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SUMMARY

In this investigation, problems of laminar and turbulent viscous interaction near
trailing edges of streamlined bodies are considered. The laminar study is based on the
triple-deck formulation of Stewartson, Messiter, and Brown. This theory is developed
from asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds
numbers. The expansions describe the local solutipn near the trailing edge of cusped or
nearly cusped airfoils at small angles of attack in compressible flow. A complicated
inverse iterative procedure, involving finite-difference solutions of the triple-deck equa-
tions coupled with asymptotic solutions of the boundary values, is used to accurately solve
the viscous interaction problem. Results are given for the correction to the boundary-
layer solution for drag of a finite flat plate at zero angle of attack. A solution is also
presented for the viscous correction to the lift of an airfoil at incidence. A comparison of
the present results with triple-deck solutions recently obtained by other investigators for
the symmetric problem is presented. Also presented are some comparisons of the pres-
ent solution with low Reynolds number (R s 200) solutions of the Navier-Stokes equations
and with experimental data. These comparisons indicate that the asymptotic triple-deck
theories are accurate over a surprisingly wide range of Reynolds numbers down to
Reynolds numbers as low as 10 or less.

In the second part of this investigation, the problem of turbulent interactions at air-
foil trailing edges is considered. It is demonstrated that second-order boundary-layer
theory fails at airfoil trailing edges and that the concept of the flow over an equivalent
body formed from the displacement thickness is not appropriate for turbulent flows near
trailing edges. A rational asymptotic theory is developed for treating turbulent interac-
tions near trailing edges and is shown to lead to a multilayer structure of turbulent bound-
ary layers. The flow over most of the boundary layer is described by a Lighthill model
of inviscid rotational flow. The main features of the model are discussed and a sample
solution for the skin friction is obtained and compared with the data of Schubauer and
Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

"Thisresearch was performed under NASA Langley Contract No. NAS 1-12426.
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INTRODUCTION

The problem of trailing-edge flows is of considerable importance in aerodynamics.'
Most streamlined, bodies end in a sharp trailing edge that is cusped or nearly cusped in '
order to provide a smooth transition of the flow into the wake. The flow near the trailing
edge is important in establishing the lift and drag forces on the body.

At high Reynolds numbers the solution of the Navier-Stokes equations can be
expanded in descending powers (and logarithms) of the Reynolds number. The leading
term is governed by inviscid flow equations over most of the domain and by boundary-
layer equations in a thin layer near the surface and in the wake. To lowest order, the lift
is determined by solutions of the inviscid-flow equations, subject to the Kutta condition.
Skin-friction drag is determined by solutions of the boundary-layer equations with the
pressure distribution obtained from the inviscid solution. Within this approximation,
form drag is computed from the surface pressures induced by the effect of the boundary
layer on the external inviscid flow and is, therefore, a second-order effect in the theory.

Although the inviscid and boundary-layer solutions provide the leading approxima-
tion for the flow over streamlined bodies, higher order corrections are important in many
problems. A major impediment in the determination of the correction is due to the fact,
that the underlying asymptotic expansions are not uniformly valid at trailing edges. The
nonuniformity is caused by the appearance of singularities in solutions of both the laminar
and turbulent boundary-layer equations at trailing edges. The nature of the singularity
differs in the laminar and turbulent cases, but in both cases, the major effect is the pro-
duction of a displacement thickness that is singular at the trailing edge. This in turn
leads to singularities in the induced pressures at the trailing edge. As a result, the ,
second-order Kutta condition cannot be satisfied and the viscous correction to lift cannot
be determined.. In addition, corrections to the boundary-layer solutions for skin friction
and form drag are not correctly determined by standard second-order boundary-layer :

theory. Most existing engineering methods for predicting viscous effects on lift are based
on iterative solutions of the second-order boundary-layer equations. These methods expe-
rience difficulties at trailing edges which are circumvented by an ad hoc smoothing of the
displacement surface determined from the solution of the boundary-layer equations.

In spite of its importance and the continuing interest of many investigators, it is only
recently that a comparatively complete theory of trailing-edge flows has been developed
and this only for laminar flows. The recent advances in laminar trailing-edge problems
are based on the triple-deck formulation of Stewartson (ref. 1) and Messiter (ref. 2) devel-
oped originally for a symmetric flat plate at zero angle of attack.. These theories were
then extended the following year by Brown and Stewartson (ref. 3) to the lifting flat plate.
The triple-deck theories are applicable to general airfoils with a cusped or nearly cusped
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trailing edge in compressible flow. For Mach numbers not near one, compressibility
enters,into the theory only through a scaling of dependent and independent variables.
However, even though a number of properties of the solution were determined and the
singular behavior was explained, accurate numerical solutions were not obtained in these
early works.

The first part of this paper deals with the laminar-viscous interaction near airfoil
trailing edges in the limit of large Reynolds numbers. The approach used is to develop
the appropriate numerical procedures to solve the boundary-value problem formulated by
Stewartson, Messiter, and Brown. A general discussion of the laminar-flow problem
along with a summary of the triple-deck formulation and the resulting boundary-value
problem is presented in the section "The Laminar-Flow Problem." The following sec-
tion, entitled "The Numerical Method," deals with all aspects of the numerical methods
used to solve this problem. First, an inverse iterative scheme to solve the coupling
between the various layers of the triple deck is discussed. Then finite-difference meth-
ods based on the Keller "box" scheme (refs. 4 and 5) are formulated to solve the triple-
deck equations. Methods are also discussed for the evaluation of the Hilbert integrals
'arising from the analysis. Also presented in the section on numerical methods is a
description of the accuracy and convergence properties of the numerical methods. A
discussion of the results for both zero and nonzero incidence follows in the Results.' Solu-
tions to the symmetric problem have also been recently obtained by Jobe and Burggraf
(ref. 6) and by Veldman and Van De Vooren (ref. 7). Detailed comparisons between the
present solution and those of references 6 and 7 are provided. Also the solution for the
drag of a finite flat plate at zero incidence is compared with the experimental data of
Janour (ref. 8) and with finite-difference solutions of the complete Navier-Stokes equa-
tions recently obtained by S. C. R. Dennis, who provided numerical data from his unpub-
lished results; The solution for the velocity profile in the wake of the symmetric solution
is compared with experimental data of Sato and Kuriki (ref. 9).

Currently, understanding of turbulent interactions at trailing edges is rather less
complete. Recent attempts to develop a rational theory of turbulent trailing-edge flows
include the investigations of Spence (ref. 10) and Kvichman (ref. 11). In reference 10, the
main correction to boundary-layer theory is assumed to arise from the pressure change

'across the wake generated by the singular curvature of the inviscid trailing streamline.
This leads to a jet-flap model of trailing-edge flows. Spence's model is.inconsistent and
leads to unacceptable oscillatory solutions downstream. The failure of Spence's theory
is caused by the neglect of convective acceleration terms in the normal momentum equa-
tions. It is interesting that a scaling analysis of Spence's interaction equation indicates
the need to retain these terms in the lowest order theory. The investigation of Kuchmari
in reference 11 is based on a Lighthill model of turbulent boundary layers near the trailing
edge, which is treated as an inviscid rotational flow. Some examples of rotational flow in
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a wedge-shaped compression corner are presented. Although these results are of inter-
est, there is no attempt to develop a complete, rational theory and no consideration is - ;
given to the trailing-edge region on a lifting airfoil. .

A more promising approach for a rational theory of turbulent flows follows from
asymptotic expansions of the time-averaged Navier-Stokes equations in the limit of large
Reynolds numbers. Similar asymptotic techniques have been applied to noninteracting
turbulent boundary layers by Mellor (ref. 12), Yajnik (ref. 13), and Bush and Fendell
(refs. 14 and 15) and to transonic shock-wave—boundary-layer interactions by Melnik
and Grossman (ref. 16) and by Adamson and Feo (ref. 17).

In the second part of the present investigation (Turbulent Trailing-Edge Flows) it is
shown that asymptotic analysis leads to a three-layer description of turbulent interaction
near trailing edges with a streamwise length scale that is on the order of a boundary-layer
thickness. The flow in the outermost layer is governed by inviscid, linearized rotational-
flow equations. The description near the wall requires two layers, involving just Reynolds
stresses in the middle layer and both Reynolds and laminar stresses in the innermost wall
layer. The solution in the outer layer is unaffected to lowest order by the two inner layers
and can, therefore, be completely determined independently of the details of the inner lay-
ers. This leads to a Lighthill model for the outer problem that must be solved to deter- .
mine the pressure distribution and lift forces. Here, only the incompressible problem .-•
will be considered and a brief description of the essential features of the .interaction model,
together with a formulation of a boundary-value problem governing the outer inviscid flow
will be provided. Also a sample solution for the skin friction determined from matching
the inner and outer solutions is given and the results are compared with the low-speed >
data of Schubauer and Klebanoff (ref. 18). .;

SYMBOLS i .

al»a2 parameters related to lift coefficient and constant defined by equation (19b)

A ... displacement function in triple-deck theory

constants related to behavior of A near the origin

bj . constant in asymptotic solution for |X| — °°

Bp constant defining y-grid distribution

Ba constant related to second-order boundary-layer solution for displacement
thickness (turbulent)
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Cf skin-friction coefficient, •

Cf o skin-friction coefficient of noninteracting boundary-layer solution at trailing
edge (turbulent)

Cy constant appearing in asymptotic solutions of triple-deck equations, where
i and j = 1, 2, 3, ...

CL lift coefficient

Co coefficient of singular pressure gradient in wake

Ca constant related to singularity of inviscid solution near trailing.edge

d normalized shear stress gradient in computation plane, dr/dy

d^ constant in asymptotic solution for |x| — «°

d2 constant in triple-deck solution for drag coefficient .

D shear stress gradient in Z-direction, 8r/9Z

f Blasius function

Fj similarity function related to symmetric triple-deck solution for |x| - -°°

G0 Hakkinen-Rott similarity function related to triple-deck solution for X - 0

hj,h2,h3 functions appearing in differential equations for Hj, H2> and 1^3,
respectively

H shape factor,

H1,H2,H3 similarity functions related to triple-deck solutions for X - -°°

I integer, running index for X-mesh

Ip integer related to X-mesh
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I1»I2»I3 integers defining X-mesh

J integer, running index for y-mesh

Dinner number of points in inner mesh in wake

Jp number of mesh points in y-mesh on plate
• .'"• . '

Jw number of mesh points in y-mesh in wake

KI parameter defining mesh distribution, where i = 1, 2, . . .

£(y+) mixing length, turbulent flow

L length of plate or chord, dimensional

Lo,L},Lmax parameters related to X-mesh •

p pressure

p free-stream pressure, dimensional ' " ' . . '
OO

P normalized pressure appearing in triple-deck theory

Pj,P2>P3 constants related to behavior of P near origin

R Reynolds number, U^L /v '-.

Ry functions related to asymptotic behavior of U as Z - °°, where
iand j = 1, 2

Ti integrals defined by equations (45), where i = 1, 2, 3

u velocity in streamwise direction

UT friction velocity, i/rw/p

U normalized velocity in streamwise direction in triple-deck theory

Uoo free-stream velocity, dimensional
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• • " • ' : f l • • " ' - . '
v velocity in direction normal to plate

V normalized velocity in direction normal to plate in triple-deck theory

W Coles wake function (turbulent flow)

x Cartesian coordinate along plate

X normalized coordinate along plate in triple-deck theory

Xp end point of boundary-layer calculation

y computational coordinate normal to plate for laminar flow and physical

coordinate for turbulent flow

yM coordinate defining outer boundaries of y-mesh

Z physical coordinate normal to plate for laminar flow

a normalized angle of attack in triple-deck theory

or* angle of attack in radians

y constant appearing in behavior of triple-deck solution near origin
for a * 0

T() Gamma function

6 boundary-layer thickness

fij displacement thickness

62 momentum thickness * .

6C boundary-layer camber, i/fe^, - 6B)

fc
€ small parameter, R~*'** for laminar flow and \|—x1^ for turbulent flow

e small parameter related to wall-layer thickness, (e^R/ in turbulent flow
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vorticity (turbulent flow); also variable defined by equations (38) and (39)

independent variable in similarity solutions of triple-deck equations,
|Z|/2|2X|1/3

parameter used to scale wake location, related to wake centerline

Karman constant, approximately equal to 0.41

constant, equal to 0.33206, appearing in Blasius solution, f"(0)

normalized skin friction at trailing edge in triple-deck solution

integrals defined by equations (46)

v coefficient of kinematic viscosity, dimensional

| variable used in definition of X-grid distribution

if Coles wake parameter

p density, dimensional

a parameter used to scale wake location, related to wake thickness

T normalized skin friction in laminar study; also Reynolds stress in turbulent
problem

TO, skin friction
Wf .. • ' '

\l/ normalized stream function in computational plane

ty . stream function .

(i) relaxation parameter

Superscripts:

* dimensional quantity
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+ denotes wall-layer variable in turbulent analysis '1

denotes blending-layer variable in turbulent analysis

1 denotes differentiation with respect to indicated variable and perturbation
quantity in turbulent flow

Subscripts:

B bottom surface of airfoil

BL perturbation quantity arising from upstream boundary layer in turbulent
analysis

e local quantity evaluated at edge of boundary layer

inv perturbation quantity arising from outer inviscid flow in turbulent analysis

T top surface of airfoil

TE quantity evaluated at trailing edge, X = 0

THE LAMINAR-FLOW PROBLEM

Problems of laminar flow at large Reynolds numbers are usually analyzed by a
combination of inviscid-flow and boundary-layer techniques. This approach is based on
asymptotic expansions of the complete Navier-Stokes equations in the limit of Reynolds
numbers approaching infinity. The inviscid and boundary-layer equations arise as the
basic equations governing the leading approximation in the outer and inner regions,
respectively. This approach leads to accurate and useful solutions of viscous-flow prob-
lems in many instances and has tended to dominate the history of fluid mechanics. How-
ever, in spite of its central role in fluid flovte, the underlying structure of the asymptotic
expansions are only relatively well understood for flows that are not separated and for
geometries that are smooth.

