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ASYMPTOTIC THEORY OF TWO-DIMENSIONAL TRAILING-EDGE FLOWS*

By R. E. Melnik and R. Chow
Grumman Aerospace Corportation

SUMMARY

In this investigation, problems of laminar and turbulent viscous interaction near
trailing edges of streamlined bodies are considered. The laminar study is based on the
triple-deck formulation of Stewartson, Messiter, and Brown. This theory is developed
from asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds
numbers. The expansions describe the local solution near the trailing edge of cusped or
nearly cusped airfoils at small angles of attack in compressible flow. A complicated
inverse iterative procedure, involving finite-difference solutions of the triple~-deck equa-~
tions coupled with asymptotic solutions of the boundary values, is used to accurately solve
the viscous interaction problem. Results are given for the correction to the boundary-
layef solution for drag of a finite flat plate at zero angle of attack. A solution is also
present'ed for the viscous correction to the lift of an airfoil at incidence. A comparison of
the present results with triple-deck solutions recently obtained by other investigators for
the symmetric problem is presenfed. Also presented are some comparisohs of the pres-
ent solution with low Reynolds number (R = 200) solutions of the Navier-Stokes equations
and with experimental data. These comparisons indicate that the asymptotic triple-deck
theories are accurate over a surprisingly wide range of Reynolds numbers down to
Reynolds numbers as low as 10 or less.

In the second part of this investigation, the problem of turbulent interactions at air-
foil trailing edges is considered. It is demonstrated that second-order boundary-layer
theory fails at airfoil trailing edges and that the concept of the flow over an equivalent
body formed from the displacement thickness is not appropriate_for turbulent flows near
trailing edges. A rational asymptotic theory is developed for treating turbulent interac-
tions near trailing edges and is shown to lead to a multilayer structure of turbulent bound-
ary layers. The flow over most of the boundary layer is described by a Lighthill model
of inviscid rotational flow. The main features of the model are discussed and a sample
solution for the skin friction is obtained and compared with the data of Schubauer and
Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

*This research was performed under NASA Langley.Contract No. NAS 1-12426.
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INTRODUCTION

The problem of trailing-edge flows is of considerable importance in aerodynamlcs.
Most streamlined bodies end in a sharp trailing edge that is cusped or nearly cusped in”
order to provide a smooth transition of the flow into the wake. The flow near the trailmg
edge is important in establishing the lift and drag forces on the body.

At high Reynolds numbers the solution of the Nav1er- Stokes_ equations can be
expanded in descending powers (and logarithms) of the Reynolds number. The leading
term is governed by inviscid flow equations over most of the domain and by boundary-
layer equations in a thin layer near the surface and in the wake. To lowest order, the lift
is determined by solutions of the 1nv1sc1d-ﬂow equations subject to the Kutta condition. o
Skin-friction drag is determined by solutions of the boundary layer equations with the ‘
pressure distribution obtained from the inviscid solution. Within this approximation,
form drag is computed from the surface pressures induced by the effect of the boundary
. layer on the external inviscid flow and is, therefore, a second-order effect in the theory

Although the inviscid and boundary-layer solutions provide the. leadmg.approxima-_
tion for- the flow over streamlined bodies, higher order corrections are'important in many
problems. A major impediment in the determination of the correction is due to the fact.
that the underlying asymptotic expansions are not uniformly valid at trailing edges. The
nonuniformity is caused by the appearance of singularities in solutions of ,_bot.h the laminar
and turbulent boundary-layer equations at trailing edges. The nature of the singularity
differs in the laminar and turbuient cases, but in both cases, the major effect is. the pro- ',
duction of a displacement thickness that is singular at the trailing edge. . This in turn
leads to singularities in the induced pressures at the trailing edge. As a result the
second-order Kutta condition cannot be satisfied and the viscous correction to lift cannot
. be determined.-. In addition, corrections to the boundary-layer solutions for skin friction

and form drag.are not correctly determmed by standard second-order boundary-layer . .
theory. Most existing engineering methods for predicting viscous effects on lift are based
on 1terat1ve solutions of the second-order boundary-layer equations. These methods expe-
' rience difﬁculties at trailmg edges which are c1rcumvented by an ad hoc smoothing of the
displacement surface determined from the solution of the boundary-layer equations.

In spite of its importance and the contmuing interest of many investigators, it is only
recently that a comparatively complete theory of trailing-edge flows-has been developed
and this only for.laminar flows. The recent advances in laminar trailing-edge problems
are based on the triple-deck formulation of Stewartson (ref. 1) and Messiter (ref. 2).deyel-
oped originally for a symmetric flat plate at zero angie of attack.. These theorie‘s.urere'
then extended the following year by Brown and Stewartson (ref. 3) to the lifting flat'plate. -
. The triple-deck theories are applicable to general airfoils with a cusped or nearly cusped
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trailing edge in compressible flow. For Mach humbers not near one, compressibility
enters into the theory only through a scahng of dependent and mdependent variables.
However even though a number of properties of the solution were determined and the
smgular behav1or was explamed accurate numerical solutions were not obtamed in these
early works :

The first part of this paper deals with the 1ammar-v1scous mterachon near airfoil
trallmg edges in the limit of large Reynolds numbers. The approach used is to develop
the approprlate numer1cal procedures to solve the boundary-value problem formulated by
Stewartson, Mes31ter and Brown. A general discussion of the laminar-flow problem
along with a summary of the triple- deck formulation and the resultmg boundary-value
problem 1s presented in the section "The Laminar-Flow Problem." The folIOng sec-
tion, entxtled "The Numerlcal Method, " deals with all aspects of the numerical methods
used to solve thlS problem._ First, an inverse iterative scheme to solve the couplmg
between the various layers of the tr1p1e deck is discussed. Then finite- difference meth-
ods based on the Keller "box'' scheme (refs. 4 and 5) are formulated to solve the triple~ E
deck equations. Methods are also discussed for the evaluation of the Hilbert integrals

“arising from the analysis. Also presented in the section on numerical methods isa
description of the accuracy and convergence properties of the numerical methods. A
discussion of the résults for both zero and nonzero incidence follows inthe Results: Solu-

-tions ‘to the' symmetric problem have also been recently obtained by Jobe and Burggraf :
(ref. 6) and by Veldman and Van De Vooren (ref. 7). Detailed comparisons between ‘the -
present solution and those of references 6 and 7 are provided. Also the solution for the -
drag of a finite flat plate at zero incidence is compared with the experimental data.of
Janour (ref. 8) and with finite-difference solutions of the complete Navier-Stokes equa- -
tions recently obtained by S. C. R. Dennis, who provided numerical data from his unpub-

lished results:  The solution for the velocity profile in the wake of the symmetric solution
is compared with experlmental data of Sato and Kuriki (ref. 9).

. Currently, understandmg of turbulent mteractmns at trailing edges is rather less
ornplete. Recent attempts to develop a rat10na1 theory ‘of turbulent tra11mg- edge flows
‘mclude the 1nvest1gat10ns of Spence (ref. 10) and Kiichman (ref. 11). In reference 10, the
main correction to boundary-layer theory is assumed to arise from the pressure change

" ‘across the wake generated by the singular curvature of the inviscid trailing streamline.
This leads to a jet-flap model of trailing-edge flows. Spence's model is.inconsistent and
leads to unacceptable oscillatory- solutions downstream. The failure of Spence's theory
““is caused by the neglect of convective acceleration terms in the normal' momentum equa-
tions. Itis interesﬁng that a scaling analysis of Spence's interaction equation indicates.
the need to retain these terms in the lowest order theory. The investigation of Kuchman
‘in reference 11 is based on a Lighthill model of turbulent boundary layers near the trailing
edge, which is treated as an inviscid rotational flow. Some examples of rotational flow in
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a wedge-shaped compression corner are presented Although these results are of inter-
est, there is no attempt to develop a complete, rational theory and no consideration is
. given to the trailing—edge region on a lifting airfoil.

‘A more promising approach for a rational theory of turbulent flows follows from
asymptotic expansions of the time-averaged Navier-Stokes equations in the limit of large
Reynolds numbers. Similar asymptotic techniques have been applied to noninteracting
turbulent boundary layers by Mellor (ref. 12), Yajnik (ref. 13), and Bush and Fendell
‘(refs. 14 and 15) and to transonic shock-wave—boundary-layer interactions by Melnik
and Grossman (ref. 16) and by Adamson and Feo (ref 17).

In the second part of the present investigation (Turbulent Trailing-Edge Flows) it is
shown that asymptotic analysis leads to a three-layer description of turbulent interaction.
near trailing edges with a streamwise length scale that is on the order of a boundary-layer
thickness. The flow in the outermost layer is governed by inviscid, linearized rotational-
flow equations. .The description near the wall requires two layers, involving just Reynolds:
stresses.in the middle layer and both Reynolds and laminar stresses in the innermost wall
layer.” The ‘solution in the outer layer is unaffected to lowest order by the two inner layers
and can, therefore, be completely determined independently of the details of the inner lay-,-
ers. This leads to a Lighthill model for the outer problem that must be-solved to deter- -
mine the pressure distribution and lift forces. Here, only the incompressible problem .-
will be considered and a brief description of the essential features of the interaction model,
together with a formulation of a boundary-value problem governing the outer inviscid flow
will be provided. Also a sample solution for the skin friction determined from matching -
the inner and outer solutions is given and the results are compared with the low-speed . .
~data of Schubauer and Klebanoff (ref. 18). : ‘

SYMBOLS : o : e

ajag, . ‘parameters related to lif_t coefficient and constant'deiined by eqiiation (l9kl.>)‘
A | displacement function in triple:deck‘ theory |

Ai ,A'l" » : consmnts related to behavior of . A near the oriéin

bi; o constant in asymptotic solution for IXI -

Bp' » . constant defining y-grid distributi‘on

B& ’ ~ constant related to second- order boundary-layer solution for displacement

" thickness (turbulent)
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P

™

Cs " skin-friction coefficlerit,
1
\ EpU

o0

Cf,o skin-friction coefficient of noninteracting boundary-layer solution at trailing
edge (turbulent) ‘

Clj constantlappearing in asymptotic solutions of tripié-deék equations, wheré
iandj =1,2,38,... '

CL lift coefficient

C‘o : ;;oeﬁlcient of -sing-ular pressure gradient in wake -

Ca. constant related to singularity of inviscid solution near trail‘ing,edge :

d normalized shear stress gradient in computation plane, 87/8y

d; constant in asymptotic solution for |X| - 00

dg cons@nt in triple-deck solution.for drag coefficient..

D " shear stress gradient in Z-direction, 87/ 9Z

f Blasius function .

Fy * similarity function related to symmetric triple-deck solution for'- ]X] - =0

G, Hakkipe_n-Rott similarity function related to triple4 deck solution for X -0 -

hy;hg,hg  functions appearing in differential equations for -Hy, Hy, and Hg,
- respectively : -

H shape factor, 6’{/65

HI’HZ’H3 similarity functions related to triple-deck solutions fqr X = =c0
I . integer, running index for X-mesh

Ii; inf:eger related tb X-mesh
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integers defining X-mesh

integer, running index fqr y- mesh

number of points in inner mesh m Wake

pumber of mesh points in y-mesh on plate

number of mesh points in y-mesh lin wake

parametgr defining mesh d';stributi_on, where_‘i = -1, ‘2, e
mixing length, ‘turbulent floy

length of plate or chord, dimensional

LosL1sLimax parameters related to X-mesh

p
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pressure
free-stream pressure, dimensional
normalized pressure appearing in triple-deck theory

constants related to behavior of P near origin

| Reynolds numbér, UL /v

functions related to asymptotic behavior of U as Z - «, where
iandj=1,2 B '

integrals defined by equétions (45), where i = 1, 2; 3

velocity in streamwise direction

friction '.veloéity, Tw/P

ihoi"ﬁ;.alizled velocity in stréamwis’e di‘re&ion in triple-deck theory

free-stream velocity, dimensional



m>

’velocity in direction normal to plate

R

normalized veloéity in dire'éfion ﬁorma_l to plate in trfple-deck theory
Coles wake .function (turbulérit ﬂbw)

Cartésian coordinate along pfate

nor‘malized coordinate a}ong plate in tripié- deck the;>ry |

end point of boundary-layer calculation

computational coordinate normal to plate for laminar flow and physical
coordinate for turbulent flow - |

coordinate defining outer boundaries of y-mesh

physical coordinate normal to plate for laminar flow

" normalized angle of attack in triple-deck theory

angle of attack in radians

constant appearing in behavior of triple-deck SOI_utiori néar origm
for a#0 -

Gamma function
boundary-layer &ickness
displacement thicknééé )
momentﬂm thickness

boundary-layer camber, -;-(GT - GB)

small parameter, R°1/8 for laminar flow and _fz,g‘ for turbulent flow

1

small parameter related to wall-layer thickness, (ez R) in furbulent fldw
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4 vorticity (turbulent flow); also variable defined by equations (38) and (39)

n mdependent variable in similarity solutions of tnple-deck equations,
| |1/ 2|2x|1/ 3
0 parameter used to scale wake location, related to wake centerline '
K '~ Karman constant, approximately equal te 0.41
A constant, equal to 0.33206, appearing in Blasius solution, £"(0)
Ai . normalized skin friction at trailing edge in triple-deck soiutii_)n

i

Aq0-A02:023 integrals defined by equations (46)

( . RS . ‘ . .
v coefficient of kinematic viscosity, dimensional

£ | variable used in definitiou of X-grid distr.ibution'
7 Coles wake parameter |
P ' density, dimensional
o parameter used to scale wa}{e locatien, t:elated to wake thic}mess
T normalized skin frictiun in iatuiuatr etudy; also Reynolds stress in .turbulent
problem
T skin friction
Y nvormaluized. streatn function tn 'e‘o.mp‘utati‘one.l plane’
R s'tre.sétm function
@ : rela.xation parameter
Superscr'ipts‘ | o
* S dimenéibngl quantity
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+ " " denotes wall-layer varidble in turbulent ana.ly'sié 1
- denotes blending-layer variable in turbulent analysis

! ' denotes differentiation with respect to mdlcated variable and perturbatxon
quantity in turbulent flow

Subscripts:
B bottom surface of airfoil
BL perturbation quantity arising from upstream boundary layer in turbulent
analysis _
e local quantity evaluated at edge qf boundary layer
inv perturbation quantity arising from gpter inviscid flow in turbulent analysis
T | top surface of airfoil
‘ 'TE quantity evaluated at trailing edge, X =0

