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COMPUTATIONAL ASPECTS OF THE PREDICTION OF MULTIDIMENSIONAL
TRANSONIC FLOWS IN TURBOMACHINERY

By David A. Oliver and Panagiotis Sparis
Massachusetts Institute of Technology

INTRODUCTION

The analytical prediction and description of transonic flow in turbomachinery is
coxigplicated by three fundamental effects: (1) The fluid equations describing the transonic
reg'ime are inherently nonlinear, (2) shock waves may be present in the flow, and (3) turbo-
machine blading is geometrically complex, possessing large amounts of curvature, stagger,
and twist. Simple analytically separable solutions are therefore not readily obtainable.
(The complex geometry of a typical transonic compressor rotor is shown in fig. 1.)
Because of these analytical difficulties, a computational approach to the -prediction and
design of transonic turbomachine flows is strongly warranted. '

In the present work, a three-dimensional computation procedure for the study of -
transonic tux“-blbmaéhine fluid mechanics is described. The fluid differential equations
and corresponding differerice operators are presented, the boundary conditions for com- -
pl_ex blade shapes are described, and the computational implementation and mapping pro-
~ cedures are developed. Illustrative results of a typical unthrottled transonic rotor are
also presented.

' . FLUID EQUATIONS AND DIFFERENCE OPERATORS

The densities of mass p, momenta mj, and energy e defined by the fluid state
vector H(;q,t) are governed by the fluid conservation laws in cylindrical coordinates
(xl =r, Xp=0,and x3= z) and time t: '
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In a coordinate system fixed to a turbomachine blade rotating at angular velocity €,
the state vector U, and the flux vectors F;(U) and K(U) are

U-= [p: puy, pug, puz’e] ) v . (2)
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In equations (3), the pressure p. appears which is expressed in terms of the state vec-
tor U through the equation of state.

A time-explicit difference operator S approximating the fluid equations (eq. (1))
with second-order accuracy coupled with a local stabilizing operator D isusedto .
advance the fluid state from time level n tolevel n +1 over the interval 6t as
follows:

u™l = s+ D)U" K @)
Here, following MacCormack (ref. 1), S is formed in two steps as

v = -3l ol + 4K

sU= .zl-{u +U- -[3% A;gi@j + 5q<_(g*)]} | (5)

The operators Ai" and A{ -are the forwa.rd a.nd backward difference operators in
the coordinate directions X :

Ate(x) = f(x + 6x) -~ £(x)
ATE(x) = £(x) - £(x - 5X) : i . ' o | (6)
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If the difference operator (eq. (é)i'is applied successively in sblif steps (ref. 2) for
each coordinate direction, the numerical -stability conditions are

‘t..n Gx. ) - .
6t = Min{——1 SRR | (7
A LR ‘

At stagnation points or sonic points, the linearized version of the difference opera-
tor (eq. (5)) is neutrally stable independently of the choice of &t/ 6x;. For a genuinely
linear difference operator this occurrence is of no consequence and stable solutions of
the difference equations can be achieved. In the nonlinear case, however, the true sta-
bility of the operator at the neutral point will be determined by the higher order nonlinear
terms, and these terms will destabilize the difference operator, This numerical instabil-
1ty is an inherently numerical instability induced by higher order terms in the truncation
error. Hence the nonlinear difference operator may be stabilized by the introduction of
an artificial dissipation term of the order of.the truncation error of the difference opera-
tor. In the case of the difference operator (eq. (5)), th1s term must be of third order in
ot, 6x;. o

The global damping or stab1l1z1ng operator D, may be summanzed in the arche-

typal form -
e
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where QU) is a matfix diffusion coefficient of order 6t,6x; and x is an order 4unit‘:y
nondimensional constant, A Taylor's series expansion of this operator shows that it is "
the difference expression for the continuous diffusion operator
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The neutral stability condition of the linearized operator occurs at sonic points and stagna-
tion points, While a sonic point exists in the interior of a shock wave, the nonlinear insta-
bility could be just as important in smooth isentropic regions of transonic flow passing
continuously through the sonic point as in regions where shocks are pr'esent., Calculations
performed with the operator (eq. (5)) have confirmed this conjecture. _ For subsonic flows
up into the high subsonic reglme the undamped operators have been demonstrated to be
stable. However where the Mach number was increased into the transomc reglme numer-
ical instabilities occurred which could be eliminated with the use of the dampmg operator.

