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NUMERICAL IMPLICATIONS OF STABILIZATION
BY THE USE OF INTEGRALS
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The subject matter of this paper is some numerical experiences that we have had invol g
some of the celebrated notions of dynamic stabitization. Figure 1 demonstrates Ljapunov
stabilization, which is an analytic notion, and the example given is one of circular motion
under an arbitrary attractive central force field. There is some particle moving around in

a circle at some distance from an attractive center. The attractive force is designated by -(r).
the velocity of the spacecraft is v, and the centripetal acceleration is v2/r. By equating the
centripetal acceleration to the attractive force, we can get an expression for the angular
frequency that is the square root of the attractive force over riy/=f/r).

Notions of stabilization involve questions associated with what happens to this motion under
slight perturbation of initial conditions. Let us start out with some satellite or particie
moving in a circular orbit at a radius of «; there will be a certain angular rate associated with
that motion. If we cause a slight change to occur in the initial conditions so that the radius
of the orbit is no longer & but is o + Aa, then it may happen that the angular rate may differ
from that of the original orbit. These initial conditions should be selected in such a way that
the motion will still be circular in this example.

As a result of the possible different rates in the angular frequency, the mean anomalies (9°%)
between both satellites will be different and their difference will increase linearly in time.
Such motion is dynamically unstable because the motion of the initial problem and that of
the perturbed problem (that is, the problem with slightly perturbed initial conditions) will
deviate arbitrarily; the deviation in the mean anomaly will be as great as desired if a
sufficient length of time is allowed tn elapse:

2n v - f(r)
Wws — = =~ =& B e ——
T r r
for any

Aa>ef, ()-8, (1)>5

for sufficiently large t.

154


https://core.ac.uk/display/42886531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v=VELOCITY
v2fr =
CENTRIPETAL
ACCELERATION

—f{r) =
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Figure 1. Ljapunov stability, circular motion under arbitrary attractive central force.

The single exception to this rule is the case where the angular frequencies are in fact the
same for all possible radii. This .mplies that the force law should be given by —w?r, which
is the simple harmonic oscillator:

w, =w, =w->f () =-wr
Since the orbit (Keplerian) problem involves the force law, which is inversely proportional
to the square of the field, this i...plies that the Keplerian problem is Ljapunov unstable:
KZ
f(r)=s —
T2

A dynamic problem is going to be either Ljapunov stable or unstable This is a physical
concept and depends on the particular problem. The notion of stabilizing an unstable prob-
lem must then involve a change in the problem itself. We must look for another problem
that happens to have the same solution as the original problem, and how this can be done
will be explained later in the presentation.

The reason for looking at analytic concepts of stability is to try to improve the accuracies
associated with numerical integration. Two basic approaches have been examined: With
the two-body motion, one possibility (A) is to find a different formulation of the equations
of motion, which are dynamically stable (that is, Ljapunov stable). Such examples are
given by Baumgarte or the simple harmonic oscillator Kustaanheimo Stiefel (KS) theory.
For such formulations, the frequency of the motion—the energy~is an a priori constant. A
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second procedure (B) is to add a constraint (for example, an energy constraint) in addition
to the equations of motion.

H(X,X) = - P0 = constant

If there were such a constraint, then, when initial conditions were perturbed, those initial
conditions would have to satisfy the constraints. Variations in the initial conditions that
change the energy (in the case of frequency constraint) would not be permissible alterations
in the initial conditions.

So it happens that, for the two-body problem, concepts A and B are analytically, but not
numerically, equivalent, as will be shown later.

With perturbed motion, the Baumgarte and KS theories are not Ljapunov stable. In fact,
they are unstable, but the degree to which this instability occurs is of the order of the
perturbations and numerically this does not present any difficulty (concept A). On the
other hand, employing an energy constraint (B), the nega.ive energy P0 may or may not be
a constant. If we had a J, problem, the Keplerian energy would be a constant, yet the
Baumgarte or the KS theories would still be unstable. So, for perturbed motions, concepts
A and B are not equivalent, and the question arises as to whether it is better for numerical
integration to look for Ljapunov stable or nearly Ljapunov stable equations of motion or to
apply some kind of energy constraint. All of the evidence indicates that slightly better
answers are obtained, at least for nearly circul .r motions, by using energy constraints.