THE LAMINAR-FLOW PROBLEM

Problems of laminar flow at large Reynolds numbers are usually analyzed by a
combination of inviscid-flow and boundary-layer techniques. This approach is'based on
asymptotic expansions of the complete Navier-Stokes equations in the limit of Reynolds
numbers approaching infinity. The inviscid and boundary-layer equations arise as the
basic equations governing the leading approximation in the outer and inner regions,
respectively. This approach leads to accurate and useful solutions of viscous-flow prob-
lems in many instances fcmd has tended to dominate the history of fluid mechanics. How-
ever, in spite of its central role in fluid flows, the 4under1ying structure of the asymptotic
expansions are only relatively well understood for flows that are not separated and for
geometries that are smooth. '

It is well known that the inviscid and boundary-layer descriptions-bréak down near
separation points or near singular points of the geometry, such as sharp leading edges,
_corners, and trailing edges. A comprehensive review of these matters, including a
~ discussion of higher order approximations, has been given by Van Dyke (ref 19) and
~ Stewartson (ref 20)
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In the trailing-edge problem, the nonuniformity of the basic ekpansions. is caused
jointly by a discontinuitydn the surface boundary. conditions at the trailing edge and by a 3
singularity in the inviscid solution at the trailing edge of a lifting airfoil. The'disconti- G
nuity in boundary conditions leads to a singularity in the boundary-layer.solution at the j:
trailing edge that is described by Goldstein's near wake-solution (ref. 21). Goldstein's - .. -
solution shows that the displacement surface develops a sharp corner with a vertical tag_l-..-;
gent on the downstream side of the trailing edge, as illustrated in 'figure 1. - Goldberg and
Cheng: (ref. 22) have examined the second-order inviscid solution over a finite-length flat:
plate at zero incidence and have demonstrated that the inviscid flow over this displace-,
ment surface is singular, ‘with the induced pressures approaching plus (minus) 1nim1ty
on the downstream (upstream) s1de of the tra1llng edge

The 1nv1sc1d ‘solution for subsonic flow near the tra111ng edge of a-cusped airfoil at -
angle of attack exhibits a square-root singularity in the surface pressure distribution,;as:
sketched in figure 1. The surface pressure is bounded but the pressure gradients are: . -:
unbounded as the trailing edge is approached. 'The singular pressure.gradients lead to -
singularities in the boundary-layer solution and to breakdown of the basm asymptotic ;-
expansions.” . . J

Thereé have been numerous attempts to correct these defects and to develop an
asymptotlc theory that is uniformly valid at tra1lmg edges, but for the most part,:these*
were completely unsuccessful. It was only in the recent work of Stewartson (ref. 1) and, -
independently, Messiter (ref. 2).thata correct and rational treatment of the flow near
tralhng edges was given. In these works: i"t'iivas shown’ that the flow develops a charactér-
istic multilayer structure near trailing edges that also arises in many other laminar ~
' 1nteract10n problems and which is referred to by Stewartson as a triple-deck model. ‘A °
) general d1scuss1on of viscous problems involving triple- deck structure is found in the

recent rev1ew by Stewartson in reference 20 R '

The Triple-Deck Formulatlon :

Stewartson and Messiter presented a rat10na1 treatment for "the flow near a tra1l1ng
edge. By usmg the method of matched asymptotlc expansmns these 1nvest1gators ‘have
shown that solutions of the Navier-Stokes ‘equations near the trallmg edge can be developed
in’asymptotic serles in the limit of large Reynolds numbers. The solutions’ are cast in:
terms of a fundamental small parameter ¢ given in terms of the Reynolds number

R

where: ‘R :is the Reynolds number based on the length of the plate and the constant flow ‘
velocity far from the plate. Stewartson and Messiter considered the idealized case of
incompressible flow over a finite flat plate at zero incidence. The theory was extended

©
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"ty - : . . L. . L |
to angle of attack by Brown and Stewartson in reference 3 for angles of attack o* on the
order of .’él/ 2, Although-the theory of references 1 to 3 was developed for ‘incompressi- :
ble flow over finite flat plates, the basic theory is applicable to more general airfoils
provided the airfoil is closely approximated by a flat plate near the trailing edge. For
example, this requires the trailing-edge angle of an airfoil -with thickress to be less - .+~
than 0(5.2). ‘The equations for the leading approximation are also applicable to conipress-
ible flows provided the Mach number of the inviscid solution is not near one in the trailing-
edge region. In these cases compressibility effects enter only through a scale transfor-"
mation of dependent and independent variables as given in references 3 and 20.

The structure of the triple-deck region is sketched in figure 2. Thé flow upstrears’
and downstream of the triple-deck region-is governed by standard inviscid and boundary-
layer equations. The leading term in the outer inviscid region is given-by constant uni-
form flow, while the solution in the upstream boundary layer is given by the Blasius solu-
tion-and in the downstream wake.by a modified Goldstein near wake. solution, as described
in reference 3. In the intermediate region between the Blasius and Goldstein region, the
flow develops the multilayer structure sketched in figure 2. The ratio of the length scale
of each region to the length of the plate L :is also indicated in the figure. The stream-
wise length scale is 0( 3) which is an order of magnitude larger 'than 2 boundary- layer
thickness. Viscous effects are important only .in the lower deck where the-solution is
governed by classical (incompressible) boundary-layer equations. Both pressure and .
viscous forces are negligible in the main deck to lowest order. The main role of the
essentially passive main deck is to transmit flow deflections generated by the éublayer to
the outer edge of the boundary layer These flow deflections provide an inner boundary .
condition for the solution in the upper deck which is governed by 1nv1sc1d small disturbance
equations. The solution in the inviscid upper deck is governed by elliptic partlal differ-
ential equations which provide for the long upstream influence that was missed in many
previous theories., -

From the preceding discussion, it can be seen that the triple-deck formulation leads
toa descrlption of the flow as an interaction between the outer inviscid stream and the

- displacement thickness generated by the sublayer . The solution in the 1nv1sc1d upper

- deck can be reduced to an integral relahonshlp between the surface pressure and the flow
‘deﬂection generated by the sublayer.

Solution of the triple-deck problem is thus reduced to that of determmmg solutions
to the boundary-layer equations valid in the sublayer. These solutions must match the
rotational flow in the main deck and must result in a displacement thickness and pressure
distribution that satisfies the linear integral relationship arising from the outer solution.

The notation employed in references 1 to 3 and 20 varies. Here the notation .
employed by Stewartson in reference 1 will be followed with some excepuons Physical
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quantities are denoted by an asterisk, free-stream quantities by the subscript «, and the .
plate length by L. The quantities x* and y* are Cartesian coordinates parallel and
transverse, respectively, to the plate with origin at the trailing edge, u* and v* are
velocity components in the x*- and y*-directions, respectively, p* is the pressure,

p the density , oF the angle of attack,and A isa constarit, equal to 0.33206, associated
with the Blasius solution for the wall shear stress. Nondimensional variables for thée ‘
lewer deck are given by ' .

X = x5/4x*/e3L " 7 = A3/4y /e5L
U= wfalliy, v v/dfy, e
P=(p*- pc,,,)/e'le/zpufo = ar/cl/%9/8 '

(The'se scalings are’ for ineompressible flow; ' for cempressible frlow see'réfs . “

“and 20.) The Reynolds number R is given by U L/ Vs where v is the kinematic vis-
cosity coefficient. : : . . .

For future reference, the solutxon for 1ncompress1b1e 1nv1sc1d flow over a ﬂat plate
of length L at incidence a* is given by (for y* 0) :

. . ‘A - . —- .l i - *~; 'x* + B ~*. st y . " b ) 5‘;1 .
v =20 u® = U, = U —— 1% sgn_y , (-L <x*<0) | (3a)
[(-x*.)$(L + x*):] _ o _
C T Ve veE 0<x*) ..
e Uw vE = Uga “X*(L>+X*)1/2 | o | | ( x.). o (3b)'

The lift coefficient Cj, corresponding to the solution is given by
n‘» _ * _ 2_B_ . 1 o N v ‘ ) v
.CL,' 2o (1 L) . : ) PR @

where B’ is a constint to be determined. - The value of the constant B, determired *’

" by the Kiitta condxtlon applied to the tra111ng edge, would be zero Here however the
trailing-edge interaction leads to a nonzero value which gives a viscous corréction to the
lift coefficient. In reference 3 it was shown that this constant is . 0( 3L) -which:leads to

a viscous correction to the lift that is 0(63). A nondimensional circulation constant ay
is introduced according to the definition ‘ : a

Lo A
1= 730
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The boundary-yluaye‘r equations governing the flow in the'lower deck are written in 'A
the form '

v _ ’ \ | ' :
ax tz =0 . 6)
8U . 08U _ _dP . 22U : | 4
U +Ver=-"ax* —aZZ » 7

where the pressure P is a function of X alone.

~ Equations (6) and (7).ar<_é’ to be solved subject to the following botndary éonditi’on's':n

U-lzf+... | "."(X‘--;’) ., (8a)
UzV=0 R . @=0; X<0)  (8)
Pr(X) = Pp(X) | - &Xz0 (8c)
: ap® T @esw) Y @)
u-jzl+. . . — o S : o
- -Ap(%) - (Z ~-)  (8¢)

v;ilere' PT(X) and Pg(X) are the preSSui'es on the top and bo'ttom'of the X-axis,
respectively, and Ap(X) and Ap(X) are perturbatlons of the d1sp1acement thlckness
from the undisturbed Blasius value at the trailing edge ' '

Finally, the pressure distribution must satisfy the following asympfotic condition in
;order to match the upstream inviscid solution

PT,B - =~a\/-X sgn Z ) V (X - "°°) ] (9)

where the subscript T,B is introduced for convenience to repre'sent either the top of '
the bottom and sgn Z should be taken as plus for Z >0 and minus for Z <0. The
pressure should decay to zero for Z - +« in order to match the Goldstein solution
downstream. '

. Equation (8a) is a requirement that the velocity profile match to the inner portion
of the Blasius solution far upstream. Equation (8c) follows from the requiremént that the
pressure be continuous across the wake. The application of this condition at the trallmg
edge (X = 0) is equivalent to the Kutta condition and serves to determine the constant ap
defined by equation (5) and, therefore, the viscous correction to the lift coefficient.
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Solut1on of the mv1sc1d flow equations in the upper deck leads to the following mte- '
gral relationship between the functions Ar, B(X) and P, B(X): o

3

dAT(X) 1 §+°° Py x1

x-%. & o)

e R L | o

where the double slash on the integral sign means that Hadamard "finite part' of the
dwergent integral 1s to be taken. The mtegrals in .equations. (10) do not converge in the .
ordmary sense because of the behavior of the pressure for large negatlve X mdicated .
in equation (9).. A form more sultable for computation is given in the numencal methods
section. Equatxons (10) are an inversion of the relationships given in reference 3 and

are in a form that is most suitable for the numerical procedures used in the present
investigation. '

The preceding formulation indicates that to solve the triple-deck problem, the
béundary-layer equations must be integrated subject to the vortical outer boundary con-
ditions given by equations (8d) and (8e). The vorticity arises from the boundary-layer
solution valid in the upstream flow. The upstream vorticity leads to additional algebra-

- ically growing terms in equatlons (8d) and (8e), as will be discussed later. '

The pressure and d1sp1acement functions appearing in the boundary-layer equatlons
and boundary conditions are unknown and must be determined as part of the solution of
the boundary-layer equations such that the linear relation g1ven in equations (10) is sat-
1sf1ed. The form of the pressure for large negative X is given by

PT;B = (—a | -X + aal/\/-i;l- .. ) sgn Z .‘ _ _(r,l)

where a; is related to the lift coefficient by equations (4) and (5). The lift coefficient
can be obtained by solving -the boundary-layer equations and extracting the constant ay
from the expansion glven in equation (11)

Asymptot1c Propertles of the Trlple Deck

Equations (4) to (11) provide a complete’ formulation of the triple-deck problem. '
Useful asymptotic results were prov1ded in references 1 to-3 and are extended and sum-
marized in the following. - (Corrections to a number of the signs are incorporated; see
also ref. 6.) ‘ - . ' o ' -
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, For X - ~o, the solutlon must approach the perturbed Blasms solutlon and have
the form

U 1z] + 118a[x [ 1R m) + olx|/8u] () sgn z + 02HYm) + o3I mymsenz 4 . .

(12a)
and
|z
n= (12b)
3j2x|1/3

where prlmes denote differentiation with respect to 7. The similarity functions - Fl(n), '
Hl(ﬂ), Hz(ﬂ), and H3(n) satisfy ordinary differertial equations given in references 1 =~
and'3. The differential equatlons boundary conditions, and asymptotlc behav1or requlred
in the present work are listed in the appendlx o ‘

Other results for X ~ -0 are

P(X) = -0. 3433|x| -2/3 - 0.6867b; |x| -5/3. - 0.0816X"2 In|X| + i‘i o :
x| L
- d(I.Xll/tzvr :=11|X|-1/2 +£:A0.2368]X|.75/_6 .. .)sgn Z+... h ‘ (13a)

AX) = 0.'3265|Xl_1' + aC12|X|'1/6 sgn'Z -‘UZCEI(% In|X| + In K) + ozz(CZI + CZZ) T

. +a3C33]X| sgnZ e . | o S (13b)

-4/3 S ref-1/8 ’ .
gu = 1 + 0.3106|X| /3 @(2.1539)|X| / segnZ + ... - B (13¢)
- 92 SN
Z=0 . )
wher,e K and the Cij's -are known constants listed in the appendix.
For X —= 4+ the velocity profile approaches the inner solution of Goldstein's near
wake solution. The behavior of PX), AT,B(X),» and U(X,0) are given by

P(X) = 0.1717X~2/3 , 0.3433b. X" 5/3 - 0.0816X 2 In X + d,X"2 + (14a)
. 1 . d
- 1/3 /3 R | .
Ap g = 1.416(;11— x) " sgn Z + 1.416(41) blx'z/?’ sgn Z - [g x3/2 2a1X1(2 |
1/6
- (e) 3/2( 3)'x1/‘ﬂ - : (14b)
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Ux,0) = 1.611x1/% 4 1.e1bx 3 L0054 .. (14c)

The solution of the triple-deck equations develops a singularity at the trailing edge
that is described by the Goldstein solution (ref. 21) for a'= 0 and by the Hakkinen- Rott
near wake solution (ref 23) for o #0. In both cases the veloclty profile has the follow-
mg form for XandZ2 -0

1/3 : . o -
- %(.1. x) Gy) S ‘ (15)

where - n is given by equation (12b) and G, satisfies an ordinary differential equatidﬂ
. studied in reference 23 and listed in the appendix.

For zero incidence, the local solution for X - 0 is given as follows:

For X <0,
P =P+ PhpX + (PynfX| 4 PYXP . .. | ‘(.16.a)
A= App + Alpx - (33/2/ 5)c0|x15{3'_+, 3 Aixz-; e | (16b)
I S (160)

~ and for X >0,

R LA 2 T - . (17a)
- ) ' 3/2 / .