~ On the basis of the observations, the nonlinear instability should be confined to those
regions of the flow where the eigenvalues of the amplification matrix are unity, i.e., at '
sonic and stagnation points. The damping oper_ator D should then be structured such
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that it-becomes ‘significant only near the sonic -and stagnation points and not operative in
other portions of the flow. A damping-operator with such characteristicsis™--. ' e
D=fMD, . R Y ) i
where f(M) is a distribution function which depends upon the local Mach numbér suchﬂ o
‘that f(M)=1 for M=0 or M=1,but f(M)<<1l for M+#0 and, 1 A useful function
with such properties is the Lorentz Line shape function :

s
<

(- 1, 1 L | (1)
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w‘he're thé parameter . AM. represents the effective; width in Mach number of the distri-
bution function which peaks at M = 0 and 1. : The'use of the local damping operator ‘D..
in place of the global operator Dg can offer significant improvement in the resolution: .
of the flow while maintaining stability of the difference operator. - C

. The utility of the local damping operator is shown in ﬁgure 2 where the supercriti-
cal transonic flow of a y = 1.4 gas over a right circular cylinder has.been computed.
This calculation was performed with a minimal number of mesh points (20) distributed
over the surface of the half-cylmder to test the ut111ty of the local damping operator

BOUNDARY CONbITIONS ON BLADE SURFACES

’ The appropnate boundary cond1t1on on an. 1mpenetrab1e blade surface for an invis-
cid flow is the single condition

B u, =0 7 . . (12)

where -u, is the velocity normal to the blade surface in blade coordinates. This bound-
ary, condition is not readlly 1mplemented in the f1n1te-d1fference procedures descrlbed in
the previous sectlon because the full f1u1d state U is requ1red at each point mcludmg ‘
the boundary pomts If, as in figure 3, the boundary points are treated as intérior points
to wh1ch the d1fference equat1on (eq (5)) is to be apphed then the apphcatmn of the bound-
ary cond1t1on whi¢h consists of the determination of the state vector " ‘U - at the auxiliary -
point, must be such that only the single condition (eq. (12)) is imposed at the blade surface.
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If T is the surface of a sufficiently smooth three-dimensional body, then at each
' point M on the surface Z a triply orthogonal curvilinear coordinate system may be -
defined consisﬁng of the local normal ¢ to the surface I .at the point M and two
curves of the surface Z(n and &) that are normal to each other at the point M. If
dn d7,and ds are the differential arc lengths along the axes &, 7, and ', respec-
tively, then

. . ~
ds = hg dt
dT=hrdn) | - (13)
dn = by At |

The equations of motion may be expressed in the curvilinear coordinate éystem £,

and R, of the surface Z in the direction of the axes ¢ and 7, the equatlons of
motion may be written in the following form, correct only for points on the surface -2

(ref. 3): ‘ 4 c ‘ A
o, 1 8,h )+i-hu e(unp)—o A S (14)
t h shr[® §( 7usp 81)( 8 Tp) + ‘ac - ‘ | A ).

8u u, du u8u uu 8h u28h

S, S8 _8,T_ z T-.L35% (15)
14 hg 8¢ hy a7 hsh'r an hsh'r 8¢ phg 3¢

du. u_8u_ u_8u_ uu_ 8h. wu?2 sh .

