General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-

TEXAS A\&M UNIVERSITY

THE DESIGN, ANALYSIS AND EXPERIMENTAL EVALUATION OF AN ELASTIC MODEL WING
by
Ralph K. Caving, III and Chavalit Thisayakorn

DEPARTMENT OF ELECTRICAL ENGINEERING College Station, Texas

THE DESTGN, ANALYSIS AND EXPERTMENTAL EVALUATION OF AN ELASTIC MODEL WENE

by

Ralph K. Cavin, III and Chavalit Ihisayakorn

NAS 9-1/30ま

September 1974
Department of Electrical Engineering
Texas AkM University

TABLEE OF CONTENY'S

TITLE PAGE
Table of Contents . ii
List of Tables . iii
Hist of Figures . iv
inetion I Tntroduction . I
Bection II Design and Fabrication of the lilastiv: Wing 2
Section III Design Calculations 5
A. The structural Model . 5
B. Aerodynamiss Development 11
C. The Static Aeroelasticity Problem 16
D. Flutter Problem . 17

Section IV Description of Tests 20
A. Static Tests . 20
B. Wind Tunnel Tests . 20

Section V Comparison of Analytical and Experimental Results 21
Section VI Discussion . 26
References .. 30
Appendix A . 31
Appendix B . 44

LIST OF TABLl:

TABLE TITLE PAGE
1 Spar Dimensions 6
2 Data on Steel Ribs of the Wing 10

FIGURE
1

Elastic Model Wing Planform 3
Rib-Air Foil. 3
Cross-sectional Structural Description at theModel Wing Construction4
Definition of Gymbols for Bean Gross-section 7
Definition of Structural Nodal Displacements 7
Spanwise Sliec of Wing Showinc Derinition of Symbols 13
Definition of Positive Sence for Displacements at Node j 13
Comparison of the Static Load Test Linear Deflections 22
Comparison of the Static Load Twist Angle 22
Plots of Vertical Deflections Measured in theWind Tunnel23
Lift Coefficient C_{L} versus Angle of Attack α 24
Plots of the Twist Angles Measured from the Wind Tunnel 25
Comparison of the Elastic Deflections 27
Comparison of Twist Angles 28

THE DESIGN, ANALYSIS, ANI, FXPYGRIMENT'AT, EVATUATTON OF AN EHABTMT MODHL WTNG

by
Ralph K. Cavin, III, and Chav:ilit 'Thisayakorn

(I) Introduction

It is comon practice in preliminary static aeroelastic analyses to estimate elastic increments in stability derivatives by utilizing a clamped-vehicle stiffness matrix in conjunction with an aerodynamic influence matrix determined for the configuration by use of the linear, inviscid acrodynamic theory. These aeroelastic estimates are normally refined by 'freeing' the structure and including vehicle mass effects based upon the use of mean axis vehicle coordinate systems. [1] The computer program FLEXSTAB, which was written by The Boeing Airplane Company under the sponsorship of NASA-AMES, is a relatively sophisticated implementation of these basic ideas. FLEXSTAB has the capability of admitting two different types of structural representations. If the structural characteristics of the vehicle are adequately represen ed by the interconnection of beam elements, then FLEXSTAB accepts the beam EI and GK characteristics and generates the required structural matrices. On the other hand, the structural watrices can be generated externally in a finite element program, without the restriction of beam-like structural properties, and the results can be entered directly into FLEXSTAB.

The primary objective of this study was to develop experimental data from a carefully controlled elastic model to be used in evaluating the effectiveness of aeroelasticity programs such as FLEXSTAB for vehicles of the orbiter class. In order to accomplish this objective at a minimum cost it was decided to utilize an existing rigid 5% fuselage model for the 002 Orbiter configuration,
and to construct elastic wings for the model. The 002 Orbiter wings were straight with moderate aspect ratio and were therefore amenable to a beam-like structiaral representation.
(II) Design and Fabrication of the Elestic Wing

In view of the assumed beam-like structure of the 002 Orbiter wing, it was decided that the lond earrying member of the nodel wing should be a bean with well defined EI and $G K$ characteristics. It wis further decided that the distribution of EI and GK along the wing span should parallel the 002 EI and GK shapes provided to A\&M by the NASA-JSC Structures group. However, no attempt was made to scale the given (Stiff) beam characteristics to the 5% model. Rather the selection of EI and GK was based upon the criterion that measurable deformations and stability derivative changes should occur under expected aerodynamic load.

The basic design philosophy that evolved was that the aerodynamic loads should be transmitted to the beam via rib members. Further, in order to approximate the finite-element aerodynamic methods, the wing surface was segmented in a streamise manner and each segment was rigidly attached to a corresponding rib element. figume 1 is a planform view showing location of the Elastic Axis, as well as the basic aerodynamic sections for the wing. The NACA airfoil descriptions are given in Figure 2. As can be seen from Figure I, the elastic axis is swept aft at an angle of 9.75 degrees from the vertical.

Figure 3 depicts the basic construction of the elastic wing. Note that each panel section is made of low density Balsa Wood which is cemented to the supporting rib menber. The region between adjacent panel sections is approximately $1 / 16^{\prime \prime}$ wide and is filled with an ultra soft Neoprene gasket that

FIGUREI. Elastic Model Wing Planform (5\% 002 orbiter wing)

AIR-FOIL: ROOT NACA 0014 TIP NACA 0010

FIGURE 2. Rib-Airfoil (full size model wing cross-sections)

REAR VIEW (not to scale)

FIGURE 3. Cross" Sectional structural description at the ModelWing Construction.
is cemented to the Balsa. Stress Calculations indicated that a high strength alloy of stainless steel could be used for the wing spar but that heat treatment was required after machining. This process allowed a 2.5 safety factor on ultimate strength and about 2.3 on yield strength. (No allowance was made for dynamic loads.) Ribs were made of the same material as the spar for ease of attachment. The spar was designed to have a rectangular cross section so that the rib elements could be firmiy attached to the spar. Table I contains the dimensional data for the spar. The computed values for $E I$ and $G K$ are also listed in this table. The cross sectional moment data which wes computed by using the formuiae [4]

$$
\begin{align*}
& K=\frac{b a^{3}}{3}-\frac{64 a^{4}}{\pi^{5}} \tanh \left(\frac{\pi b}{2 a}\right. \tag{1}\\
& I_{X}=\int z^{2} d A=\frac{b a^{3}}{12} \tag{2}
\end{align*}
$$

The abore symbols are defined in Figure 4.

(III) Design Calculations

The purpose of this section is to describe the analysis methods that were utilized in the design of the elastic wing described in Section II. Two basic analytical tools were utilized in the evolution of structural specifications for the wing; namely the Doublet Lattice Aerodynamic lifting surface procedure and the finite element structural analysis method for beam members. In the following, we first discuss the analytical formulation for the general, time-dependent problem. After this broad notational framework has been established, the special static-aeroelestic and flutter problems are considered.
A. The Structural Model

As has already been pointed out, the principal load-carrying member in the wing structure is the spar element. The spar is essentially a beam element with

Spanwise Panel (location number)	\mathbf{b}- Thickness (inches)	a - Thickness (inches)	Lengths (inches)
$2-3$	0.391	0.407	
$3-4$	0.369	0.355	1.078
$4-5$	0.273	0.368	2.828
$5-6$	0.243	0.310	2.828
$6-7$	0.173	0.300	2.828
$7-8$	0.152	0.216	2.828
$8-9$	0.146	0.188	2.828
$9-10$	0.1 .9	0.152	2.828
			2.891

Table 1. Spar Dimensions (See also Figure 3)

Station Number or Spanwise Segments	Values of FI $\left(1 \mathrm{~b}-\mathrm{in}^{2}\right)$	Values of GK $\left(1 \mathrm{~b}-\mathrm{in}^{2}\right)$
3	63687.50	40090.40
4	39837.50	27166.72
5	32875.00	15314.09
6	17575.00	8730.85
7	11325.00	3718.85
8	5468.75	1990.35
9	2343.75	1156.62
10	1093.75	600.77

Table 1. (continuea)
Values of EI and GK for wing spar

$$
\begin{array}{ll}
\mathrm{G}=2.9 \times 10^{7} & \mathrm{lb} / \mathrm{in}^{2} \\
G=1.12 \times 10^{7} & \mathrm{lb} / \mathrm{in}^{2}
\end{array}
$$

FIGURE 4. Definition of symbols for beam Cross - section.