It is well known that the inviscid and boundary-layer descriptions break down near
separation points or near singular points of the geometry, such as sharp leading edges,
corners, and trailing edges. A comprehensive review of these matters, including a
discussion of higher order approximations, has been given by Van Dyke (ref. 19) and
Stewartson (ref. 20).
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In the trailing-edge problem, the nonuniformity of the basic expansions, is caused
jointly by a discontinuity cin the surface boundary, conditions at the trailing edge and by a j
singularity in the inviscid solution at the trailing edge of a lifting airfoil. The disconti- o
nuity in boundary conditions leads to a singularity in the boundary-layer solution at the j.-t
trailing edge that is described by Goldstein's near wake solution (ref. 21). Goldstein's -....
solution shows that the displacement surface develops a sharp corner with a .vertical tan-:-,
gent on the downstream side of the trailing edge, as illustrated in figure 1. Goldberg and
Cheng (ref. 22) have examined the second-order inviscid solution over a finite-length flat'-
plate at zero incidence and have demonstrated that the inviscid flow over this displace-, ...
ment surface is singular, with the induced pressures approaching plus (minus) infinity
on.the,downstream (upstream) side of the trailing edge.

The inviscid solution for subsonic flow near the trailing edge of a:cusped airfoil at v
angle of attack exhibits a square-root singularity in the surface pressure distribution,,as.:

sketched in figure 1. The surface pressure is bounded but the pressure gradients are:.-. •"•
unbounded as the trailing edge is approached. The singular pressure.gradients lead to ,.;
singularities in the boundary-layer solution and to breakdown of the basic asymptotic v

expansions.' J • ' . . - • - . - . . : ,

There have been numerous attempts to correct these defects and to develop an
asymptotic theory that is uniformly valid at trailing edges, but for the most part, these1 w

were completely unsuccessful. It was only in the recent work of Stewartson (ref. 1) and,
independently, Messiter (ref. 2) that a correct and rational treatment of the flow near
trailing edges was given. In. these works it was shown that the flow develops a character-
istic multilayer structure near trailing edges that also arises in many other laminar
interaction problems and which is referred to by Stewartson as a triple-deck model. A
general discussion of viscous problems involving triple-deck structure is found in the '
recent review by Stewartson in reference 20. >

The Triple-Deck Formulation o

Stewartson and Messiter presented a rational treatment for the flow near a trailing
edge. By using the method of matched asymptotic expansions, these investigators have
shown that solutions of the Navier-Stokes equations near the trailing edge can be developed
in asymptotic series in the limit of large Reynolds numbers. The solutions are cast in
terms of a fundamental small parameter e given in terms of the Reynolds number

- . • • - . . . , -(1)

where R ' is the Reynolds number based on the length of the plate and the constant flow
velocity far from the plate. Stewartson and Messiter considered the idealized case of
incompressible flow over a finite flat plate at zero incidence. The theory was extended

o
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to angle of attack by Brown and Stewartson in reference 3 for angles of attack a* on the
order of e1/•. Although-the theory of references 1 to 3 was developed for Incompressi-' :
ble flow over finite flat plates, the basic theory is applicable to more general airfoils - •
provided the airfoil is closely approximated by a flat plate near the trailing edge. For
example, this requires the trailing-edge angle of an airfoil with thickness to be less
than o(e?j. The equations for the leading approximation are also applicable to compress-
ible flows provided the Mach number of the inviscid solution is not near one in the trailing-
edge region. In these cases compressibility effects enter only through a scale transfor-
mation of dependent and independent variables as given in references 3 and 20.

The structure of the triple-deck region is sketched in figure 2. The flow upstream
and downstream of the triple-deck region is governed by standard inviscid and boundary-
layer equations. The leading term in the outer inviscid region is given by constant uni-
form flow, while the solution in the upstream boundary layer is given by the Blasius solu-
tion and in the downstream wake by a modified Goldstein near wake solution, as described
in reference 3. In the intermediate region between the Blasius and Goldstein region, the
flow develops the multilayer structure sketched in figure 2. The ratio of the length scale
of each region to the length of the plate L is also indicated in the figure. The stream-
wise length scale is o(c^), which is an order of magnitude larger than a boundary-layer
thickness. Viscous effects are important only in the lower deck where the solution is
governed by classical (incompressible) boundary-layer equations. Both pressure and
viscous forces are negligible in the main deck to lowest order. The main role of the
essentially passive main deck is to transmit flow deflections generated by the sublayer to
the outer edge of the boundary layer. These flow deflections provide an inner boundary
condition for the solution in the upper deck which is governed by inviscid small-disturbance
equations. The solution in the inviscid upper deck is governed by elliptic partial differ-
ential equations which provide for the long upstream influence that was missed in many
previous theories.

" From the preceding discussion, it can be.seen that the triple-deck formulation leads
to a description of the flow as an interaction between the outer inviscid stream and the
displacement thickness generated by the sublayer. The solution in the inviscid upper
deck can be reduced to an integral relationship between the surface pressure and the flow
deflection generated by the sublayer.

Solution of the triple-deck problem is thus reduced to that of determining solutions
to the boundary-layer equations valid in the sublayer. These solutions must match the
rotational flow in the main deck and must result in a displacement thickness and pressure
distribution that satisfies the linear integral relationship arising from the outer solution.

The notation employed in references 1 to 3 and 20 varies. Here the notation
employed by Stewartson in reference 1 will be followed with some exceptions. Physical
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quantities are denoted by an asterisk, free-stream quantities by the subscript °°, and the
plate length by L. The quantities x* and y* are Cartesian coordinates parallel and
transverse, respectively, to the plate with origin at the trailing edge, u* and v* are
velocity components in the x*- and y*-directions, respectively, p* is the pressure,
p the density, a* the angle of attack, and \ is a constant, equal to 0.33206, associated
with the Blasius solution for the wall shear stress. Nondimensional variables for the
lower deck are given by

X = \5/4x*/e3L Z = \3/4y*/e5L

U = u*/^1/4UBO . V = v*/e3\V4Uoo

P = (P* - pJ/eV/2pU* a = a*/el/V/8 J

(2)

(These scalings are for incompressible flow; for compressible flow, see refs. 3 , .
and 20.) The Reynolds number R is given by U^L/i/, where v is the kinematic vis-
cosity coefficient. • . - ' ••

For future reference, the solution for incompressible, inviscid flow over a flat plate
of length L at incidence a* is given by (for y* = 0) "

•<' - - * ' • .

v* = 0 u* = U^ - U^a* . x* + ° sgn y* (-L < x* < 0) " ' (3a)
. . . . . . [(-x*)pL + x*)]1/2 . ; . . .

u* = U^ •v* = U00a*-—x* + B
 /0 . . . . . ( 0 < x *) . : . (3b)

,-.- : • ... X^L + X*)1/2 .' • . . , . :,

The lift coefficient CL corresponding to the solution is given by

. CL =

where B ' is a constant to be determined. The value of the constant B, determined "'"
by the Kvitta condition applied to the trailing edge, would be zero. Here, however, the'
trailing-edge interaction leads to a nonzero value which gives a viscous correction to the
lift coefficient. In reference 3 it was shown that this constant is o(e3j_J which leads to
a viscous correction to the lift that is O(e3). A nondimensional circulation constant a^
is introduced according to the definition • . :

,5/4 • ' ' ' : ' • - "v- 5i

t-r . • , r (5)€ 3 L • . . . . . . > - - \
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The boundary-layer equations governing the flow in the lower deck are written in
the form

TliU + V .W--^ . . 32U
u ax 9Z dX aZ2 (7)

where the pressure P is a function of X alone.

Equations (6) and (7) are to be solved subject to the following boundary conditions:

U - |z| + . . . (X '--«) (8a)

U = V = 0 (Z = 0; X < 0) (8b)

PT(X)=PB(X) ( X ^ Q ) (8c)

.-' (Z - -f-ob) (8d)

(Z - -co) (8e)

where PT(X) and Pj}(X) are the pressures on the top and bottom of the X-axis,
respectively, and Arj.(X) and AB(X) are perturbations of the displacement thickness
from the undisturbed Blasius value at the trailing edge.

Finally, the pressure distribution must satisfy the following asymptotic condition in
. order to match the upstream inviscid solution

PT,B ~ -a]/1* sen z (X - -«) . (9)

where the subscript T,B is introduced for convenience to represent either the top of :
the bottom and sgn Z should be taken as plus for Z>0 and minus for Z < 0 . The .
pressure should decay to zero for Z — +°° in order to match the Goldstein solution
downstream .

- Equation (8a) is a requirement that the velocity profile match to the inner portion
of the Blasius solution far upstream. Equation (8c) follows from the requirement that the
pressure be continuous across the wake. The application of this condition at the trailing
edge (X = 0) is equivalent to the Kutta condition and serves to determine the constant aj
defined by equation (5) and, therefore, the viscous correction to the lift coefficient.

189



Solution of the inviscid flow equations in the upper deck leads to the following inte-
gral relationship between the functions ATjjj(X) and PT>B(X):

dX

where the double slash on the integral sign means that Hadamard "finite part" of the
divergent integral is to be taken. The integrals in equations (10) do not converge in the. .
ordinary, sense because of the behavior of the pressure for large negative X indicated
in equation (9)., A form more suitable for computation is given in the numerical methods
section. Equations (10) are an inversion of the relationships given in reference 3 and
are in a form that is most suitable for the numerical procedures used in the present
investigation.

The preceding formulation indicates that to solve the triple-deck problem, the
boundary-layer equations must be integrated subject to the vortical outer boundary con-
ditions given by equations (8d) and (8e). The vorticity arises from the boundary-layer
solution valid in the upstream flow. The upstream vorticity leads to additional algebra-
ically growing terms in equations (8d) and (8e), as will be discussed later.

The pressure and displacement functions appearing in the boundary-layer equations,
and boundary conditions are unknown and must be determined as part of the solution of
the boundary-layer equations such that the linear relation given in equations (10) is sat-
isfied. The form of the pressure for large negative X is given by

PT,B = (-a^-X + a&il\pOi + . . .) sgn Z (11)

where aj is related to the lift coefficient by equations (4) and (5). The lift coefficient
can be obtained by solving the boundary-layer equations and extracting the constant aj
from the expansion given in equation (11). v

Asymptotic Properties of the Triple Deck

Equations (4) to (11) provide a complete formulation of the triple-deck problem.
Useful asymptotic results were provided in references 1 to 3 and are extended and sum-
marized in the following. (Corrections to a number of the signs are incorporated; see
also ref. 6.)
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For X — -°°, the solutipn must approach the perturbed Blasius solution and have
the form

(12a)
and

V = i /o (12b)
3|2X|1/<J .

- • " * • • . , - • •

where primes denote differentiation with respect to 77. The similarity functions Fj-fa); '
H^(f7), 112(77), and 113(77) satisfy ordinary differential equations given in references 1
and 3. The differential equations, boundary conditions, and asymptotic behavior required
in the present work are listed in the appendix.

Other results for X — -°° are

P(X) = - 0 . 3 4 3 3 | X | ~ - 0.6867b1|X|~5/3 - 0.0816X'2 ln|X| + -^ + . . .

+ 'o.2368|xi~5/6 + . . .)sgnZ + . . . ' (13a)

A(X) = 0.3265IXI"1 + aC12|x|1//6 sgn Z -a^^filnlxl + In K] + a2(C21 + C22) '

5 + . . . . . . . (13b)

,-4/3
9 Z Z = 0

0.3106|X|~ - o(2.1539)|x sgn Z + ... ; (13c)

where K and the G^'s are known constants listed in the appendix. .. _ T

For X — +« the velocity profile approaches the inner solution of Goldstein's near
wake solution. The behavior of P(X), AT)B(X), and U(X,0) are given by

P(X) = 0.1717X"2/3 + 0.3433b1X"5/3,- 0.0816X"2 In X + dtx"2 + . . . . , (14a)

AT B(X) = 1.416/i x) sgn Z + 1.416(|) b^'2/3 sgn Z - a | X3/2 + 2aiX
1/2

(14b)
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U(X,0) = 1.611X1/3 + l.GllbjX'2/3 + 0.052X'1 -»• . . . . (14c)

The solution of the triple- deck equations develops a singularity at the trailing edge
that is described by the Goldstein solution (ref. 21) for a = 0 and by the Hakkinen-Rott
near wake solution (ref. 23) for a * 0. In both cases the velocity profile has the follow-
ing form for X and Z - 0

1/3

GO(T,) (15)

where T\ is given by equation (12b) and Go satisfies an ordinary differential equation
studied in reference 23 and listed in the appendix.

For zero incidence, the local solution for X — 0 is given as follows:

For X < 0 ,

P = PTE + PTEX + (P2 ln|X| + P3)X
2 + . . . (16a)

A = ATE + ATEX - (33/2/5JC0|x|5^3 + 1 AjX2 + . . . (16b)

z=0-V
 (16C)

and for X > 0, .

