10		Manufacturer T	Test No.	Composition	Remarks	Thickness (Inch)	No. Reactions/ Energy Level No. Tests Kg-M	Energy Level Kg-M	Rating
2     2.11. If solution     4/20     10     1       Four batches treated     3/17     10     1       Four batches treated     2/2     10     1       Four batches treated     2/2     10     1       I.iquid     0.20     10     2       I.iquid     0.020     10     2       I.iquid     0.020     10     2       I.iquid     0.020     10     2       I.iquid     0.10     2     10       I.iquid     10.08     2     10       I.iquid     2.5 mg     1/46     1       S.mailvity varies     2.75     10     10       I.iquid     0.20     10     1       I.iquid     0.20     10     1       I.iquid     0.20     10     10       I.iquid     0.20     10     1       I.iquid     1.12     1.12     1       I.iquid     1.14     1.14       I.i	Bodishe Awilin-Soda Fabrik						0/20	10	Incomplete
Four batches tested     3/17     10       Liquid     0/2     10       Liquid     0/20     10       Liquid     0/20     10       Smg     2/5     10       Liquid     0/20     10       Smaltrity varies     2/4     10       Liquid     0/20     10	Proctor and Gamble Company	, ny			2 ml 1% solution evaporated to dryness		4/20	10	Unacceptable
Liquid     0/2     10       Liquid     0/20     10       10 mg     0/20     10       5 mg     2/15     5       5 mg     2/15     5       5 mg     1/16     5       1 combatch to batch     0/20     10       Liquid     0/20     10       10     1/16     2       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       11     1     1       12     1     1       13     1 <t< td=""><td>Du Pont Trichloroethylene</td><td></td><td></td><td></td><td>Four batches tested</td><td></td><td>3/17 2/2</td><td>10</td><td>Unacceptable -</td></t<>	Du Pont Trichloroethylene				Four batches tested		3/17 2/2	10	Unacceptable -
Liquid     0/20     10     2       Liquid     0/20     10     2       10 mg     2/15     5     10       5 mg     2/15     5     1       5 mg     2/16     5     1       5 mg     1/16     5     1       25 mg     1/16     5     1       1 riquid     0/20     10     1       Liquid     0/20     10     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1     1       1     1     1							0/2	10	Conditional
Liquid     0/20     10     5       10 mg     2/15     5     10       5 mg     2/15     5     10       5 mg     1/16     5     10       25 mg     1/16     5     10       25 mg     1/16     10     5       25 mg     1/16     10     10       25 mg     1/16     10     10       Liquid     0.20     10     10       Liquid     0.20     10     10       Liquid     0.20     10     10       Liquid     0.20     10     10       1/14     10     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     10       1/14     1/14     11       1/14     1/1     10       1/14     1/1     10       1/14     1/1     10       1/14     1/1     10       1/14     1/1     10							0/20	10	Satisfactory
10 mg     2/5     10       5 mg     2/15     5       5 mg     1/16     5       25 mg     1/20     10       25 mg     1/20     10       25 mg     1/20     10       25 mg     1/20     10       Liquid     0.2/20     10       Liquid     0/20     10       Liquid     0/20     10       Liquid     0/20     10       Liquid     0/20     10       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1       1/1     1     1	Dow Chemical Company				Liquid		0/20	10	Satisfactory
5 mg 2.14 10 25 mg 2.14 10 5 5 mg 2.15 mg 2.17 0 10 25 mg 1.120 10 10 11/16 5 5 mg 1.120 10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 11/10 10 10/10 10 10 10 10 10 10 10 10 10 10 10 10 1	E.I. du Pont de Nemours & Co., Inc 1				10 mg		2/5 2/15	2 2	Unacceptable -
25 mg     1/20     10       Sensitivity varies     0-2/20     10       from batch to batch     0/20     10       Liquid     0/20     10       Liquid     0/20     10       Liquid     0/20     10       Liquid     0/20     10       1/4     1/4     5       1/4     1/4     1       1/4     1/4     1       1/1     1/3     1       1/1     1/4     1       0/20     10     0/20     10	••••				5 mg		2/4 1/16	- 10 2	Unacceptable -
Sensitivity varies     0-2/20     10       from batch to batch     0/20     10       Liquid     0/20     10       1/4     1/4     1       1/4     1/4     1       0/20     10     0/20     10       0/20     10     0/20     10					25 mg		1/20	10	Conditional
Liquid     0/20     10       Liquid     0/20     10       Liquid     0/20     10       10     1/4     5       1/4     1/4     5       1/4     1/4     10       1/4     1/4     10       1/4     1/4     10       1/4     1/4     10       1/4     1/4     10       1/4     1/4     1       0/20     10     0/20     10	E. I. du Pont de Nemours & Co., Inc	:			Sensitivity varies from batch to batch		0-2/20	10	Conditional
Liquid 0/20 10 Liquid 0/20 10 5/20 10 5/20 10 1/4 5 1/4 1 1/4 1/4 1 1/4 11 10 1/4 10 100 100 100 100 100 100 100 100 100	Detrex Trichloroethylene 				Liquid		0/20	0	Satisfactorv
Liquid 0/20 10 5/20 10 5/20 10 5/20 10 1/4 5 5/20 10 1/4 5 5/20 10 1/4 1 1/4 5 5/20 10 1/4 1 1/1 1/4 1 1/1 1/4 1 1/1 1/2 1/4 1 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	••				Liquid		0/20	10	Satisfactory
5/20 10 2/5 114 5 11/4 5 3/20 10 3/20 10 11/4 1 11/4 11/4	Detrex Trichloroethylene				Liquid		0/20	10	Satisfactory
2/5 10 1/4 5 3/20 10 1/1 10 1/4 1 1/4 1 1/3 2 1/4 1 1/3 2 1/4 1 1/3 2 1/4 1 1/3 2 1/3 1 1/3 2 1/3 1 1/3 1/3 1 1/3 1 1/3 1 1/3 1/3 1 1/3 1/3 1 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3							5/20	10	Unacceptable
3/20 10 1/1 10 1/3 2 1/4 1 1/4 1 1/4 1 0/20 10 0/20 10	Frankford Arsenal						2/5	10	Unacceptable _
10 10 10 10	E.I. Dupont Nemours Incorporated	ated					3/20	10	Unacceptable
10	Dow Chemical Company						1/1 1/3 1/4	10	Unacceptable 
01	Corning Glass Works						0/20	10	Satisfactory
							0/20	10	Satisfactory