$d_{1, k}$ - vertical displacement
$d_{2^{\prime} k}-\begin{gathered}\text { bending } \\ \text { rotation }\end{gathered}$
$d_{3, k}$ - torsional rotation

FIGURE 5. Definition of structural nodal displacements.
rectangular sections of length 2.8 in. whose sectional area progressively decreases in the spanwise direction. There are 8 spar sections, each with a possibility of 6 physical degrees of freedom per section, implying a maximum of 4: structural degrees of freedom. However, in view of the planned testing of the wing at very small (less than ten degrees) anfles of attack, it was decided that in-plane bending of the spar wouid be minimal and hence only torsional and normal bending degrees of freedom were retainod for each beam element. The degrees of freedom associated with each element are âefined in Figure 5. The elemental stiffness matrix for the member show in Figure 5 therefore reduces to [2].

$$
\begin{aligned}
& \begin{array}{llllll}
d_{1, K} & d_{2, K} & d_{3, K} & d_{1, K+1} & d_{2, K+1} & d_{3, K+1}
\end{array}
\end{aligned}
$$

A composite stiffness matrix can be generated by appropriately combining the element
 the spar is straight, the assembly task is quite straight-forward in this case and cen be accomplished by overlaying successive element matrices and adding overlapping terms, e.g.,

Of course the left end of the inboard spar element is constrained to have no degrees of freedom since the flexible wing is attached to the fuselage at this point.

A genoralized mass matrix can be formulated for the flexible wing by using the results given in [2], i.e., the mass matrix for the element in rigure 5 is

$$
\begin{aligned}
& \begin{array}{llllll}
d_{1, K} & d_{2, K} & d_{3, K} & d_{1, K+1} & d_{2, K+1} & d_{3, K+1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) }
\end{aligned}
$$

As in the case of the stiffness matrix, assembly of a comosite mass matrix for the wing can be accomplished by appropriately combining the matrices, $[\mathrm{M}]_{\mathrm{K}}$, $K=1, \ldots, 8$. The effects of rib mass were included by simply adding lumped mass and inertia terms to the diagonal eiements of the spar mass matrix. A summary of rib rinss properties is given in Table 2.

Station number of ribs	Distances of ribs' c.g. off from the elastic axis (in.)	$\begin{aligned} & \text { Rib mass } \\ & (\mathrm{slnp}) \times 10^{-3} \end{aligned}$	Polar Mass moment of inertia $\left(\right.$ slug-in $\left.{ }^{2}\right) \times 10^{-2}$
3	0.706527	0.243999	0.140291
\%	0.651691	0.201206	0.098401
5	0.596856	0.163412	0.067019
6	0.542019	0.130345	0.044076
7	0.487183	0.101735	0.027786
8	0.432345	0.077311	0.016626
9	0.377509	0.0568	0.009311
10	0.322672	0.039931	0.004781

Table 2. Data on steel ribs of the wing

Since the wing spar is swept at an anglr, Λ, of 9.75 degrees, it is necessary to tiransform the spar structural matrines inla a coordinate frame compatible with
 trans formation

$$
[K]_{1}=[T][K][T]^{T P}
$$

$$
\text { where } T=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 & 0 & 0 \\
0 & \sin \theta & \cos \theta & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cos 0 & -\sin \theta \\
0 & 0 & 0 & 0 & \sin \theta & \cos \theta
\end{array}\right]
$$

B. Aerodynamics Development

The basic procedure that has been used to treat aerodynamic forces is based on the Doublet-Latice-Method (D.L.M.) [3]. Fundamentally, the D.I.M. yields a set of Aerodynamic Influence Coefficients, [D], relating the assumed harmonic motion of the normal wesh, $\{w\}$, at specified points on the wing surface to the pressure differential, $\{\Delta C p\}$, across the wing. Specifically, the integrel equation

$$
\begin{equation*}
w(x, y, z)=\frac{1}{8 \pi} \iint K(x-\xi, y-n, z-\zeta ; \quad \omega, M) \Delta C p d \xi d \sigma \tag{5}
\end{equation*}
$$

is approximately solved as

$$
\begin{equation*}
\{w\}=[D]\{\Delta C p\} \tag{6}
\end{equation*}
$$

where the velocity normal to the oscillating surface is

$$
\begin{equation*}
\{W\}=U_{\infty} \operatorname{Re}\left[\{w\} e^{i \omega t}\right], \tag{7}
\end{equation*}
$$

and the pressure differential is

$$
\begin{equation*}
\{\Delta p\}=q_{\infty} \operatorname{Re}\left[\{\Delta C p\} e^{i \omega t}\right] \tag{8}
\end{equation*}
$$

Let us now consider specifically the computation of the aerodynmic forces for later use.

In general, $\ell_{i j}$ is the distance from the $j t h$. strustural node to the $1 / 4$ chord point for the $i f \underline{t h}$, panel and $f_{i j}$ is the distance from the j th. structural node to the $3 / 4$ whord point for the $i j$ th. panel (See Figure 6). The total force acting on the ijth. panel is given by

$$
\begin{equation*}
\mathbf{f}_{i j}=\Delta p_{i j} A_{i j} \tag{9}
\end{equation*}
$$

and winl be assumed to be acting at the center of the $3 / 4$ chord point of the ijth. panel. Tn order to define the sense of the various forces and moments due to the aerodynamic forces, we must first define the asgumed positive displacement at node J. This is done in Figure 7 , the force tending to increase the d_{1} coordinate is

$$
\begin{equation*}
f_{i j}=\sum_{i=1}^{P} \quad \Delta p_{i j} A_{i j}, \tag{10}
\end{equation*}
$$

the force tending to increase d_{2} is zero and the force tending to increase d_{3} is

$$
\begin{equation*}
f_{3 j}=-\sum_{i=1}^{P} \ell_{i j} \Delta p_{i j} A_{i j}, \text { (a moment) } \tag{11}
\end{equation*}
$$

where we assume that $\ell_{i j}$ and $r_{i j}$ carry the sign of their X-coordinate location. We will further assume that there are Q spanwise panel rows and P chordwise panel rows, implying that n, the dimension of $\{d\}$ is $3 Q$.

Let us now consider the computation of the normal wash W in terms of the displacements at the structurel node points. By definition, the normal wash must be equal to the substantial derivative of the vertical displacement of the surface. (Implying no fluid flow through the surface.) In particular, we are interested in satisfying this boundary condition at the $3 / 4$ chord points for each panel. The vertical displacement at any point along the chordwise centerline through node j is

$$
\begin{equation*}
z_{j}=d_{1 j}-x d_{3 j} \tag{12}
\end{equation*}
$$

where the definitions of Figure 7 have been used. The substantial derivative is therefore

$$
\begin{equation*}
W_{j}(t)=\frac{D}{D t}\left(z_{j}\right)=\stackrel{o}{i j}^{d_{j}}-x d_{3 j}-U_{\infty} d_{3 j} \tag{i3}
\end{equation*}
$$

FIGURE 6. Span-wise slice of wing showing definition of symbols.

FIGURE 7. Definition of positive sense for displacements at node j.