T, 8 T T 1T _Ts_s__8 s___1 8% (16)
8% hg 8 h; 8  hghy 8¢ hghy o9 ph, 87 ' :

2 2 :

Pt Y7 )_ 1%k 3% (7
a2 \Rg R;/ a228n on - '

Eqnations (14) to (17) have been obtained with the isentropic aSSumphon m which a2 is
the square of the speed of sound. By eliminating the space and time denvatives of the
density between equations (14) and (17) and replacing the general cumhnear coordinates
§,_n,and { withthelocal s, 7,and n, the followmg condmon on the normal deriva- '
tives of the normal velocity is obtained (ref. 3): '
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By center differencing the normal first and second derjvatives of the normal veloc-
ity, an approximation is obtained to u, on the auxiliary point correct to order (6n)3 if
the right-hand side of equation (18) can be approximated with.an error no greater than
O(6n). -Thus, on the surface of the body, equations (14), (15), and (16) have to be solved
while a boundary condition is applied for u, using equation (18).. Note also that the i
radii of curvature of the surface Rg and R, are required for this accurate determma-
tion of u”.  The sécond normal derivative of the normal velocity is rlgorously reqmred

n°
for a second-order accurate boundary cond1t10n the expressmn for uu being

# .
)

- . " . 2 1 L . ’.'.";«'"A" . . . P e T ‘_
u = -up 4+ Ol:(br_r) 'ﬁ] | ‘ (19) ;
However, for miidly curving shapes with .. 1/R -of order &n, a simple reflection of u,
will yield second- order accuracy without the complication of mtroducmg the second nor-
- mal derivative gwen by equation (18) Th1s s1mp11f1cat10n is used in the results to be '

2

111ustrated in the subsequent sections. R o

e . oy ®

UPSTREAM, DOWNSTREAM BOUNDARY CONDITIONS

. For a steady-state'one-‘dimensionalﬂd_uct flow., one is not freeftp specify the down-
stream boundary conditions if the upstream conditions are fully specified. This is not so
in a transonic multidimensional duct flow. In this case the upstream. conditions may be
set. However, one can still vary a single downstream variable -suctx, as the pressure and -
achieve different steady-'State solutions. This degree of freedom. ou downstream pressure
arises because the oblique shock waves present on the blades in the transonic regime are
free to move and alter their strength in response to the different downstream pressure
eonditions. .This rarige of freedom on downstream pressure is limited. It ceases;, for.. .,
example, if the downstream pressure is set high eriough so that the shocks are blown for-,
ward out of the cascade. - R : ST Dt

" In the actual calculatmn boundary conditions were set so that the mean flow at the ~
inlet plane to the duct was held fixed. Waves generated by the rotor which moved -
upstream into the inlet plane were then allowed to escape. This escape condition was
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“formulated as an axially one-dimensional characteristics construction at the inlet plane
of the computahonal domain. At the downstream exit plane the pressure was held fixed
and the remaining flow variables forced to take a zero axial gradlent condition. This
condition allows the mean flow velocity at the exit to adjust itself to the correct mass
flow; however, it distorts the structure imposed by the rotor locally in the vicinity of the
éxit plane. This distortion is a consequence of the condition of uniformity of flow in the
axial direction rather than in the streamline direction (which is helical rather than axial).

COMPUTATIONAL IMPLEMENTATION

The georhetry' of the flow field for an illustrative transonic rotor calculation is -
shown in figures 4 and 5. On the conical spinner are attached N =23 blades with an
average hub to tip ratio of 0.6. Thus the flow field of a blade element is bounded by the
. machme outer and inner casmgs in the radial direction and by two Surfaces el(r z) and

6o (r, z) in the angular d1rect10n such that '

. 6g(r,z) - 61(r,z) = AB

Ae‘ N =Ll L. o o ‘,(20)

1.

o Let rH(z) and rT(z) be the equations of the inner casmg (hub) and the outer

' ‘casmg (tip) surfaces. K 0 = 64(r ,zZ) and 6= ep(r z) are the equatmns of the blade
suction and pressure surfaces, respectively, then the computational domain boundary sur-
faces 61 and 9. may be constructed by makmg 61 =.6s and 92 = ep in the blade
region and then extending these surfaces upstream and downstream as ruled surfaces
.parallel to the machine axis as shown in figure 4.