P= PTE +|CoX2/3 + PtX + . . . (17a)

A = ATE -f ATEX + (33/2/lo)coX
5/3 + 1 Aj-X2 + . . . ; (17b)

U = l^OeicJ^1/3 + . . . ? (17c)

C0 = 0.4089\f/3 (17d)

The local solution for X — 0 when a\ * 0 is slightly more complicated for X < 0.
Equation (16a) now takes the form
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/ A ( 7 \ / \ ~ I o
P — TJ _i_ I'D* I 'V j^ l iT> 1 _L I'D I VrV~2 i — I'vlrr> n — Irrriti +• l-t'P'E'/T 1>A + IHrO/rp T3 + I 'rQl'P 1>A A. inLA

•1 )D L Cj \ L EJ/ L ,1^ |\ A/ X ,JD \ O/ x ,-D^ I ' '

Equation (16b) has different expressions for AT and Ag

AT = (ATE)T + (ATE)TX - (33/2/5)c0|x|5/3'+ |(Ai)Tx2 + . . . (i8b)

AB = (ATE)B + (ATE)BX + (33/2/5)c0|x|5/3
 + i(Aj)Bx2 + . . . (isc)

and

= X, m *Vaz z=o+pc=o

For X > 0, equation (17a) has the same form. Equation (17b) becomes

AT = (ATE)T + (ATEJTX •*

» AB = (ATE)B + (ATE]BX "

and equations (17c) and (17d) assume the forms, respectively,

U « yC0
/2X1/3 + . . . (18g)

GO = CO(M,TAI,B)

where y and Co are now functions of \j T an^ ^-1 B a^d are determined by solving
the merging asymmetrical shear flow problems of Hakkinen and Rott.

The two sets of constants (aj,b1(,dj) and (PTE» PTE» P2' P3' ATE» ^E'
Aj, Aj , and A.j)T B appearing in the preceding expansions are not determined by the
local solution. The first set relates to the far-field solution while the second set relates
to the local solution near the trailing edge. Values for all but dj have been estimated
for a = 0 by fitting the asymptotic forms to the numerical solutions obtained in the
present study.

For future reference the behavior of the velocity profile for large Z and fixed X
is given as

193



+(a.Cu/K
1/2)|z| / sgnZ + «2C21 ln|z

z .+ {(«cii/2Kl/2)AT,B + («

U =

.. -i- AT>B

—i ' "\ ' J /O Q

• f , ,+ KC3JsgnZJ|z| -a2|z| +. . .

The constants C{1 and K are listed in the appendix and

~
ln|z|) sgnZ

- c22)

a2 = 1.784

'ij

r(4/3)

•25/6H)<
(19b)

: . The preceding expansion was obtained by expanding the solution of the boundary-
layer equations for large Z and matching to the asymptotic expansion of the initial pro-
file defined by equations (12). (See results in appendix.) This matching enabled the set of
arbitrary constants appearing in equations (10) to be identified with the constants given
in the appendix. Equations (19) are used to set the far-field boundary conditions in
a finite difference procedure described in the following section. • . i

. , THE NUMERICAL METHOD

•. The boundary-value problem to be solved for the trailing-edge solution is illustrated
in figure 3. The boundary-layer equations must be solved such that the solution matches
the Blasius solution far upstream and the Goldstein solution far downstream. No-slip
conditions must be satisfied on both sides of the flat plate and asymptotic boundary condi-
tions must be satisfied on each side of .the boundary layer and wake for |z| — °°. The
pressure gradient appearing in the momentum equation and the displacement functions
Aij.(X) and Ag(X) appearing in the outer boundary condition must be determined such
that they satisfy the linear integral relationship imposed by the outer inviscid solution.
In addition, the condition that the pressure decays to zero as X — +°° must be imposed
in order to match the Goldstein solution. In the present approach, a fixed point iteration
between the inviscid and boundary-layer equations is employed. The principal difficulties
in the numerical solution of the boundary-layer equations are due to a singularity at the
trailing edge arid to a slow algebraic decay of the solution for |x| and |z| — «». These •'.
problems are treated by using asymptotic solutions' to set the far-field boundary conditions
at finite distances and to describe the singular solution near the trailing edge. A highly
nonuhiform mesh distribution is also employed to obtain proper resolution near the trailing
edge and to allow for the slow decay of the solution in the far field.
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: The boundary-layer equations are solved by the Keller-Cebeci (refs. 4 and 5) finite-
difference scheme for parabolic partial differential equations. This method is well suited
to the present problem since it is second-order:accurate, unconditionally stable, and per- .
mits highly nonuniform mesh distributions. The Hilbert transformations in equations (10),
which provide the inviscid solution, are evaluated by special quadrature formula on the
same mesh distribution employed in the boundary-layer calculation. This avoids the need
to interpolate between the inviscid and viscous solutions. The resulting computation has
uniform second-order accuracy, including the far field and the singular point at the trail-
ing edge.

The Iteration Scheme -

The iteration procedure is indicated in figure 3. The path of the iteration is in a
direction inverse to that usually employed in similar viscous interaction problems. Here,
the displacement functions AT g(X) are obtained from solutions of the inviscid equations
(i.e., eqs. (10)) with the pressure distribution prescribed. The pressure distributions
Pip g(X) are determined from solutions of the boundary-layer equations. Since the
unknown pressure gradient appears in these equations, an additional relation is needed to
complete their solution. This is supplied by the previous evaluation of the displacement
function Aip jj(X) which provides an outer boundary condition for the solution of the vis-
cous equations. This indirect iteration sequence is followed because it provides a con-
venient and simple treatment of the trailing-edge singularity. In a conventional iteration,
the solution of the boundary-layer equations for a prescribed pressure distribution results
in a discontinuity in the slope of the displacement function at the trailing edge. This, in
turn, leads to unbounded pressures in the inviscid solution and to divergence of the itera-
tion sequence.

The iteration starts with estimated pressure distributions PT(X) and Pg(X)
which appear in the integrands of the Hilbert integrals. The integrals are evaluated by
a second-order-accurate quadrature scheme to yield expressions for dA-p/dX and
dAn/dX. The displacement functions Aip and Ag are then obtained by integration
using a trapezoidal rule with initial values determined from the upstream asymptotic
expansions given in equation (13b). This half-cycle yields an intermediate solution for
the displacement functions A-p g(X).

In the next half-cycle the boundary-layer equations are integrated. A minor diffi-
culty arises because of the presence of the unknown pressure gradient in the differential
equations. To deal with this problem the momentum.equation is differentiated with respect
to .Z... This eliminates the pressure but increases the order of the equations from a third-
to a.fourth-order system of partial differential equations. An additional boundary condi- ,
tion is required to close the system. This is supplied by using the known functions
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g(X) in the asymptotic expansion given in equations (19) to yield a condition on the
streamwise velocity component as |z| — °°. This condition and the conditions that the
shear stress approach one for |z| — °° and that both velocity components vanish on the
plate result in a well-posed problem. A finite-difference scheme, described in the next
subsection, is employed to integrate the boundary-layer equations starting from an initial
station far upstream of the trailing edge. Profiles at the initial station are determined
from the first five terms of the asymptotic solution given in equations (12). The boundary-
layer equations are solved by marching downstream to the trailing edge on the top and
bottom of the plate independently. A local solution describing the singular behavior at
the trailing edge is obtained by numerically solving the similarity equations, first consid-
ered by Hakkinen and Rott in reference 23. The similarity solution is used to construct
a "composite" profile across the sublayer at a station just downstream of the trailing
edge. The solution is then marched downstream, employing two boundary conditions on
each side of the wake, as indicated in figure 3. After completion of the sweep, the pres-'
sure gradient is determined from the momentum equation evaluated on the X-axis at
Z = 0. The pressure is then computed from a trapezoidal integration of the gradient
Two arbitrary constants of integration, the trailing-edge pressure and the circulation
constant aj (see eq. (11)) are evaluated by matching the pressure to the upstream data
and by requiring the pressure difference to vanish at the trailing edge.

.The boundary-layer solution cannot be continued downstream to .very large distances
because of the appearance of a growing solution P = PQX^/^ for X — +°°. The solution
is.induced by a wake thickness distribution i(A«j- + Ag) ~ AQX*' which appears in the
outer boundary conditions. The constant PQ vanishes and the unwanted solution is
excluded if the constant AQ is exactly equal to the Goldstein value (AQ = 0.892.. . .).
However, because of the finite arithmetic carried in the computer, this solution cannot be
excluded from the numerical solution and it eventually dominates the far-field behavior.
Consequently, the boundary-layer solution must be terminated at a station X = Xp that
is taken to be upstream of the region where the spurious growing solution starts to dom-
inate. This raises a minor problem, since a solution for the pressure distribution P(X)
along the entire X-axis must be supplied for the evaluation of the Hilbert integral. This
is easily remedied by using an analytic expression to represent the pressure distribution
downstream of the terminal point X = Xp. In the computer program an expression is -
employed that matches both the pressure and pressure gradient at X = Xp and has the
correct asymptotic behavior for X — +°°. Numerical experiments, to be discussed at
the end of'the section, have indicated that this procedure provides a smooth continuation
of the solution downstream of X = Xp and has a negligible effect on the upstream
solution. .

This half-cycle results in a complete solution for the pressure distribution which
can be substituted into the Hilbert integral to obtain new estimates for the displacement
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functions. The" integration is continued until the solution converges to a required toler-
ance. As usually required in this type of problem, the solution must be underrelaxed in
order to obtain convergence.

The value of P(X) is relaxed according to the formula

P(X) = wP(X)new + (1 - u>)P(X)old

where P0\d is the pressure at the start of the boundary-layer computation, Pnew is
the pressure computed at the most recent sweep, and w is a relaxation parameter (u> < 1)
that is adjusted to obtain convergence. In the present scheme it is found that the value
of o> must be reduced as the extent of the streamwise interval is increased in the down-
stream direction. Accordingly, the following strategy is employed. The calculation
starts with a given relaxation parameter small enough to obtain convergence with an ini-
tial choice of Xp = 3. The solution is converged with these choices, the terminal point
is moved further downstream, o> is reduced, and the calculations repeated. Converged
results have been obtained starting with values of w = 0.15 and Xp = 3 and ending
with w = 0.02 and Xp = 20.791. ; .

: Solution of the Boundary- Layer Equations

The boundary-layer equations are solved by the Keller-Cebeci "box" scheme (refs. 4
and 5); The unknown pressure gradient is eliminated from the boundary-layer equations
by application of a Z- derivative to the momentum equations. A stream function * is ;
introduced and the boundary-layer equations are written as a system of four first- order
partial differential equations. The wake thickness and centerline position become
unbounded as X — °°. To control the wake growth the Z- coordinate is scaled such that
wake position is bounded in the computational plane. A scale transformation is defined
in terms of two parameters cr(X) and 0(X) by the following relation:

where y is a scaled coordinate in the direction normal to the plate and the functions
cr(X) and 0(X) are given in terms of A-j-gCX) by

<21a>
(Mb)

(X g LA) (22)
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where o is a constant scale parameter and Lj is a small positive number that identi-
fies the streamwise station where the wake solution is initialized. The functions oi(X)
and 0(X) control the wake thickness and position, respectively. The choice of 0(X) *
was previously discussed in reference 3. This scaling minimizes the variations of wake
location in the far field and as a result, the computations can be carried out with fixed
outer boundaries in the y-plane. In addition the coordinates approach similarity variables
appropriate to the Goldstein solution for X — +•». Scaled dependent variables are also
introduced according to the relations

, '. , *= o(X)2<KX,y) . , (23a)

U = <y(X)u(X,y) (23b)

T = r(X,y) (23c)

D = <Kxr1d(X,y) (23d)

where *£, U, T, and D are, respectively, the stream function, streamwise velocity
component, shear stress, and derivative of shear stress with respect to Z (i.e., D = -|£-j
and where fy, u, T, and d are, respectively, scaled versions of the stream function,
streamwise velocity component, shear stress, and derivative of shear stress with respect
to Z. With these transformations and with the elimination of the pressure gradient, the
governing equations can be written in the form

(Mb)

(Me)

. ••" (Md)

In this formulation the boundary condition on V given in equation (8b) is replaced by the
equivalent condition on the stream function

tf/=0 (y = 0 ; X < 0 ) (25)

A general, nonuniform rectangular mesh is introduced and equations (24) are dif-
ferenced according to the box scheme along the lines indicated in figure 4. The X- columns
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are labeled by an index I and the horizontal rows by an index J starting from J = 1
on the lower boundary and continuing to J = Jp on the upper boundary, where Jp is

u • • '•
the number of points in the y-mesh on the top of the plate. The first three equations do
not involve X- derivatives. These are central differenced about a midpoint of a y- interval
on the most forward marching column. Equation (24d), which is nonlinear and involves
derivatives in both directions, is central differenced about the midpoint of the box, as
indicated in figure 4. The nonlinear coefficients are evaluated as four point averages at
the midpoint of the box. This difference approximation leads to a nonlinear set of differ-
ence equations for the vector unknowns (^/,u,r,d)j along the column I + 1. The differ-
ence approximation is second-order accurate and implicit since it couples all the unknowns
along the I + 1 column.