Consequently, the downash at the $3 / 4$ chord of the $i j t h$, panel can be written. (Assuming no chordwise deformation).

$$
\begin{equation*}
w_{i j}(t)={\stackrel{o}{d_{i j}}}-r_{i j}{\stackrel{o}{d_{3 j}}-u_{.,} d_{3 j} .} \tag{14}
\end{equation*}
$$

further, if $W_{i j}$ is nsouned to br of exponential form,

$$
w_{i, 1}(t)=w_{i, 1} e^{i \omega t}
$$

(14) becomes

$$
\begin{equation*}
W_{i j}=d_{i j}(i \omega)-r_{i j} d_{3 j}(i \omega)-U_{\infty} d_{3 j} \tag{15}
\end{equation*}
$$

Let us now return to (6) and establish the mechanism for computing the generalized nodal forces. Denote

In (6), [D] is therefore a matrix of dimension $P Q \times P X$. Let the force vector $\{f\}$, the pressure vector, $\{\Delta \mathrm{p}\}$, etc. be defined using the same ordering as (16). In addition, let the generalized forces at node k be ordered as

$$
\begin{aligned}
& f_{1 k}=\text { vertical deformation force } \\
& f_{2 k}=\text { bending deformation moment } \\
& f_{3 k}=\text { torsional deformation moment, }
\end{aligned}
$$

and define

$$
\left\{f_{s}^{T}=\left\{\left.f_{11} f_{21} f_{31}\left|\begin{array}{l}
f_{12} \tag{17}\\
f_{22} f_{32}
\end{array}\right| \ldots \ldots \right\rvert\, f_{1 Q} f_{2 Q} f_{3 Q}\right\}\right.
$$

i.e., $\{f\}_{\text {s }}$ denotes the vector of forces acting at the structural nodes. We must now develop appropriate transformation matrices so that $\{\mathrm{f}\}_{\mathrm{s}}$ can be calculated in terms of nodal displacements \{d\}. From (10) and (11), we can write

$$
\begin{gather*}
3 Q \\
\{\mathrm{P}\}_{\mathrm{B}}=[\mathrm{G}]=[\Delta \mathrm{P}\} \tag{18}
\end{gather*}
$$

where the matrix [G] is defined as

Equation (6) implies that

$$
\begin{equation*}
\{\Delta \mathrm{p}\}=\mathrm{q}_{\infty}[\mathrm{D}]^{-1}\{\mathrm{w}\} \tag{20}
\end{equation*}
$$

However (15) allows the following relation between $\{w\}$ and $\{d\}$.

$$
\begin{equation*}
\{\omega\}=\frac{1}{U_{\infty}}[H] \quad\{d\}+\frac{\mathbf{i} \omega}{U_{\infty}}[E] \quad\{d\} \tag{2I}
\end{equation*}
$$

where [H] and [T] are defined by

If we now combine (18), (20) and (21), we can finally write

$$
\begin{equation*}
\{f\}_{\mathbf{s}}=\frac{q_{\infty}}{\mathrm{U}_{\infty}}[G][D(\omega)]^{-1}\{[H]+i \omega[E]\}\{d\} \tag{24}
\end{equation*}
$$

C. The Static Aeroelasticity Problem

The bulk of the analytical work conducted during this study involved the estimation of elastic deformations under steady flow conditions. In this case, ω is set to zero in the aerodynamic matrices and D is defined over the field of real numbers. Hence (24) reduces to

$$
\begin{equation*}
\{\rho\}_{s}=\frac{q_{\infty}}{U_{\infty}}[G][D]^{-1}[H]\{a\} \tag{25}
\end{equation*}
$$

Gravitational loading of the wing was neglected because it was found that these forces were small compared to expected aerodynamic forces. The result of combining (25) with the composite stiffness matrix whose development was outlined in Section III-A is the following expression

$$
\begin{equation*}
[K]\{d\}=\frac{q_{\infty}}{U_{\infty}}[G][D]^{-1}[H]([d\}+\alpha\{1\}) \tag{26}
\end{equation*}
$$

where [I] is a vector of length $3 Q$ each of whose components is a one. In effect, the term in parentheses on the right hand side of (26) contains a term dependent upon the elastic deformation $\{d\}$ and a term dependent upon the rigid angle of attack, α. Now it is a simple manner to indicate the solution to (26), e.g.

$$
\begin{equation*}
\left.\{d\}=\left\langle[K]-\frac{q_{\infty}}{U_{\infty}}[G][D]^{-1}[H]\right)^{-1} \frac{q_{\infty}}{U_{\infty}}[G][D]^{-1}[\mathcal{H}]\{]\right\} \alpha \tag{27}
\end{equation*}
$$

A computer program was written to implement (27) using the planar doublet lattice procedure (vortex lattice for steady ('low) to calculate the deformed wing shape under a specified Mach number, q_{w};ind rigid angle of attack, α. All theoretical aeroelasticity results described in Section IV of this report, were obtained via this procedure. A listing for this computer program is given in Appendix A.

D. Flutter Problem

The basic problem in flutter analysis is that of determining if the wing will develop oscillatory motions under test conditions. This requires the inclusion of appropriate mass matrices and an unsteady aerodynamics capability into the existing computer code).

By utilization of matrix structural analysis methods, discrete mass and stiffness matrices have been developed for the wing under consideration (See Section III). The resulting differential equation assumes the classical form
where

$$
\begin{equation*}
[M] \stackrel{o o}{\{\alpha(t)\}+[K]\{a(t)\}=\left\{F_{A}(t)\right\}, ~} \tag{28}
\end{equation*}
$$

$$
[M]=\text { mass matrix }
$$

$[\mathrm{K}]=$ stiffness matrix

$$
\begin{aligned}
\{d(t)\} & =\text { displacement vector for the structure } \\
\left\{\mathrm{F}_{\mathrm{A}}(\mathrm{t})\right\} & =\text { the applied aerodynamic torces } .
\end{aligned}
$$

The basic approach was to ascertain those frequencies at which harmonic motion can exist as a solution to (28).

It is normally convenient in structural naly::is applications to work with the frequencios and mode shapes associated wilh the unexcited strurtural systiem. If we set $\left\{\mathrm{F}_{\mathrm{A}}(\mathrm{t})\right\}$ to zero in (28) and assumc

$$
\begin{equation*}
\{d(t)\}=\{d\} e^{i \omega t}, \tag{29}
\end{equation*}
$$

then (28) becomes, upon rearranging:

$$
\begin{equation*}
\left(\omega^{2} I-[M]^{-1}[K]\right)\{d\}=\theta \tag{30}
\end{equation*}
$$

It is clear therefore that the natural frequencies for the free system correspond to the eigenvalue of $[\mathrm{M}]^{-1}[\mathrm{~K}]$ and mode shapes $\{\mathrm{d}\}$ correspond to the eigenvectors of $[\mathrm{M}]^{-1}[\mathrm{~K}]$. Let us denote the eigenvalues by ω_{i} and the associated eigenvectors by $\left\{p_{i}\right\}$, where $i=1,2, \ldots, n$. (n is the dimension of \{d\}.) Define

$$
\left.\begin{array}{l}
{[F]=\left[\begin{array}{llll}
\left\{p_{1}\right\} & \left\{p_{2}\right\} & \ldots & \left\{p_{n}\right\}
\end{array}\right]} \\
{[\Omega]=\operatorname{diagonal}\left[\omega_{1}^{2} \omega_{2}^{2} \ldots \omega_{n}^{2}\right.} \tag{32}
\end{array}\right] .
$$

The natural frequencies in radians per second are tabulated below:

$$
\begin{aligned}
& 5.241 \times 10^{10} \\
& 3.121 \times 10 \\
& 1.970 \times 10 \\
& 1.320 \times 10 \\
& 1.177 \times 10 \\
& 7.810 \times 10 \\
& 7.123 \times 10^{9} \\
& 4.483 \times 10^{0} \\
& 4.065 \times 10^{9} \\
& 3.258 \times 10^{9} \\
& 2.151 \times 10^{9} \\
& 1.789 \times 10^{9}
\end{aligned}
$$

$$
\begin{aligned}
& 1.305 \times 10^{9} \\
& 7.982 \times 108 \\
& 5.578 \times 108 \\
& 4.788 \times 10_{8}^{8} \\
& 2.383 \times 10_{8}^{8} \\
& 1.121 \times 10^{7} \\
& 5.220 \times 10_{7} \\
& 3.524 \times 10^{7} \\
& 1.992 \times 1066 \\
& 5.589 \times 10^{6} \\
& 1.059 \times 10^{4} \\
& 9.588 \times 10^{4}
\end{aligned}
$$

Table - List of squared natural frequencies - (rad/sec) ${ }^{2}$

If we return to (28) and assume that the solution $\{d(t)\}$ is written as a inear combination of the basic vectors of [F] with time varying coefficient, we have

$$
\begin{equation*}
\{a(t)\}=\sum_{i=1}^{n} \phi_{i}(t)\left\{p_{i}\right\} \tag{33}
\end{equation*}
$$

The $\phi_{i}(t)$ are unknown scalar functions of time. We can place (33) into vectormatrix form by defining

$$
\begin{equation*}
\left\{\phi^{T}(t)\right\}=\left\{\phi_{i}(t) \cdot \phi_{2}(t) \ldots \phi_{n}(t)\right\} \tag{34}
\end{equation*}
$$

and writing

$$
\begin{equation*}
\{a(t)\}=[P]\{\phi(t)\} \tag{35}
\end{equation*}
$$

The substitution of (35) into (28), with some manipulations, yields

$$
\begin{equation*}
\overbrace{\phi}^{\circ}(t)\}+[\Omega]\{\phi(t)\}=[P]^{-1}[M]^{-1}\left\{F_{A}(t)\right\} \tag{36}
\end{equation*}
$$