A= Apg + AgX + 63/ /1o>cox5(3 sdafx2. . . am)

vstgosict/Z3 .0 - 0 e )

Co = 0.4089x§/3 - S o )

The local solutlon for X -0 when a # 0 is shghtly more complicated for X <0.
Equation (16a) now takes the form-
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Prp=Prg + (P"I'E)T,BX* KPZ)T,B + (Ps)'r,Bx:IX' 2| +. ..

‘Equation (16b) has different expressiene for Ag and AB
Sy o : 5/3- _.
AT = (ATE)T + (A"TE)TX - (33/_2/5)(:0’)(' / + %(AI)TXZ +
5/3 =
Ap = (Arg)p + (Ap)pX + (3%/%/5)colx|®® + J(a])px? + e
and

8y

- U
YA - kltT

= A
. 1,B
z=0% X=0 2y 0"x=0

For X >0, equation (17a) has the same form. Equatien (17Tb) becomes
| A'r- = (Arg)r + (ATE)rX + ( 32/ 1°>C0X5/ ’ (Al)sz e
.‘, Ag = (ATE)B + (A"rE)BX ( 3/2/10) cox®’3 4 3a )BX +.
and equations (17c) and (17d) assume the forms, respectively,
| U = chl)/2x1/3l +

C‘o'= Co("l TA1,B)

.(18a)

(18b)

(18¢)

(18d)

(18e)

k18f)

(18g)

(18h)

where y and Co are now functions of AM,T and A1,B -and are determined by solving

the merging asymmetrical shear flow problems of Hakkmen and Rott.

- The two sets of constants (al ’bl”dl) and (PTE’ PTE’ Pz, P3, ATE’ ATE,

AI’ Al , and kl)T B appearing in the preceding éxpansions are not determined by the
local solution. The first set relates to the far-field solution while the second set relates
to the local solution near the trailing edge. Values for all but d; have been estimated

for o= 0 by fitting the asymptotlc forms to the numerical solutions obtained in the

present study.

For future reference the behavior of the velocity proﬁle for large Z and fixed X

is given as
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1/2 : -1/2
U =zl + o,,cu/Kl/2 s sen 2 + o%Cyy Inlz| +_(a3C31K1/2/2)('|Z| 72 1njz)) sgn 2
+ AT B sgn 2 * {(aCu/ZKl/ Z)AT B* (5“.3/ 2K1_(2)[C11(Cz1f C22)
+ KC34:| sgn 2 |z| - a2|Z| e S ,. (18a),

The constants Cij ~and K are listed in the appendix-and g '

- T@4/3) . o '
a2 = 1.784 5 /6( _)! | (19b)
3.

The preoeding expansion was obtained by expanding the solution of the boundary- -
layer equations for large Z and matchmg to the asymptotlc expansion. of the initial pro-
file defined by equations (12). (See results in appendlx.) This matchmg enabled the set of
‘arbitrary constants appearing in equations (10) to be 1dent1f1ed with the constants given
in the appendix. Equations (19) are used to set the far-field boundary conditlons in
a finite difference procedure descnbed in the followmg section.

<

THE NUMERICAL METHOD

. The boundary-value problem to be solved for the trailing-edge solution is illustrated
in figure 3. . The boundary-layer equations must be solved such that the solution matches .
the Blasius solution far upstream and the Goldstein solution far downstream. No-slip
conditions must be satisfied on both sides of the flat plate and asymptotic boundary condi-
© tions must be satisfied on each side of the boundary layer and wake for lZl -~ o, The
pressure gradient appearmg in the momentum equation and the diSplacement functions
Arp (X) and . AB (X) appearing in the outer boundary condition must be determined such
that they satisfy the linear integral relatlonship 1mposed by the outer inviscid solution.
In addltlon, the condition that the pressure decays to zero ag X -~ + must be. imposed
in order to match the Goldstein solution In the present approach, a fixed point- iteration
between the inviscid and boundary-layer equations is employed. The prmcipal difficulties
in the numerical solufion of the boundary-layer equatlons are due to a singularity at the
trailing edge and to a slow algebraic decay of the solution for lXI and |Z| = ©. These .
‘,problems are treated by using asymptotic solutions to set the far-field boundary conditions
" at finite distances and to describe the singular solution near the trailing edge. A highly
nonuniform mesh dlstrlbutlon is also employed to-obtain proper resolution near the trailing
edge and to allow for the slow decay of the solution in the far field. : o
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- T_he:bound(ary-layér. equations are solved by the Keller-Cebeci (refs. 4 and 5) finite-
difference scheme for parabolic partial differential equations. This method is well éuited_
to the present problem since it is second-order.accurate, unconditionally stable, and per- .
- mits highly nonuni_forxh mesh distributions. The Hilbert transformations in equations (10),
which provide the inviscid solution, are evaluated by special quadrature formula on the
same mesh distribution employed in the boundary-layer calculation. This avoids the need
'to interpolate between the inviscid and viscous solutions. The resulting computation has
uniform second-order accuracy, including the far field and the singular point at the trail- -

ing edge.

The Iteration Scheme

The iteration procedure is indicated in figure 3. The path of the iteration is ina -
direction inverse to that usually employed in similar viscous interaction problems. Here,
the dispIac'e’ment functions AT g(X) are obtained from solutions of the inviscid equations
(1 e., eqs. (10)) with the pressure distribution prescribed. The pressure distributions
PT B(X) are determined from solutions of the boundary layer equations. Since the ,
unknown pressure gradient appears in these equations, an additional relation is needed to" .
complete their solution. This 1s supplied by the prevmus evaluation of the displacement
function AT g(X) which prov1des an outer boundary condition for the solution of the vis-
cous equations. This indirect iteration sequence is followed because it provides a con-
venient and simple treatment of the trailing-edge singularity. In a conventional iteration,
the solution of the boundary-layer equations for a prescribed pressure distribution results
in a-discontinuity in the slope of the displacement function at the trailing edge. This, in
turn, leads to unbounded pressures in the inviscid solution and to divergence of the itera-
t1on sequence L

The iteration starts with estimated pressure distributions PT(X) and PB(X)
which appear in the mtegrands of the H11bert integrals. The integrals are evaluated by
a second-order-accurate quadrature scheme to yleld expressions for dAT/dX and
dAB/dX The displacement functions Aq and Apg are then obtained by integration °
' usmg a trapezo1dal rule with initial values determined from the upstream asymptotic '
expansmns given in equation (13b).’ Thxs ‘half- cycle yields an 1ntermed1ate solution for '
the dlsplacement functions AT BX).

In the next half-cycle the boundary-layer equatlons are integrated. A minor diffi-
culty arises because of the presence of the unknown pressure gradient in the differential -
equations. To deal with this problem the momentum equation is differentiated with respect
to Z.. This eliminates the pressure but increases the order of the equations from a third-
to a.fourth-order system of partial differential equations. An additional boundary condi- .
tion is required to close the system. This is supplied by using the known functions
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Ap, B(X) in the asymptotic expansion given in equations. (19) to yield a condition on the
streamwise velocity component as |Z| ~ o, This condition and the conditions that the
shear stress approach one for |Z| = and that both velocity components vanish on the
plate result in a well-posed problem. A finite- difference scheme, described_in the next_
subsection, is employed to integrate the boundary-layer equations starting from an initial
station far upstream of the trailing edge. Profiles at the initial station are determined
from the first_ five terms of the asymptotic solution given in equations (12). The boundary-
Iayer equations are solved by marching downstream to the trailing edge on the top and
bottom of the platé independently. A local solution describing the singular behavior at
the trailing edge is obtained by numerically solving the similarity equations, first consid-
ered by Hakkinen and Rott in reference 23. The similarity solution is used to construct
a "composite" profile across the sublayer at a station just downstream of the trailing
edge. The solution is then marched downstream, employing two boundary conditions on
e'a(:h side of the wake as indicated in figure 3. After completion of the sweep, the pres='
‘sure gradient is determmed from the momentum equation evaluated on the X-axis at
Z = 0. The pressure is then computed from a trapezoidal mtegratmn of the gradlent.
Two arbxtrary constants of 1ntegrat1on, the trallmg-edge pressure and the circulation

' constant ay ' (see eq.. (11)) are evaluated by matching the pressure to the upstream data

' and by requlrmg the pressure dlfference to vanish at the tra111ng edge

The boundary-layer solution cannot be contmued downstream to.very large dlsmnces
because of the. appearance of a growing solution P = PGXZ/ 3 for X ~ 4o, The solutlon
is. mduced by a wake thickness dxstrlbutlon l(AT + AB) = AGXI/ 3 wh1ch appears m the
outer boundary conditions. The constant PG vanishes and the unwanted solutlon is
excluded if the constant AG is exactly equal to the Goldstein value (AG = 0. 892 )
However, because of the finite arithmetic carried in the computer, this solution cannot be
excluded.from the numerical solution and it eventually dominates the far-field behavior.
B Consequently, the boundary- layer solution must be terminated at a station X = Xp that
is taken to be upstream of the regwn where the spurious growing solution starts to dom-=
inate. This raises a minor problem since a solution for the pressure dlstrxbutlon P(X)
along the entire X-axis must be supplied for the evaluation of the Hxlbert mtegral " This
is easily remedied by using an analytic expressmn to represent the pressure dlstr_lbutiOn
downstream of the terminal point X = Xp. In'the computer program an expression is -
employed that matches both the pressure and pressure gradient at X = Xp and has the
correct asymptotic behavior for X = +, Numerical experiments, to be discussed at
the end of ‘the section, have indicated that this procedure provides a smooth continuation.
of the solution downstream of X = Xp and has a negligible effect on the upstream
solutlon

Thxs half-cycle results in a complete solution for the pressure distribution whlch
-can be substituted into the Hilbert integral to obtain new estimates for the displacement
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fuﬁctions” The iﬁtegraﬁon is continued until the solution converges to a required toler-b '
ance. As usually required in this type of problem, the solution must be underrelaxed m ’

order to obtain convergence.

. The value of P(X) is relaxed accordmg to the formula

-

PRX) = wP(X) o + (1 - @)P(X) 14

where Pgolq is the pressure at the start of the boundary-layer computafion, Phew is
the pressure computed at the most recent sweep, and @ is a relaxation parameter (w < 1)
that is adjusted to obtain convergence. In the present scheme it is found that the value
of w must be reduced as the extent of the streamwise interval is increased in the down-
stream direction. Accordingly, the following strategy is employed. - The calculation
stziztts with a given relaxation parameter small enough to obtain convergence with an ini-
tial choice of Xp = 3. The solution is conVefged with these choices, the terminal point
is moved further downstream, w is reduced, and the calculations repeated. Converged

results have been obtained starting with values of w=0.15 and Xp =3 and ending
with w = 0.02 and XP = 20.791.

. Solution of the Boundary-Layer Equations .

* The boundary-layer equations are solved by the Keller-Cebeci "box" scheme (refs. 4
and 5). The unknown pressure gradient is eliminated from the boundary-layer equations
by application of a Z-derivative to the momentum equations. A stream function ¥. .is_' e
introduced and the boundary-layer equations are written as a system of four first-order
partial differential equations. The wake thickness and centerline position become
unbounded as X - ., To control the wake growth the Z-coordinate is scaled such that
wake position is bounded in the computational plane. A scale transformation is defined
in terms of two parameters o(X) and #(X) by the following relation:

_Z- 6(X) ' :
" To®) | (20)

where y is a scaled coordinate in the direction normal to the plate and the functions
- o(X) and 6(X) are given in terms of Ar p(X) by

o B ' | X < Ly  (21a)
o : ( 1 .
oX) = '
%+ 2ar® - Apx)] - Far(ty) AB(L ) (k=) em
o) = - Marex) + AB(x) + LAL(Ly) + Ap(Ly) (xzLy) . (2
AT 2
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where %, is a constant scale parameter and L; is a small positive number that identi-
fies the streamw1se station where the wake solution is initialized. The functions o(X)
and 6(X) control the wake thickness and position, respectively. The choice of B(X)

was prevmusly discussed in reference 3. This scaling minimizes the variations of wake
locatlon in the far f1eld and as a result, the computations can be carried out with fixed = -
outer boundarles in the y-plane. In addition the coordinates approach similarity variables
approprlate to the Goldstein solution for X - +oo. Scaled dependent variables are also '
introduced accordlng to the relations

ooty . aew
Uso®uXy) | e
r=R®y) : | - Lo @
D= cr(X)'ld(X,y) ' . , | R (23d)
where ¥, U, T; and D are, respectively, the stream function, streamwise velocity
component, shear stress, and derwatwe ‘of shear stress with respectto Z (i.e., = g—;)

and where w, u, 7,and d are respectively, scaled versions of the stream functwn,
streamwise velocity component, shear stress, and derwatlve of shear stress with respect
to Z. With these transformations and with the ehmmatxon of the pressure gradlent the
govermng equatlons can be written in the form

»(245) )

_%$=t
%t;_= T (24b)
a_a; =d '(.24c‘)
-g;z= o(x)3( x4 g;g) 2o(X)2o'<x>¢d - : o (240)

In this formulation the boundary condition on V given in equation (8b) is replaced by the
equlvalent condition on the stream function :

v=0 | - ¥ =0; X<0) (25)

A general, nbpuniform réctangular mesh is introduced and equations (24) are dif- -
ferenced according to the box scheme along the lines indicated in figure 4. The X-columns
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are labeled by an index ‘I and the horizontal rows by an index J startingfrom J=1
on the lower boundary and continuing to J = JP on the upper boundary, where Jp is o
the number of points in the y-mesh on the top of the plate. The first three equations do”
not involve X-denvatwes These are central differenced about a midpoint of a y-mterval
on the most forward marchmg column. Equation (24d), which is nonlinear and involves
denvatlves in both directions, is central differenced about the midpoint of _the box as '
indicated in figure 4. The nonlinear coefficients are evaluated as four pomt averages at
the midpoint of the box. This difference approximation leads to a nonlinear set of differ-
ence equations for the vector unknowns (lP,u,T,d)J along the column I + 1. The differ-
ence approximation is second-order accurate and implicit since it couples all the unknowns
-along the I+ 1 column.

