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INTRODUCTION

The analytical prediction and description of transonic flow in turbomachinery is
complicated by three fundamental effects: (1) The fluid equations describing the transonic
regime are inherently nonlinear, (2) shock waves may be present in the flow, and (3) turbo-
machine blading is geometrically complex, possessing large amounts of curvature, stagger,
and twist. Simple analytically separable solutions are therefore not readily obtainable.
(The complex geometry of a typical transonic compressor rotor is shown in fig. 1.)
Because of these analytical difficulties, a computational approach to the prediction and
design of transonic turbomachine flows is strongly warranted.

In the present work, a three-dimensional computation procedure for the study of
transonic turbomachine fluid mechanics is described. The 'fluid differential equations
and corresponding difference operators are presented, the boundary conditions for com-
plex blade shapes are described, and the computational implementation and mapping pro-
cedures are developed. Illustrative results of a typical unthrottled transonic rotor are
also presented.

' FLUID EQUATIONS AND DIFFERENCE OPERATORS

The densities of mass p, momenta m^, and energy e defined by the fluid state
vector U_(xi,t) are governed by the fluid conservation laws in cylindrical coordinates

= r, X2 = 9, and X3 = z) and time t:

In a coordinate system fixed to a turbomachine blade rotating at angular velocity n
the state vector U, and the flux vectors F^U) and K(U) are

U= [p,pur,pu0,puz,e] (2)
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In equations (3), the pressure p appears which is expressed in terms of the state vec-
tor U through the equation of state.

A time-explicit difference operator S approximating the fluid equations (eq. (1))
with second-order accuracy coupled with a local stabilizing operator D is used to ..
advance the fluid state from time level n to level n + 1 over the interval 6t as
follows: - . . " . . . .

Un+1 = (S + D)Un

Here, following MacCormack (ref. 1), S is formed in two steps as

(4)

U - 6tK(U*)jj (5)

The operators Aj1" and A7 are the forward and backward difference operators in
the coordinate directions x^:

A+f (x) = f (x + 6x) -f(x)

A'f (x) = f (x).- f (x - 6x) (6)
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K the difference operator (eq. (5)) is applied successively in split steps (ref. 2) for
each coordinate direction, the numerical stability conditions are

6 t ^Min< - 1 — > . . . ( 7 )

At stagnation points or sonic points, the linearized version of the difference opera-
tor (eq. (5)) is neutrally stable independently of the choice of 6t/6xj. For a genuinely
linear difference operator this occurrence is of no consequence and stable solutions of
the difference equations can be achieved. In the nonlinear case, however, the true sta-
bility of the operator at the neutral point will be determined by the higher order nonlinear
terms, and these terms will destabilize the difference operator. This numerical instabil-
ity is an inherently numerical instability induced by higher order terms in the truncation
error. Hence the nonlinear difference operator may be stabilized by the introduction of
an artificial dissipation term of the order of the truncation error of the difference opera-
tor. In the case of the difference operator (eq. (5)), this term must be of third order in
6t,fiXi.

The global damping or stabilizing operator Do may be summarized in the arche-
typal form

where Q(U) is a matrix diffusion coefficient of order 6t,6xi and K is an order unity
nondimensional constant. A Taylor's series expansion of this operator shows that it is
the difference expression for the continuous diffusion operator

The neutral stability condition of the linearized operator occurs at sonic points and stagna-
tion points. While a sonic point exists in the interior of a shock wave ,J the nonlinear insta-
bility could be just as important in smooth isentropic regions of transonic flow passing
continuously through the sonic point as in regions where shocks are present. Calculations
performed with the operator (eq. (5)) have confirmed this conjecture. For subsonic flows
up into the high subsonic regime, the undamped operators have been demonstrated to be
stable. However, where the Mach number was increased into the transonic regime, numer-
ical instabilities occurred which could be eliminated with the use of the damping operator.

On the basis of the observations, the nonlinear instability should be confined to those
regions of the flow where the eigenvalues of the amplification matrix are unity, i.e., at
sonic and stagnation points. The damping operator D should then be structured such
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that- it'becdmes significant only near the sonic and 'stagnation points and not operative in
other portions of the flow. A damping operator with such characteristics is '

_

where f(M) is a distribution function which depends upon the local Mach number such
that f(M) = 1 for M = 0 ,or M = 1, but f(M) « 1 for M * 0 and'.l. A useful function
with such properties is the Lorentz Line shape function

f(M) = - - + - - (11)

where the parameter AM represents the effective, width in Mach number, of the distriT
button function which peaks at M = 0 and 1. • The/use of the local damping operator D. .
in place of the global operator Do can offer significant improvement in the resolution.
of the flow while maintaining stability of the difference operator. •

. The utility of the local damping operator is shown in figure 2 where the supercriti
cal transonic flow of a y = 1.4 gas over a right circular cylinder has .been computed.
This calculation was performed with a minimal number of mesh points (20) distributed
over the surface of the half-cylinder to test the utility of the local damping operator.
Significant improvement of the 'flow -field resolution, including the shock wave;, results.