It follows therefore that by the introduction of the coordinates $\phi_{i}, i=1,2$, \ldots, n, the left hand side of (36) is decoupled and hence amenable to straight forward solution. However, the right hand side of (36), which has only been written in functional form to this point, is in fact a rather involved function of $\{d(t)\}$. With the substitution of (24) into (36), the dynamical equation for the elastic wing finally becone:

$$
\begin{equation*}
\left\{-\omega^{2} I+[\Omega]\right\}\{\phi(\omega)\}=\{[S(\omega)]+i \omega[T(\omega)]\}\{\phi(\omega)\} \tag{37}
\end{equation*}
$$

where $\quad[S(\omega)]=\frac{\mathrm{g}_{\infty}}{\mathrm{U}_{\infty}}[P]^{-1}[M]^{-1}[G][D(\omega)]^{-1}[H][P]$

$$
\begin{equation*}
[T(\omega)]=\frac{g_{\infty}}{U_{\infty}}[P]^{-1}[M]^{-1}[G][D(\omega)]^{-1}[E][P] \tag{38}
\end{equation*}
$$

The inverse Fourier Transform of (37) is

$$
\begin{equation*}
\left.\oint_{\phi}^{\circ 0}(t)\right\}-[T(t)] *\{\phi(t)\}+[\Omega\}\{\phi(t)\}-[S(t)] *\{\phi(t)\}=0 \tag{40}
\end{equation*}
$$

where

$$
\begin{aligned}
& {[n(t)]=-1 \quad\|u(u)\|} \\
& [T(t)]=-1 \quad[\square(w)]\}
\end{aligned}
$$

and * denotes the convolution operation. The investigation for instability or sustained oscillation modes for the elastic wing is now reduced to that of finding the location of the roots for the characteristic equation of system (40). Unfortunately, closed form expressions are not available for the elements of $[T(t)]$ and $[S(t)]$ due to the fact that $[D(\omega)]$ can only be computed numerically for specifled values of ω. Tests were made to determine if any of the lower natural frequencies corresponded to eigenvalues for (40) and it was determined that they did not.
(IV) Description of Tests

Essentially two types of tests were conducted on the elastic wing after it had been fabricated at the Texas A\&M Model Shop.

(A) Static Tests

The vortex lattice prognam was utilized to compute the aerodynamic loads that could be expected to act on each streamwise row of panels if the wing was rigid. The loads were computed for an angle of attack of 5° and $q_{\infty}=80.1 \mathrm{bs} / \mathrm{ft}^{2}{ }^{2}$ Weights equal to these spanwise loads were attached to the 1/4 chord point ior each panel scetion. Then vertical displacement measurements were made for each rib at, 25% and 75% of rib length. By using these measurements and data on the unloaded wing position it was possible to calculate the wing elastic pitching rotation.
(B) Wind Tunnel Tests

A series of six wind tunnel tests were conducted at the Texas A\&M University Wind Tunnel for two orbiter configurations. The conditions were:

$$
\begin{aligned}
& q_{\infty}=50 \mathrm{lb} / \mathrm{ft}^{2} ; \alpha=2^{\circ}, 5^{\circ}, \& 8^{\circ} \\
& q_{\infty}=80 \mathrm{lb} / \mathrm{ft}^{2} ; \alpha=2^{\circ}, 5^{\circ}, \& 8^{\circ}
\end{aligned}
$$

The elevon setting was held at zeco for all tests. These tests were conducted for the Orbiter with elastic wings and they were repeated for the orbiter with
identical rigid wings. The standard force and moment data, C_{L}, C_{D}, and C_{M}, were recorded for each nequence of tests. In addition, a Cathatometer was utilized to make vertical displacement measurements at each spanwise rib location for both the leading and trailing edges of the wing. The Cathatoneter was instrumented with a potentiometer so that displacement readings could be automatically read into the wind tunnel digital computer. One difficulty that was experienced during the conduct of the test sequence was that the Cathatometer had to be moved in order to make both leading edge and trailing edge measurements. Due to the unevenress of the floor, the reference point was therefore shifted causing some difficulty in checking test repeatability.
(v) Comparison of Analytical and Experimental Results

As indicated in Section IV, a series of static load tests were conducted to verify that the structural model used for the wing in the computer program was in good agreement with the elastic deformations actually given by the wing. Figures 8 and 9 show curves of vertical deflection and elastic twist about the y axis derived from both experimental and analytical procedures. It is clear that good correlation was obtained for both twist and displacement in the statice case, implying that the mathematical characterization of the wing was adequate.

Figures 10, 11 , and 12 summarize some of the deformation and force data collected during the wind tunne! program. Figure 10 reflects the expected result that increased rigid angle of allank yielded increused z - direction deformations. Further, for a given q_{d} and $\alpha,:$ - leflections increased uniformly in going from the wing root to the wing tip. iligure 11 provides a comparison of C_{L} for the elastic and rigid models obtained from experimental prosedure. These curves are so close to rigid C_{L} obtained from the analytical procedure that the latter has been omitted from the Figure. l'inally, figure 12 displays the elastic twist (increment in angle of attack) at $\alpha=8$ degrees for $q_{0}=$ $50 \mathrm{lb} / \mathrm{ft}^{2}$ and $80 \mathrm{lb} / \mathrm{ft}^{2}$. It is interesting, to observe that a smill maryiv,

FIGURE 8. Comparison of the static load test linear deflections. Note that the deflection along the leading edge is in general larger than along the

FIGURE 9. Comparison of the static load twist angle.

FIGURE 10. Plots of vertical deflections (in centimeters) measured in the wind tunnel.

Lift coefficient C_{L}

FIGURE II-a. Lift coefficient C_{L} versus angle of attack $a, q=50$ (leading edge).

FIGURE II-b. Lift coefficient C_{L} versus angle of attack $\alpha, q=80$ (leading edge).

FIGURE 12. Plots of the twist angles measured from the wind tunnel.
angle of twist was measured at some of the inboard wing stations. Appendix B contains a tabulation of Wind Tunnel Test Results.

Finally, we wish to offer a comparison of experimentel and theoretical aeroelastic estimates. The theoretical method outined in Section IIImC was used to estimate static aeroelasticity effects. The reader is reminded that the fuselage section of the orbiter was represented aerodynamically as a flat plate Whose streamwise length corresponded to that of the wing root. Figure 13 shows a comparison of estimated and measurements for the wing leading edge z deflection. This Figure shows that this particular set of data correlated quite well. However, from Figure 14 we find that the theory estimates for elastic increment in angle of attack lie below those obtained experimentally. In an effort to determine if this difference was due to an ineccurate estimate of local center of pressure for each panel section, the centers of pressure were shifted forward by 20% and a new solution determined. While this does give better agreement, it does not appear that the solution to this discrepancy can be obtained by a simple center of pressure shift.
(VI) Discussion

In this report we have described the design, fabrication, testing, and analysis of a quasi-elastic orbiter model. The elasticity properties were introduced by constructing beam-like straight wings for the wind tunnel model. A standard influence coefficient mathematical model was used to estimate aeroelastic effects analytically. In general good agreement was obtained between the empirical and analytical estimates of the deformed shape. However in the static aeroelasticity case, we found that the physical wing exhibited Iess bending and more twist then was predicted by theory. Although the cause of this difference is yet unexplained, there are several factors that may have contributed to it:

FIGURE I3. Comparison of the elastic deflections.

FIGURE 14. Comparison of twist angles.

1) Inadequate aerodynamic representation. (See above discussion)
2) Imprecise wind tunnel measurements. Although the wing was relatively quiet during testing some induced vibration occurred. This vibration along with cathatometer operator error almost certainly induced an unknown measurement error.
3) Structural Integrity. A continual problem that was experienced during testing was that the rib-spar weld joints could easily be destroyed by improper handing. This failure would explein spurious data points like the one at station 9 on Figure 14.
4) In-plane bending. The elastic wing was designed to have approximately the same stiffness in-plane as normal to the plane. Since the linear aerodynamic theory provides an inadequate representation for drag, it was not possible to adequately model this effect.