The boundary conditions along the plate involve the specification of the two compo-
nents Vfcj o) anc* U(XI Q) for x < °' Out61" boundary conditions are imposed on the
vector components u and d. The conditions are given in the form of a ratio at the outer
two points of the mesh Jp and Jp_j. The ratios for the conditions on top of the plate
are computed from the asymptotic far-field expansion given in equations (19) as follows:

% 7 Rll(ZVX) - AT<X> R12(ZJp>
X)** \ F J • _ \ f I

d MX) + R21(ZJp,X\ R22(Zj X\
V \ \ V 1 _ \ V ! (26b)

where

+ Z + -rii Z1/2 + a2C91 In Z'+ a3 -|i K1/^"1/2 In Z (27a)
K ' "

- C22) + KC34I
In Z (28a)

'5/2CnC21 Z ' , - 12a2Z- (28b)
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where Z is related to the computational coordinate y by

Z = 0(X) + a(X)y ' • - (29)

This procedure for satisfying the far-field boundary conditions was motivated by the
work of Ackerberg and Phillips (ref. 24). Similar expressions are applied to the bottom
boundary of the mesh. For the wake computations (x ^ LI), only the outer boundary
conditions are to be satisfied and the expressions are identical to those of equations (26),
(27), and (28).

The difference equations are solved by a Newton-Raphson technique. The nonlinear
equations are linearized about a previous estimate to form a linear system of algebraic
equations for the perturbation quantities (61 ,̂ 6u, 5r, 6d)j . The differential equations
and boundary conditions result in a linear system that has a block tridiagonal form. In
the present problem the main blocks are 4 x 4 square matrices. The equations are solved
by. an efficient Gaussian elimination technique as described in reference 5. The form of
the outer boundary conditions given in equations (26) automatically falls into this block
structure.

Solutions at the most recently computed station (e.g., station I in fig. 4) are employed
as initial estimates. Quadratic convergence was observed to occur with these starting
values. The iteration was continued until a convergence criterion based on the relative
error was satisfied at all mesh points. The criterion

(30)
!

is employed, where f stands for any one of the dependent variables. .

The calculation proceeds by marching in the X-direction starting from an initial
station X = Lo. Initial profiles are determined from the asymptotic solution given in
equations (12). The similarity functions FJ(TJ), Hj(?]), I^fa), and K^(r]) appearing in
the asymptotic solutions are determined from a numerical integration of the two-point
boundary-value problems formulated in the appendix. These solutions are obtained with
the same subroutine employed in the marching calculation.

When the trailing edge (X = 0) is reached, a composite solution is formed to describe
the initial wake profile a short distance (AX = LI) downstream of the trailing edge. The
composite profile is obtained from a coordinate expansion for X and Z - 0. It is written
as the sum of an outer and inner solution less the "common part." The structure of the
local solution is similar to Goldstein's near wake solution except for the presence of a
singular, self-induced pressure gradient in the similarity equation. Solutions were first
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obtained by Hakkinen and Rott in reference 23 and are further discussed in references 1
to 3 and 20. The wake initial profile is given by

1/3
U(L!,Z) = UT(O,Z) + J(l L!J GO(T?) - \1>Tz (z > o)

xl/3 .
U(Lt,z) = UB(0,Z) + iI Lt Gofo) - X1)BZ (Z < 0) (32)

where UT and UB are the velocity profiles at the trailing edge on the top and bottom
of the plate, respectively, GQ is the similarity function describing the "inner" Hakkinen-
Rott solution, ?] is a similarity variable defined by equation (12b), and A.J FJI and \j B

are the skin- friction coefficients at the trailing edge. (See eq. (18d).) Profiles for the
variables \l/, r, and d can be formed in a similar manner. The function GO(TJ) is
determined as part of the solution by integrating the two- point boundary- value problem
formulated in the appendix. The solution in the wake is then continued downstream, start-
ing from the initial wake station (X = Lj) and terminating at a station (X = Xp) chosen at
the start of the calculations, as discussed in the beginning of this section.

The pressure distribution is determined after completion of the forward sweep by
integrating the streamwise momentum equation

dp _ d(X,0) jy^Ly m 9*KX,0) , } 3u(X,0)"[ U
2(X.O)

- ~ ° ^ ) ~ ~ ~ " " " "
, }

dX - X » 2 dX

All quantities on the right side of equation (33) are known from the most recent sweep.
Separate equations hold on the top and bottom of the plate. The pressure is determined
by a simple trapezoidal integration

^/dP™ D\

where the pressure gradient is evaluated by averaging equation (33) over the stations
X(I + 1) and X(I). Two constants of integration are required to complete the solutions
given in equation (34). These are determined from the asymptotic solutions given in equa-
tion (13a), which give

0.3433 '0.2368a /35aj

0.3433 . 0.23680 /3&bv

tf3
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Note that these relations involve the unknown circulation constant aj which must be
determined before the solution can be completed. The circulation constant aj is deter-
mined from a generalized Kutta condition as follows. By definition

/d

(36)

PB(0) = PB(X = L0) + f
•"o

dP

If equations (35) are substituted into equations (36) and the Kutta condition that the pres-:
sure is continuous at the trailing edge (i.e., PT(0) = PB(0)) is imposed, the following-
relations are obtained:

PT<0) = PB(0) = -

lLo|

n
- - (37b)

L O \OA OA/ , , .

Equations (37) should be interpreted as asymptotic relations valid for LQ — -°°. The
present results indicate that the solution is not overly sensitive to the magnitude of Lo

and that a^ can be evaluated to two decimal places for Lo = -17. Equation (37a) has
been employed in conjunction with equation (34) to determine the surface pressure by
sweeping equation (34) from the trailing edge.

: The differential equations are differenced in Cartesian coordinates on a nonuniform
mesh. The grid-point distribution is determined from simple transformations that map
a uniform grid to a nonuniform grid.. The parameters of the .mapping are adjusted to con-
centrate'mesh points in regions of large gradients that occur on the axis (y = Q) and at the
trailing edge (X = 0). The distribution of y-grid points is given as follows, for the upper
half-plane; The mesh points in the lower half-plane are obtained by reflection.about the ,
X-axis. . -.. . - , • : . . - . ' • • ; • • • ,- • : . . / • . ; , ..-. . - --..

On the plate side (X < 0) the y(J) distribution is defined by the relations ,
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(38b)

and

(1 s J < Jp) (38c)

where yM is the upper boundary of the computational domain, J is a running index,
and KI is a parameter employed to control the relative spacing of the increments.
Equations (38) reduce to a uniform mesh for Kj = 1 and to a nonunif orm mesh with a
concentration of mesh points near the wall for Kj < 1. . .

On the wake side of the field, a two-piece grid consisting of a fine uniform grid was
employed near the axis, and a stretched grid was used in the outer part of the wake. The
grid for X > 0 is defined by the following relations. For the inner region

• Dinner

and for the outer region

* J * Jinner; 0 i y < (39a)

y(J) = Dinner ; yinner) K2(l - 0 + K3(l> (39b)

where-

Dinner /inner < 7 <39c>

where y^^ej. is the upper boundary of uniform mesh region, J is a running index,
Dinner is ^e number of mesh points in the inner region, Jw is the total number of mesh
points employed in the wake, and K2 and K3 are parameters that control the mesh dis-
tribution in the outer region. They are chosen such that (1) the mesh increment is contin-
uous across the boundary between the inner and outer regions and (2) the outermost incre-
ment y(j\v) ~ y(JW ~ l) is eq.ua! to the corresponding increment on the plate. The mesh
distribution in the marching or X- direction is chosen to provide for a concentration of
mesh points on the wake side of the trailing edge and for a gradual stretching in the far
field for X - ±«.
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On the plate side (X < 0) the following transformation is employed: :

. . (40a)

where

£ I i Ip; L0 5 X < 0) (40b)

Lo is the value of X at the initial station, I is a running index, Ip is the number of
X-mesh points used on the plate, and K^ is a parameter that controls the relative spacing
of the mesh points on the plate. Equations (40) generate a uniform mesh for K4 = 0 and
a nonuniform mesh for K4 > 0. A relation between K4 and the minimum mesh incre-
ment Aj is given by

. . ' • • ' = " r " " " . ; -,1/3 - v • v • • • . - •
. „ ( ip- i)+(ip-i)LA i ( ip-v

(IP - 1) -
(41)

With equations (40) and (41), a mesh distribution can be generated with a specified mini-
mum increment AI at the trailing edge that smoothly expands to the initial point x = L' ' o,

The streamwise mesh distribution in the wake is given in three parts: a nonuniform
region near the trailing edge that concentrates points near the. origin, an intermediate
region with a uniform mesh, and a nonuniform region with an expanding grid in the down-
stream direction. " A good distribution is. generated by the following relations:

(42a)

'
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and

(43)

where A£ is a parameter that controls the first mesh increment.in the wake,-, I*, Io, -
and 13 are the values of the running index I that separate the three mesh regions,
and Lmax is the coordinate of the downstream boundary of the mesh. Note that Ig is
also equal to the total number of points used in the streamwise direction. Attention is
called to the fact that Lmax need not be equal to the terminal point of,the boundary-layer
calculation, X = Xp.

Evaluation of the Hilbert Integral

The most recent sweep of the boundary-layer equations provides updated solutions
for the pressure distributions required for the evaluation of the Hilbert.integrals given
in equations (10). The main difficulties in the numerical evaluation.of these integrals are
associated with the infinite range of integration, the algebraic singularity in the integrand
for X — -°°, the pole singularity at X = Xj, and the infinite pressure gradient for
X-0+ . :

The first two problems are treated by dividing the integration interval into a number
of segments. The outer two segments contain the unbounded intervals X — +°° and
X - -co. in these regions, the pressure distribution is approximated by the asymptotic
expressions given in equations (13aj, (13b), and (14a), and the integrals are evaluated in
closed form. This reduces the numerical problem to one involving an integration over
a finite range and also provides for a correct evaluation of the singular "finite part"
integral for X — -«. The remaining integrals are over a finite range and are evaluated'
by numerical quadrature using the mesh distribution employed in the boundary-layer cal-
culation. Difficulties with the pole singularity are avoided by evaluating the integrals
only at the midpoints of the integration intervals used in the quadrature. Excessive trun-
cation error due to the singular pressure gradients near the trailing edge is avoided by
using a special quadrature formula that accounts for this behavior. On the plate, the inte-
gration interval is split into two segments,' -°° < X s Lo and Lo < X < 0, while in the
wake, 0 < X < Lj, LI < X < L£ and L2 < X < +°°. Note that segment boundaries Lj,
L2, and L3 need not line up with the boundaries of the mesh defined by equations (42).
With this division, the integrals can be expressed as the following summation

f Tj - sgn Z(T2 + T3 -f A1Q + AQ2 + A23) (44)
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where the far- field expressions have been used to evaluate the integrands of the inte
grals Tj, T2, and Tg as follows:

(-1/3)1 L0

T •••
3

fu ^T B\A»W - ̂  -tr (46a)

<46b)

The integrals in equations (45) are evaluated in closed form and those in equations (46)
are evaluated by numerical quadrature.

The range of integrations of the integrals in equations (46) is segmented by using
the mesh distribution X(I) employed in the boundary-layer calculation, and .the integrals
in equations (46a) and (46c) are expressed as a finite sum of integrals over the mesh incre-
ments X(I + 1) - X(I). The individual integrals over these increments are then evaluated
in closed form by using a piecewise linear approximation for the pressure distribution
PT i»(X) and/or P(X) over the mesh increment. The integral in equation (46b) is

' .o o/q_ %/*
evaluated with a piecewise linear approximation for the function P(X) - * C^TC ' ,
where Co is the constant appearing in the Hakkinen-Rott similarity solution (eqs. (18)).
With this procedure all integrations are second- order accurate. .The displacement func-
tions can be evaluated from a trapezoidal integration as follows: :

AT>B(I + 1) = AT)B(I) + |X(I + 1) - X(I)]AT>B(l + ^) (47)
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with A^Br + 2) evaluated from equations (44) to (46)., Two constants of integration
appear. These are evaluated from the asymptotic solutions given in equation (13b) at
the initial station X(l) = L0, which yields -

AT)B(I = 1) = 0.3265|L0|~ H- aC12|L0| sgn Z - a2C2Jiln|Lo + In

• " ' » - ' ' -1/6 ' •
+ <*2(C21 +C22)+a3C33|L0| sgn Z ... . . (48)

... This procedure results in a convenient method for determining the values of
at the mesh points X(I) given the pressure at the same points. A number of numerical
experiments have been carried out for sequences of mesh distributions and for pressure
distributions that could be integrated in closed form. These results clearly indicated that
the quadrature errors reduced quadratically with mesh size and that the preceding eval-
uations of AT>B(X) were second-order accurate at all points of the mesh including
those near the trailing edge. The results of this study will be presented in a separate
publication.

Accuracy and Convergence Considerations

A number of numerical experiments were carried out to checlc the accuracy of the
complete program. These tests were carried out for the symmetric problem (i.e., at = 0)
by using a version of the program that was modified to allow for the symmetry of the solu-
tion. The angle- of- attack terms were deleted and a symmetry condition was -imposed on
the wake axis. With the modified program it was necessary to compute the solution only
in the upper half -plane; thus the number of mesh.poinfcsL required was reduced by one-half.

' : . Calculations were performed to determine-the effect of varying the locations of the
upstream (X = L0) and downstream (x '= Xp) .boundaries of the mesh and the position of
the upper. boundaryr yM. The number of mesh points employed in the horizontal and verr
tical directions were also varied, as were the parameters controlling the relative spacing.
of the-grid. Computations were carried out using up to 99 points -normal to the plate and ,
300 points in the streamwise direction. These results indicated that. a good distribution
of mesh points is generated with the following choices.- 5. . ...