We now take a look at some of the methods of dvnamic stabilization, by which is meant
either formulations that are Ljapunov swable or nearly Ljapunov stable and/or applying an
energy constrzint. The crux of all the stabilization procedures that exist are presently being
investigated: The Baumgarte approach: a recent approach that was proposed by Stiefel,
with which we have not yet had any numerical experiences; the Baumgarte-Stiefel stabiliza-
tion procedure, which is an energy-constraint-type formulation; .nd a formulation of
applying an energy constraint directly, which is due to Nacozy and will be discussed later.

The Baumgarte procedure involves a Ljapunov-stable system of equations for the two-body
problem and is based on a method of Poincaré. [f we start with a Hamiltoniar, which is a
function of the position and conjugate momentum (velocities), then the Keplerian ~quations
of motion are given by the following canonical equations:

oH

. oH
H(XP)-X = — and P=-
oP oX

In numerical integration, it is very often desirable, especially for eccentric motion, to make

a transformation from time as an independent variable to some other independent variable,
an S variable. This S variable could be the eccentric anomaly for certain rases or a mean
anomaly in another case, but it docs not matter. The type of equation which will relate time
with the new independent variable is given by dt/ds as some functior and., in general, that
function may be a function of both position and momentum:
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dt
— = u(x.P)
ds

Poincaré defined a new Hamiltonian, which is related o the old Hamiltonian by the func-
ticn (dt/ds) times the old Hamiitonian plus a constant, and it turns out that, with this new
Hamiltonian, the equations of motion for both the space vanables and the ti.. e variable
are canonical, as shown below:

X' = oH ¢H . ou H+P)
) a» Yo opP o
g OH P
ax M ax T ax o
, oH , ow Hep)
t = —— = -
2 ™ o
P, =- —-=
° T oat
P, = .onstantsuch that |[H+P ] =0

There are three equations here that are the correct equations for dynamics. except for cer-
tain terms which are called control terms. The equatior. for Po. which is the momentum
conjugate to the time, defines Po. The S-derivative of P, should vanish. and this implies that
P, is a constant. If that constant is chosen to be equal to the negative of the energy or the
valuc of the Hamiltonian, then the control terms would be numerically equal to zero, but
dynamically they are not. Dynamically, they are some function of r and the constant
energy. So this new canonical system of equations is really an entirely diffeic:i nroblem
that happens to have the same solution as the old problem.

Baumgarte aoticed that for the function g = r the equations of motion with respect to the
new, independent variable S (that 1s, the spatial ecuation of motior: w th respect to the new.
independent variable S) are dynamically stable in the Lijapunov sense and, in fact, can be
transformed to tive KS simple harmonic oscillator equatiens. The iime equation. 7' =T,

is not dynamically stable. but tnere are wuys of getting around that problem as will be
shown later in the priper.

™\ :n though the control term. H + Po. , analytically equal to zero from the analytic solution.
wien these cquations of motion wrc numerically integrated, the control term may aevelop
some error. We will then want 1o know how this error is going to beh: ve dynamicatlv.
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To examine this formulation in the time domain, we use the following equation:

.. K? v
X=-— ;Z + — P
g LAY
| —
CONTROL TERM

We can derive an equation of motion for the control term by multiplying (dot product)
this equation by the velocity and doing some maripulation. The general solution of this
equation has the control term as a constant multiplied by r. For circular motions this
would basically be a constant. This solution tells us that if we develop some nuinerical
(nonzero) errors in the control terms, then those errors are going to persist. Hence, from
a numerical point of view, the orbital state will not be on the correct energy surface.

This is different froin our analytical approach. in which we saw that, for the two-body
problem. Baumgarte stabilization (or Ljapunov stabilizaticr) and applving an energy con-
straint are. in a way, equivalent. From the numerical point of view we see that this is not
true, because in numerical integration we create errors and those errors persist in the
Baumg:.:te approachi, so the state is not forced back onto tue correct energy surface. Thus,
applying the Ljapunov stable system of equaticns does not ensure that the state is zoing o
be an the corrzct energy surface.