BOUNDARY CONDITIONS ON BLADE SURFACES

The appropriate boundary condition on an. impenetrable blade surface for an invis-
cid flow is the single condition

where un is the velocity normal to the blade surface in blade coordinates. This bound-
ary, condition is not readily implemented in the finite-difference procedures described in
the previous section because the full fluid state U is required at each point including
the boundary points. If, as in figure 3, the boundary points are treated as interior points
to which the difference equation (eq. (5)) is to be applied, then the application of the bound-
ary condition, which consists of the determination of the state vector U at the auxiliary
point, must be such that only the single condition (eq. (12)) is imposed'at the blade surface.
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If S is the surface of a sufficiently smooth three-dimensional body, then at each
point M on the surface S a triply orthogonal curvilinear coordinate system may be
defined consisting of the local normal £ to the surface 2 at the point M and two
curves of the surface 2(77 and £) that are normal to each other at the point M. If
dn, dr, and ds are the differential arc lengths along the axes |, 77, and £, respec-
tively, then

ds = hs

dr = hT drj

dn = hn

(13)

The equations of motion may be expressed in the curvilinear coordinate system g,
rj, and £. By introducing the boundary condition un = 0 and the radii of curvature Rs

and RT of the surface 2 in the direction of the axes | and 77, the equations of
motion may be written in the following form, correct only for points on the surface -••2
(ref. 3):

8M _= 0 (14)

8US , US 8US i
 UT 8US , UTUS 8hS U

8t s hshT 877 hshT Phs

(15)

8t hT 877 hshT hshT 877 phT 877
(16)

_
2 8n 8n

(17)

Equations (14) to (17) have been obtained with the isentropic assumption in which a^ is
the square of the speed of sound. By eliminating the space and time derivatives of the
density between equations (14) and (17) and replacing the general curvilinear coordinates
£, 77, and £ with the local s, T, and n, the following condition on the normal deriva-
tives of the normal velocity is obtained (ref. 3):
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(18)

By center differencing the normal first and second derivatives' of the normal veloc-
ity, an approximation is obtained to u~ on the auxiliary point correct to order (6n)^ if
the right-hand side of equation (18) can be approximated with an error no greater than
O(6n). Thus, on the surface of the body, equations (14), (15), and (16) have to be solved
while a boundary condition is applied for un using equation (18). Note also that the
radii of curvature of the surface Rs and RT are required for this accurate determina-
tion of un. The second normal derivative of the normal velocity is rigorously required
for a second-order-accurate boundary, condition, the expression for ujj| being

' " " ' " '

un = - +

However, for mildly curving shapes with, 1/R of order 6n,,a simple reflection of un

will yield second-order accuracy without the complication of introducing the second nor-
mal derivative given by equation (18). This simplification is used in the results to be
illustrated in the subsequent sections. "-"" ' .. '"

• ' • « - . , , ' " * " • * '

UPSTREAM, DOWNSTREAM BOUNDARY CONDITIONS

For a steady-state one -dimensional duct flow, one is not free to specify the down-
stream boundary conditions if the upstream conditions are fully specified. This is not so
in a transonic multidimensional duct flow. In this case the upstream conditions may be
set. However, one can still vary a single downstream variable such, as .the pressure and
achieve different steady-state solutions. This degree of freedom on downstream pressure
arises because the oblique shock waves present on the blades in the transonic regime are
free to move and alter their strength in response to the different downstream pressure
conditions. This range of freedom on downstream pressure is limited. It ceases, for;/ ̂ .;;..
example, if the downstream pressure is set high enough so that the shocks are blown for-:

ward out of the cascade. - l - . . - ,,

In the actual calculation, boundary conditions were set so that the mean flow at the
inlet plane to the duct was held fixed. Waves generated by the rotor which moved
upstream into the inlet plane were then allowed to escape. This escape condition was
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formulated as an axially one-dimensional characteristics construction at the inlet plane
Of the computational domain. At the downstream exit plane the pressure was held fixed
and the remaining flow variables forced to take a zero axial gradient condition. This
condition allows the mean flow velocity at the exit to adjust itself to the correct mass
flow; however, it distorts the structure imposed by the rotor locally in the vicinity of the
exit plane. This distortion is a consequence of the condition of uniformity of flow in the
axial direction rather than in the streamline direction (which is helical rather than axial).