For the y- mesh ' J • ' v- •

yM = 8.0 K! = 2/5 (49)

and 25 points are employed on the plate side (Jp = 25) and 44 points on the wake side
j = 44) of the trailing edge. Of the 44 points in the wake, 12 (Jjnner = ^} are &8~
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tributed uniformly in the region 0 s y 5 0.5555. With these choices the minimum incre-
ment occurs on the axis and is equal to

= °-1333 ( X < 0 ) (50a)

(Ay)min= 0.0427 (X > 0) (50b)

The mesh spacing smoothly increases to a maximum at the upper boundary where it is
equal to (for all X)

(51)

For the X-mesh the upstream Lo and downstream Lmax boundaries are chosen
as

L0 = -17 Lmax =30 (52)

Fifty-one points are employed on the plate and 124 points in the wake. The boundaries of
the various segments in the wake are taken at

Ij = 81 I2 = 151 I3 = 175 (53)

and, therefore, a total of 175 grid points are employed in the streamwise direction.

The initial station in the wake is taken at I = 57 which occurs at

X(57) = 0.004136 (54)

The minimum mesh increment on the plate occurs at the trailing edge and is equal to

= °-05 (X < 0) (55)

In the wake the minimum increment occurs at the wake initial station X(57) and is equal
to

(AX)min = 0.002432 (X > 0) (56)

These choices lead to very high concentrations of mesh points in the initial parts of the
wake. About 10 points of the y-grid fall in the inner region of the wake initial profile
where the solution is described by the Hakkinen-Rott similarity solution. Numerical
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experiments have indicated that solutions on'this mesh are accurate to about one part in
the third decimal place.

Convergence criteria were set on both iterative loops employed in the program to
achieve three-place accuracy. The error tolerance e^ used in the Newton-Raphson solu-
tion of the difference equation (see eq. (30)) was set at 10"^. This resulted in solutions

8to the difference equations that are accurate to 10 or better in two cycles per stream-
wise step at most stations. A third cycle is occasionally required near the trailing edge.

The overall interaction between the boundary-layer and inviscid programs is con-
tinued until the solution has converged to the third decimal place. Twelve iterations were
required to converge the main loop with u> = 0.15 and Xp « 3. Each cycle consists of
a sweep through the boundary layer and the evaluation of the Hilbert integral. Most of the
computer time is taken in the boundary-layer routine. The computations were performed
on an IBM 370/165 digital computer and required about 20 seconds per cycle, or about
4 minutes to complete the first 12 iterations. A total of 28 additional cycles were
employed to move the terminal point Xp downstream to Xp = 20.791. The influence of
the value of Xp on the upstream solution was investigated and was found to amount to an
increment of no more than 0.002 in the solution at X = Xp, which decreased rapidly
upstream. Similar conclusions hold for the angle-of-attack problem except that the com-
puter times were about doubled because of additional mesh points on the lower side of the
flow field. ;

The present program used significantly fewer iterations and less computer time
than that required by similar methods developed by Jobe and Burggraf (ref. 6) to treat the
zero angle-of-attack problem. This is apparently due to their.use of a fixed point itera-
tion scheme to solve the finite-difference equations and to the use of a separate iterative
scheme to compute the pressure at each streamwise station. Jobe and Burggraf were
able to use larger values of u> in the outer loop and, as a result, obtained solutions with
somewhat fewer outer cycles. However, this advantage did not nearly overcome the
longer cycle times required in their program. It should be pointed out, however, that the
symmetric problem does not involve free parameters and, hence, needs to be solved just
once. Therefore, computing efficiency is not a real issue in this problem. It was, how-
ever, important to develop an efficient code for the full problem since there are twice the
number of mesh points and since solutions must be obtained for various values of the nor-
malized incidence a.

RESULTS

The triple-deck formulation reduces the trailing-edge problem to one involving a
single parameter a, a normalized angle of attack defined in equations (2). The computer
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program described in the previous section has been employed to obtain solution for two
values of a equal to 0 and 0.10. Initial estimates to start the iteration were obtained
from the approximate solution of Messiter (ref. 2) for a = 0 and the linear solution of
Brown and Stewartson (ref. 3) for nonzero angles of attack. Numerical experiments car-
ried out in the study indicates that the present solution for the symmetric case is accurate
to three decimal places. The symmetric solution was obtained by using a special version
of the code in which the angle-of-attack terms appearing in the boundary and initial coridi-

. : - . * - • v .

tions were set to zero. In addition, a symmetry condition was imposed on the axis (i.e.,
» / / = T = 0 at y = 0) and the solution was computed only in the upper half-plane. The
solution for a = 0.10 was obtained with an early version of the code that employed a ;

somewhat coarser mesh and, hence, is likely accurate to just two decimal places.

The results obtained for the symmetric problem are compared with solutions of the
triple-deck equations recently obtained by Jobe and Burggraf (ref. 6) and Veldman and
Van De Vooren (ref. 7). The computations in these studies were based on finite-difference
techniques that differed in a number of respects from the method employed here. The
main difference being that a second-order Crank-Nicplson scheme was employed in refer-
ences 6 and 7, while a Keller-Cebeci box scheme was employed in the present study. The
computations in reference 6 were carried out on a nonuniform mesh using up to 180 points
in the vertical direction and 480 points in the streamwise direction. In reference 7 a non-
uniform mesh was employed with a maximum of 40 points in each direction. These are to
be compared with the 24 x 175 point nonuniform mesh used in the present computation.
The inviscid solution was obtained in reference 6 and in the present study from a numer-
ical quadrature of the Hilbert integral. In reference 7 the inviscid solution was deter-
mined from a finite-difference solution of Laplace's equation in the outer deck by using a
40 x 40 point mesh distribution. The iterative techniques used in the present scheme
appear to be more effective and require significantly less computer time than the methods
employed in references 6 and 7. Comparisons given in this section indicate that the over-
all agreement between the three sets of solutions is quite good, with differences amounting
to a few parts in third decimal places at most points of the flow field. However, the solu-
tions of reference 6 are somewhat less accurate near the trailing edge due to the poor
resolution of the trailing-edge singularity obtained with the uniform mesh distribution used
in that study. The computation in reference 7 loses some accuracy in the far field due to
the large mesh spacing used in that region.

Solutions to the symmetric problem are presented in figures 5 to 17. The pressure
distribution on the axis is given in figures 5 to 7. The effect of the wake in generating a
significant favorable pressure gradient on the plate is clearly shown in figure 5. The
pressure starts from the free-stream level far upstream and falls to a value of
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= -0.394 , (57)

at the trailing edge. This should be compared with the values of PTE of -0.388 and
-0.392 obtained in references 6 and 7, respectively. The pressure then rises steeply
from this trailing-edge value to a small positive maximum and then approaches the free-
stream value slowly from above. These results clearly show a large adverse pressure
gradient in the wake just downstream of the trailing edge. The pressure gradient is
bounded on the upstream side and is unbounded on the downstream side of the trailing
edge. The numerical solution is seen to blend smoothly into the asymptotic far-field
solution for X — ±°° and match smoothly with the singular solution at the trailing edge
for X - 0+. The coefficient of the third term of the trailing-edge solution (eq. (17a))
has been extracted from the present numerical results as

Pi = -0.52 (58)

The agreement between the present solution and the solutions of references 6 and 7 is
quite favorable, with the differences between the results being indiscernible on the scale
of figure 5.

The pressure distribution near the trailing edge is shown on a greatly expanded
scale in figure 6. Differences between the three sets of results are apparent on this
scale. The present results and those of Veldman and Van De Vooren are virtually identical
with the three term expansion given in equation (17a) with the constant PI given by equa-
tion (58). The use of a nonuniform mesh with a fine grid near the trailing edge provides
excellent resolution of the singular trailing-edge behavior in the present calculations and
in those of Veldman and Van De Vooren. The results of Jobe and Burggraf, which were
obtained on a uniform mesh, definitely appear to have a higher truncation error and to '
lose some resolution as the origin on the wake side of the trailing edge is approached.
Their results, however, appear to improve as the mesh size is reduced.

On the basis of analytical considerations, Stewartson in reference 1 has indicated . ,
that the pressure gradient is finite on the plate side of the trailing edge and that loga-
rithmic terms must arise in the expansion of the pressure distribution as X — 0". (See
eq. (16a).) The present results plotted in figure 7 seem to confirm Stewartson's conjec-
ture. In figure 7, the numerical solution for the pressure gradient is compared with the
analytic expression given in equation (16a). The numerical constants P^E, po' and P3
were extracted from the numerical solution and were found to have the following values:

= -0.301 P2 = 0.12 P3 = -0.14 (59)
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This is to be compared with the value Pfjig = -0.278 given in reference 6. The numer-
ical solution clearly indicates a vertical tangent at the origin and shows creditable agree-
ment with the analytical solution using the constants given previously. Four mesh points
in the region X < -0.5 fall on the analytical curve given in figure 7.

The solution for the skin friction is given in figure 8. The solution is seen to match
smoothly to the weak interaction solution given in equation (13c). The results clearly show
the strong effect of the wake-induced pressure gradient on the skin friction. The skin
friction at the trailing edge is increased by a factor of \i over the Blasius value, where

! » '• -

\1 = 1.351 . (60)
" - * • . • * " • . >

This is to be compared with the values of rw(0) = 1.343 and rw(0) = 1.352 predicted
in references 6 and 7, respectively. Comparisons of the triple-deck solution with the
second-order boundary-layer solution of Schneider and Denny (ref. 25) are given in
reference 6. . .

The solution for the centerline velocity in the wake is given in figure 9, together with
a comparison of the Goldstein solution for X — +°° and with the Hakkinen-Rott solution
for X — 0~. Both analytic solutions exhibit an X^ behavior and appear as linear dis-
tributions in the scale used in the figure. Also included is a comparison with two terms
of the Goldstein solution. The second term, involving the constant bj, corresponds to a

.shift in the origin of the asymptotic solution. The value of the constant bj has been
extracted from the present numerical solution, as will be discussed later in this section.
It can be seen that the triple-deck solution provides a smooth blending between the trailing-
edge and far-field solutions. The effect of the shift is clearly evident in the results^ ,

In figure 10, this solution for the centerlirie velocity is compared with the results of
references 6 and 7 on an expanded scale near the origin. The present results show good
agreement with the solution of Veldman and Van De Vooren and with the singular solution
of Hakkinen and Rott right to the trailing edge. The honuniform mesh employed here and
in reference 7 permits a very high resolution of the singular trailing-edge behavior. The
results of Jobe and Burggraf (ref. 6) again show higher; truncation errors and somewhat ••
poorer resolution near the trailing edge owing to the larger mesh intervals employed in
their uniform mesh solutions. . -

The solution of Veldman and Van De Vooren employs a highly stretched mesh with
relatively large mesh increments in the region away from the trailing edge. The results
in figure 10 indicate that this leads to somewhat larger truncation errors in the down-
stream region than those that arise in the present solution. ' , ' ' ' '

The present solution for the displacement function A(X) is compared with the far-
field asymptotic expansions in figure 11. Again the numerical solution blends smoothly
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'into the asymptotic solutions for X — ±°°. The effect of the origin shift in the down-
stream solution is again evident in the comparison. The inclusions of the bj term in
the asymptotic solution is seen to extend the region of agreement well into the near field.
The results are seen to be in good agreement with the solutions given in references 6
and 7, with no apparent differences on the scale employed in figure 11. |

Comparison of the present results for the slope of the displacement surface with
the solutions of Jobe and Burggraf shows some discrepancy as indicated in figure 121 , .
The dashed line in figure 12,'representing the solution of reference 6, was obtained from
a graphical reading of a figure in reference 6 using an automatic digitizer. Some of the
differences are surely due to errors in reading the graphical data. However, the main
differences are in the trailing-edge region, and these are likely caused by the larger grid
spacing used in reference 6. The present results clearly show the vertical tangent at the
origin implied by the singular solution given in equation (17b). This is seen more clearly
on the expanded scale used in figure 13. \tn figure 13,; the present numerical solution for
A'(X) is compared with the singular expansion given in equation (17b) and with the solu-
tion of reference 6 as tabulated in the thesis of Jobe (ref. 26). The present solution is
seen to blend very smoothly with three terms of the singular solutions. The constants in
equation (17b) were evaluated by fitting equation (17b) to the present numerical solutions
and were found to have the following values:

ATJ, =0.338 A^gs 0.402 Aj = -1.3 Aj =-2.1 (61)

These are to be compared with the values ATE = 0.335, ATE = 0.335, and Aj" = 0.56 "
given in reference 6. The results agree relatively well with the solution of reference 6
except for the grid point nearest the trailing edge and the values of the constant Aj[.

The constant bj appearing in the second term of the far-field solution has been
evaluated by fitting equations (14b) and (14c) to the present numerical solutions for A(X)
and U(X,0). The results are denoted by b^(X) and byCX) and are displayed as func-
tions of X in figure 14. The results seem to approach a limiting value that is given by

bj = -0.285 ± 0.005 (62)

which is to be compared with the value bj = -0.27 ± 0.03 quoted in reference 6. Also
shown for comparison is a similar plot taken from reference 26. The difference between
the two sets of results is likely caused by somewhat higher truncation error and by the
abrupt termination procedure employed in the calculation of references 6 and 26.