The boundary conditions along the plate involve the specification of the two compo-
nents Y(Xpo) and u(Xy,g) for X <0. Outer boundary conditions are imposed on the
vector components u and d. The conditions are given in the form of a ratio at the outer
two points of the mesh Jp and Jp_j. The ratios for the conditions on top of the plate
are computed from the asymptotic far-field expansion given in equations (19) as follows:

B ,o(x)u"]b} RH'(ZJP,X) - Ap(X) Rlz(zJP,x) |
‘ : ‘ = (26a)
oXu; - Ryi(Z: X\ -A0 Ri(Z. X o
Ipi” 1(%1p %)~ Ar 12(%3;,_, %) R
dJP /c(x) +‘RZI(ZJI",X) RZZ(ZJP,X) (_ |
= 26b
d o(X) + 7 X Z X
JP-I/ Rm( Ip_1 ) R”( Ip.1 )
where
o oCyy 175 9 . 431 1/9.-1/2 | | |
Rll(Z,X) + Z + —= 1/ yA + O 021 InZz +0o —2-—K Z In Z (273)
z-1/2 -3 '
T oaC _ - . ) . i
Ry (2.X) = 4K11/12 273/ 4 a2cy 272 - 3ok 20275 2z o (28a)

5 -5 :
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where Z is related to the computational coordinate y by
= 6(X) + oX)y e C(29)

This procedure for satisfying the far-field boundary conditions was motivated by the
work of Ackerberg and Phillips (ref. 24). Similar expressions are applied to the bottom
boundary of ‘the mesh. For the wake computations (X z L1) ‘only the outer boundary
conditions are to be satisfied and the expressmns are 1dent1cal to those of equations (26),
(27), and (28)

The d1fference equatlons are solved by a Newton-Raphson technique. ’The' nonlinear
equations are linearized about a previous eshmate to form a linear system of algebralc
equations for the perturbation quantities. (] ¥, bu, 67, (id)J 1. The differential equatlons_
and boundary condmons result in a linear system that has a block tridiagonal form. In
the present problem the main blocks are 4 X 4 square matrices. The equations are solved
by. an efficient Gauss1an elimination techmque as described in reference 5. The form of '
the outer boundary conditions given in equatmns (26) automatically falls into this block
structure. | '

Solutions at the most recently computed statlon (e.g., station I in f1g 4) are employed
as m1tia1 estimates. Quadratic convergence was observed to occur with these starting
values. The iteration was continued until a convergence criterion based on the relative
error was satisfied at all mesh points. The criterion '

[6£(1+1,7)|

" Je@+1,3) + 6£(1+1,9) (30)

is employed, where f stands for any one of the dependent variables.

The calculation proceeds by marching in the X-direction starting from an initial
station X = L,. Initial profiles are determined from the asymptotic solution given in
equations (12). The similarity functions Fl(n), H (), Hz(n), and H3(n) appearing in
the asymptotic solutions are determmed from a numerical integration of the two-point
boundary-value problems formulated in the append1x ‘These solutions are obtamed with
the same subroutme employed in the marching calculatmn

When the trallmg edge (X = 0) is reached, a composite solutlon is formed to descrlbe
the initial wake profile a short distance (AX L1) downstream of the trailing edge The
composite profile is obtained from a coordmate expansion for X and Z - 0. It is written
‘as the sum of an outer and inner solutlon less the "common part. The structure of the
local solution is similar to Goldstein's near wake solution except for the presence of a
. singular, self-induced pressure gradient in the similarity. equation. Solutions were first
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obtained by Hakkinen and Rott in reference 23 and are further discussed in referlences"zl
to 3 and 20. The wake initial profile is given by : -

1/3 A
U(L1,2) = Ug0,2) + §( L1) Gom) - Ay 2 (z>0 @1
U(Ly,Z) = UB0,2) + %(% L1) Gom) - Ay pZ (z<0)  (32)

where Up .and - UB are the velbcity profiles at the trailing edge on the top and bottom
of the plate, respectively, . Go is the similarity function descrlbmg the "inner" Hakkinen-
Rott solutlon, 7 isa s1m1lar1ty variable defined by equatlon (12b), and Ay T and Aq B
are the skm-frxctlon coefficients at the trailing edge. (See eq. (18d).) Proflles for the
variables ¥, 7,and d.canbe formed in a similar manner. The function G(')(ﬁ) is
‘determined as part of the solution by integrating the two-point boundary-value problem
formillaied in the appendix. The solution in the wake is then continued downstream, start-
ing from the initial wake station (X L1) and termmatmg at a station (X XP) chosen at
the start of the calculanons as discussed in the begmmng of this section.

- " The pressure distribution is determined after completxon of the forward sweep by
mteg'ratmg the streamwise momentum equation

dp _d(X,0) = 2 W(X 0) _ oy 0X0|_ ¥x0dPx
X~ oX) o(X) [(X 0) — - u(X,0) —% J- 5 = (33)

_All quantities on the right side of equation (33) are knbwn from the most recent sweep.
Separate equations hold on the top and bottom of the plate. The pressure is dete.rmined -
by a s1mp1e trapezmda.l integration

| | _{dp
Pr o + 1) - P (D) = [X( - 1)-x(1)( T'E‘)-
T,B +’ | T,B [ + :l &K /1,1/2

. (34)

where the pressure gradient is evaluated by averaging equation (33) o.v'er the stations

X(I + 1) and X(I). Two constants of integration are required to cbmplete'the solutions

given in equation (34). These are determined from the asymptotic solutions given in equa-
tion (13a), which give

031 - 0.3433 _ 0.2368a ‘ (35a)

Rk ca

PTX Lo) =

021 (.3433 ozssea o | (35b)

ey I
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Note that these relations involve the unknown circulation constant a; which must'be
determined before the solution can be completed. The circulation ‘constant al is deter-
mmed from a generalized Kutta condition as follows. By defmmon _ :

' ~0 /dP
Pp(0) = Pp(X = Ly) + SL (-Exi)dx
o .
dpP

' ‘ 0

If equations (35)-are substituted into equations (36) and the Kutta condition that the 'i)reé- A;"
sure is continuous at the trailing edge (1 e., PT(O) = PB(O)) is imposed, the following.
relahons are obtamed° _ .

P0) = Pp0) = - °34§’?3 '5; <de e ew
ILol 0.2368° \“Loi 5 <dP'r dPB)dX | o - (B)

1/3
Lol

Equatlons (317 ) should be mterpreted as asymptotic relatlons valid for Lg = -=. The
present results indicate that the solution is not overly sensitive to the magnitude of Lo -
and that a; can be evaluated to. two decimal places for Lo = -17. Equation (37a) has
been employed in conjunction with equation (34) to determine the surface pressure by~
sweeping equation (34) from the trailing edge. :

The d1fferent1al equations are differenced in Cartesian coordmates on 2 nonuniform
mesh. The grid-point distribution is determined from simple transformations that map
~ a uniform. grid to a nonuniform grid.. The -parameters of the mapping are adjusted to.con-

. centrate: mesh points in regions of large gradients that.occur on the axis (y. =‘f‘jQ-)"_and,at the
trailing-edge (X = 0).: The distribution of y-grid points is given as follows.for the uppér- '
‘half-plane:--The mesh points in the lower-half-plane are obtained by reflection about the .
X-axis. . - : IR

On the plate 51de x < 0) the y(J ) distrlbution is defined by the relatmns

CyM :
1+B (l-c)

ROE (382)
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Jp-1/1-K) - T
Bp= E— ( 1) R 5

and

; = J -1 . . | | | (1 <J §Jé) (380)

where ypp 18 the upper boundary of the computational domain, J- is a running index, -
and Ky isa parameter employed to control the relative spacing of the increments.
Equations (38) reduce to a uniform mesh for K; ='1 andto a nonumform ‘mesh with a -
concentration of mesh points near the wall for Ky <1. : e

" On the wake side of the field a two-prece grid consistmg of a fine uniform grid was
employed near the axis, and a stretched grid was used in the outer part of the wake. The
grid for X > 0 is defined by the following relations For the inner region :

y(J) __J...:_l_._ 1=<J <J e 0 <y =< ) (39&)
Rhs yinner Jinner 1 ( £J Sdijpnerr Y =Y SVjpper

and for the outer .region ,

(J) v inner- (yM yinner)['fﬁi’(?._g')':l[l + Kz(l - ) + K3(1 - C)zjl (39b)
where . N ' |

¢= j‘—v.'li'!?{nine-;’ A (Jinner <J =Jws Yinnelr <y §YM) . (39¢)
where yinner ‘is the upper boundary of uniform mesh’ region, J . is a running index, -
Jinner is the number of mesh points in the inner region, Jyw is the total number of mesh
points employed in the wake, and Kg and Kg are parameters that control the mesh dis-
‘tribution in the outer region. They are chosen such that (1) the-mesh increment is contin-
uous across the boundary between the inner and outer regions and (2) the outermost incre-
ment y(Jw) - Y(Jw - 1) is equal to the corresponding increment on the plate. The mesh
distribution in the marching or X-direction is chosen to provide for a concentration of
mesh points on the wake side of the trailing edge and for a gradual stretchmg in the far

field for X = 3o,
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On the plate side (X < 0) the following transformation is employed:‘

- K, -
X = LoflTTxe | o 402
M o§<1-x4§> o ('m)
where
CIp-1 .
L g...=,111:-‘1 o ([srste Losxs0) - (aow)

‘Lo i8 the value of X at the initial station, I 1s a running index, Ip is the number of
X-mesh points used on the plate, and K4 is a parameter that controls the relative spacing
of the mesh points on the plate. Equations (40) generate a uniform mesh for K4 0 and
a nonuniform mesh for K4 > 0. A relation between Kg and the minimum mesh incre-
ment Al ‘is given by R - R :

.124..=~.(.1Pf 0 (te- o le- 1/11}3 X
(IP'- 1)- E’ilp- I/L:l

With equations (40) and (41), a mesh distribition can be generated with a speciﬁed mini- ”
mum increment A1 at the trailing edge that smoothly expands to the initial point (X Lo,
I-l) g . . «; RPN ] FRE T

The streamwxse mesh distribution in the wake is given in three parts a nonuniform ‘
region near the trailing edge that concentrates points near the origin, an intermediate N N
region with a uniform mesh, and 2 nonuniform region with an expanding grid in the down-

. stream d_irectiOn. " A good__ distribution is.generated by the following relations’ L

@

e a BT=TIp)

B R e SRR S B
Hmxe-prag T sy e

LA o ca =" . . R TN PO N ':" S

]

v e fas

‘204



and =~ & -

1/3

. Agflg +1-Tg)| \/ 4 ' ._ L e
" R Lmax.- X(Ig) | - _<13 +'1_-Iz) T

where Ay isa parameter that controls the first mesh increment. in the wake, Il, 'Iz, -
and I3 are the values of the running index I that separate the three mesh regions,

and Lmax is the coordinate of the downstream boundary of the mesh. Note that 13 is
also-equal to the total number of points used in the streamwise direction. Attention is
called to the fact that Lma}: need not be equal to the terminal pomt of the boundary-layer
"calculation, X = Xp.

'Evaluation of the Hilbert Integral

The most recent sweep of the boundary-layer equations provides updated solutions
for the pressure distributions required for the evaluation of the Hilbert.integrals given ‘
in equations (10). The main difficulties in the numerical evaluation.of these integrals are
associated with the infinite range of integration, the algebraic smgularity in the integrand
for X - -0, the pole singularity at X =Xy, and the infinite pressure gradient for
X~ 0%,

The fll‘St two problems are treated by d1v1dmg the 1ntegration 1nterval into a number

of segments.. The outer two segments contain the unbounded intervals X = +~ and

X = -», In these regions, the pressure distribution is approximated by the asymptotic
expressmns given in equations (13a), (13b), and (14a), and the integrals are evaluated in
closed form. This reduces the numerical problem ‘to one mvolving an integration over

a finite range and also provxdes for a correct evaluation of the singular "finite part" -
: integral for X ~ =%, "The remauung integrals are over a finite range and are evaluated
by’ numerical quadratire using the ‘mesh distribution employed in the boundary-layer cal-
culation. Difficulties with the pole’ singularity are avoided by evaluating the integrals -
only at the midpoints of the integration intervals used in the quadrature. Excessive: trun-
cation error due to the singular pressure gradients near the’ traihng edge is avoided by
using a special quadrature formula“that accounts for ‘this behavror.' On the plate the ‘inte-
gration interval is split into two segments, -« <X = Lo and Lo<X<0, while in the
wake, 0 <X <Lj, Lj <X <Lg"and Lg <X < +w, ' Note that segment boundaries .Lq,
. Ly, and L3 need not line up with the boundaries of the mesh defined by equations (42)
With this lelSlOIl, the integrals can be expressed as the following summation
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where the far-field expressions have been used to evaluate the integrands of the inte-- |
grals Tl’ Tz, and T3 as follows: Y - . e

‘/_. ax, ) - | L , ‘dx | . : o .

T1'S°xxf1 ago 1 '+~(1/32)1 - sl - Ua)
- X- X = VE (K -X)  VEe?3 e (0% x-x,).

T, < - 178 (Fo_ X1 | L e - (45b)

3V8 Y- (5x)2/3(x X,)

' 0 Py p(Xq)dX1 ‘ AR
Alo‘X)-SLl'l,?(—x)l— ‘ . - ",4(4,&)

Aozm)-yzﬂil—— - D ‘ ‘-' (;ltih).

ey o (L3 PX1)dx1
Az_a(") : ng ;<c-,x1

(46c) -
The integrals in’ equations (45) are. evaluated in closed form and those in- equations (46)
are evaluated by numerical quadrature. : : .