COMPUTATIONAL IMPLEMENTATION

The geometry of the flow field for an illustrative transonic rotor calculation is
shown in figures 4 and 5. On the conical spinner are attached N = 23 blades with an
average hub to tip ratio of 0.6. Thus the flow field of a blade element is bounded by the
machine outer and inner casings in the radial direction and by two surfaces 0j(r,z) and
#2(r,z) in the angular direction such that

. : ; 02(r,z) - £i(r,z) = A 0 , . . - - . .

A0^: ; ; (20)

'• ' . , • * • - , , •

Let rjjfcO and TT(Z) be the equations of the inner casing (hub) and the outer
casing (tip) surfaces. K 9 = 0s(r,z) and 0 = 0p(r,z) are the equations of the blade
suction and pressure surfaces, respectively, then the computational domain boundary sur-
faces BI and 02 may be constructed by making Oi = 0S and 62 = 0p in the blade
region and then extending these surfaces upstream and downstream as ruled surfaces
parallel to the machine axis as shown in figure 4.

The complex geometry formed by the extended blade and casing surfaces may be
handled computationally by carrying out the computational work in a computational domain
xj = (r'jO'jZ') obtained as a mapping of the physical domain Xj = (r,0,z). The complex
turbomachine surfaces should map into planar surfaces in the computational domain.
Mapping functions selected for this purpose are

r - rH(z) . .

••„ 122)02(r,z)- 0!(r,z) '
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2 = Z (23)

The Jacobian derivatives of this transformation g- appear in the conservation

laws (eq. (1)) so that —- is replaced by g,. —-. Similarly, the difference operator
SXj J 8xj

(eq. (5)) in the computation domain becomes

r(r',z')

su =-/u* +u -
- 2-r ~ r(r',z') j

(24)

In addition, the blade boundary conditions which require the normal derivatives in
the physical domain must be expressed in terms of computational domain coordinates.
If !/£. denotes the three direction cosines of the blade surface normal, then the first nor-
mal derivative expressed in computational domain coordinates xj is

^

and the second normal derivative is

(25)

8n< j
(26)

The derivative forms (eqs. (25) and (26)) and similar forms for the s and r deriva-
tives replace those of equations (14) to (18) allowing finite differences to be taken in
terms of computational domain coordinates xj.

INITIAL RESULTS FOR A TRANSONIC ROTOR

Some initial results obtained with the foregoing method for the single-stage tran-
sonic rotor shown in figure 1 are now presented. This rotor operates with a tip Mach
number MT of 1.2 and an average axial Mach number Ma of 0.5. The calculation
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illustrated here is for an open throttle situation in which the static pressure behind the
rotor remains at a low value relative to the full load design values of the rotor.

. The calculation was performed on an IBM 370/168 system. -. Although this machine
has a large primary memory capacity, economic considerations necessitated the use of
the .secondary memory units for the storage of the Un and Un+^ arrays. Continuous
input-output operations between the core and the secondary memory units were required
for the calculation. ,•. . . ,

The computational domain shown in figures 4 and 5 was discretized with 67 points
in the axial direction, 30 of which are in thej-egion of the blade. The radial direction
was discretized with 12 points, the angular direction with 10 points. This discretization
was selected as being the minimum number of points which would provide a representa-
tive although not detailed resolution of the flow field. Considerations of economy dictated
the use of such a coarse mesh in a developmental calculation such as the one described
here. Future calculations may be carried out with expanded, mesh densities.

Before going into the details of the obtained results, it might be useful for the reader
to familiarize himself with the nature of the coordinate transformation and especially with
the shape of.the r' = Constant and 01 = Constant surfaces in the physical space. The
rf = Constant surfaces are cylindrical surfaces as indicated in figure 5, ranging be.tween
the hub and the tip. Actually the tip and the hub surfaces belong to the r' = Constant t

family of surfaces. The 0' = Constant /surfaces are more complicated and, as it can be
seen in figure 4, they have no degree of symmetry. However, it is quite apparent that
these surfaces are more geometrically related to the blade shape than the 9 = Constant
planes. Thus, some of the plots of the field properties have been made in the r', .0',
and z' coordinate system rather than the r, 0, and z system to improve their
clarity. ' . :-

In figure 6, the Mach number distribution is plotted in r and z coordinates along
,the span on the 0' = Constant surface that passes at the suction surface of the blade
(0' = A0).

There is a strong shock wave originating from the trailing edge of the blade; on
the other hand, there is hardly any trace of the leading-edge oblique shock. The flow
upstream of the blade varies almost linearly from subsonic close to the hub to super-
sonic at the tip, as expected, due to the solid body rotation of the flow in the rotary frame.