The drag coefficient for the finite flat plate can be evaluated from an integration of
the skin-friction distribution on the plate as follows:
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CD = 1.328R'1/2 + d2R'7/8 + oU'1 (63a)

where the constant d2 is given by

d2 = 2A."1/4 j* [r(X,0)-l]dX • (63b)
j '

Use of the present solution for the skin friction and a trapezoidal integration of the pre-
ceding integral leads to the following evaluation:

d2 = 2.660 1 (63c)

In figure 15 the drag coefficients predicted by equations (63) are compared with experi-
mental data obtained in 1935 by Janour (ref. 8) for flow of oil over a finite flat plate.
Also included is a comparison with solutions of the full Navier-Stokes equations recently'
obtained by Dennis in 1973 (as mentioned in the Introduction) for Reynolds numbers in the
range 1: s R < 200. The results in the figure show that the correction to the Blasius
result is large in this range and that it is accurately predicted by equations (63) to within
a few percent for Reynolds numbers as low as R = 10.

Dennis later extracted the value of d% by fitting an equation of the form of equa-
tion (63a) to his numerical solutions. His results for d2 are plotted in figure 16 together
with the limiting values (i.e., for R —. +°°) predicted by the triple-deck solutions as
obtained in the present study and in references 6 and 7. The agreement of all three triple-
deck solutions with Dennis* results is quite good with the present solution yielding the
best agreement

The preceding results indicate that the triple-deck solution is accurate over a sur-
prisingly wide range of Reynolds numbers. Indeed the maximum difference with the
Dennis solution for the drag coefficient is about 8 percent at a Reynolds number R of 1.
The close agreement with the Navier-Stokes solutions implies that the next term in the
asymptotic solution, which is formally on the order of O(R~*) must be very small. Fur-
ther comparisons and discussions of the drag coefficient are given in references 6, 20,
and 26.

Sato and Kuriki (ref. 9) carried out wind-tunnel experiments on the flow in the wake
of a thin plate. The flow was determined to be two-dimensional. The plate was 300 milli-
meters long and the flow velocity was 10 meters/second. The investigators were primarily
interested in exploring the transition of the wake from laminar to turbulent flow. They

1A value of d2 = 2.644 attributed to the present'authors in references 6 and 7 was
obtained on a coarser mesh than the one employed in the present computations and is, con-
sequently, less accurate than the above value.
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measured mean as well as fluctuating velocity profiles in the wake. The Reynolds num- ..
ber of the test was 2.1 x 10^ (e = 0.216). The mean velocity profile given in figure 17
was measured at a station 30 millimeters behind the trailing edge where the flow was
fully laminar (the nonlinear transition region started about 40 to 60 millimeters behind
the plate). At this Reynolds number the pressure peak predicted by the triple-deck theory
occurs at 40 millimeters behind the plate. Thus, the measuring station for the profiles
in figure 17 was in a region where the theory predicted a strong adverse pressure gradient.

The triple-deck solution was used to construct a composite velocity profile at
X = 30 millimeters. The solution was represented as the sum of an "outer and inner
solution" minus the "common part," as follows:

. . -^2E = f 'fo) + o.4945A(X)[f"fo) - f"(0)| + 0.1642(uinner - z) (64a)

where . - - . , . - .

TJ = 0.4941Z . (64b)

and the physical distance normal to the wake axis is given by

vmin = °-325z (64c)

The function f(n) is the Blasius function for the semi-infinite flat plate solution and
Uinner(Z) is the triple-deck solution for the wake profile at X = 2.49. The displace-
ment function at this station is given by i

A(2.49) = 1.052 (64d)

The profile given by equations (64) is compared with the measured profile of Sato
and Kuriki in figure 17. The theoretical and experimental profiles are seen to be in good
agreement across the entire wake. The main differences occur in the outer region where
viscous and pressure gradient terms have been neglected in the theoretical solutions.
Also indicated is the centerline velocity predicted by the one-term Goldstein solution.
The effect of the interaction in reducing the centerline velocity is significant and readily
discernible in this experiment. It is also of some interest to call attention to the fact that
transition was observed to start at a station 40 millimeters behind the plate, which coin-
cided with the location of the theoretical pressure peak in the wake. This result suggests
that self-induced pressures may play an important role in the transition of a wake from
laminar to turbulent flow. As a corollary it also indicates that the effect of wake-induced
pressure gradients may have to be accounted for in theoretical transition calculations.

215



The numerical methods developed in the present investigation have been found to
provide an effective means for solving the triple-deck equations. Because of the overall ;
efficiency of the differencing and iterative techniques employed, it is practical to use these
methods to solve the angle-of-attack problem. An early version of the code described in.
previous sections was used to obtain solutions for a (normalized angle of attack) equal .
to 0.10. This solution was obtained without the terms of 0(aty or greater that appear
in the outer boundary condition given in equations (26) to (27) and in the initial condition
given by equations (12). These terms are quite small and are believed to have a small '
influence on the solution at the value a = 0.10 for which the computations are carried
out.2

In figure 18 the solution for the pressure distributions on the top and bottom of the
plate and on the wake axis is compared with an approximate solution developed in refer-
ence 3. The approximate solution was based on a simple linearization of the triple equa-
tions about a linear streamwise velocity profile. As was noted in reference 3, the linear-
ization is clearly not valid in the wake, where the velocity gradient dU/dy must vanish
on the axis. However, the errors in the wake are not expected to have a strong influence
on the solution upstream of the trailing edge. If this holds true, the linearized solution
should provide a reasonably good approximation to the angle-of-attack solution. The
results in figure 18 bear this out. The agreement between the present numerical solu-
tion of the full triple-deck equations and the linearized solution given in reference 3 is
seen to be quite good. The effect of incidence on the pressure distribution in the wake is
barely noticeable on the scale used in figure 18. The circulation constant aj appearing
in the formula for the viscous correction to the lift coefficient in equations (4) and (5) is
determined as part of the present solution and is given as

• a'j = 0.55 (65)

This is to be compared with the value determined from the linearized solution of Brown
and Stewartson, namely

ax = 0.79 (66)

The agreement for a^ is not nearly as good as for the pressure distribution but is prob-
ably as good as one should expect from such a simple approximation.

In figure 19, the numerical solution for the pressure distribution is compared with
the inviscid solution on the plate and with asymptotic solution valid for upstream. The
numerical solution is seen to blend smoothly into the upstream asymptotic solution. Com-
parison with the zero angle-of-attack solution given in figure 5 indicates that the approach
to the far-field solution is much slower in the angle-of-attack case. The difference

^Computations including all terms appearing in equations (26) to (29) have been
carried out since this paper was written and the results confirm this conclusion.
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between the numerical and inviscid solutions in the far field is due mainly to the circu-
lation term aj. This term can be interpreted as a shift of the origin in the far-field
asymptotic solution for X — -°°. The effect of the shift is clearly evident in the compar-
ison in figure 19. The results in figure 19 clearly show the large changes in the inviscid
pressure distribution induced by the wake. These changes take two main forms: one is
the shift in the pressure distribution in the far field mentioned previously, and the other
is the complete change in the shape of the pressure distribution near the trailing edge.

The effect of the induced pressures on the solution for the skin friction is indicated
in figure 20. In this figure, the numerical solution for the skin friction on the top and
bottom of the plate is compared with the asymptotic solution valid far upstream. The
numerical solution is seen to,join smoothly to the asymptotic solution. The far-field
solution plotted in figure 20 contains three terms: the basic Blasius value, the second
due to inviscid pressure gradients induced by incidence, and the third term due to the
favorable pressure gradient induced by the wake interaction. These terms combine to
yield a skin-friction variation that is quite small except very close to the trailing edge.
The effect of incidence is seen to have a fairly large effect on the value of skin friction at
the trailing edge, which was equal to Cf(0) =1.349 for a = 0. Clearly, a much larger
value of incidence will be required to drive the skin friction to zero on the upper service.
The present result seems to indicate that the point of vanishing skin friction should first
arise at a station upstream of the trailing edge.

The solution for the displacement functions Arj(X) and Ag(X) is given in fig-
ure 21 where it is compared with the far-field asymptotic solutions. The strong effect
of incidence in displacing the wake centerline is clearly evident in this result. Again,
attention is called to the smooth blending of the numerical and asymptotic solutions in the
far field.

TURBULENT TRAILING-EDGE FLOWS

The numerical solutions obtained in this study and in references 6 and 7 have com-
pletely confirmed the triple-deck model and the local asymptotic solutions developed in
references 1 to 3. These works provide a sound theoretical framework for analyzing
laminar interactions at trailing edges of streamlined bodies. Unfortunately, the boundary
layer on an airfoil usually undergoes transition to turbulent flow at the Reynolds numbers
of interest. Most theoretical methods for predicting the effect of boundary layers on air-
foil characteristics are based on classical second-order boundary-layer theory. Although
not generally recognized, second-order boundary-layer theory for turbulent flows breaks
down at airfoil trailing edges. Consequently, the theory does not provide a satisfactory
basis for computing boundary-layer corrections to inviscid airfoil solutions. It is, there-
fore, important to develop a systematic theory for treating turbulent interactions in airfoil
problems.
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In the present study, a formal asymptotic theory has been developed for turbulent
interacting flows, following broadly along the lines of the laminar triple-deck theories. '^
Of course, turbulent boundary layers differ greatly from laminar flows and are controlled "
by quite dissimilar physical mechanisms. Particularly significant is the fact that turbu-
lent boundary layers tend to retain high velocities much closer to the wall than in a lam-
inar flow. This effect is one of the main reasons for the small upstream influence
observed in turbulent interactions. However, the general idea of the triple-deck approach
in seeking formal asymptotic solutions of the Navier-Stokes equations in the limit of large
Reynolds numbers is also useful for the turbulent,problem.

Accordingly, solutions of the turbulent airfoil problem will be developed as formal
asymptotic expansions of the full Navier-Stokes equations in the limit R - °°. The tur-
bulent analysis is carried out by using the basic framework developed in references 1 to 3
for laminar trailing-edge problems. Incompressible flow over a thin airfoil with a cusped
or nearly cusped trailing edge at angle of attack is considered. The airfoil is assumed
sufficiently thin so that the inviscid flow is described to lowest order by the flat plate
solution given, for example, by equations (3) and (4) of this paper. Here, however, the
angle of attack a* is assumed to be 0(1) and not necessarily small. Transition is
assumed to occur upstream of the trailing edge and the boundary layers are assumed to
be fully developed turbulent flows in the trailing-edge region. More specifically, the
velocity profiles in the noninteracting region are assumed to have a small defect form in
the main part of the boundary layer and the usual logarithmic behavior near the wall.

In this section, the main features of a turbulent interaction theory that can be devel-
oped under these general conditions are outlined. First the behavior of boundary-layer
theory near trailing edges is examined. It is shown that a singularity arises in the solu-
tion'which causes!a breakdown of the second-order theory near trailing edges. This anal-
ysis will show that'a Kutta condition for the second-order solution cannot be satisfied and
that the lift correction cannot be determined. ., !

The failure of second-order theory is resolved by the introduction of a local solution
that correctly describes the flow near trailing edges. The local solution is shown to have
a three-layer structure that superficially resembles the triple-deck structure of the lam-
inar problem. However, in the turbulent problem the physical mechanisms leading to this
structure and the basic equations holding in each region are very different from those
arising in the laminar flows.

In the present discussion, only a very brief description of the turbulent interaction
theory is presented. The asymptotic structure of the local solutions governing the flow
near the trailing edge will be described and the boundary-value problem that must be
solved to complete the solution in the trailing-edge region will be outlined. Also a simple
solution for the skin friction in the trailing-edge region that follows from the theory is
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presented. The skin-friction solution is compared with experimental data of Schubauer
and Klebanoff (ref. 18) and with numerical solutions of the boundary-layer equations.

Second- Order Solution

The second- order solution for viscous flow over an airfoil is determined in the fol- ;

lowing steps:

(1) Determine the inviscid solution for flow over the prescribed airfoil shape and
compute the pressure distribution on the surface

(2) Solve the boundary-layer equations with the pressure distribution obtained from
the inviscid solution and compute the displacement thickness

(3) Use the displacement surface to compute the equivalent source /sink distribution
on the airfoil and wake surface and solve the inviscid equations with the source distribu-
tion as a surface boundary condition. Alternatively, the displacement thickness can be
used to form an equivalent airfoil shape that serves as a new geometry in the inviscid
solution.

This well-known procedure can be embedded in a formal asymptotic expansion for
large Reynolds numbers. However, because of the presence of a singularity in the inviscid
solution, this expansion is not uniformly valid at trailing edges. Consequently, the second-
order solution cannot be completed and the boundary-layer corrections to the lift coeffi-
cient cannot be determined. Previous airfoil calculations based on second-order boundary-
layer concepts relied on numerical smearing of the trailing-edge singularity to obtain

">
solutions.

A singularity appears at the trailing edge in the inviscid solution for all lifting air-
foils with a sharp trailing edge. For an airfoil with a cusped trailing edge, the pressure
distribution on the surface exhibits a square- root behavior. This is illustrated in figure 22
where the steps leading to the nonuniformity of the second-order theory are outlined. Near
the trailing edge, the pressure distribution is given by

P* = P*E - PUT
2

E(ca\/-xVL sgn y + . . .) . (67a)

where L is the airfoil chord and Ca is a constant that depends on the incidence a*
and the shape of airfoil. For a flat plate (or a sufficiently thin airfoil) C« can be deter-
mined from the solution given in equations (3), namely - ' - . • •

C a = a * : . . - . . ^ - . . ; . , - . _ (67b)

a n d p = P a n d
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The behavior of the displacement thickness near the trailing edge can be determined
from the momentum integral equation

d6%6dx*(H + 2 ) _ c (68)

where 6« is the momentum thickness, H is the shape factor, Ug is the streamwise
velocity external to the boundary layer, and Cf is the skin-friction coefficient. The
displacement thickness 6? is given by

• • t

6j = H6£ (69)

Withlthe external velocity evaluated from the inviscid solution (eqs. (67)), the second term
in equation (68) is. unbounded at the trailing edge. Since the variation of skin friction due
to pressure variations can be shown to be equal to the order of the pressure, change,,the
singular acceleration term in equation (68) can only be balanced by the gradient of
momentum thickness. Thus, equations (67) to (69) lead to the following expansion for.
the displacement thickness as x* - 0:

-^ - . *•••• ••"'• i .