T here are otier metinods of stabilization. The Stiefel approach involves multiptying the
forcing terms of the differentiai equations by the a priori energy constant divided by the
Hamiltcgnian:

Given

use

2 0 -
X=1— f(x.1).

Now this parentheses is idcally equal to 1 for the analytic solution. If we raise the exponent
to the 3/2 power, numerically it does nothing, but from a stability point of view, it does.
This Stiefel system of equations is dynamically siable in the Ljapunov sense.

The baumgarte-Stiefel control term is similar to the Baumgarte control term, except that
the multiplie is proporticnal to the velocity vector over the square of the velocity. The
multipher is sometimes called a dissipative term, becaus.. by looking at the eaquation of
motion that governs the control terin, it ca e seen that it has a solution which decays in
time:
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X= —— - — [H+P]
r X?
leads to
d
 HEB] = 7[R
= -yt
[H+P ] = constant *e™7".

Hence, the Baumgarte-Stiefel control term forces the state back onto the correct energy
surface, because the control term is forced to decay to zero.

In the Nacozy approach. at each step of the integration, the control term is forced to zero
by a virtual displacement made in the state, such that the new energy after such a displace-
ment should be the correct energy.

>
[‘{+P0] F
§X = - ———— F = acceleration.

l':’z

It happens that the Nacozy procedure is not compatible with multistep integration processes
because of the diccontinuity that occurs in the state variables. The numerical results ucin_.
single-step numerical integration methods apparently work; with the multistep metho i..
there are problems, as will be shown later.

We now turn to the perturbed problem. where we have nonconservative perturbation, such
as drag or solar radiation pressures, conservative forces, which are derived from the grading
of some potential, and control terms:

K2 - -

2 _
X = < —— X+P -VV + [control term]

r3

There are two types of integral onstraints to discuss: The Keplerian ener2y is ¢ near integral
of *he motion and has the equation:

N

d X2 K2 5 0
— — V - — =X - P
dt T T
There is also a term not inu ... here, which is the partial of the poterniial with respect to

time. Ir the absence of perturbation. this ;< 7ero, so it is a near constant of the motion.
Instead of having a P, that is 2 constant, we have to numerically integrate it. The following
is a comnarison of that integration of Po with the computation of the Hamiltonian in a

159



conservative system. The sum of Hand P is ideally zero and will be used as a control term:

.
s | —P =-X:P

The other type of integral constraint is a Jacobi integral, which is what the energy looks
like in the rotated coordinate system of the earth. It is an exact constant of the motion
tor the Tull J, potential including tesseral harmonics: it is given by the Hamiltonian for the
inertial energy plus the angular velocity of the earth dotted into the angular momentum.
When V is time-dependent due to the earth’s rotation (tesseral harmonics):

d - - 3 5, - > >
. [H+& - (RXR)] =+(X-w XR)-P=0IFP =0.

A control term based on this integral of motion can be applied. designated in later equations
by R. indicating the energy in the rotating coordinate system:

H+w - @xR)+P,)

where
dPo 1Y - -
— =-(X-wXR)+P
dt
None of these equations are integrated in the time domain. They are integrated usi g the
eccentric anomaly as an independent variable and. in addition, the time equation must be
integrated.

Baumgarte dynamic stabilization also requires a time equation that is dynamically stable.
There are five options for the time equation. The normal one would be t' = 1, the defining
relationship between t and s.

If we differentiate this equation with respect to s, we get t"” = r'/K. The reason we consider
this is that second-order systems of equations are often eusicr to integrate using class 2
methods.

The next option is the ordinary time element option:

Kr'
t=1- —

7
2P,

160



The equations of motion are essentially a constant term plus perturbation:

, K r - 5> r'P;)
T = — 1+ — [R+(P-VV)-2V]- ——
ZPO K2 PO

This is a constant when the energy P, is a constant. If the energy P, has to be integrated.
then some errors in P might be expected to crop up: if those errors are significant, then
there can be secular error type terms that will grow. There will then be timing errors
associated with the integration of t’.

This analysis leads to a third system of equations, in which a new eccentric anomaly is
related to the old eccentric anomaly by the following combination of variables:

dn K d K d

ds 2Po ds 2P, dn

Here the energy P, is in the denominator. We can transform ali of the equations of motion
by using this relationship.