" The range of integrations of the integrals in equations (46) is segmented by- uslng
the mesh distribution’ X(I) employed in the boundary-layer calculation, and the integrals
in equations (46a) and (46c) are expressed as a finite sum of integrals over the mesh incre-
ments . X(I +1) - X(I). The individual integrals over these increments are then evaluated
in closed form by using a piecewise linear approximation for the pressure distribution -
Py B(x) ‘and/or 'P(X) - over the mesh increment. The integral in equation (46b) is'
evaluated with a piecewise linear approximation for the function P(X) 3 C2 3x2/ 3
where C, is the constant appearing in the Hakkinen-Rott similarity solution (eqs. (18))
_ With this procedure all’ integrations are second-order accurate The displacement t‘unc- '
tions can be evaluated from a trapezoidal integration as follows“ ' R '

AT;B(I + 1) = AT,B(I) + [X(I +1)- X(IEIA:r’B(I + %) . . .‘ - o ' (47)
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' with Ar'r,B(I + %) evaluated from equations (44) to (46).. Two-constants of integration
appear. These are evaluated from the asymptotic solutions given in equation (13b) at .
the 1mt1a1 statmn X(1) = Lo, which yxelds :

| AT,B(I =1) = 0:3265|L6| + a012|L0| sgn“Z - “2021[% 1n]Lo|' +1n 3(21/3)]

“~ .t
.

a2(Cyy + Cyy)+ a3C33|Ly| /% enz e BN L)

This procedure results in a convement method for determining the values of AT B
at the mesh points X(I) given the pressure at the same points. A number of numerlcal
experiments have been carried out for sequences of mesh d1str1butioxis and for pressure
distributions that could be integrated in closed form. These results cleai‘ly indicated that
the quadrature errors reduced quadratically with mesh size and that the precedmg eval-. .
uations of Ar p(X) were second-order accurate at all points of the mesh including
those near the trailing edge. The results of this study will be presented in a separate
publication. . I

Accuracy and Convergence Considerations

A number of numerical experiments were carried out to check the accuracy of the
complete program. These tests were carried out for the symmetric broblem; (i.e., a=0)
by using a version of the program that was modified to allow for the symmetry of the solu-
tion. - The angle-of-attack terms. were deleted and a symmetry condition was:imposed on
the wake axis. With the modified program it was necessary to compute the solution only -
in the upper half-plane; thus the nu;_pbe;‘ Qf,_n‘;‘e,sh_poin.tsﬂ required was reduced by dne -half,

.. Calculations . were performed to determine-the effect of varying the locations-of the
upstream (X = ‘Lo) and downstream (X = Xp) :boundaries of the mesh and the-position of
the upper boundary- Ymr The number of mesh points employed in the horizontal and ver-
tical directions were also‘varied, as were the parameters controlling the relative spacing
of the- gmd Computatmns were: carrxed out-using up to 99 points normal to the plate and .
300 points in ‘the streamwise direction. These results indicated that.a good dlstrxbutxon
of mesh pomts is generated with the following choices.- . 2

For the y-mesh ¥
= 8.0 Kp = 2/5 ' i 49)

and 25 points are employed on the plate side (JP = 25) and 44 points on the wake side
(JW = 44) of the trailing edge. Of the 44 points in the wake, 12 (J ( inner = 13) are dis-
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tributed uniformly in the region 0 s y =0.5555. With these choices the minimum incre-.
ment occurs on the axis and is equal to '

(Ay)mi,; = 0.1333 | -  x<0) - (50a)
(AY)min = 0.0427 ' | x> O) (50b)

The mesh spacing smoothly increases to a maximum at the upper boundary where it is
equal to (for all X)

(AY)max = 0.8027 | - | - (51)

For the X-mesh the upstream Ly and downstream Lmax boundaries are chosen’

as

Lo = -17 Lpax = 30 | o (52)

Fifty-one points are employed on the plate and 124 points in the wake. The boundaries of
the various segments in the wake are taken at ‘ :

I = 81 Iy = 151 I3 = 175 s (53)

and, therefore, a total of 17 5 grid points are employed in the streamwise direction.

The initial station in the wake is takenat I = 57" which occurs at
X(67) = 0.004136 R | o (5;)
Tﬁe minimun; mesh increment on the plate occurs at the trailing edge and is equal tol .
(;sx)mm = 0.05 | | | (X <0) (85)

In the wake the minimum increment occurs at the wake initial station X(57) and is equal
to

(AX)pin = 0.002432 | X>0 = (56)
These choices lead to very high concentrations of mesh points in the initial parts of the

wake. About 10 points of the y-grid fall in the inner region of the wake initial profile
where the solution is describe_d by the Hakkinen-Rott similarity solution. Numerical
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experiments-have indicated that solutions on'this mesh are accurate to about one part in
the third decimal place.

Convergence criteria were set on both iterative loops employed in the program to
aéhieve three-place accuracy. The error tolerance. €; used in the Newton—Raphson solu-
tion of the difference equation (see eq. (30)) was set at 1072, This resulted in solutions
to the difference equations.that are accurate to 10° -8 or better in two cycles per stream-
wise step at most statlons A third cycle is occasionally required near the trailing edge

The overall interaction between the boundary-layer and inviscid programs is con-
tinued until the solution has converged to the third decimal place. Twelve iterations were
required to converge the main loop with w = 0.15 and Xp =3. Each cycle consists of
a sweep through the boundary layer and the evaluation of the Hilbert integral. Most of the
computer time is taken in the boundary-layer routine. The computations were performed
on an IBM 370/165 digital computer and required about 20 seconds per cycle, or about
4 minutes to complete the first 12 iterations. A total of 28 additional cycles were A
employed to move the terminal point Xp downstream to Xp = 20.791. The influence of
the value of Xp on the upstream solution was investigated and was found to amount to an
increment of no more than 0.002 in the solution at X = Xp, which decreased rapidly.
upstream. Similar conclusions hold for the angle-of-attack problem except that the c‘om4
puter times were about doubled because of additional mesh points on the lower side of the
flow field. : .

The present program used significantly fewer iterations and less computer time
than that required by similar methods developed by Jobe and Burggraf (ref._6) to treat the
zero angle-of-attack problem. This is apparently due to their.use of a fixed point itera-
tion scheme to solve the finite-difference equations and to the use of a separate iterative
scheme to compute the pressure at each streamwise station. Jobe and Burggraf were
able to use larger values of w in the outer loop and, as a result, obtained solutions with
somewhat fewer outer cycles. However, this advantage did not nearly overcome the
longer cycle times required in their program. It should be pointed out, however, that the
symmetric problem does not involve free parameters and, hence, needs to be:solved just
once. Therefore , computing efficiency is not a real issue in this problem. It was, how-
ever, important to develop an efficient code for the full problem since there dre twice the
number of mesh points and since solutions must be obtained for various values of the nor-
malized incidence a. '

RESULTS

The triple-deck formulation reduces the trailing-edge problem to one involving a
single parameter ' o, a normalized angle of attack defined in equations (2). The computer
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~ program described in the previous section has been employed to obtain solution for two
values of o equal to 0 and 0.10. Initial estimates to start the iteration were obtained
from the approximate solution of Messiter (ref. 2) for « = 0 and the linear solution of
Brown and Stewartson (ref. 3) for nonzero angles of attack. Numerical experiments car-
ried out in the study indicates that the present solution for the symmetric case is accurate
to three decimal places. The symmetric solution was obtained by using a special version
of the code in which the angle-of-attack terms appearing m the boundary and initial condl-
tions were set to zero. In addition, a symmetry conditlon was imposed on the axis (i. e. y
¥=7=0 at y = 0)and the solution was computed only in the upper half-plane. “The"
solution for @ = 0.10 was obtained with an early version of the code that employed a' *
somewhat coarser mesh and, hence, is likely accurate to just two decimal places.

‘ The results obtained for the symmetric problem are compared with solutions of the
triple-deck equations recently obtained by Jobe and Burggraf (ref. 6) and Veldman and

" Van De Vooren (ref. 7). The computations in these studies were based on finite-difference

techniques that differed in a number of respects from the method employed here. The

main difference being that a second-order Crank-Nicolson scheme was employed in refer-
ences 6 and 7, while a Keller-Cebeci box scheme was employed in the present study. ""The
computations in reference 6 were carried out on a nonuniform mesh using up to 180 points
in the vertical direction and 480 points'in the streamwise direction. In reference 7 a non-
uniform mesh was employed with a maximum of 40 points in each direction. These are to

. be compared with the 24 x 175 point nonuniform mesh used in the present computation.

" The inviscid solution was obtained in reference 6 and in the present study from a numer-
'i‘cal quadrature of the Hilbert integral In reference 7 the inviscid solution was deter-

" mined from a finite-difference solution of Laplace's equation in the outer deck by using a
40 x 40 pomt mesh dlstr1but10n The iterative techniques used in the present scheme
appear to be more effectwe and require significantly less computer time than the methods
-employed in references 6 and 7. Comparisons given in this section indicate that the over-
all agreement between the three sets of solutions is quite good with differences amounting
to a few parts in third decimal places at most pomts of the flow field. However, the solu-
tions of reference 6 are somewhat less accurate near the trailing edge due to the poor
resolution of the traiiing-edge singularity obtained with the uniform mesh distribution used
in that study. The computatmn in reference 7 loses some accuracy in the far field due to
the large mesh spacing used m that region '

. Solutions to the symmetric problem are presented in figures 5 to 17. The pressure
dlStrlbuthl'l on the axis is given in figures 5 to 7. The effect of the wake in generating a
signiﬁcant favorable pressure gradient on the plate is clearly shown in figure 5. "The
preésure starts from the free-stream levegl far upstream anrl falls to a value of
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at the tralling edge This should be compared with the values of PTE of -0. 388 and _

: .=0.392 obtained in references 6 and 7, respectively. The pressure t.hen. rises steeply

from this trailing-edge value to a small positive maximuin and then approaches the free-
s'_u'eam value slowly from above. These results clearly show a largeadvers'e pressure
gradient in the wake just downstream of the trailing edge. "The pressure g_radient is
bounded on the upstream side and is unbounded on the downstream side of the trailing
edge. The numerical solution is seen to blend smoothly into the asymptotic far-field
solution for X = t» and match smoothly with the singular solution at the trailing edge
for X - 0%. The coefficient of the third term of the trailing-edge solution (eq. (17a)) '
has been extracted from the present numerical results as

. Py = -0.52 v o T (58)

The agreement between the present solution and the solutions of references 6 and 7 is
quite favorable with the dﬁferences between the results being indiscernible on the. scale '

‘of figure 5.

The pressure distribution near the trailing edge is shown on a greatly expanded
scale in figure 6. Differences between the three sets of results are apparent on this
scale. The present results and those of Veldman and Van De Vooren are v1rtually 1dentical
with the three term expans1on given in equation (17a) with the constant Pl given by equa-
tion (58) The use of a nonuniform mesh with a fine grid near the trailmg edge prov1des
excellent resolut10n of the singular trailing-edge behavior in the present calculatlons and
in those of Veldman and Van De Vooren. The results of Jobe and Burggraf which were
obtamed ona uniform mesh, definitely appear to have a higher truncation error and to
lose some resolution as the origin on the wake side of the tralling edge is approached

_Their results however appear to improve as the mesh sxze is reduced

On the basis of analytical considerations, Stewartson in reference 1 has mdicated

that the pressure gradient is finite on the plate side of the trailing edge and that loga-

rithmic terms must arise in the expansion of the pressure distribution as X - 0. (See
eq. (16a).) The present results plotted in figure 7 seem to confirm Stewartson' s conjec-
ture. In flgure 7, the numerical solution for the pressure gradient is'compared with the
analytic expression given in equation (16a). The numerical constants PTE’ 99 and Pg
were extracted from the numerical solution and were found to have the following values:

® ) . . N ’ . < N M ‘ ’ .
Prp = -o.‘:.sol Py = 0.12  Pg=-0.14 . (69)
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This. is to be compared with the value P"I‘E =-0.278 glven in reference 6. The numer-
ical solution clearly indicates a vertical tangent at the origin and shows creditable agree-
ment with the analytical solution using the constants given previously. Four mesh points -
in the region X < -0.5 fall on the analytlcal curve given in figure 7.

The solution for the skin fnctmn is given in figure 8. The" solutxon is seen to match
'smoothly to the weak interaction solution given in equation (13¢). The- results clearly show -
the strong effect of the wake- induced pressure gradient on the skin fr1ct10n The skin
friction at the trailing edge is increased by a factor of A; over the Blasius value where

A\ =135 | o o (60)
~This is to he compared with the values of T (0) = 1.343  and 7(0) = 1.352 | predicted
in references 6 and 7, respectively. Comparisons of the triple-deck solution w1th the
second-order boundary-layer solution of Schnelder and Denny (ref. 25) are given in
reference 6.

The solution for the centerline velocity in the wake is glven in figure 9, together with
a comparlson of the Goldstein solution for X -~ +%  and with the Hakkinen-Rott solution -
for X - 0”. Both analytic solutions exhibit an Xl/ 3 behavior and appear as linear dis-
tributions in the scale used in the figure. Also included is a comparison with two terms -
of the Goldstein solution. The second term, involving the constant bj, corresponds to a
-shift in the origin of the asymptotic solution. The value of the constant by has been -
extracted from the present numerical solution, as will be discussed later in this section.
It can be seen that the triple-deck solution provides-a. smooth blending between the trailing-
edge- and far-field solutions. The effect of the shift is clearly evident in the results:

“In. flg'ure 10, the solution for the centerline velomty is compared with the results of -
‘references 6 and 7 on an expanded scale near the origin. The present results: show good
p agreement with the solution of Veldman and Van De Vooren and with the singular solution-
of Hakkinen and Rott right to the trailing edge. The nonuniform mesh ‘employed here and
in reference 7 permits a. very. high resolution of the singular trailing-edge behavior. The
results of Jobe and Burggraf (ref. 6) agam show higher truncation errors and somewhat
poorer resolution near the trailing edge owing to the larger mesh intervals employed in
their uniform mesh solutions. -

, - The solution of Veldman and Van De Vooren employs 2 highly stretched mesh with
relaﬁvely large mesh increments in the region away from the trailing edge. The results
in figure 10 indicate that this leads to somewhat larger truncation errors in the- down- '
stream region than those that arise in the present solutlon ’ ‘ '

- The present solution for the displacement function A(X) is compafed with the far-
field asymptotic expansions in.fig'ure 11. Again the -numerical sblution blends smoothly
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“into the asymptotic solutions for X — . The effect of the origin shift in"the down-
stream solution is again evident in the comparison. " The inclusions of the by term in"
the asymptotic solution is seen to extend the region -of agreement well into the near field.
The results are seen to be in good agreement with the solutions given in references 6

and 7, with no apparent differences on the scale employed in figure 11. |

Comparlson of the present results for the slope of the displacement surface with
the solutions of Jobe and Burggraf shows some discrépancy as indicated in- f1gure 12'

The dashed line in figure 12,! ‘representing the solution of reference 6, was obtamed from L

a graphical reading of a flg'ure in reference 6 using an automatic digitizer. Some of the
-differences are surely due to errors in reading the graphical data. However, the main
differences are in the trailing-edge region, and these are likely caused by the larger grid

- spacing used in reference 6. " The present results clearly show the vertical tangent at the
“origin implied by the singular solution glven in equatlon (17b). - This is seen more clearly
on the expanded scale used in flgure 13. iIn ﬂgure 13,, the present numerical solutmn for.
A'(X) is compared with the sing'ular expanswn given in equation (17b) and with the solu-
tion of ref_erence 6 as tabulated in the thesis of Jobe (ref. 26). The present solution is
seen to blend very smoothly with three terms of the singular solutions. The constants in .
equation (17b) were evaluated by fitting equation (17b) to the present numerical solutions _
and were found to have the following values: ‘

A = 0.338 Apg = o.402’ | At=-13. Aj= 21 (61).