In sumary, the resuris obeained in this report indicate that the linear aerodynamic and theories provide an approximate estimate of aeroelastic effects. However, our results imply that the theory underestimates (at least in this case) the elastic deformation in wing twist and hence the effects of elasticity on lift. We believe that further testing and more complete aerodynamic models are required to resolve this question.

References

[I] "A Method for Predicting the Stability Characteristic of an Elastic Aixplane," Volume I, Theoretical Description by A. R. Dusto and others, D6-41064-1, December 1973.
[2] J. S. Przemieniecki, "Theory of Matrix Structural Analysis," McGraw-Hill Book Company, (1968).
[3] J. P. Giesing, T. P. Kalman, and W. P. Rodden, "Subsonic Unsteady Aerodynamics for General Configurations," Technical Report AFFDL-TR-71-5, Part I, Vol. I, (1971).
[4] I. S. Sokolnikoff, "Mathematical Theory of Elasticity," 2nd ed., New York, McGraw-Hill, 1956.

APPENDIX A Aeroelastieity Computer Program Listing

The following pages contain a listing of the computer program used to compute the elastic displacements of the model wing.

```
//TR476
SOP1907-*-C--**10,001,C-1,*THISAYAKORN
```



```
*香 DISPLACEMENT ON MDOEL WING
***
```



```
NOTATIOH
PRSPAPISIFLENGTH DF J-TM SPAR (IAICHI
M=NUMMER CF SP面WISE PARIELS
HF=FIUURER DF DF[PEES DF FPEEDAN FOR EACH PANEL
EOP\JI =JTH. FLEMFNT OF THE ELASTIC DISPLACENENT VFCTOR
FDPIJY =ITH.ELEMENT CE THERIGIC DISPLACFMENT VECTOR
I4DLICIT 2EAL*P (A-H,J-7)
```



```
DIMEMSICMN VEC124),VEC2\241
E:WENSIGN EI(#),GJ(&), EDP{241,ROP(24)
COHMON HOSAI/ GLSPAF{91
```



```
C
40 FOGMAT (1NF1?.3)
42 FOCHET {4K. AE 15.5
44 FO&ल⿱T\ (%F15.5)
```



```
4R FGGMAT {P,5!5.6}
```



```
52 FCu只T (9C10.31
```



```
70 FOOMAT (EI')
```



```
79 FOPMAT ("-***X,'LERSTH OF ENCH SPAR (INCHH')
```



```
    1
```



```
    R4 FOEATAT {'-',FZU,'REDUCET SIZE DF D-INVERSE NATRIXI\
    86 FCPMAT ('-*,T?O,*A-NATPIXP)
    89 FREMAT ("-',TZG, !ATRIXK- MATAIX A')
```



```
    G6 FOGNTT {4X,"ELFSTIC GISPLACEMCNT (ALGNG THE TRAILING EDGE\'I
    M=8
    MP=P+2
    NF=6
    M2=(A!F)?\)***
    THETAI=0.16E7?
C
    CALL OL:* |EEF:NSC,HLPHA,N)
```

$M=8$
$N F=6$

```


RiDUEE INVEPSE DTMATRIX TG THE WORKABLF SIZE
N \(\mathrm{H}=\mathrm{H}=\mathrm{N}\)
\(M N T=14+21=N\)
```

```
    iJ=0
    12=0
    Dn 890 J=1."N
        t2=12+2
        00 890 T=1,M
        I J=1.1+I
        I2=12+1
        KL=O
        Do Aga L=1,N
        DN BAB K=1,NP2
        KL=KL+1
        CEDINV(IN,KLH=DINV(I2,KL)
    ams COHTTNUE
    990 coutin!JS
        PFINT &4
        DO 897 l=1,N%N
        MRINT 4E. I
        PFINT 42, (FEQIAJVII,J),J=I, NNT:
    C
C
    CALL ARSIT (M,N,MA,ALPHA,SO, BETA,MSTAR!
C DRIMTO!IT THE A-MATEIX
    PRIMTGUT 
        0\cap G00:=1,M3
        PRINT %6.
        FFINT 4O, (AII,N],J=1,MSTAD.)
        000 C0.4TT:4}
    C
    PELD IG INPUT-RATA
            RE40 52, {T,J\J.,N=1,年
            PELD 52, (EIlJH,d=1,M!
            R\dot{E}10 50; (PISOAS(J).J=1,M)
            D0 }7\textrm{I}=1.
            OJ\(!=rJ!I)*1.120
    C
    COMTINHE
    PPINT DUT INPUT-DATA
            PRINT 70
            PEINT 7G
            PRINT 54. (GJ\J).J=1,M)
            PFINT }7
            PRINT 54. (EI(J), \=1,4)
            PRINT TB
            PFIMT TA, (PLSFER(J#,JEL,MA
    i
            DO 14 I=1,M3
            D0 14 J=1:M3
        14 ST「F「(!,d)=0.
            MM1=M-1
    C
    FORM GLOREL STIFFHESS ANO MASS NATRICES
            0त 32 11=1,N41
            I 3:4 3 = 11* 3-3
            IFIIL.GT.LIGO TN 919
C
```



```
    CALL TPFTAM (ESTIFI.THETA 1,*:F)
    TALL STIFF: (EGTIFF,FJCZH,FIC2),2,NFI
    C:LI TEFOSN (ESTIFF.THFTA INNF)
```

```
C
            MF02=1;F/2
            D\ 645 t=1,NFN2
            DO 646 J=1,NFD2
            ESTISF {I,JJ=ESTIFF{IqJ}*E*IIFICI+NFD2&J+NFOZ
    646 CONT1NUF
            Gr Tr e20
    919 CR4TINUE
                            IPL=[1+1
C
                            C&LL STIFFE IESTIFF,GS{I1PI):ET{ILPIN,IIPI,NFI
                            CALL TEFORM IESTIFF.THFTA 1;NFJ
C
929 CCVTINUE
C
            COMAINF ELEOCNTAL MATRILES INTN GLOBAL MATRIX
            ON 13 .1I=$.NF
            09 = Ki=%,NF
```



```
    13 CON*TNES
    32 C74T INUF
C
PRIVT FIUT THE ST[EF-MATPIX
            PRINT B.2
            O0 200 [=1,+43
            DRINT &B.4
```



```
                            N&TQIX K- MATGIXA
                            % 310 1=1,43
            0. 210 J=1,43
```



```
    310. CGNTINHIE
            GOTO 320
            PRINT &%
            UMFIUMGFREO EXFCUTABLE STATEMFNT FOLLONS A TRANSFER
            gn 3:1 {=1,#3
```



```
                            PRINT 44, INIFFCI:J|,J=1,M31
    311 CONTINJF
    320 CO4TT INUF
C
t
                            CALE INVTT IDIFF.M#.1.(0N6)
                            GEMéPEL!7Fi: DISPLACFMENTS
            On 33? 1=1,M3
            vEt?(1)=0.0
            #7 332 J=1, बist+a
            FCO\II=vEC.2II|+A!I,JI*ALDHA
    332 CC*TqNリJ
            N-3&G I=1.M3
            CCP{II=0.0
            0n 36!) J=1,**3
            EnD(I):EnP{It+BIFFII J|* पFCZIJ)
    360 COVTINIE
```

```
\(c\)
FFIAT ?UT NISPLACEMFNT VECTGA DETVT 72
```

```
OTNT R0
DAINTOL
DR!NT 44, (EDP(L),L=1,M3)
DRINT 72
PRINT 94
PRINT }9
OC 400 1=1,M
J=(!-1)=3+1
K={I-1\*3+2
```



```
1 O57AO,EDP\LJF57.295780
GTHER CORPILERS NAY NOT ALLGW EXPRESSIONS IN GISTPUT LIETS
```



```
HEXTENSION* GTHFR COMPILEPS WAY MDT ALLCW EXPPFSSITNS IN OUTPUT LISTS
400 cemTINOUE
    PRINT 72
    PRIMT G&
    PRTNT 95
    OC 420 I=1;M
    J={1+1) + 3+1
    N={!-1;*3+2
    M={j-1;*3+2
```



```
    OTHER COMD LERS *AY NOT ALLOW EVFMESSIONS IN OUTPIGT LISTS
    CTHEP COUPILFPS *AY HOT ALLCW EXPROSCICNS TN UUTPUT LISTS
    DTHEA COGPLLEPS MAY IGT ALITW EXPRESSILNS IN DUTPUT LISTS
    OTHEQ ROMDILERS NAY NST ALES'N EXPRESSIONS IN OUTPUT LISTS
    420 CEPTINEJE
C
    53
    154
155
```



```
#
THE DCUPLET LFTTICE F*CCFCYRE
FOE STEANY-PLANAF,SJRSCNIC, COMPPFSSIRLS FLOW.
    INCFPMENTAL NSEILLATRTY FOSNHASH FACTORS
    |BY FITTING THF VTFILEL FINNTICN FOR LIFTING FUNGTITNS WITH A DARABOLA\
    SYMENLS:
:LOH: =STATTC AMELE EF ATTACK
```



```
    EPEE =LCOBTIOPGE THE TIP POINT OV LEAFING ECCFF
    T:PTE =LRCITICU Pr THT TIP POIPY ERI TRAILING EEGE
```



```
    N =PUNPFE MF P顛ELS DFF OTLUMN
    |THE COLURHS E{HN FRDM THE LEADING TA TRAILING EOGE DF THF WINGI
    A =LEPGTM CE STMI-WIMG SD&M
    D=FT[(I)=DEPCTMTAGE !JF CHDP[WWSE LDCATION IN: THE WING
    PE#CS|JI=PERCEPTAGE IF SPAS-WISE LDUATION ON T+F WING
```



```
    OELAII,JI=:OE: #F EACH WIAG PAMEL
    XIII,JI =LEC&TIIM JF EACH SENDIPG DOINT FHT ELCH PANEL
```



```
    GKSLP = FLCPE [F MA.JNR EXIS OF THF WING
    XIAXIJ=XI COMEDINATES OF EACH COLLUMN ALONG THE MAJOR.AXIS
99 ST##
    F*)
c
15
*FXTENSIOM
*EXTE*ISION
*EXTE*SSION*
*EXTENSION*
```