The complex geometry formed by the extended blade and casing surfaces may be
handled computationally by carrying out the computational work ina. computational domain
= (r',6",2') obtained as a mapping of the physical domain x; = (r,6,z). The complex
. turbomachme surfaces should map into planar surfaces in the computational domain. -

Mapping functions selected for this purpose are

,r'=—r—:-‘r—H(—z_)‘-rT o : e - (21)
' rT-rH(z) _ :

o g - Bikr,z)
.- 92.(r,z) - 01(r,z)’

- (22)
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The Jacobia.n derivatives of this transformatlon gIJ = g‘;l appear in the conservation

- oF . BF, o
laws (eq. (1)) so that a_—i is replaced by & ;x:'l Similarly, the difference operator’

(eq. (5)) in the computation domain becomes

:/U*= ——’ AfF.(U étk |
veu- o b ane e e

In addition, the blade boundary conditions which require the normal derivatives in
the physical domain must be expressedin terms of computational domain coordinates.
I v denotes the three direction cosines of the blade surface normal, then the first nor-

mal derivative expressed in computational domain coordinates x; is

[ RN

SU =

9 ) : . . o (e
o i o - - @

- and the second normal derivative is

. g2 8 8 | S

“@n X
Thé derivative forms (eqs. (25) and (26)) and similar forms for .thé 8 and T deriva- -

tives replace those of equations (14) to (18) allowing finite differences to be taken in .
terms of computational domain coordinates x]T.

. 3 . ‘ N ) ’
INITIAL RESULTS FOR A TRANSONIC ROTOR
Some imtial results obtained with the foregoing method for the single-stage tran-
sonic rotor shown in figure 1 are now presented. This rotor operates with a tip Mach

number My of 1.2 and an average axial Mach number M, of 0.5. The calculation
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,Qil.lustrated here is for an open throttle situation in which the static pressure behind the
rotor remains at a low value relative to the full load design values of the rotor.

-. The calculation was performed on an-IBM 370/ 168 system. : Although this machine
has a large primary memory capac1ty, econom1c considerations neceSS1tated the use of
the secondary memory units for the storage of the U™ and Un+1 arrays. Contmuous-
input-output operatlons between the core and the secondary memory units were reqmred
for the calculation. :

The computational domain shown in figures 4 and 5 was discretized with- 67 points
in the axial direction, 30 of which are in the reglon of the blade. The radial direction
-was discretized with 12 pomts “the angular direction with 10 points. This discretization
was selected as being the minimum number of points which would provide a representa-
tive although not detailed resolution of the flow field. Considerations of economy dictated
the use of such a coarse mesh in a developmental calculation such as the one described
‘here. Future calculations may be carried out with expanded. mesh de‘nsities.

Before going into the details of the obtained results, it might be useful for the reader
to familiarize himself with the nature of the coordinate transformation and especially with
the shape of the r' = Constant and @' = Constant surfaces in the physical space. The

r' = Constant surfaces are cylindrical surfaces.as indicated. in figure 5, ranging between
- the hub and the tip. Actually the tip and the 'hub surfaces belong to the r ! —'Constant
family of surfaces. The §'= Constant surfaces are more complicated and, as it.can be
seen in figure 4, they have no degree of symmetry.  However, it is quite apparent that
.these surfaces are more geometrically related to the blade shape than the 6 = Constant
.planes Thus, some of the plots of the field properties have been made in the r', .¢',.
and z' coordinate system rather than the r; 6,and z system to improve their
clarity. ‘

In figure 6, the Mach number distribution is plott_ed in r and z coordinates along
_,the span on the §' = Constant surface that passes at the suction surface of the blade
( AB) . ’ ' o .

There is a strong shock wave originating from the trailing edge of the blade; on
the other hand, there is hardly ‘any trace of the leadmg-edge oblique shock.. The flow.
" upstream of the blade varies almost linearly from subsonic close ‘to. the hub to super- '
sonic at the tip, as expected, due to the solid body rotahon of the flow in the rotary frame.