These are to be compared with the values Apg =0.335, ATE = 0.335, and A1 = 0. 56
given in reference 6. The results agree relatively well with the solution of reference 6
except for the gnd point nearest the trailing edge and the values of the constant .Al'

The constant b; appearing in the second term of the far-field solution has been
evaluated by fitting equations (14b) and (14c¢) to the present numerical solutions for - A(X)
and U(X, 0) The results are denoted by ba(X) and by(X) and are displayed as func-
tions of X in figure 14, The results seem to approacha limiting value that is given by’

by = -0.285 + 0.005 - - - . (62)

which is to be compared with the value by = -0.27 + 0.03 quoted in reference 6. -Also
shown for comparison is a similar plot taken from reference 26. The difference between.
the two sets of results is likely caused by somewhat higher truncation error and by the
abrupt termination procedure employed in the calculation of references 6 and 26.

The drag coefficient for the finite flat plate can be evaluated from an mtegration of
‘the skin-friction distribution on the plate as follows: :
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Cp = 1.328R°1/2 4 a,r"7/8 4 ofr- ) L (6%

”
Vg

where the constant d2A is given by

d2A=2A'1/4S:°°[T(X,O)-1]dXA R o R

’ Use of the present solutlon for the skin frxctxon and a trapezmdal mtegratmn of the pre- .
.ceding mtegral leads to the followmg evaluation: :

dg = 2.6601 | | : | (63¢)

In figure 15 the drag coefficients predicted by equations (63) are compared with experi-
mental data obtained in 1935 by Janour (ref. 8) for flow of oil over a finite flat plate.

{ Also included is a compamson with solutions of the full Navier-Stokes equatlons recently”
obtamed by Dennis in 1973 (as mentioned in the Introductlon) for Reynolds numbers in the
range 1 =R =200. The results in the figure show that the correctxon to the Blasius
result is large in this range and that it is accurately predlcted by equatlons (63) to within-
a few percent for Reynolds numbers as low as” R = 10.

Dennis later extracted the value of  dg by fitting an equation of the form of equa-
tion (63a) to his numerical solutions. His results for dy are plotted in figure. 16 together
with the llmlting values (i. e., for R~ 4) predxcted by the triple-deck solutions as |
obtfained in the present study and in references 6 and 7. The agreement of all three triple-
deck solutions with Dennis' results is quite good with the present solution yielding the
best agreement. : ‘ :

The preceding results indicate that the tr1p1e-deck solutlon is accurate over a sur-

‘ 'prisingly wide range of Reynolds numbers. ~ Indeed the maxrmum d1fference w1th the
Dennis solution for the drag coeff1c1ent is about 8 percent at a Reynolds number R of 1
“The close agreement with the Nav1er- Stokes solutions implies that the next term in the _
’asymptotlc solut10n which is formally on the order of O(R 1 must be very small, Fur- -
ther comparlsons and dlscussmns of the drag coefﬁclent are gwen in references 6 20

and 26.

- Sato and Kuriki (ref. 9) carried out wind- tunnel experiments on the flow in.the wake,'
of a thin plate. The flow was determined to be two-dimensional. The plate was 300 milli-
meters long and the flow velocity was 10 meters/second. The investigators were prlmarily
interested in exploring the transition of the wake from laminar to-turbulent flow. They

1A value of dy = 2.644 " attributed to the present: ‘authors in references 6 and 7 was

- obtained on a coarser mesh than the one employed in the present computatlons and is, con-
sequently, less accurate than the above value. ,
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measured mean as well as fluctuating velocity profiles in the wake. The Rey‘riolds num=- .
ber of the test was 2.1 x 10° (€ = 0.216). The mean velocity profile given in figure 17

was measured at a station 30 millimeters behind the trailing edge where the flow was ‘
fully laminar (the nonlinear transition region started about 40 to 60 millimeters behind

the plate). At this Reynolds number the pressure peak predicted by the triple-deck theory
occurs at 40 millimeters behind the plate. Thus, the measuring station for the profiles:

in figure 17 was in a region where the theory predicted a strong adverse pressure gradient.

The triple-deck solution was used to construct a composite velocity profile at
X = 30 millimeters. The solution was represented as the sum of an "outer and inner
solution' minus the "common part," as follows:

U ' ‘ |
Jo0mp _ g1ty 4 0.4945A() () - f"«@ + 0.1642(Ujpper - 2) (642)
[ o]
where )
1= 049412 . ’ | (640)

and the physical distance normal to the wake axis is given by

Ymin = 0.3252 . _ (64c)
The function f(n) is the Blasius function for the semi-infinite flat plate sohitioh and’
Umner(z) is the triple-deck solution for the wake prof11e at X = 2.49. The displace-

ment functlon at this statlon is given by b
A(2.49) = 1.052 ' 4 © (64d)

_ The profile given by equations (64) is compared with the measured profile of Sato
and Kuriki in figure 17. The theoretical and experimental profiles are seen to be in go‘oq-
agreement across the entire wake. The main differences occur in the outer région where
viscous and pressure gradient terms have been neglected in the theoretical solutions. '
Also indicated is the centerline velocity predicted by the one-term Goldstein solutwn
The effect of the interaction in reducing the centerline velocity is significant and readlly '
discernible in this experiment. It is also of some interest to call attention to the fact that
transition was observed to start at a station 40 millimeters behind the plate, which coin-
cided with the location of the theoretical pressure peak in the wake. This result suggests.
that self-induced préssures may play an important role in the transition of a wake from
laminar to turbulent flow.  As a corollary it also indicates that the effect of wake-induced
~ pressure gradients may have to be accounted for in theoretical transition calculations.
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The numerical methods developed in the present investigation have been found to '
provi_dé an effective means for solving the triple-deck equations. Because of the overall -
efficiency of the differencing and iterative techniques employed, it is practical to use these
methods to solve the angle-of-attack problem. An early version of the code described in. -
previous sections was used to obtain solutions for a (normalized angle of attack) equal .
to 0.10. This solution was obtained without the terms of O(az) or greater that appear
in-the outer boundary condition given in equations (26) to (27) and in.the initial condition -
given by equafions (12). These terms are quite small and are believed to have a small
influence on the solution at the value a = 0.10 for which the computations are carried

out:.2

In figure 18 the solution for the pressure distributions on the top and bottom of the
plate and on the wake axis is compared with an approximate solution developed in refer-
ence 3. The approximate solution was based on a simple linearization of the triple equa-
tions about a linear streamwise velocity profile. As was noted in reference 3, the linear-
ization is clearly not valid in the wake, where the velocity gradient 8U/dy must vanish
on the axis. However, the errors in the wake are not expected to have a strong influence
on the solution upstream of the trailing edge. If this holds true, the linearized solution
should provide a reasonably good approximation to the angle-of-attack solution. The
results in figure 18 bear this out. The agreement between the present numerical solu-
tion of the full triple-deck equations and the linearized solution given in reference 3 is
seen to be quite good. The effect of incidence on the pressure distribution in the wake is
barely noticeable on the scale used in fighre 18. The circulation constant a; appearing
in the formula for the viscous correction to the lift coefficient in equations (4) and (5) is .
determined as part of the present solution and is given as

a; =055 .- _ S - ' (65) -

This is to be compared with the value determined from the linearized solution of Brown
" and Stewartson, namely '

ay=010 - . 0

The agreement for ay is not nearly as good as for the pressure distribution but is prob-
ably as good as one should-expect from such a simple approximation.

In figure 19, the numerical solution for the pressure distribution is compared with
the inviscid solution on the plate and with asymptotic solution valid for upstream. The
numerical solution is seen to blend smoothly into the upstream asymptotic solution. Com-~
parison with the zero angle-of-attack solution given in figure 5 indicates that the approach
to the far-field solution is much slower in the angle-of-attack case.  The difference

2Computations includihg all terms appearing in equatfons (26) to (29) have been .
carried out since this paper was written and the results confirm this conclusion.
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between the numerical and inviscid solutions in the far field is due mainly to the circu- .
lation term aj. This term can be interpreted as a shift of the origin in the far-field
asymptotic solution for -X —= -. The effeet of the shift is clearly evident in the compar-
ison in figure 19. The results in figure 19 clearly show the large changes in the inviscid
pressure distribution induced by the wake. These changes take two main forms: one is
the shift in the pressure distribution in the far field mentioned previously, and the other
is the complete change in the shape of the pressure distribution near the trailing edge.

The effect of the induced presSures on the solution for the skin friction is indicated
in figure 20. In this figure, the numerical solution for the skin friction on the top and
bottom of the plate is compared with the asymptotic solution valid far upstream. The
numerical solution is seen to,join smoothly to the asymptotic solution. The far-field
solution plotted in figure 20 contains three terms: the basic Blasius value, the second
due to inviscid pressure gradients induced by incidence, and the third term due to the
favorable pressure gradient induced by the wake interaction. "These terms.combine to
yield a skin-friction variation that is quife small except very close to the trailing edge.
The effect of incidence is seen to have a fairly large effect on the value of skin friction at
the trailing edge, which was equal to C;(0) = 1.349 for a = 0. Clearly, a much larger
value of incidence will be required to drive the skin friction to zero on the upper service.
The present result seems to indicate that the point of vamshmg skin-friction should first
arise at a station upstream of the trailing edge

The solution for the dlsplacement functions Ap(X) and Apg(X) is given in fig-
ure 21 where it is compared with the far-field asymptotic solutions.- The strong effect
of incidence in displacing the wake centerline is clearly evident in this result. Again,

, attention is called to the smooth blending of the numerical and asymptotic solutions in the
far field.

TURBULENT TRAILING-EDGE FLOWS

The numerical solutions obtained in this study and in references 6 and 7 have com-
pletely confirmed the triple-deck model and the local asymptotic solutions developed in
references 1to 3. These works prov1de a sound theoretical framework for analyzing
lammar interactions at trailing edges of streamlined bodies. Unfortunately, the boundary
layer on an airfoil usually undergoes transition to turbulent flow at the Reyholds numbers
of interest. Most theoretical methods for predicting the effect of boundary layers on air-
~ foil characteristics are based on classical second-order boundary-layer theory. Although
not generally recognized, second-order boundary-layer theory for turbulent flows breaks
down at airfoil trailing edges. Consequently, the theory does not provide a satisfactory - -
basis for computihg‘boundary-layer corrections to inviscid airfoil solutions.- It is, there-
fore, important to dev_elop a syétematic theory for tréé_ting turbulent interactions in airfoil
problems.
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In the present study, aﬂformal asymptotic theory has been developed for turbulent
interacting flows, followmg broadly along the lines of the laminar tr1p1e -deck theorles s
Of course, turbulent boundary layers differ greatly from laminar flows and are controlled”
by quite dissimilar physical mechanisms. Particularly significant is the fact that turbu-
lent boundary layers tend to retain high velocities much closer to the wall than in a lam-
inar-flow. This effect is one of the main reasons for the small upstream influence’
observed in turbulent interactions. However, the general idea of the triple-deck approach’
in seeking formal asymptotlc solutions of the Navier-Stokes equations in the limit of large
Reynolds numbers is also useful for the turbulent Jproblem.

Accordingly, solutions of the turbulent airfoil problem will be developed as formal
asymptotic expansions of the full Navier-Stokes equations in the limit R - <. The tur-
bulent analysis is carried out by using the basic framework developed in references 1 to 3
for laminar trailing-edge problems. Incompress1ble flow over a thin airfoil with a cusped .
or nearly cusped tra1lmg edge at angle of attack is considered. The airfoil is assumed
SuffICIGHtly thin so that the mv1sc1d flow is described to lowest order by the flat plate
solution given, for example, by equations (3) and (4) of this paper. Here, however ‘the
angle of attack a* is-assumed to be 0(1) and not necessarily small. Transition is
assumed to occur upstream of the trailing edge and the boundary layers are assumed to
be fully developed turbulent flows in the trailing-edge region. More speclflcally, the
- velocity proﬁles in the nomnteractmg_ region are assumed to have a small defect form in
the main pai-t of the boundary layer and the usual logarithmic behavior near the wall. -

" In this section, the main features of a turbulent interaction theory that can be devel-

~ oped under these general conditions are outlined. First the behavior of boundary-layer
theory near trailing edges is examined. It is shown that a singularity arises in the solu-
tion'which causes®a 'breakdown of the second-order theory near trailing edges. - This anal-
ysis will show thata Kutta condition for the second-order solution cannot be satisfied- and ’
that the 1ift correctlon cannot 'be determined.

' The fallure of second-order theory is resolved by the mtroductmn of a local solutlon
that correctly describes the flow near trailing edges. The local solution is shown to have’
a thre'e-layer structure that superficially resembles the triple-deck structure of the lam-
inar problem. However, in the turbulent problem the physical mechanisms leading to this
' structure and the basic equations holding in each region are very different from those
arlsmg in the lammar flows.

In the present d1scussmn only a very brief descrxptlon of the turbulent mteractlon _
" theory is presented. The asymptotic structure of the local solutions governing the flow
near the trailing edge will be described and the boundary value problem that must be

~ solved to complete the solution in the trailmg—edge region will be outlined. Also a S1mple
solution for the skin friction in the tra11mg-edge region that follows from the theory is
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presented The skm-frlctlon solut1on is compared with expenmenm data of Schubauer
and Klebanoff (ref 18) and with numencal solutlons of the boundary-layer equations.

Second- Order Solution "

The second- order solution for viscous flow over an airfoil is determmed in the fol-
lowing steps:

) Determme the inviscid solution for flow over the prescrlbed airfoil shape ind
compute the pressure distribution on the surface '

(2) Solve the boundary-layer equations with the pressure distribution obtained from
the inviscid solution and compute the displacement thickness : g

-(3) Use the dlsplacement surface to compute the equivalent source/ smk dlstnbution
on the airfoil and wake surface and solve the inviscid equatlons with the source dlstnbu- '
tion asa surface boundary condition. Alternatively, the dlsplacement thxckness can be
used to form an equivalent airfoil shape that serves as a new geometry in the inv1sc1d_ .
solution. '

- This well-known procedure can be embedded in a formal asymptotic expansion. for
large Reynolds numbers. However, because of the presence of a singularity in the inviscid
solution, this expansion is not uniformly valid at trailing edges. Consecmently, the second-
order solution cannot be completed and the boundary-layer corrections to the lift. coeffi- -
cient" cannot be determined. Previous airfoil calculations based on second-order boundary-
layer concepts relied on numerlcal smearmg of the t:rallmg-edge singularity to obtain
solutions :

A smgularlty appears at the trallmg edge in the inviscid solutlon for all hftmg air-
foils with a sharp trailing edge. For an airfoil with a cusped trailing edge the pressure '
distribution on the surface exhibits a square-root behavior. . This is 111ustrated in figure 22
where the steps leading to the nonuniformity of the second-order theory are outlined Near
the tra111ng edge, the pressure d1str1but10n is gwen by : '

__P_'PTE pUTE( \/-x Lsgny+ ) R ) " ) ,-—(67?')

where L is the airfoil chord and C, is a constant that depends on the incidence a*
and the shape of airfoil. For a flat plate (or a sufficiently thin alrfoﬂ) Ca can be deter-
mined from the solut1on gwen in equations (3), namely ‘ ~ : :

Cq=a* = | - Lo s T i (6T)
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The behavior of the displacement thickness near the trailmg edge can be determined
from the momentum integral equation ) L

PR

dug
d55+5dx(H 2) d: =

C; ' (68)
e : .