132
OAINT RO
ORINT 01
DR！AT 44，（EDP（L），L＝1，M3）
RIT： 72
INT 94
On $400 \quad 1=1, \mathrm{M}$
$J=(!-1)=3+1$
$=(1-1) * 3+3$

0．57AO，EDPTLJ 57.295780

S

400 CLHT INUE
PRIMT $9 A_{1}$
DRTV
$00420 \quad I=1, M$
$J=(1+1)+\underline{3}+1$
$L=\{1-1 \mid=3+3$

CTHEA COथPILEPS MAY TiGT ALITH EXPRESSICNS TN OUTPUT LISTS
JTHEQ 「OMDILERS NEY NOT ALEON EXPRESSIONS IN OUTPUT LISTS

F＊9

SUMROUTIMF CLE $\{P E T E, S O, A L P F A, N\}$

F：DCUPLET LFTTIGE PRCFCHRE

INCFTMEATAL NSEILLATRYY FOHANASH FRCTORS
（BY FITTING THF VTFIAL FIJNCTICN FOR LIFTING FUACTITNS WITH A DARABOLAI
SYMBのLS：
LOH：＝STATTC ATHEF GF ATTACK

LIATION GN THE WING

X I：JJ FLOCATICK OF RFGCIVING PCTNT OA EACH PANEL
XIAXISI＝XI COMADINATES OF EACH COLLUMN ALONG THE MAJOR－AXIS

```
THF WING
```



```
VA =SDFFO DF SOUNM
=CFET STPF&A MACH N゙,O4RFR
IIHF =FGEF STRF&& VELOCITY
```



```
f195NS:C*
PCVSLP(A) &SLOPF(6).PERCS(11).PEPCC{7
```



```
DTAEP'SIOF: DELE{6,I]I
```



```
CSMMON/ARFA3/ DOSS(60.iON, RIRUH(10), RIRLH{INI
CMYMON /AQ:+5/ D*LA(6.4.0):FL (6,10)
C
```



```
    70 FCHMAT (EFT0.3.2110,F10.G1
        PFINT 2?O
    220 FONMAT ['1')
        p&1!tT 220
    23 FGPHAT (4X,0DATA INPUT:- - 
        ODTHT 240, ZOgTLF,FONTTE,TIPLE,TIPTE,F,M,N
```



```
            PRINT ?5U* FLPHA
    250 FOLMAT (*-1,4X, ANTLE EF ATTACK IS :,F1O.6)
C
        VA=1000.0
        W=0.0
        UN=0.0
        UTAF=250.0
        FM4CH=!)INF/VA
        AETE=OSOFTC1.0-FHACH#*2!
```



```
        50=0.50ヶ0.022503867*195NF#*2
C
        POINT 252, FIACH,RFTA, S0
```



```
    C
        PRFCALTULATISH FGO THE RCOPOINATES EF THE SENDTNG AND RECEIVINT ELEMENTS
        C&tCULATIGN EF THE :DEA OF EACH WING PANEL
        14=N+1
        |M=\+1
        MN二萳*N
        2&40 254, [PERCS(J),J=1, IM
```



```
    254 C53!0.0 (9F1!.4)
    OEINT ? ? &
    25月 FRЧNAT |'-', 4X, PFFFFNT &FFSPANWISE PANFLING LOCATICN'|
        PEIMT 305, IDEPCSIJV.J=1,IM%
        DPINT \,00
```



```
        OFINT 3O5, (OEFCC(I).IFI,IN)
        *270, 1=1,14
        #T:J|= =ェア==rg(.)
    270 cmatTNHE
    50}200 T=1.14,
    xIIII)={2nE+TS-2OOTLE|*PFPCCII)+ROSTEE
```

```
                            XITIII={TIDTP-TIPLE|*PFPCEIII+TIPLF
```



```
    290 CR.NT!N'|
```



```
        C|IM|=TIPTT-TIPLH
        AXSLP={T|PLE-%(TTLE+!.375H*(C(IM)-C(1))//R
        AXDr ri=57. 2557日0*DATAN(AXSLP)
        PEIt, P84, AXDEG
    284 FORMST (*-',SLCDE GF MAJIR AXIS =',F16.G;' DETREFSEJ
C
E SLOPE AF LINF [OHINLFTS, SLOPE, WITH ITS AFGEE, LKMOA.
        D! 374 1=1 ,N
        on 300 j=1, im
        C{J\=C(1)-{C(2)-C*IM))*PERCS(J)
        CTLC{I,J)=(P=FCR(I+1)-pepCC(IJ)*C(J)
    300 (TOMT INIJE
    XIIT(I)=XII{I)*2.25n *&ELC(I.I
    xInm(I)=xIS(I|+0.250*)ELSIT,IM)
```



```
    LA'{NA(I)=ПATA"(SILCPE{I))
```



```
    370 RCUSLD&II=IXINFIII-XIIE(IIJIA
        PDI4T 3.90
    380 FOO*AT {'-1,*X;'ANFLY CFF:ACH DOUBLFT LINE (IN DEGREES)*)
    pgINT 705, (LStOAD(I),I=1,N:
    305 FORMAT (4X,F1G*5)
C
    Nr* ENAPITING THF REOUIRED CONROINATES
    I J=0
    NO 405 I= I:N
    0^ 405 j=1,4
    4U(I.J\=(ETA(J+1H-ETA(J)I/CCOS(LAMDAII!)
    i 1NDEXJ=2-('{-j) +1
```



```
    1 *C(IM|*(ファ.J-1)|/{C(1)*M)
        OC{A(I,JI=r.FLA(I.J)/GET:
        Id=!J+1
    XI(IF,I)=XIID(I)&:-T&{.J }*SLOPF(I)
    ETAC(J)=0.GI&+{FT:(J)+きTA(J+1!)
    Y(J)=ETAE(J)
    X(T,J)=XIIC{I)+0CVSLP(I|*Y{゙心)
```



```
    FL(I,J!=X[C|!.J)-X!{X(J)
    F(IFJ)=xII,J!-XIAX(J)
    DIJ!H(J)={({J)+C(J+1)|/2.{}*0. 3750
    F[1.)
    405 cratllNJE
    PFI"!T ?aH
    3जR FRSMET ('-','XI-LEEATISHSS ALONG THE MAJOR AXIS:-')
        PP['ST 340, [XIAX(N),K=1,N|.
        PFINT 310
```



```
    0r 311 I=&.H
    р"INT 330
```