The time is then related to a new time element, t*, by adding to it a modified eccentric
anomaly; as the equations of motion for t* involve only perturbations, in the absence of
such perturbations, the anomaly is zero:

. Kr'

t=r*+n- ——

2P,
dr* S .. T':,
—_— = — +(P-VV)-2V}] - —
dn K (R ( P0

The fifth possibility for deriving the time as a function of s is to use a third-order differential
equation as shown here:

t" +2Pt' =K

We have not had any numerical experiences doing this, but this equation is dynamically
stable, as are the time element equations.

Tables 1 through 7 give the numerical errors of the GEOS-B test orbit from computer sim-
ulations. The errors cre given in units of 10°® kilometers (millimeters) after integrating the
GEOS-B orbit over 50 revolutions. The perturbations are a 15-by-15 geopotential {ield.
and the results are given over a range of 60 to 100 integration steps per orbit. In the first
column, an [ indicates the integration of the inertial energy, and an R indicates ine integra-
tion of the rotational or body-fixed energy. The second column provides the particular
time equation used to get the time from the eccentric anomaly. A zero indicates the t”
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time equation, 1 corresponds to the t’ equation, 2 is the ordinary time element equation,
and 3 is the modified time element equation. The last four columns give the errors for the
Baumgarte dynamic stabilization procedure (B); the Baumgarte-Stiefel control term, which
forces the state cack onto the correct energy surface (BS): the experiences using the
Nacozy approach (N); and the ordinary time-regularized formulation, which does not have
any control term and is dynamically unstable (TR), respectively.

Related to these tables are the experiences associated with integrating Cowell’s equations
of motion using time as an independent variable. Since the motion is nearly circular,
equal step sizes in time will correspond very closely to equal step sizes in eccentric anomaly.

{ the last four columns of the tables, the three numbers in each entry correspond to intrack
- .atial errors, crosstrack spatial errors, and a timing error (which is also an intrack error),
respectively. There are three errors here because we are integrating spatial equations and a
time equation with respect to eccentric anomalies. The final time at the end of the run is
one in which the eccentric anomaly has reached a final fixed value at the end of 50 revolu-
tions. The results of these runs are as follows: The time element with the Baumgarte con-
trol terms works with the timing error and the intrack error is still somewhat large compared
to the crosstrack error. This result might be expected, because the state is no longer on the
exact energy surface but persists off the energy surface. When a modified time element is
applied, the timing error almost completely disappears, but only at the expense of intrack
errors in the spatial equation. So all the modified time element has done for us is to shift
the timing errors to spatial errors. The Nacozy process has really done nothing for us

either, and the reason for that is the discontinuities in the state. Taking finite differences
just adds errors in a2 multistep integration process. If we had a single-step integration process,
these problems would disappear, as other experiences have indicated. The time-regularized
processes are unstable and about two-thirds of the intrack error is in the timing and about
one-third is in the spatial equations. This is in agreement with analytic work that has been
done by Baumgarte.

It is the Baumgarte-Stiefel control term that gives the best answers. If, for example, the
Jacobi integral is used, we get very little timing error. The spatial errors are still a little bit
larger, but this control term gives us the best overall results. An important note is that the
Baumgarte-Stiefel control term does not require a time element. In fact, the best results
were achieved when the time element was not used and when the T" equations or the T’
equation were integrated. This is very important. Basically, the timing error results from
consistent errors in r; T' = r. If there are consistent errors in r, timing errors will develop
in integrating that system, the double integral problem.

By applying the energy constraint, the radius r is adjusted so that consistent errors in the
time do not occur, and this has led to the results presznted here. It is recommended that
an energy constraint can be applied without worrying about the timing problem at all.
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Table 1