1
2
where 6; . is the momentum thickness, H is the shape factor, U; ‘is the streamwise
velocity external to the boundary layer, and Cjs is the skin-friction coefficient. The

displacement thickness 6] is given by

:

- 8] = Héy o , g o (69)

With'the external velocity evaluated from the inviscid solution (eqs. (67)), the second term
in equation (68) is, unbounded at the trailing edge. Since the variation of skin.frict_ion due .
to pressure variations can be shown to be equal to the order of the pressure._change,,the,. ‘
singular acceleration term in equation (68) can only be balanced by the gradient of l
momentum thickness. Thus, equatlons (67) to (69) lead to the following expansion for
the displacement thlckness as x*-0:

(0){ CQEIT(O)+ZJM+ } S er<o o

.- 6* B(0) 1 + Ca[HB(O) +€]\/-x*/L + . } . - (x*f,:é 0 (70b')‘A :

| ‘where the subscripts T and B refer to the top and bottom of the airfoﬂ respectwely
The- boundary layer tluckens on the top and thins on the bottom of the airfoil due to the -

"1mposed pressure dxstribution ThlS leads to an equivalent camber dist:ributwn 60 given
by . "'

6% = %(5?,"1* - 5?,13) = 6*(0) + Ba\/-x*/L SRR B (T1a)
‘where ' . ' L

55(0) = 3[61 £ ©) - o7 50] S (T1b)

Ba=-3 Ca[bl,'r(HT +2)- 61 B(Hp * 2)] L o (71c)

The slope of the equivalent camber distribution given in equations (71) is singular at the
trailing edge. The antisymmetric part of the second-order outer solution is determined’
by computing the inviscid flow over this camber distribution. It follows from potential
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~flow consxderatlons that the second order solut1on for the surface veloc1ty must have the
following behavior for x* 0°:

* ' B, /m)ln (x*/L) + AT o
U -1+ ca-x*/L+(°‘/>n(x/) +...seny - (12)

U";‘E o ' \/-x"yL

where Ca and Ba are the constants defined previously and AI“ is an arbxtrary
constant o

The f1rst two terms in equatxon (72) arise from the inviscid solution and the last
two-are induced by the interaction. Notice that both interaction terms are smgular The
logarlthmlc term is induced by the’ singularity in the camber distribution, while the AT .
term is an arbitrary homogeneous solution that satisfies Laplace's equatlons and the
boundary conditions.. Ordinarily this term would be excluded by the Kutta condition, which
requires the solution to be bounded at the trailing edge. It is clear from equation (72) that
this condition cannot be satisfied for any value of the constant AT. Thus, the second-.
order solution cannot be completed and the boundary-layer correction to lift cannot be
determined. It is curious that this conclusion, which follows from the simple analysis
‘given previously in this paper, has gone unrecognized in previous viscous airfoil analyses.

Interaction Theory

The results given prevxously clearly demonstrate that the standard second-order
boundary-layer theory is not umformly valid at trailing edges. To develop complete solu-
tions of viscous airfoil problems, the basic theory must be corrected to better account for
the flow near the trailing edge. In the present investigations, the method of matched
ésymptotic expansions was used to develop formal solutions for the trailing-edge region.
This approach is based on the time-averaged Navier-Stokes equations with a turbulence
closure employing a turbulent kinetic equation and an algebraic length-scale relation.
Solutions were developed in terms of a small parameter € -which here is related to the
friction velocity - u¥ in the noninteracting regién ups&eam of the trailing edge. That is,

(13)

where C; 0 is the skm-frlchon coefficient at the tralling edge as determined from solu-
tion of the noninteracting boundary-layer equations on the top of the airfoil. Asymptotlc
solutions are developed for R = « or equivalently for € ~ 0. The analysis follows very
closely a similar theory developed for interactions between turbulent boundary layers and
normal shock waves in reference 16,
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- In the brief discussion of the theory given here, only a general description of the
main results of the analysis will be provided. In addition, the present discussion will be .
limited to incompressible flows. A more complete discussion of the analysis leading to
these results along with a simple extension to compressible tramng-edge ﬂows will be .
provided in future publications.. '

From the present analysis, it has been determined that the streamwise ‘extent of
the interaction region at the trailing edge is on the order of a boundary-layer thickness;
that is, Ay* ~ 6* F €L.. . The flow near the trailing edge was found to develop a multilay- :
ered structure as illustrated in flgure 23. The solution upstream of the interaction is
divided into standard potential flow and boundary- layer regions over a streamwise length .
scale O(L). The solution in the boundary layer has a two-layer structure typical of tur- .
bulent flows; an outer wake-like region and an inner wall layer. The velocity profile in .
the outer region has a small defect form, which on the top of the plate can be wntten m
the form

U%;T ) 1<+ ef(y*/ﬁ,"i,,x*) . . | | : o ('74'):

where Ue ‘ is the velomty at the edge of the boundary layer and . 5T is the local
boundary-layer thickness. The veloclty profile in the inner layer is expressed m a law
of the,w?.ll'form~

*

= eF(y+,x*) S o -~ (75a)
Ue T : C ’ A A .

where vyt 1s a wall varlable defmed by
eyt .  (15b)

~ where v is the kmematlc coefficient of viscosity. Slm11ar expressions hold for the’ _
‘boundary-layer profiles on the lower surface. The ‘solution for noninteracting tarbulent -
boundary layers has been embedded in a formal asymptotic structure by Mellor (ref. 12), -
Yajnik (ref 13), and Bush and Fendell (refs. 14 and 15). These authors have shown that
the law of the wall and veloclty defect profiles appear as the leading terms of an asymp—
totic expansion for' R - =, Thus fully developed turbulent boundary-layer flows can be
'viewed as limiting solutions valid in this limit. The present analysis should be consldered
as an extension of these works to the t:raxlmg—edge interaction problem

" The solutxon in.the, interactlon regwn develops the three layer structure 1llustrated
infigure23 S . .
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The three layers required in the solution are _ _

- (1) An outer, basically inviscid rotational stream. ~This region includes most of the -

boundary layer and a part of the irrotational flow outside the boundary layer that is.on. .
the order of a boundary-layer thickness.

(2) An inner wall layer that is a continuation of the wall layer from upstream.

" (3) An intermediate, or blending layer that occurs between the outer and wall layers:
The blending layer is thinner than the outer layer but thicker than the wall layer.

~ The wall-layer thickness 1s defined in terms of the parameter € introduced by
Mellor in reference 12 '

Ay* ~ L , | ‘ o C 7 (16a)
where
-1 , : _ ,
€= E?R] . : (76b)

In the outer layer both the Reynolds and viscous stresses are small compared to the
inertia terms in the momentum equation. Vorticity is generated in the upstream boundary
layers and is convected, unchanged, along streamlines in the trailing-edge region. This
leads to a description of the flow as an inviscid rotational stream. A similar model was -
first proposed by Lignthill in 1953 (ref. 28) for treating interactions of oblique shock waves
with turbulent boundary layers at supersonic speeds.

The flow in the inner layer is a local equlhbrlum flow in the sense of Townsend
(ref. 29). To lowest order, the total stress (viscous plus Reynolds stresses) is constant.
across the layer and the solution is completely determined by the local skin friction.

An intermediate region is required because of a mismatch that develops between the
Reynolds stresses in the inner and outer layers. In the outer layer the Reynolds stresses
are frozen at their upstream values. In the inner layer, the Reynolds stresses are in a
local equilibrium determined by the wall friction because of thessmall scale structure of ]
the turbulence in this region. As a result, a discontinuity in Reynolds stres_ses,develops )
between the inner and outer regions. This discontinuity is resolved by the blending layer
Solutions .in the blending layer are governed by 11near1zed boundary- layer equations that '
‘involve Reynolds stresses, but not viscous stresses. Turbul_ent closure models are
required to complete the lowest order solutions in the wall and blending layer regions but.,
not in the outer region. Displacement effects generated by the two inner layers are small
and do not affect the first few terms of the solution in the inviscid outer region. Thus, the
leading terms of the outer solution can be determined without consideration of the flow :
near the wall.
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Next the form of the expansions in each region is considered. The expansion param-
“eter € defined in equation (73) is equal to the friction velocity of the upstream flow on

the top of the airfoil. It should not be confused with the previous definition of € used in.
the laminar study (i.e., faminar = R'1/8 .

Outer Layer

The coordinate stretchings for the outer region are given by
X = (x*/L)e1 y = (y*/L)1 : (17)

where the coordinate system employed in the laminar study is used. There will be some
minor differences from the notation used for the laminar analysis but the changes will be
clear and should not cause confusion.

The solution in the outer layer is dominated by contributions from the irrotational
airfoil solution. The first terms in the expansion are obtained by expressing the airfoil
solution in the inner variables defined in equations (77) and expanding the result in powers
of €. The next term comes from the upstream boundary layer and is determined by sim-
ply adding the defect part of the upstréam profile to the irrotational cohtribution.

Physically, this approximation is based on the idea that velocity variation across
the boundary layer is small in the limit of large Reynolds numbers. (See eq. (74).) Thus,
the physical picture is one of a basically irrotational flow that is slightly perturbed by
small shear flow disturbances near the wall. The resulting linear superposition of the
boundary-layer and inviscid solutions leaves the pressure distribution in the field and the
1ift coefficient of the airfoil unchanged. The nonlinear interaction of these terms produces
perturbations in the pressure distribution and lift coefficient. Thus, the expansion in the
outer region is written in the form ' ' :

x ‘ '
t - = ll/ =y + 61/2¢inv(x,y) + EwBL(y) + 63/21P (X,Y) + .. . (783.)
Ut !
‘i* =u=1+ el/zuinv(x,y) + eupr,(v) + 63/2u'(X,y) +. .. (78Db)
Urg -

where ¥ and u "are the nondimensional stream function and the streamwise Velocity
component, respectively, Ur}E is the velocity at the trailing edge predicted by the irro-
tational outer solution, and * denotes the corresponding dimensional quantities. The
vvelocity components ‘u and v are related to the stream function by the usual relations

u = ay/oy v = -3y/aX ' (79)
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The first two terms in equations (78) arise from t.he airfoil solution written in inner var-
iables and then expanded in powers of ¢. For a general airfoil with a cusped trailing edge
this yields the result S -

Yiny = - -:%C(,er3/2 cos—g- 9 ‘ (80a)
Uiy = Cazrl/2 sin% 0 - (80b)

where r and 6 are polar coordinates, with 6 measured from the positive X-axis,

given by
r= \/x2 + y2 ’ ’ - (81a)
¢ =tan~ly/x) - (81b)

Substitution of the assumed expansion into the time-averaged Navier-Stokes equatmns
leads to the following equation for the perturbation stream function:

d2u | |
___deL(Y) 6 &) | : (82)

vy = ' (X,y) = -
: y

where v2 is the Laplacian operator and §' is the perturbation vorticity. This is a
simple Poisson equation that relates the disturbance stream function to the perturbatibn
_in vorticity ¢ '. The vorticity perturbation arises from the convection of the vort1c1ty in
the upstream boundary layer along the curved streamline of the 1rrotat10na1 airfoil solu-
tion, as illustrated in figure 24. '

The Poisson equation must be solved subject to the boundary conditions
Y'Xy) -0 (r ~ ) (83a)
V' = -M= (v =0; x=0) (83b)

where V' is the perturbation velocity normal to the surface. The perturbations in
streamwise velocity and static pressure are given by the relations

u' = %ylf_ ) ' o (843)
p u o o (84b)
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These boundary conditions lead to well-posed boundary-value problems for the outer
solution. The outer solution leads to a ''slip" velocity on the surface that is resolved by
the inner layers.

The solution of the boundary-value problem can be represented as the sum of a
parﬁcdar solution plus a complementary solution. The particular solution satisfies
equation (82) but not the boundary conditions. This solution leads to a downwash on the
surface that violates the boundary condition on v' (eq. (83a)). The complementary solu-
tion is a solution of Laplace's equation that cancels this downwash. The solution for the
particular integral depends on the form of the initial velocity profile ugy (y) and on the
expression for the irrotational stream function y;,.. For general profiles, the partic-
-ular and homogeneous solutions must be found by numerical means. However, if the ini-
tial profile is represented by a Coles law of the wall/law of the wake correlation, a closed-
form expression for the particular integral can be found by analytic function theory. Coles
form for the defect profile on the upper surface can be written in the form

 Jhm(y/en) - F wiy/en)  (syssp|
uBL(y) = 0 : ‘ . . . . ( ) (85)
. . | ' . . : 6T <y :

© . where 5T‘ isa nondimensionai boundary?layer thickness defined by. the relation

o;seLaT o : . _ , - (86)

K .is the Karman constant, ”T is the Coles wake parameter, and W y/ ] is the wake
function which can be represented by a 51mp1e polynomial approximation to the cosine
.function usually employed in this descr1pt;on. Similar expressions hold for the prof11e on
the lower surface. ' : '

The particular integral evaluated in this fashion leads to closed-form expressions
for the downwash velocity on the top and bottom of the plate. The homogeneous solution.
which cancels this downwash can be found in the usual way from thin airfoil theory. This.
‘leads to a representation of the homogeneous solution in terms of a Hilbert integral that
must, in general, be evaluated by numerical quadrature. A Kutta condition, requiring the
solution to be finite at the trailing edge, is imposed as part of the solution of the homo- :
geneous problem. This condition determines the value of an arbitrary constant appearing
in the trailing-edge solution that is directly .related to the circulation constant AT
appearing in the second-order boundary-layer solution (eq. (72)). Matching the trailing-
edge solution to the second-order solution valid outside the trailing-edge region leads to
. an éxpression for the lift coefficient in the form
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€L = 2_11a*_(1 +ay€2 lln.e‘+ age? + . . ) - (87)

where aj; is a known constant and ag is a constant to be determined from a com-
plete solution of the trailing-edge problem. The ¢onstant a; as determined by match-
ing to the upstream solution (eq. (72)) is given by

a1 = 1/1(e1,x(x+ 3 - 01,000 + 9 | )

where 51T,B and HT,B .are the (nondimensional) displacement thicknesses and shape
factors at the trailing edge, respectively, as determined from the noninteraction boundary-
- layer solution. - The nondimensional displacement thicknesses 61T,B are defined by the
~relation . : s

oir B = €?Lo1T,B | (89)

_where GIT B are the dimensional displacement thickngsses. Notice that the leading
correction t’o the lift coefficient, as given in equation (87) is 0(62 In e). This term is
completely missed in standard second-order theory which leads to a correction that
is 0(e2). '

- Equations (87) and (88) indicate that the lift correction is due primarily to the differ-
ence in boundary-layer thicknesses on the top and bottom of the airfoil. In the usual situ-
ation, .GI,T > 61,B’ and the effect of the log term is to reduce the lift coefficient. The
effect of this term is most important on rear-loaded airfoils where the rear loading tends
to dramatically increase the difference in boundary-layer thickness on the top and bottom
of an airfoil." The effect of the shape of the boundary-layer_prbfiles'also influences the
lift correction through the values of Hp and Hp appearing in equation (88). Rear load-
ing tends to make the boundary layers less full on the top of the airfoil compared with the
bottom. This implies that Hp > Hp  and this, in turn, also leads to a reduction in lift.
This effect is formally of higher order since

HT,,g =1+ 06) | " (R = ) (90)

However, in practice, H is significantly different from one at Reynolds number of
interest (e.g., H =~ 1.4 for a flat plate at R = 106) and this effect can be numerically
significant.