TABLE VIII CHEMICALS, SOLVENTS, AND MISCELLANEOUS (COMPANIED)

Rating	Unacceptable	Unacceptable	Unacceptable -	Unacceptable	Conditional Conditional	
Energy Level Kg-M	10 5	10	10 5 2	10	10	
No. Reactions/Energy Level No. Tests Kg-M	4/20 2/20	2/20	3/20 1/20 2/20	2/20 2/20	1/20	
Thickness (Inch)						
Remarks						
Composition						
Test No.						
Manufacturer	Warren Paint and Color Company	Warren Paint and Color Company		Chromatone Corporation	Illinois State Geological Survey	
Material	Warren Spray Enamel Primer (Brown)	Warren Spray Enamel Yellow Zinc Chromate	Zinc Chromate Paste	Zinc Chromate (SPEC-MIL-P-8585)	l. 3.5-Trimethyl, 2,4.6- Trifluoro Benzene	

#### REFERENCES

- 1. Lucas, W. R., and Riehl, W. A., An Instrument for the Determination of Impact Sensitivity of Materials in Contact with Liquid Oxygen, <u>ASTM Bulletin</u>, No. 244, February, 1960, pp. 29-34.
- 2. Curry, J. E., and Riehl, W. A., Compatibility of Engineering Materials with Liquid Oxygen, MTP-M-S&M-M-61-7, March 21, 1961.
- 3. Riehl, W. A., Key, C. F., and Gayle, J. B., Reactivity of Titanium with Oxygen, NASA TR R-180, 1963.
- 4. Messina, J., Greases Nonreactive with Missile Fuels and Oxidizers, Frankford Arsenal, Proceedings of the Fourth National SAMPE Symposium, Materials Compatibility & Contamination Control Processes, Hollywood, California, November 13-15, 1962.
- 5. Key, C. F., and Moore, L. J., Treatment of Allpax Gasket Material for LOX Service, DSN-TM-9-60, June 20, 1960.
- 6. Riehl, W. A., and Nunnelley, J. R., Investigation of LOX Filter Explosion, IN-M-S&M-M-61-4, August 17, 1961.