Numerical Errors of the GEOS-B Test Orbit
for the BDSP. 60 Steps Per Orbit

ENERGY ITELEM B 8s N TR
! 0 UNSTABLE ~127.07899 -5802.32261 -5326.43758
28.97938 84.70741 1381227
561.96729 12330.44769 12123.72627
1 1 UNSTABLE -127.07197 —5802.18569 ~5326.43611
28.97945 84.70873 13.81225
28255283 6753.60074 11831.85920
| 2 UNSTABLE —127.11421 —5803.50289 —5327.36544
28.98998 84.74010 13.81054
244.29093 1405.50968 665.25084
i 3 UNSTABLE —341.064 5693.628 —~5244.249
28.77319 87.159853 6.950228
42.056 1136.962 438872
R 0 UNSTABLE - 22.85710 UNSTABLE SAME AS 10
29.93991
331.36557
f 1 UNSTABLE — 22.84957 UNSTABLE SAME AS it
29.93958
50.23874
R 2 UNSTABLE — 22.84268 UNSTABLE —5327.29464
29.95027 1381072
1251864 1799.09322
R 3 UNSTABLE — 2284268 UNSTABLE —5327.20498
29.95027 13.81074
1241565 1798.98859
NOTLS:

In the last four columns, the three - imbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an ind  :ndent variable, the irtrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 2

Numerical Errors ot the GEOS-B Test Orbit
for the BDSP. 65 Steps Per Orbit

ENERGY ITELEM 8 8s N TR
1 0 —114.19500 ~115.66616 —2006.31579 —1814.58633
2.53846 14.78646 45.74424 1.25166
1828.84252 339.48€53 4266.29205 4120.602M
i 1 —114.19606 —115.66429 —2006.27240 -1814.58677
2.53844 14.78647 45.74470 1.25165
1867.57285 261.06752 2416.86411 4031.98843
1 2 -114.18013 —115.69274 —2007.21942 ~1815.31460
2.53900 14.79099 45.76519 1.25176
204.35943 259.28441 648.56484 399.31962
I 3 -337.19 -338.474 2117.405 1936.262
3.09228 14558205 46.343831 3.169659
11.296 43.667 409.824 175.349
R 0 -101.88979 - 29.81388 UNSTABLE SAME AS 10
2.52544 15.44724
1825.45528 148.96701
R 1 —101.89076 — 2981174 UNSTABLE SAME AS (1
252543 15.44727
1858.42729 7.00168
R 2 —101.87554 - 29.80779 UNSTABLE —1815.25454
2.52593 15.45175 1.2517%
307.78874 65 45256 667.86354
R 3 -101.87549 29.80778 UNSTABLE —1815.25555
252593 15.45176 1.25173
307.55044 65.31316 667.72535%
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, ¢ «rack spatial errors. and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 3

Numerical Errors ot the GEOS-B Test Orbit
for the BDSP, 70 Steps Per Orbit

ENERGY ITELEM 8 BS N TR
1 0 -~ 56.39602 — 656.74016 89.17622 59.21339
3.11021 3.72737 9.39301 3.54422
~ 83.00906 110.25181 ~ 190.00997 — 144.20532
[ 1 ~ 56.39740 — 55.74068 89.17136 59.21226
3.11020 3.72737 9.39302 3.564421
- 32.41277 126.90710 ~ 39.18658 -~ 130.56524
1 2 — 56.41604 — 55.75580 88.64037 58.77161
3.10982 3.72860 9.40287 3.54320
108.19045 136.67825 109.40972 129.18683
| 3 -172.11% -171.421 1.232 31.457
2.960583 3.569666 8.767146 3.383486
2.72 2541 7.63 15.855
R 0 — 18.50051 — 22.49304 UNSTABLE SAME AS 10
3.14627 3.90129
—127.93949 36.38436
R 1 - 18.50192 — 22.49356 UNSTABLE SAME AS 11
3.14625 3.90129
— 77.63998 52.98888
R 2 - 18.518117 — 22.49164 UNSTABLE 58.81103
3.14591 3.90259 3.6433
15.28445 60.43499 35.63308
R 3 — 18.518156 — 2249178 UNSTABLE 58.80972
3.14591 3.90258 3.64331
15.35058 60.50244 35.70119
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°° km)
correspond to intrack spatial errors. crosstrack spatial zrrors. and a timing error (which is

also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable. the intrack
spatial error was 3401.4027. and the crosstrack spatial error was 26.77772.
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Table 4