(x*<0) (70a)

(x*<0) (70b)

where the subscripts T and B refer to the top and bottom of the airfoil, respectively.
The boundary layer thickens on the top and thins on the bottom of the airfoil due to the
imposed pressure distribution. This leads to an equivalent camber distribution 6^ given

:,T-5l,B) = 6S(0) + Ba\/-xVL.+ . . .

where

S(°) = ̂ 1,T(0) * 51,B(0] ;

(71c)
x*=0 • -.. . '

The slope of the equivalent camber distribution given in equations (71) is singular at the
trailing edge. The antisymmetric part of the second-order outer solution is determined
by computing the inviscid flow over this camber distribution. It follows from potential
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flow considerations that the second-order solution for the surface velocity must have the
following behavior for x* — 0~:

-*;TE

~ -^ (Ba/;r)ln(xVL)
— ^— — ̂ — —

L
sgny (72)

where Ca and Ba are the constants defined previously and Ar is an arbitrary
constant.

The first two terms in equation (72) arise from the inviscid solution and the last
two are induced by the interaction. Notice that both interaction terms are singular. The
logarithmic term is induced by the singularity in the camber distribution, while the Ar ,
term is an arbitrary homogeneous solution that satisfies Laplace's equations and the
boundary conditions. Ordinarily this term would be excluded by the Kutta condition, which
requires the solution to be bounded at the trailing edge. It is clear from equation (72) that
this condition cannot be satisfied for any value of the constant Ar. Thus, the second-
order solution cannot be completed and the boundary-layer correction to lift cannot be
determined. It is curious that this conclusion, which follows from the simple analysis
given previously in this paper, has gone unrecognized in previous viscous airfoil analyses.

Interaction Theory

The results given previously clearly demonstrate that the standard second-order
boundary-layer theory is not uniformly valid at trailing edges. To develop complete solu-
tions of viscous airfoil problems, the basic theory must be corrected to better account for
the flow near the trailing edge. In the present investigations, the method of matched
asymptotic expansions was used to develop formal solutions for the trailing-edge region.
This approach is based on the time-averaged Navier-Stokes equations with a turbulence
closure employing a turbulent kinetic equation and an algebraic length-scale relation. ..
Solutions were developed in terms of a small parameter e which here is related to the
friction velocity u* in the noninteracting region upstream of the trailing edge. That is,

(73)

where Cf o is the skin-friction coefficient at the trailing edge, as determined from solu-
tion of the noninteracting boundary-layer equations on the top of the airfoil. Asymptotic
solutions are developed for R — «° or equivalently for e — 0. The analysis follows very
closely a similar theory developed for interactions between turbulent boundary layers and
normal shock waves in reference 16.

_'
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. In the brief discussion of the theory given here, only a general description of the
main results of the analysis will be provided. In addition, the present discussion will be
limited to incompressible flows. A more complete discussion of the analysis leading to
these results along with a simple extension to compressible trailing-edge flows will be
provided in future publications.

From the present analysis, it has been determined that the stream wise extent of
the interaction region at the trailing edge is on the order of a boundary-layer thickness;
that is, Ay* w 6* = eL. The flow near the trailing edge was found to develop a multilay-
ered structure, as illustrated in figure 23. The solution upstream of the interaction is
divided into standard potential flow and boundary-layer regions over a streamwise length
scale 0(L). The solution in the boundary layer has a two-layer structure typical of tur-
bulent flows; an outer wake-like region and an inner wall layer. The velocity profile in
the outer region has a small defect form, which on the top of the plate can be written in
the form

Jf- = 1 + €f(y*/6* pc*) - ' (74)

where U*. is the velocity at the edge of the boundary layer and 6ip is the local
boundary-layer thickness. The velocity profile in the inner layer is expressed in a law
of the wall form

= eF(y+,x*) (75a)
u Te,i

where y+ is a wall variable defined by

where v is the kinematic coefficient of viscosity. Similar expressions hold for the
boundary- layer profiles on the lower surface. The solution for noninteracting turbulent
boundary layers has been embedded in a formal asymptotic structure by Mellor (ref. 12),
Yajnik (ref. 13), and Bush and Fendell (refs. 14 and 15). These authors have shown that
the law of the wall and velocity defect profiles appear as the leading terms of an asymp-
totic expansion for R — °°. Thus, fully developed turbulent boundary- layer flows can be
viewed as limiting solutions valid in this limit. The present analysis should be considered
as an extension of these works to the trailing-edge interaction problem.

The solution in, the interaction region develops the three -layer structure illustrated
in figure 23.
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The three layers required in the solution are

•(1) An outer, basically inviscid rotational stream. This regipn includes most of the
boundary layer and a part of the irrotational flow outside the boundary layer that is on; .,
the order of a boundary-layer thickness. , ...

(2) An inner wall layer that is a continuation of the wall layer from upstream.

(3) An intermediate, or blending layer that occurs between the outer and wall layersV
The blending layer is thinner than the outer layer but thicker than the wall layer.

. The wall-layer thickness is defined in terms of the parameter e introduced by
Mellor in reference 12

' _ A y * »eeL (76a);

where .

r- -1-1 .

e = |e2Rj _ . (76b)

In the outer layer both the Reynolds and viscous stresses are small compared to the
inertia terms in the momentum equation. Vorticity is generated in the upstream boundary
layers and is convected, unchanged, along streamlines in the trailing-edge region. This
leads to a description of the flow as an inviscid rotational stream. A similar model was
first proposed by Lighthill in 1953 (ref. 28) for treating interactions of oblique shock waves
with turbulent boundary layers at supersonic speeds.

The flow in the inner layer is a local equilibrium flow in the sense of Townsend
(ref. 29). To lowest order, the total stress (viscous plus Reynolds stresses) is constant
across the layer and the solution is completely determined by the local skin friction.

An intermediate region is required because of a mismatch that develops between the
Reynolds stresses in the inner and outer layers. In the outer layer, the Reynolds stresses
are. frozen at their upstream values. In the inner layer, the Reynolds stresses are in a
local equilibrium determined by the wall friction because of thessmall-scale structure of
the turbulence in this region. As a result, a discontinuity in Reynolds stresses develops ,
between the inner and outer regions. This discontinuity is resolved by the blending layer.
Solutions in the blending layer are governed by linearized boundary-layer equations that
involve Reynolds stresses, but not viscous stresses. Turbulent closure models are
required to complete the lowest order solutions in the wall and blending layer regions but
not in the outer region. Displacement effects generated by the two inner layers are small
and do not affect the first few terms of the solution in the inviscid outer region. Thus, the
leading terms of the outer solution can be determined without consideration of the flow
near the wall.
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Next the form of the expansions in each region is considered. The expansion param
eter e defined in equation (73) is equal to the friction velocity of the upstream flow on
the top of the airfoil. It should not be confused with the previous definition of e used in-
the laminar study (i.e.,

Outer Layer

The coordinate stretchings for the outer region are given by

X = (x*/L)e-l y = (y*/L)e-l (77)

where the coordinate system employed in the laminar study is used. There will be some
minor differences from the notation used for the laminar analysis but the changes will be
clear and should not cause confusion.

The solution in the outer layer is dominated by contributions from the irrotational
airfoil solution. The first terms in the expansion are obtained by expressing the airfoil
solution in the inner variables defined in equations (77) and expanding the result in powers
of e. The next term comes from the upstream boundary layer and is determined by sim-
ply adding the defect part of the upstream profile to the irrotational contribution.

Physically, this approximation is based on the idea that velocity variation across
the boundary layer is small in the limit of large Reynolds numbers. (See eq. (74).) Thus,
the physical picture is one of a basically irrotational flow that is slightly perturbed by
small shear flow disturbances near the wall. The resulting linear superposition of the
boundary -layer and inviscid solutions leaves the pressure distribution in the field and the
lift coefficient of the airfoil unchanged. The nonlinear interaction of these terms produces
perturbations in the pressure distribution and lift coefficient. Thus, the expansion in the
outer region is written in the form

UrTE

f e1/2uinv(X,y) + euBL(y) + e3/2u'(X,y) + . , . (78b)S u =
UTE

where fy and u are the nondimensional stream function and the streamwise velocity
component, respectively, ui.g is the velocity at the trailing edge predicted by the irro-
tational outer solution, and * denotes the corresponding dimensional quantities. The
velocity components u and v are related to the stream function by the usual relations

u = d\j//dy v = -31///9X (79)
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The first two terms in equations (78) arise from the airfoil solution written in inner var-
iables and then expanded in powers of e. For a general airfoil with a cusped trailing edge
this yields the result '

0 (80a)

uinv = Car sin 9 (80b)

where r and 9 are polar coordinates, with Q measured from the positive X-axis,
given by

r = ̂ X2 + y (8la)

6= tan-ifr/X) . (81b)

Substitution of the assumed expansion into the time-averaged Navier-Stokes equations
leads to the following equation for the perturbation stream function:

t TjT (y)
= -C (X,y) = -- ^- fcnvCX,y) (82)

dy2 mv

where ^ is the Laplacian operator and if is the perturbation vorticity. This is a
simple Poisson equation that relates the disturbance stream function to the perturbation
,in vorticity £*. The vorticity perturbation arises from the convection of the vorticity in
the upstream boundary layer along the curved streamline of the irrotational airfoil solu-
tion, as illustrated in figure 24.

The Poisson equation must be solved subject to the boundary conditions

^'(X,y)-0 ( r -«>) (83a)

v« = - 4J- = 0 . (y = 0; x s 0) (83b)
ox.

where v* is the perturbation velocity normal to the surface. The perturbations in
streamwise velocity and static pressure are given by the relations

u' = f . (84a)

P' = -U' = -^ . (84b)
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These boundary conditions lead to well-posed boundary- value problems for the outer
solution. The outer solution leads to a "slip" velocity on the surface that is resolved by
the inner layers.

The solution of the boundary-value problem can be represented as the sum of a
particular solution plus a complementary solution. The particular solution satisfies
equation (82) but not the boundary conditions. This solution leads to a downwash on the
surface that violates the boundary condition on v* (eq. (83a)). The complementary solu-
tion is a solution of Laplace's equation that cancels this downwash. The solution for the
particular integral depends on the form of the initial velocity profile uBL(y) and on the
expression for the irrotational stream function ^nv- For general profiles, the partic-
ular and homogeneous solutions must be found by numerical means. However, if the ini-
tial profile is represented by a Coles law of the wall/law of the wake correlation, a closed-
form expression for the particular integral can be found by analytic function theory. Coles
form for the defect profile on the upper surface can be written in the form

- W(y/8T)
(85)

where 6rp is a nondimensional boundary-layer thickness defined by the relation

. 6T = eL6T (86)

K >is the. Karman. constant, .3™ is the Coles wake parameter, and W(y/6rj.) is the wake
function which can be represented by a simple polynomial approximation to the cosine

.function usually employed in this description. Similar expressions hold for the profile on
the lower surface.

The particular integral evaluated in this fashion leads to closed-form expressions
for the downwash velocity on the top and bottom of the plate. The homogeneous solution
which cancels this downwash can be found in the usual way from thin airfoil theory. This
leads to a representation of the homogeneous solution in terms of a Hilbert integral that
must, in general, be evaluated by numerical quadrature. A Kutta condition, requiring the
solution to be finite at the trailing edge, is imposed as part of the solution of the homo-
geneous problem. This condition determines the value of an arbitrary constant appearing
in the trailing-edge solution that is directly , related to the circulation constant Ar
appearing in the second-order boundary- layer solution (eq. (72)). Matching the trailing-
edge solution to the second-order solution valid outside the trailing-edge region leads to
an expression for the lift coefficient in the form
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CL = 2TO!*/1 + aje2 In e + a2e
2 + . . .) (87)

where aj is a known constant and a2 is a constant to be determined from a com-
plete solution of the trailing-edge problem. The constant aj as determined by match-
ing to the upstream solution (eq. (72)) is given by

al = V^l/lK"* 2) - 61,B(HB + 2)1 (88)
L JX=0

where 6jrp g and Hrp B are the (nondimensional) displacement thicknesses and shape
factors at the trailing edge, respectively, as determined from the noninteraction boundary-
layer solution. The nondimensional displacement thicknesses SIT B are defined by the
relation

(89)

where 6 t> a^e the dimensional displacement thicknesses. Notice that the leading
* ' / O \correction to the lift coefficient, as given in equation (87) is 0^ In e). This term is

completely missed in standard second-order theory which leads to a correction that
is O(e2).