C

```
311 CRMTGNJJE
    C 314 FONT 214
    C PRINT =30
        PA[NT 340, ({X(I,J),J=l,M), I=1,N1
        pgituT z2c
    320 FCOMAT ('-*,4X,'OANEL AREA ON ONE WTNG')
        00 350 I=1;N
        PPINT % 30
    330 FCPMAT ["-'|
    PHIEIT 34D, (N=LAAT,JH,J=1, HI
    340 FORMAT (4x, 30F12.6)
    350 CRNTTV:JE
        PRINT 352
    352 FOPMAT ('-I,TSG,'LII,J) WITH SIGN DF TMFIR X-COORDINLTE LORATION g
        IEING CAPRIED ALQNG*I
            OC 353 I= L,N
            PDINT 330
            pe[nT 340, [FL!|,J|fJ=1,N
        353 CTVTIPIUE
            PKINT 354
    354 FORMAT ('->*,T2O,"RII;A) WITH SIGN OF THEIR X-COOROINATE LOCATION g
        LEING CARRIFN ALONG'।
            DO 355 I=1.N
            DFIST 3 30
            POT:1T 340, (P(I,J), J=1,H)
        355 COATINME
    C
            NOw cilculate ors(l) mNO JRS(S) matrices
    C PQIMT 3AO
```



```
            TL=1.0
            KL=0
            DN. 590 k=1,N\
            On 500 L=l44
    M KL=KL+1
    I IJ=0
    C PPTNT 415
    C 415 FOPMAT (*-*)
    C PFINT 363, KL
        00 5RO I=1,N
    C PCINT 715
    C 315 FCPMAT {4x, , %
        DO 5&0 J=1,M
        I J=\ J+1
        K4XI= X{K,L\-X!{I,J}
        YMETA= YILI-ETABJI
        YPFTA=V(L.)+TTA(.1)
        x,\x!C=x(K,L)-xIC:I,J)
        VMETAC= Y(L)-FTAC{J)
        YPETAC=Y(L)+FTMF(J)
        ROOT= OSOQTIMUII,J)**2-2.0 * XMXI*OSJM(LAMOA(I)I
    1 +YMETA*DCOS(L&MDAII\1)*MU(1,J)+XMXI**2+YMETA**2)
```



```
        1 - HSNDTIXCXISE2&Y*ETA**
    REOT= OSAPTfM|II, Jt**2->?.0 *(XMXI*OSTN(LEMDA(II)
```



```
296
```

```
DPINT
C DRGMAT!
#.*-LIGATIGNS OF EAC& mECEIVING POINT*
```



```
342
```

```
ESTIFFI 3．6）\(=\) FSTIFF（6．3）
ESTYFF\｛6，6i＝ESTIFF\｛3．5）
```

```
ENT
FND
```



```
SURR NUT 1AFS TPFERM（A．FHFTAT，NF）
MPLICIT REAL＊ 8 （A－H，T－Z）
```



```
\(00441=1+\sqrt{2} F\)
Oी \(44 \quad \mathrm{~J}=1 \mathrm{l}\) ， HF
44 THANSTI ．J．\(=0.0\)
TRANS 11．11＝1．0
TQANS（4．4）\(=1.0\)
```



```
TRAMSI2．31＝－DSTA（THETAT）
TFAFS \(\{3,2\}=D S I N(T H E T A T\) T
TFANS（3．3）＝DCOSITHETAT．）
TEANSI5，51＝OCOSITHETAT
TPANST5，61＝－DSIN（THETAT：
TFANS（6，51＝DSTN（THETAT）
TFADS（5，K）＝DCOS（THITAT）
गि \(51 I=1, N F\)
DU \(51 . j=1, \mathrm{~N} C\)
PF90（1．J）\(=0\) ．
M \(52 \mathrm{k}=\mathrm{i}\) ．NF
52 PRSDII，J）＝DPCD（I，J）＋TRANS（K，I！＊A（K，J）
51 CCNTi MUE
「O \(57 \mathrm{I}=1 . \mathrm{NF}\)
DП \(53 \mathrm{~J}=1, \mathrm{NF}\)
\(A(1, J)=0.0\)
AC \(54 \mathrm{~K}=1\) ， \(\mathrm{H} F \mathrm{~F}\)
```



```
53 COHTINDE
－FFTIJON
Ef3
```



```
SVATCLS＊－
```

THETAL
TH：TAZ
9
Fl？TLE
RCOTTE
TIPLE
TIPTE
saterf
satorg
Exf（ti）
$F X E(L 2)$
FXF（L3）
Y（．）
$\mathrm{x} \pm \mathrm{x}(\mathrm{J})$
$x \operatorname{xty}(J)$
AF\＃$\# \mathrm{~J}$.
P．I．C
$=\sin ^{*} I G L F$ FRGM FLASTIC AXIS CNTG THE Y－AXIS

＝SFMI－SPA：IHTSE LENCTH
＝LOCATIOM TF TトERETJ PEINT NPK LEADING FhGE ＝LCCITI OS TIF THE FEOT PIINT GN TRAILING EDGE
＝Enc：TIFA GF THE TIP POIHT OA LEADING EUSG
＝LICATIOH OF THF TIP POINT ON TPAILING EDGE
＝APIFLE OF \＆TTACK IN 「ESTEES
＝VEGTICAL FOACELOAD SNTO THE J－TH．SECTITN OF THE WING
＝HFNDING MENENT LTAD ONTG THE WING IFOUALS ZFRO IN HEREI
$=$ TGESICAAK．MCAEAT LSAD GMTO THF J－TH．SEGTION OF THE WING
（SAJSF［ BY VERTICAL FJRCE APPLIED DFF FRQN THE MAJOR AXIS）
$=Y$ LITATIGA CF EACH WING SECTITN
$=x$－LDSATISH ALCNG THE MAJUR AXIS

$=$ TAP SIS：HL MP：OENT ARM OF THE JTTHE SECTION

[^0]```
C
= CISTANIC OF DYNAMIC PRFSSUAE OFF FPOM THE MAJOP AXIS
C
 IWPLISIT P%ALEP(A-H,O-II
 OIMENSTON ETAIOP:I
 RIYENSIGN ETA(T1.0UC(8), FLD(4.8)
```



```
 [IMFNSITA (%)
 COMNTAN /AQFAZ/ THETA1
```



```
 F[4+ADt: /AREA5/ OELA(6,L0),FL (6.10)
C
 2 FCPMAT {&F10.6)
 B FGOMAT ("-1,4X,"ACTUAL MBNENT ARM OF EACH GOLUMN IALCNG THE SPANI:
 l
 C
 THETA2=0.70362
 PMMTLF=0.0
 PCotTTE=14.00550
 T10TE=10.0050
 T1PEz=5.98!3
 R=21.Ri)
 C
 CBLEILATT IISTSPICE GFF FROM THF MAJQR AXIS DF EACH STATION
 4P1=M+1
 a?=+*
```



```
 Mr 30 d=E,MPI
```



```
 30 5.015 \ev!
 0% 40 1=1.0
 Y(J)=0.0.5n&(cTA(J)+CTS(J+1))
```




```
 *:CO{J]=x &X(J)-X LE{J}
 40 「?:T INUE
 | :aN=M*N
 30 43 !=1.MN
 7% 47 J=1,ND?
 OEL &P(I;J)={品0
 ว! 42 k=1."!
 L={*-l\ANP?
```



```
 4% r.%a-ttyf
 4% %-5, -5
 7)}45\quadI=
 NR 45 J=I,ND?
 Ci:(i, J!=1).0
 3* & = k=1,*
 L=(v-:)\not=N
```



```
 44
 <-7!*+yt
```



```
 45 CEMTM4*E
 E =:W-THE EMACT LECATITA OF OYNAMIC ORFSSURE
 **FG=MFフ!4
 O- <0 1=1.%*
 =LT1!1=0.0
 O2 60 J=1,MFICS
 FLSIIJ=FLSI!I-REDIRNII.」!
\(345 \quad 1=1\) ，
กr． 4 与 J＝I，MP？
```



```
\(h=(v-:) \neq N\)
```



```
\(\therefore\) © ！＋Jit＝rLAII－dit SO／ 144.0
\(E\)
＝：ツ－THE EXACT LSCATITA OF DYNAMIC ORFSSURE
```