Numerical Errors of the GEOS-B Test Orbit

for the BDSP, 75 Steps Per Orbit

ENERGY ITELEM B 8s N TR
! 0 - 19.62149 — 19.12725 631.43636 534.84907
1.84206 99247 5.76062 2.43962
—545.21889 10.04084 —1342.56385 —1222.06456
i 1 - 19.62227 - 19.12819 631.41960 534.84874
1.84295 99247 5.75071 2.43962
-515.99802 44.14811 — 698.77660 ~-1187.46233
f 2 — 19.64372 - 19.13503 631.16381 534 62285
1.84251 .99227 5.74633 243881
41.23325 53.63911 —~  77.89860 9.64151
| 3 64.153 63.651 588.847 492.282
1.592328 52240 5.790954 1.808203
078 12.097 —~ 119.748 31.944
R 0 9.20689 — 13.39047 UNSTABLE SAME AS 10
1.8G947 1.023638
—581.840 ~ 2.75868
R 1 9.20615 — 13.39146 UNSTABLE SAME AS |1
1.86948 1.02364
—-551.67891 31.42207
R 2 9.18710 — 13.39082 UNSTABLE 534.64250
1.86908 1.02341 2.43889
— 64.66871 39.45957 — 142.20691
n 3 9.18710 — 13.39086 UNSTABLE 534.64266
1.86908 1.02342 2.43889
—~ 64.61750 39.51002 -~ 142.15558
NOTES:

In the last four columns. the three numbers in each entry (given in units of 10°® km)

correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 5

Numerical Errors of the GEOS-B Test Orbit

for the BDSP, 80 Steps Per Orbit

ENERGY ITELEM 8 8s N TR
| 0 ~ 3.88340 - 3.74365 547.01168 462.17194
.85629 1.48006 7.57810 1.23206
—459.15306 —~ 15.88953 ~1161.99962 —1052.62631
¢ 1 ~ 3.88368 —~ 3.74432 546.99724 462.17242
85629 1.48006 7.57919 1.23206
—448.19016 9.26784 — 619.64184 —1026.10445
I 2 - 3.89834 - 3.74692 546.89183 462.07088
.85601 1.48023 7.57760 1.23162
10.98153 15.50786 - 96.19190 — 21.79383
1 3 - 16.867 ~ 16.724 530.505 446.289
699993 1.182493 7.653788 .7152743
.639 4.999 - 105.966 32.042
R 0 12.32661 - 6.75389 UNSTABLE SAME AS 10
.86888 1.54807
~480.49666 - 9.24393
R 1 12.32631 ~ 6.75457 UNSTABLE SAME AS 11
.86888 1.54807
—-468.66261 15.97804
-
R 2 12.31317 ~ 6.75434 UNSTABLE 462.0798%5
.86863 1.54821 1.23164
~ 59.98543 2153818 — 134.05535
R 3 1231314 ~ 6.75426 UNSTABLE 462.079696
.86863 1.54821 1.23164
- 6..08864 21.43552 — 134.15899
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crusstrack spatial error was 26.77772.
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Tuble ¢

Numerical brrors of the GEOS-B Test Orhit
tor the BDSP, 90 Steps Per Orbit

ENERGY ITELEM B BS N TR
[ 0 1.94060 1.88804 172.74506 144.39606
17462 .65661 3.25877 21146
—136.07206 — 9.08666 -~ 365.23276 — 326.48960
| 1 1.94069 1.88791 172.74175 144.39652
.17463 .65661 3.25882 21147
—137.79058 - 3.40434 - 198.563333 - 319.98778
I 2 1.93719 1.88796 172.73643 144.38806
.77468 .65678 3.25888 21146
— 1.66455 - 1.60664 - 36.33632 - 13.10179
) 3 1.632 1.581 170.214 142.24
212515 .342734 3.062124 192607
.340 362 - 33.904 - 10976
R 0 4.84812 - 91961 UNSTABLE SAME AS i0
.17485 68519
—139.27516 ~ 2.84861
R 1 4.8481 - 91983 UNSTABLE SAME AS i1
.17485 .68519
—141.66259 2.84094
R 2 4.84502 - 91976 UNSTABLE 144.38850
.17489 .68534 21146
- 18.61224 451218 - 43.66740
R 3 4.845096 - 919N UNSTABLE 144 .38868
.17489 .68534 21146
- 18.82819 ~ 4.29666 — 4388346
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)

correspond to intrack spatial errors, crosstrack spatial errors. and a timing error (which is
also an intrack error). respectively.