Because of the wide open throttle cond1t1on the. flow accelerates near the hub to a_
higher Mach number (apprommately 1.9 compared to 1. 6 at the t1p) This causes the
shock wave at the trailing edge to be strongest near the hub. The flow at the supersonic
tip is relatlvely smooth the trmlmg edge shock deceleratmg the flow from a Mach num-
berof16tol3 ’ ' ’ ' i -
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In figure 7, a similar plot of the Mach number distribution on the pressure side of
the blade is illustrated. The effect of the hub geometry becomes more 'appar'ent' now
since the flow on the pressure side is accelerating. “The maximum Mach number on the
presSure side is 1.55 anid occurs at the tip$ection. ‘A shock is present also on- the pres-
sure side; however, its strength is diminishing towards the hub, where the flow becomes -
nearlif sonic. The pressure side shock appears upstream of the trailing edge and, as will
_ become apparent in the next figures, it extends to the trailing edge of the suction side of -
the adjacent blade.

In figures 8 and 9, the intersections of the sonic surface with the pressure and the
suction side have been tracedin r and =z coerdinates In ﬁgure 8, corresponding to
the pressure side (8 = 0), the presence of the tra111ng-edge shock is rather apparent
This shock is normal to the hub surface at the pressure s1de changmg to an oblique .
towards the suction s1de (fig. 9).. In hgures 10, 11, and 12, the Mach number contours
have been plotted in 6 and z coordmates on the three r' = Constant cyhnders cor-
responding to the tip, mid, and hub sections of the blade. The location and the strength
of the trailing-edge shock can now be easﬂy estabhshed ' ' : :

Figures 13 and 14 show the pressure coeff1c1ent

Cp =

(where (), indicates the properties far upstream) on the suction and pressure sides at
typical blade sections near the tip and the hub, respectively. The location of the trailing-
edge shock can be easily estabhshed on both blade surfaces.

In ﬁgure 13, the leadmg edge shock can be clearly identified. This shock appears
to be stronger on the suction side of the blade. At the pressure side near the trailing
edge, there is 'evidence' of an expansion fan that matches the local static pressure at the
two sides of the blade. With respect to the blade's lift distribution along the span, the tip
section produces little work at the open throttle condition; on the other hand, the hub sec-
tions are working very hard, but in vain, in view of the strong shock at the trailing edge
that dissipates much of the stagnation pressure rise produced at the hub.

In figure 15 is plotted the distribution of the crossflow velocity u;, on the
6 = Constant surface that passes at the blade's suction surface (6 = Af). The behavior
of uy 1is generally determined by the shape of the hub and tip; however, in the region
around the trailing edge of the blade, the appearing shock ”has a significant effect. Due to
the acceleration of the flow, the pressure upstream of the shock is lower at the hub than
at the tip; thus, a crossflow is developed from the tip to the hub. On the contrary, down-
stream of the shock, the crossflow reverses direction because now the hub pressure is
higher since the shock is stronger at the hub,
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Figures 13 and 14 also clearly show the acceleration of the flow, even in the super-
sonic region near the blade tips, due to the influence of the subsonic zone near the hub.
This is a crucial effect in such a genuinely mixed flow; for even though axially propagating
signals cannot influence the supersonic zone, it is possible for disturbances to feed back
upstream through the subsonic zone and then radially impact the upstream supersonic
flow at the tip.
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Figure 1.- Single stage transonic compressor rotor designed
with average hub-tip radius ratio of 0.6; axial Mach num-
ber, 0.5; tip Mach number, 1.2.
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Figure 2.- Test of local damping operator D(M) for
transonic flow of y = 1.4 gas over right circular
cylinder. Twenty points distributed over 6.
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Figure 5.- Computational domain (section vjéw) along axis of machine
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Figure 7.- Mach number distribution over blade surface (pressure side).
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Figure 8.- Sonic surface intersections with 6 = 6; surface (pressure side).
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Figure 9.- Sonic surface intersections with 6 = 89 surface (suction side).

- Figure 10.- Mach number contours in interblade region alonhg
r' = Constant surface (tip section).
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Figure 11.- Mach number contours in interblade region along
r' = Constant surface (midspan section).

-

- Figure 12.--Mach number contours in interblade region along
.= Constant -surface (hub section). '
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Figure 13.- Pressure coefﬁc1ent through passage and over blades at tip.
(1 m = 2 54 cm.).
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Figure 14.- Pressure coefficient through'passage and over blades at hub.
' (1in. = 2.54 cm.)
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Figure 15.- Crossflow velocity uy distributions.
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