Equations (87) and (88) indicate that the lift correction is due primarily to the differ-
ence in boundary-layer thicknesses on the top and bottom of the airfoil. In the usual situ-
ation, 6j T > 6j B, and the effect of the log term is to reduce the lift coefficient. The
effect of this term is most important on rear-loaded airfoils where the rear loading tends
to dramatically increase the difference in boundary- layer thickness on the top and bottom
of an airfoil. The effect of the shape of the boundary- layer profiles also influences the
lift correction through the values of HT and HB appearing in equation (88). Rear load-
ing tends to make the boundary layers less full on the top of the airfoil compared with the
bottom. This implies that Hrp > Hg and this, in turn, also leads to a reduction in lift
This effect is formally of higher order since

HT>B = 1 + 0(e) (R - °°) (90)

However, in practice, H is significantly different from one at Reynolds number of
interest (e.g., H « 1.4 for a flat plate at R » lO^j and this effect can be numerically
significant.

Inner Layers

Next briefly the form of the expansions in the two inner layers near the wall is con-
sidered. (See fig. 23.) Only the solution on the airfoil surface upstream of the trailing.
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edge is considered. The evolution of the inner layers into the wake leads to a similar
structure. However, solutions in the inner layers of the wake are much more complex
and have not yet been fully developed. A major uncertainty in the wake solution is con-
cerned with the choice of a closure hypothesis to properly deal with a change in the sign
of the Reynolds stress near the axis.

Only the solutions on the upper surface are dealt with explicitly. The expressions
to be presented also hold on the lower side with an obvious change of notation. In the
innermost layer the solutions for the streamwise velocity u* and Reynolds stress T*
are represented in the form of a law of the wall as

T*= T(X;e)T+(y+,X;e) (91b)

(91c)

where r^(X;e) is the skin friction and u+, T+, and y+ are nondimensional wall-layer
variables.

Substitution of these variables into the time-averaged Navier-Stokes equations with
e — 0 leads to the well-known condition that the total stress (laminar plus Reynolds
stresses) is constant across the wall layer to all orders in e. This conclusion follows
from the fact that the wall-layer thickness is transcendentally small in e. The wall-layer
formulation is completed by the choice of a closure condition relating Reynolds stress to
mean velocity. Analysis indicates that a balance of production and dissipation in the wall
layer is a rational result that follows from the turbulent energy equation in the limit e — 0.
With the usual model of dissipation this leads to a mixing length formula

T+ = £2(y+)(au+/ay+)2 . ' (92)

where £(y+) is the mixing length distribution. In this formulation the choice of £(y+)
is strictly empirical. Careful consideration of the magnitude of the pressure gradients
in the present problem indicates that the choices commonly used for moderate-pressure-
gradient flows are appropriate here. For example, the two-layer model of Cebeci and
Smith with a Van Driest damping factor is known to give very accurate solutions in incom-
pressible wall layers. It is known that the mixing length distribution is linear for large y+

and that this leads to the usual logarithmic velocity profile for y+ — °°. Thus, if

£ (y+)= *y+ (y+ - «) (93)
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where K is the Karman constant, it follows that

u* - ]jT^(X',e)/p(K-1 lny+ + Bf) (y+-«) (94a)

T* - r£(X;e) (y+ -«) (94b)

where B+ is a universal constant, independent of the local value of skin friction. With
r*(X;e) expanded in a series in e, the preceding result leads to an asymptotic solution
for e — 0 and y+ — °° that must be matched to the inner limit of the outer solution.

The solution for the velocity in the outer inviscid region has a similar behavior for
y — 0. However, because the Reynolds stresses are frozen in the outer region, the coef-
ficient of the logarithmic term in the outer solution remains constant, equal to the friction
velocity in the noninteracting boundary layer upstream. Thus the solution in the wall layer
does not match the outer solution. It follows that an intermediate or blending layer must
be inserted between the outer and wall layers in order to obtain a continuous solution for
the Reynolds stresses across the boundary layer.

The requirement that the Reynolds stress be continuous leads to the condition that
the shear stress term must be retained as a leading term in the streamwise momentum
equation in the limit e — 0. This condition determines the thickness of the blending layer
to be o(e2LJ. Thus a new stretched variable y is introduced to represent the solution
in the blending layer, where

y* = e2Ly (95)

Consideration of the form of the velocity profile in the upstream region and in the outer
and wall layers leads to an assumption for a solution in the blending layer of the form

u = 1 + el/2uinv(X,0) + e In e(l A) + euBL(y)

+ e3/2 In eu21(X) + e3/2u22(X,y) + . .,, (96a)

v = e3/2v0(X,y) + . . . (96b)

P = P
TE ^ 2

+ e3/2P(X) + . . . . (96c)

= e2fl y) + e3/2 In € T ( X ) + e3/2T(X,y) + . . . (96d)31
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where uinv(X,0) and viBL(y) are deduced from equations (80b) and (85) and are given
by ' ' " . •"' • ;".' . • •

sgn y - " (97a)

. ,(97b)

The In terms appearing in the preceding expansions are required in order to
match similar logarithmic terms in the inner expansions of the outer solution. These
terms enter the expansion from the logarithmic behavior of the initial profile for small y.
Consideration of the transverse momentum equation leads to the conclusion that the pres-
sure is constant across the blending layer to the order considered in equation (96c). Thus
the unknown function I^OO appearing in equation (96c) can be identified with the surface
value of the pressure distribution of the outer solution. The requirement that the blending
layer solution match the solution in the wall layer leads to the conclusion that the expan-
sion for the Reynolds stress must have the same form as the expansion for the streamwise
velocity component. It also follows that the relative change in skin friction in the trailing-
edge region is on the order of the pressure change; that is, Aj/e^ = o(e^/2) as indicated
in equation (96d) .

Substitution of the preceding expansions into the momentum equation leads to the
simple result

u21(X) = .-K-iutnvCM) (98)

The, solution for the vertical velocity component v^ is obtained from integration of the
continuity equation , .

. . '. ..! (09)

The solutions for Ug2 an<* T% are governed by two coupled first- order, linear,
partial differential equations. These equations are derived from the streamwise momen-
tum equation and, from a turbulent closure hypothesis relating Reynolds stress to mean
velocity. Since the pressure gradients on an airfoil can be relatively large, the closure
assumption is based on the turbulent energy equation. Since the solution of these equa-
tions is not being considered in this presentation, they will not be written out here. Note
simply that the momentum equation leads to a balance of linearized convective terms with
shear stress and pressure gradient terms. Only the Reynolds stresses contribute to the
shear stress gradients. The pressure gradient term is impressed from the outer inviscid
solution (dP2(X)//dx).
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The turbulent energy equation leads to a balance of advection, production, and dis-
sipation of the Reynolds stress perturbation r~. The contribution from pressure diffu-
sion and other terms in the energy equation are formally smaller than these main terms.

The present formulation leads to a simple form for the skin friction that is inde-
pendent of the particular closure model assumed in the analysis. Matching of the blending
and wall-layer solutions for u* given in equations (94) and (96) leads to the following
expression for the skin-friction coefficient:

= 1 - Cp(X;e) + 2feln£)cp(X;e) + . . . (100)

where Cf)O = 2e and Cp(X;e) is a pressure coefficient based on reference conditions
from the .inviscid solution at the trailing edge. Equation (100) is a simple relation for the
skin-friction coefficient in terms of the pressure coefficient. It is a direct requirement
of matching and follows simply from the three-layer structure of turbulent boundary
layers near trailing edges. It involves only two turbulence parameters Cf 0 and K.
The parameter Cf o is the skin coefficient upstream of the trailing edge and K is the
Karman constant which enters from the logarithmic term in the initial profile.

Although the skin-friction result was derived here in the context of the trailing-edge
problem, it can be given a more general and useful interpretation. The three-layer struc-
ture of turbulent flows also appears to apply to situations with large imposed pressure
gradients. In this case equation (100) is valid with Cf o identified with the skin-friction
coefficient upstream of the large-pressure-gradient region. The pressure coefficient is
then defined with respect to reference quantities at the beginning of the pressure change.
To check these concepts the skin-friction coefficient predicted by equation (100) was com-
pared with data of Schubauer and Klebanoff (ref. 18). In reference 18 Schubauer and
Klebanoff measured the skin-friction and pressure distributions in turbulent boundary
layers approaching separation in a moderately large adverse pressure gradient. The
skin-friction coefficient was computed by using the experimentally determined pressure
coefficient in equation (100). The results are compared with the data in figure 25. Com-
parisons with the turbulent boundary computations of Bradshaw, Ferris, and Atwell
(ref. 30) obtained with a turbulent energy approach are also included.

; - - ' i

In this figure the combination 1 - Cp(X;ej is referred to as the first term. This
one-term solution is equivalent to the assumption of a constant local skin-friction coeffi-
cient (i.e., a skin-friction coefficient based on the local dynamic pressure at the edge of
the boundary layer). This result correctly indicates the main trend of the skin-friction
variation with pressure but is in relatively poor agreement with the data. The inclusion
of the logarithmic term in the solution greatly improves the agreement with the experi-
mental data.
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The numerical solutions given in figure'. 25 were obtained with and without a curva-
ture correction. The present results should be compared with the numerical solution
without the correction since it is not included7iri-'the present results. The agreement with
the uncorrected numerical solution is seen to be quite good throughout the pressure rise.
The better agreement with the experimental-data and with the corrected numerical'solu-
tion is probably fortuitous. However, the comparisons in figure 25 clearly indicate that

-the logarithmic interaction term is large and that very good results are obtained with its
inclusion. These results also suggest that equation (100) can be made the basis of a sep-
aration criteria. The comparisons given tend to confirm the multilayer structure of tur-
bulent flows proposed in the present study. ••••• ,

Concluding Remarks ;

In the present investigation a formal asymptotic description of turbulent interactions
at airfoil trailing edges was developed. The most important result of the present study
was the formulation of a boundary-value problem that governs the solutions for the inter-
action pressure distribution and lift coefficient on an airfoil. The interaction can be
described as an inviscid rotational flow governed by a linearized Poissbn equation. Work
is currently in progress to complete the solution of these equations. Also the analysis
has recently been extended to compressible flow and it has been demonstrated that the
basic formulation applies to the case with minor modification provided the Mach number
near-the trailing edge is less than one. Both of these developments will be described in
future publications on the subject.

The results discussed in this section are concerned with the lifting, basically anti-
symmetric problem. The effect of wake-induced displacement pressures, which was so
important in the laminar problem, is absent to the order of the small parameter e con-
sidered so far in the turbulent problem. The present solutions can be carried to higher
order in e. The next terms in the series are likely to the order of e2 in e and e2.
These terms involve the thickness effects of Jthe boundary layers on the airfoil and in the
wake. However, the resulting problem is symmetric and so the solution would not affect
the lift coefficient to this order. The major unsolved aspects of the problem concern the
structure of thei expansions1 in5 thie' inner layers of the wake. -Further analysis'is required
to clarify the nature of the solution of this complex problem.



' APPENDIX

THE SIMILARITY FUNCTIONS

The function F^(rj) arising in the symmetric problem for X large and negative
satisfies the differential equation and boundary conditions

Fj" - 187,2Fj - 36(7jFl - Ft) = - 2 ^ 1 2 (Ala)

F^O) = Fj(0) = 0 Fj(T))-0 fa-*) (Alb)

It follows that

. . . fa-*) (Ale)

The functions H^TJ) arising in the angle- of -attack problem for X large and nega-
tive satisfy the differential equations and boundary conditions

H(".- 18Tj2Hi' + 9(4 - O(TJH[ - Hi) = hi (A2a)

Hi(0) = H((0) = 0 Hj'fa) '- 0 (TJ » -o) (A2b)

where

h = 9/21/3 ' (A2c)

(A2d)

h3 = (3/21/3)(2Hi'H2 - HgHj + SHgHj) (A2e)

It can be shown that the H^'s have the following asymptotic behavior for

Hl = 3 cll^/2 + C12^ + C13 + . . . (A3a)

H2 = C2iTj In TJ + C227j + C^n1/2 + C^ +.. . . (A3b)

Hg = CgjTjl/2 In TJ + Cg2 In T) -f €3317 + Cg^Tjl/2 + €35 -f . . . (A3c)
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APPENDIX - Concluded

where the constants C« have been determined from analytical studies in references 1
to 3 and from numerical solutions obtained in the present investigation to be

f* • ^ (9\ • { 9 /^\ I/^1 /ft\ I ^ — A / ( 1 /^l\ I f* — 1
JLX • ' XA AO .

C21 = -3.255 C22 = 3.082 C23 = CnC22/K

' " > (A4)
C24 = C12/2K C31 = C11C21/K C32 = C12C21/K • ; . " " "

C33 = -17.408 C34 = 16.900 C35 = (C21 + C22)C12/K

where K = 3(2)1/3.

The function GO(TJ) governing the trailing-edge behavior satisfies the following
differential equations and boundary conditions:

G"* . '•>/-« /"'" o'« 4r7/Q\4/v~^ ' / A C — \
0 + 2G0G0 - G0 = 27(2) C0 (A5a)

G0(?7)- 18\1>T7j = DT-O (7,^00) (A5b)

GO(TJ) - 18\1>B7j = DB - 0 (T? - -oo) (A5c)

where A.J T and \j B are the values of the skin friction 8U/dZ| and dU/azL at
the trailing edge and Co is a constant to be determined as part of the solution. Further
details, together with typical solutions, are given in references 3 and 23.
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Figure 2.- Triple-deck structure.
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Figure 6.- Pressure distribution near origin; a - 0.
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Figure 8.- Skin friction; a = 0.
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Figure 10.- Centerline velocity near origin; a = 0.
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Figure 21.- Displacement function; a =0.1.
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