Because of the wide open throttle condition, the flow accelerates near the hub to a
higher Mach number (approximately 1.9 compared to 1.6 at the tip). This causes the
shock wave at the trailing edge to be strongest near the hub. The flow at the supersonic
tip is relatively smooth, the trailing-edge shock decelerating the flow* from a Mach num-
ber of 1.6 to 1.3. * ' '•
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In figure 7, a similar plot of the Mach number distribution on the pressure side of
the blade is illustrated. The effect of the hub geometry becomes more apparent now
since the flow on the pressure side is accelerating. The maximum Mach number on the
pressure side is 1.55 arid occurs at the tip'section. A shock is present also on the pres-
sure side; however, its strength is diminishing towards the hub, where the flow becomes
nearly sonic. The pressure side shock appears upstream of the trailing edge and, as will
become apparent in the next figures, it extends to the trailing edge of the suction side of
the adjacent blade.

In figures 8 and 9, the intersections of the sonic surface with the pressure and the
suction side have been traced in r and z coordinates. In figure 8, corresponding to
the pressure side (9 =.0), the presence of the trailing-edge shock is rather apparent.
This shock is normal to the hub surface at the pressure side, changing to an oblique
towards the suction side (fig. 9). In figures 10, 11, and 12, the Mach number contours
have been plotted in 6 and z coordinates pn the three r' = Constant cylinders cor-
responding to the tip, mid, and hub sections of the blade. The location and the strength
of the trailing-edge shock can now be easily established. ' .

Figures 13 and 14 show the pressure coefficient

r - p " p °° ; '
P ~~2

Pcoa~

(where ( )00 indicates the properties far upstream) on the suction and pressure sides at
typical blade sections near the tip and the hub, respectively. The location of the trailing-
edge shock can be easily established on both blade surfaces.

In figure 13, the leading-edge shock can be clearly identified. This shock appears
to be stronger on the suction side of the blade. At the pressure side near the trailing
edge, there is evidence of an expansion fan that matches the local static pressure at the
two sides of the blade. With respect to the blade's lift distribution along the span, the tip
section produces little work at the open throttle condition; on the other hand, the hub sec-
tions are working very hard, but in vain, in view of the strong shock at the trailing edge
that dissipates much of the stagnation pressure rise produced at the hub.

In figure 15 is plotted the distribution of the crossflow velocity ur on the
e = Constant surface that passes at the blade's suction surface (8 = A0). The behavior
of ur is generally determined by the shape of the hub and tip; however, in the region
around the trailing edge of the blade, the appearing shock has a significant effect. Due to
the acceleration of the flow, the pressure upstream of the shock is lower at the hub than
at the tip; thus, a crossflow is developed from the tip to the hub. On the contrary, down-
stream of the shock, the crossflow reverses direction because now the hub pressure is
higher since the shock is stronger at the hub.
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Figures 13 and 14 also clearly show the acceleration of the flow, even in the super-
sonic region near the blade tips, due to the influence of the subsonic zone near the hub.
This is a crucial effect in such a genuinely mixed flow; for even though axially propagating
signals cannot influence the supersonic zone, it is possible for disturbances to feed back
upstream through the subsonic zone and then radially impact the upstream supersonic
flow at the tip.
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Figure 1.- Single stage transonic compressor rotor designed
with average hub-tip radius ratio of 0.6; axial Mach num-
ber, 0.5; tip Mach number, 1.2.
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Figure 2.- Test of local damping operator D(M) for
transonic flow of y = 1.4 gas over right circular
cylinder. Twenty points distributed over 6.

578



U

Figure 3. - Surface geometry.

Figure 4.- Computational domain (passage view) illustrating blades and
tf = Constant surface.
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Figure 5.- Computational domain (section view) along axis of machine
illustrating r* = Constant surfaces.
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Figure 6.-*Mach number distribution over blade surface (suction side).
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Figure 7.- Mach number distribution over blade surface (pressure side).

Figure 8.- Sonic surface intersections with 9 = 0j surface (pressure side).
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Figure 9.- Sonic surface intersections with 6 = 62 surface (suction side).

Figure 10.- Mach number contours in interblade region along
rr = Constant surface (tip section).
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Figure 11.- Mach number contours in interblade region along
r' = Constant surface (midspan section).

Figure 12.- Mach number contours in interblade region along
rf = Constant surface (hub section).
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Figure 13.- Pressure coefficient through passage and over blades at tip.
(1 in.; = 2.54 cm.)
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Figure 14.- Pressure coefficient through passage and over blades at hub.
(1 in. = 2.54 cm.)
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1 in.: MACH No. = 1

Figure 15.- Crossflow velocity ur distributions.
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