```
＝17！ \(1=0\)
ว2 \(60 \mathrm{~J}=1, \mathrm{Mr} \mathrm{C}\) S
FLSIIJ＝FL3I：I－REDIRVII．」1
```

379
379
379


```
 60 E(NTTJN!JE
 00 65, I=1.N
 REP1=0.0
 FFP2=0.0
 DN 62 I=1,N
 K=\I-1)*N+!
 FIN(K)=FLD(K)*CELA&T,J+2)/RETA
 FLD(K)=FLD{K)*SJ/14**0
 PEPl=REP1 +FLO(K)
 REP2=RE: 02-FL(I*J+2)*FLD(K)
 62 CONTJNUJE
 D口C{J)=PEP2/f:[ff
 DPC(J)= OPC{J}* = 1.20
 G5 CTMTJMUE
C
 PRINF OUT THE NGMENT ARM
 PRINT R
 PRIPT 2, (OPC(J),J=1,M)
C
 CO:PPARE TO THF OIJATEF CHORD MGMFMT ARM
 DF[AT ?, {ANO|J\,j=1,4\
c
 FREN COEFFICIENT MATSIX FDD EXTERNAL LSAO
 gn 50 1=1,Mz
 R-50 J=1,"STAD
 A(T.J)=0.0
 50
 Crat!M!|E
 0r 55 !=i,%
 *F:1:1= COC(1)
 \ 3=1=3
 #ॅ55 J=1.ND?
 j3=j*3
 A(IT-2, J#)= F(I|, |)
```



```
 55 [趿T!%!
```



```
 FAn
C
SUTERUTINE TAVFT(A,N+SCALF)
I*DLICIT PFAL*a (A-14.3-L)
```



```
C C&LL 2RAS:7(207,256,0,1)
C
GC:tF TCWM MATPIXL
 O% 1 I=1,N
 O- & J=1,N
 1 S(T:J)=A|1,J#/SCALE
 0!?=1.0
 T(=?=0.0
 57 D=T=1 t%
 =-17 J=1,N
 :T !cyr* {J)=0
 EC 1 S5 l=1,N
```



```
 =-ren
 #C = =1,
```



```
 :# :- 32 < =1,:
 :={!PvE=(4)-11 4],23.71
```

> APPENDIX B
> Tabulation of Wind Tunnel Data
> $S_{\text {RHF }}=423.06$ sq. in.,$\quad \overline{\mathrm{C}}=8.36 \mathrm{in}$.
I) $q_{\infty}=50$

| LEADING EDGE | STATION NUMBER | VERTICA | Pion |
| :---: | :---: | :---: | :---: |
| $\alpha=2.13$ | ON WING | $\delta_{L E}$ | $\delta_{\text {TE }}$ |
| $C_{L}=0.1683$ | 3 | 0.007 | -0.015 |
| $C_{D}=0.1037$ | 4 | 0.036 | -0.015 |
| $C_{P M}=-0.1684$ | 5 | 0.083 | 0.042 |
| TRAILING EDGE | 6 | 0.176 | 0.196 |
| $\alpha=2.13$ | 7 | 0.301 | 0.239 |
| $\mathrm{C}_{\mathrm{L}}=0.1679$ | 8 | 0.45 | 0.301 |
| $C_{D}=0.1016$ | 9 | 0.584 | 0.486 |
| $C_{P M}=-0.1635$ | 10 | 0.731 | 0.682 |


| LEADING EDGE$\alpha=5.37$ | STATION NUMBER <br> ON WING | VERTICAL DEFLECTION |  |
| :---: | :---: | :---: | :---: |
|  |  | $\delta_{\text {LE }}$ | $\delta_{\text {TE }}$ |
| $C_{L}=0.461$ | 3 | -0.029 | 0.028 |
| $C_{D}=0.1215$ | 4 | 0.064 | 0.079 |
| $C_{P M}=-0.3301$ | 5 | 0.21 | 0.163 |
| TRAILING EDGE | 6 | 0.442 | 0.379 |
| ${ }_{a}=5.37$ | 7 | 0.752 | 0.662 |
| $C_{L}=0.4675$ | 8 | 1.174 | 0.985 |
| $C_{D}=0.1242$ | 9 | 1.617 | 1.456 |
| $C_{P M}=-0.3341$ | 10 | 2.096 | 2.005 |


| LEAD:CNG EDGE$\alpha=8.61$ | STATIOIN NUMBER <br> ON WING | VERTICAL DEFLECTION |  |
| :---: | :---: | :---: | :---: |
|  |  | $\delta_{\text {LE }}$ | $\delta_{\text {TE }}$ |
| $\mathrm{C}_{\mathrm{L}}=0.758$ | 3 | 0.021 | 0.058 |
| $C_{D}=0.1495$ | 4 | 0.19 | 0.163 |
| $C_{P M}=-0.4591$ | 5 | 0.442 | 0.395 |
| TRAILING EDGE | 6 | 0.849 | 0.71 |
| $\alpha=8.6$ | 7 | 1.406 | 1.182 |
| $C_{L}=0.7521$ | 8 | 2.089 | 1. 724 |
| $C_{D}=0.1505$ | 9 | 2.905 | 2.491 |
| $\mathrm{C}_{\mathrm{PM}}=-0.4552$ | 10 | 3.742 | 3.258 |

II) $q_{\infty}=80$

| LEADING EDGE | STATION NUMBER | VERTICA | CTION |
| :---: | :---: | :---: | :---: |
| $\alpha=2.13$ | ON WING | $\delta_{\text {LE }}$ | $\delta_{\text {TE }}$ |
| $\mathrm{C}_{\mathrm{L}}=0.1676$ | 3 | 0.021 | -0.22 |
| $C_{D}=0.1059$ | 4 | 0.064 | 0.035 |
| $C^{\text {PM }}$ = -0.1671 | 5 | 0.132 | 0.098 |
| TRAILING EDGE | 6 | 0.282 | 0.203 |
| $\square_{\alpha}=2.13$ | 7 | 0.1463 | 0.324 |
| $C_{L}=0.167$ | 8 | 0.718 | 0.457 |
| ${ }^{C_{D}}=0.1033$ | 9 | 0.908 | 0.747 |
| $\mathrm{C}_{\mathrm{PM}}=-0.1665$ | 10 | 1.175 | 1.019 |


| LEADING EDGE$a=5.38$ | STATION NUMBER <br> ON WING | VERTICAL DEFLECTION |  |
| :---: | :---: | :---: | :---: |
|  |  | $\delta_{L E}$ | $\delta_{\text {TE }}$ |
| $C_{L}=0.4779$ | 3 | 0 | 0.02 |
| $C_{\text {D }}=0.1254$ | 4 | 0.149 | 0.155 |
| $C_{P M}=-0.3443$ | 5 | 0.408 | 0.296 |
| TRAILING EDGE | 6 | 0.78 | 0.535 |
| $\alpha=5.38$ | 7 | 1.323 | 0.95 |
| $C_{L}=0.4759$ | 8 | 2.048 | 1.562 |
| $C_{D}=0.1252$ | 9 | 2.898 | 2.286 |
| $\mathrm{C}_{\mathrm{PM}}=-0.3437$ | 10 | 3.678 | 3.165 |


| LEADING EDGE$\alpha=8.62$ | STAIION NUMBER <br> ON WING | VERTICAL DEFLECTION |  |
| :---: | :---: | :---: | :---: |
|  |  | $\delta_{L E}$ | $\delta_{\text {TE }}$. |
| $C_{\text {L }}=0.7728$ | 3 | 0.048 | 0.037 |
| $C_{D}=0.1540$ | 4 | 0.268 | 0.236 |
| $C_{P M}=-0.4776$ | 5 | 0.639 | 0.591 |
| TRAILING EDGE | 6 | 1. 335 | 1.153 |
| $\alpha=8.62$ | 7 | 2.251 | 1.891 |
| $C_{L}=0.7732$ | 8 | 3.356 | 2.87 |
| $C_{D}=0.1503$ | 9 | 4.682 | 4.115 |
| $C_{P M}=-0.4784$ | 10 | 6.136 | 5.505 |


[^0]:    FF\｛I：J\}
    ＝CONDEASEF CIRCULATIOM MATRIX