By integrating Cowell's equations of motion with time as an independcint variable. the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.

168



Table 7

Numerical Frrors of the GEOS-B Test Orbit
for the BDSP, 100 Steps Per Orbit

ENERGY ITELEM B 8s N TR
1 0 1.00589 99013 19.86950 16.67995
078112 15110 .65629 072534
- 10.73311 - 96997 - 40.52781 - 3609153
1 1 1.00598 99015 19.86833 16.68023
.078109 -15108 .65628 07253
- 13.79768 — 1.27553 — 2283707 ~ 36.10359
| 2 1.0. .97 .99046 ~ 19.87749 16.68774
.078140 15116 65649 072546
- .59675 ~  .92698 - 478582 - 222072
| 3 775 790 17.38 14.315
.241308 .171367 .348605 .236638
.165 .180 - 3891 - 1423
R 0 .83340 .24629 UNSTABLE SAME AS {0
.078159 .156563
-~ 10.70273 68240
R 1 82356 .24624 UNSTABLE SAME AS I1
078162 165853
~ 13.68274 .38025
A 2 83348 .24621 UNSTABLE 16.68663
.07819 15669 .072566
- 1.26500 71750 - 47724
R 3 83348 .24632 UINS™ ABLE 16.68570
.07819 .15559 072560
- 1.31470 66760 4.82004
NOTES:

In the last four columns. the three numbers in cach entry (given in units of 10°° km)

correspond to itrack spatial errors, crosstrack spatial errors. and a timing error (which is
also an intrack error), respectively.

By integrating Cowell's equations of motion with time as an independent variable, the intrack

spatial error was 2401.4027, and the crosstrack spatial error was 26.77772.
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DISCUSSION

VOICE: 1n the .aulation of the Baumgarte-Stiefel stabilization procedure. corrections are
applied in only one direction of a six<dimensional manifold. Wouldn’t you expect more than
errors in time? Is all the instability controlled by just the energy constraints?

BEAUDL "0 Yes.

VOICE: 1t scems that you ought to do more than just force your solution back into the
correct energy surface.

BEAUDET: That is in fact correct, but when you look at it, vou have te ask yourselt the
question: “What direction in this six-dimensional state manifold corresponds to the unstable
direction, the direction in which errors arc going to consistently grow?™

It’s like that first dingram [ gave you (figure 1). It is the tact that the frequency is in error
that gave rise to an ever-incredasing mean anotnaly. It is an intrack error. In other words.
when we integrate. we don’t worry at all about crosstrack radial errors, It's intrack errors
that are going to grow in time.

It turns out that the uncertainties in the frequency of the motion cause these errors and.
since the frequency is somewhat related to the energy. at least in the two-body problem.
applying an energy constraint solves the stability problem.

VOICE: But there is no constraint that will give a stable manifold, except for very special
problems, which indicates that most problems should be instable.

BEAUDET: In ihe perturbed problem that is the case and. if we apply J, perturbation,
we're going to have an instability associated with the rotating plane of the orbit. In that
direction, the manifold space is going to be unstable, even though we might apply ar cneray
constrai::*. We're simply fixing up the worst part of the things associated with two-body-type
motion.
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VOICE: What have yon done to take care of the high drag case?

BEAUDET: 1 haven’t added anything into the energy to take care of drag. We have integrated
orbits where drag was a perturbation and in which I knew that drag was not too severe a
perturhation. We still get stabilization as a result. Of course, we have to integrate the energy
equation, and drag apears on the right-hand side. The question is always associated with how
accur iely we can grate this energy equation.

VOICFE You mean you can stabilize the problem in the case of drag?

BEAUDET: If the drag is not too severe. If the drag becomes very severe, we’ve come
across another problem, that the ¢ centric anomaly is not the right independent variable to
u<e. If we start hitting a big wall associated with drag, we would like to use a different
independent variable than eccentric anomaly while integrating through that region. It is
the difficuity associated with finding such an independent variable or using it that has given
rise to our inconclusive results in high drag cases.
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