Inner Layers

Next briefly the form of the expansions in the two inner layers near the wall is con-
sidered. (See fig. 23.) Only the solution on the airfoil surface upstream of the trailing
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edge is considered. The evolution of the inner layers into the wake leads to a similar
structure. However, solutions in the inner layei's of the wake are much more complex
and have not yet been fully developed. A major uncertainty in the wake solution is con-
ce’rned with the choice of a closure hypothesis to properly deal with a change in the sign
of the Reynolds stress near the axis.

Only the solutions on the upper surface are dealt with explicitly. The expressions
to be presented also hold on the lower side with an obvious change of notation. In the
innermost layer the solutions for the streamwise veiocity u* and Reyholds stress T*
are represented in the form of a law of the wall as '

ut = w70 (Kse) /o (v Xse) o ©(91a)
= T (X;e)T+H(+ Xe) - _ : ~ (91b)

R y* y+v/ ,—-—-T;,/p o - . (910)

where -rW(X'e) is the skin friction and u +, 7+, and y“" are nondxmensmnal wall- layer
varlables

*
!

, Substitution of these varlables into the time-averaged Nav1er-Stokes equations w1th
e~0 leads to the well-known condition that the total stress (laminar plus Reynolds

stresses) is constant across the wall layer to all orders in €. This conclusion follows
from ‘the fact that the wall-layer thickness is transcendentally small in e. The wall-layer
formulatlon is completed by the choice of a closure condition relating Reynolds ‘stress to
mean veloclty Analysis md1cates that a balance of productmn and dxssmatlon in the wall

: layer is a rational result that follows from the turbulent energy equatmn in the limit € - 0. .
' Wlth the usual model of dlss1pat10n this leads to a mixing length formula

N

‘ ++='22(y+><au+/ay+>2 o S "if.(éaz)

where £(y*) is the mixing length distribution. In this formulation the choice of 2(y*)

is strictly empirical. Careful consideration of the magnitude of the pressure gradients

in the present problem indicates that the choices commonly used for moderate-pressure=-
gradient ﬂows are appropriate here. For example, the two-layer model of Cebeci and -
Smith w1th a Van Driest damping factor is known to give very accurate solutions in incom-
pressible wall layers. It is known that the mixing length distribution is linear for large y+
and that this leads to the usual logarithmic velocity profile for y+ = . Thus, if-

i

0G+) = Ky ‘ ‘ =) 93) ¢
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where « is the Karman constant, it follows that

u* - \/—r;f‘v(x;e) p(k"11ny+ + BY) y* =) . (94a)
= 750 - ) Gr-=) - (on)

where B?Y is a universal constant, mdependent of the local value of skin frictlon. ‘With
7*(X;e) expanded in a series in ¢, the preceding result leads to an asymptotic solution
for ¢ -0 and y* - that must be matched to the inner limit of the outer solution. .

The solution for the velocity in the outer inviscid region has a similar behavior for
y —= 0. However, because the Reynolds stresses are frozen in the outer region, the coef-
ficient of the logarithmic term in the outer solution remains ’constant, equal to the friction
velocity in the noninteracting boundary layer upstream. Thus the solution in the wall layer
. does not match the outer solution. It follows that an intermediate or blending layer must
be inserted between the outer and wall layers in c'nfd'er'to obtain a continuous solution for
the Reynolds stresses across the boundary layer. '

" The requirement that the Reynolds stress be continuous leads to the condition that
the shear stress term must be retained as a leading term in the streamwise momentum
equation in the limit e - 0. This condition determines the thickness of the blending layer
to be - O(EZL). Thus a new stretched variable § is introduced to represent the solution
in the blending layer, where A

y* = €2L§ | | (95)

Consideration of the form of the velocxty profile in the upstream region and in the outer
and wall layers leads to an assumption for a solution in the blending layer of the form

u=1+el/2u,,(X,0) + elnel/k) + eﬁBL@)

+€3/21n eﬁﬁ(X) + e3/2622(x,y).+ .« . (96a)
v= 63/2\72()(,3?) .o ' | (96b)
P=Prp+ /2 (X)+ S3/2B,x) 4. ..  (96c) -
T = 52[1 + 51/2?2()(,37) +€3/21n €79, (X) + e3/2?3;‘2(x,§) . J (96d)
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where u;,,(X,0) and gL, (7) are deduced from equations (80b) and (85) and are given

wgX,0) = Cof K sgny : o)
uBL<y>-“[‘“(95)'2*T] o e

| The In terms appearmg in the precedmg expanswns are requlred in order to

match similar logarithmic terms in the inner expansions of the outer solution. These
terms enter the expansion from the logarithmic behavior of the initial profile for small y.
Consideration of the transverse momentum equation leads to the conclusion that the pres-
sure is constant across the blending layer to the order considered in equation (96c). Thus

the unknown function ~-132(X) appearing in equation (96c) can be identified with the surface
value of the pressure distribution of the outer solution. The requirement that the blending
layer solution match the solution in the wall layer leads to the conclusion that the expan-
sion for the Reynolds stress must have the same form as the expansion for: the streamwise
veloclty component. It also follows that the relative change in skin friction in the trailing-
edge region is on the order of the pressure change' that is, AT/ €2 = ( 1/ 2) as indicated
in equatlon (96d). ' : :

Substitution of the preceding expansmns into the momentum equation leads to the
"‘s1mp1e result : ' '

The, solution for the vert1ca1 velocity component V2 is obtamed from integration of the
continuity equation. : -.

VZ(X,y)— Eiumv(XO)/d%' S T e

" The solutlons for u22 and 1-2 are governed by two coupled f1rst-order lmear,
partial differential equations. These equations are derived from the streamwise momen-
tum equation and from a turbulent closure hypothesis relating Reynolds stress to mean
velocity. Since the pressure gradients on an airfoil can be relatively large, the closure
assumptmn is based on the turbulent energy equation. Since the solution of these equa-
tlons is not bemg con81dered in this presentation, they will not be written out here. Note
mmply that the momentum equation leads to a balance of linearized convective terms with
shear stress and pressure gradient terms. Only the Reynolds stresses contribute to the _
shear stress grad;ents. The pressure gradient term is impressed from the outer inviscid
solntion , (dP‘z(X) / dX) ' ‘

t
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_- The turbulent energy equation leads to a balance of advection, production, and dis-
sipation of the Reynolds stress perturbation ?’2 The contribution from pressure diffu-
- gion and other terms in the energy equation are formally smaller than these main terms.

] ~ The present formulation leads to a simple form for the skin friction that is mde--

pendent of the particular closure model assumed in the analysis. Matching of the blending
and wall-layer solutions for u* given in equatxons (94) and (96) leads to the followmg
expresswn for the skm-frlctlon coefficient: - ‘

C;(X)
Cf 0

=1- c'p(x;e) ~+.2(%.1n§E)Cp(X;ej LIy | ~ (100)

where Cj 0= 262 and Cp(X;e) is a pressure coefficient based on reference condltlons
from the .inviscid solution at the trailing edge. Equation (100) is a simple relation for the
sk1n-fr1ct10n coefficient in terms of the pressure coefficient. It is a direct requlrement
- ef matchmg and follows s_1mp1y from the three-layer structure of turbulent boundary

: 'layers near trailing edges It involves only two turbulence parameters Cf o and k.
"The parameter Cf o 1s the skin coefficient upstream of the trailing edge and « is the
Karman constant wh1ch enters from the logarlthmlc term in the initial profile.

Although the skin-friction result was derived here in the context of the trailing-edge
problem, it can be given a more general and useful interpretation. The three-léyer struc-
ture of turbulent flows also appears to apply to situations with large imposed press'urev
gradients. In this case equation (100) is valid with Cto identified with the skin-friction
coefficient upstream of the large-pressure-gradient region. The pressure coefficient is
then defined wit}i'respe_ct to reference quantities-at the beginning of the pressure change.
To check these concepts the skin-friction coefficient predicted by equation (100) was com-
pared with data of Schubauer and Klebanoff (ref. 18). In reference 18 Schubauer and
Klebanoff measured the skin-friction and pressure distributions in turbulent boundary
layers approaching separation in a moderately large adverse pressure gradient. The
skin-friction coefficient was computed-by using the experlmentally determined pressure
coefficient in equation (100). The results are ‘compared with the data in figure 25. ‘Com-

-parisons with the turbulent boundary computations of Bradshaw, Ferris,.and Atwell - .. ..
(ref. 30) obtamed with a turbulent energy approach are also mcluded ’

In thls figure the combination 1- Cp(X°e) is referred to as the first term. Th1s
one- -term solution is equwalent to the assumptlon of a constant local skin-friction coeffi-
cient (1 e., a skin-friction coefficient based on the local dynamlc pressure at the edge of
the boundary layer). This result correctly indicates the main trend of the skin-friction
variation with pressure but is in relatively poor agreement with the data. The inclusion
of the logarithmic term in the solution greatly improves the agreement with the ‘experi-
mental data. - '
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 The numerical solutions given in figuré:25 were obtained with and without a curva-
ture correction. The present results should be compared with the numerical solution
without the correction since it is. not included’in‘the present results. The agreement with
the uncorrected numerical solution is seen to be quite good throughout the pressure rise.
The better agreement with the experimental-data and -with the corrected numerical solu-
tion is probably fortuitous. However, the comparisons in figure 25 clearly indicate that-
.the logarithmic interaction term is large and that very good results are obtained with its
inclusion. These results also suggest thét't?equation' (100) can be made the basis of a sep-
aration criteria. The comparisons given tend to conﬁrm the multllayer structure of tur-
“bulent flows proposed in the present study. - -

Concluding Remarks

~ In the present investigation a formal asymptotic description of turbulent interactions
at airfoil traxhng edges was developed. The most important result of the present study
was the formulation of a boundary-value problem that governs the solutions for the inter-
:'actron pressure "distribution and lift coeff1c1ent on an airfoil. The interaction can be
"-descrlbed as an inviscid rotatmnal flow governed by a linearized Po1sson equatlon. " Work
;s currently in progress to complete the solution of these equations. Also the analysm
has recently been extended to compressmle flow and it has been demonstrated that the
ba51c formulatlon applies to the case with minor modification provided the Mach number
'near the trailing edge is less than one. Both of these developments will be described in
- ‘future publications on the subject.

. The results discussed in this section are concerned with the lifting, basically anti-

. symmetrlc problem. The effect of wake-induced displacement pressures, which was so
important in the laminar problem is absent to the order of the small parameter € con-l
sidered so far in the turbulent problem The present solutions can be carrled to higher
order in - €. The next terms in the series are l1kely to the order of €21Ine and €2, ,

__These terms involve the thickness effects of the boundary layers on the airfoil and in the

wake. However, the resulting problem is symmetrlc and so the solut1on would not affect

the l1ft coeff1c1ent to th1s order The ma] or unsolved aspects of the problem concern the
structure of the expansions in the inner layers of the wake. 'Further analysis is required

_ to clarify the nature of the solution of this complex problem.



G . ' APPENDIX
THE SIMILARITY FUNCTIONS

+*The function F{(n) arising in the symmetric problem for X large and negative
satisﬁes the differential equation and boundary conditions

: F'l" - 187)2F'1' - 36(nFi-- Fl) - 35/351/2  aw

| FI(O) =Fi00)=0 f"f(n) -0 ) - - (n =) ' (A'lb:)
It follows that

‘F [ 7/“(1/3)!/(-1/3)] - S . (n =) . (Ale)

The functions Hl(n) arising in the angle-of-attack problem for X large and nega-
tive satisfy the differential equations and boundary conditions

H{" - 18172}1{' + 94 - i)(nH{ - Hi) '=‘h1 o o (A2a)

BO-=EO=0  Hm-0 C aee am
. where | ) | |

= oS T

hg = (3/2/3)(smymy - 1) - - a2

hg = (3/21/3)(211'1'112‘- HyH) +_'3H'2'H1‘) o | . | (nz_e)

.- It can be shown that the H;(n)'s | have the following asymptotic behavior for

Hy = %Cllna/z +Cqyon + Cy3 H+‘ . o . . (A3a)
Hg = C9inlnn + Co9n + C23171/2 +Co4 +... (A3b)
H3 = C311’)1/2 Inn + C32 ln n + C3317 + C34171/2 +C35 + o 0 e - - (A3C)

233



APPENDIX - Concluded

where the constants Ci] have been determined from analytical studles in references 1
to 8 and from numerical solutions obtained in the present investigation to be

- -3(2)1/6(-2/3)!/(1/6)1 C1z ='.61/3(§1/3)l TR, S
Cyy = -3. 255 ' Cyp=3.082 . Cp3=CpiCa/K |
. 9 . | - ) (A4)
Cay = C35 /2 Ca = C11Ca1/K . . Czp=CyaCyyfk. ~ = |¥
Cgg = -17.408 A . Cyq = 16.800 . C35=(Cgy + C23)C12/K |
1/3 '

where K = 3(2)

The function Go(n) governing the trailing-edge behavior satisfies the followmg
~differentia1 equations and boundary conditions‘ .

Gy + 2GOG;; c;'2 =2@%3%c, . (a5a)
] ' . ‘ N . : . B | - .
Golm) - 1A gn=Dg =0 = - . ~==) (ASc)

where 1 v and 1y g are the values of the skin friction 8U/oZ |p and aU/ aZ|

the trailing edge and Co is a constant to be determined as part of the solution Further
details, together with typical solutions, are given in references 3 and 23.
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Figure 2.- Triple-deck structure.
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