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Abstract

This research is concerned with the stability and time-dependent
motion of a spinning satellite, simulated by a rigid body with a
cavity partially filled with 1iquid. The work includes the problem
formulation, consisting of the boundary-value problem for the liquid
and moment equations for the entire system. Because of large Reynold's
numbers involved, viscosity effects are negligible everywhere except
for a thin boundar, layer near the wetted surface. Using a boundary-
layer analysis, the effect of the boundary layer is replaced by modified
boundary conditions for the liquid. The solution of the differential
equations for the inviscid problem has been soived in closed form. A
semi-analytical numerical solution of the inviscid equations subject to

the viscous boundary condition has proved unsuccessful.
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1. Kinematical Relations

Let XYZ be an inertial coordinate system with the origin at the
mass center ¢ of the satellite (see Fig. 1), and let the satellite
be rotating with an angular velocity w with respect to axes XYZ.
Denoting by xyz a set of body axes, and by 1, j, k the unit vectors
along these axes, the angular velocity of the satellite can be written

in the form
m=wa+wy3+wzF (1)
where Wys Wys W, are the corresponding angular velocity components.

It will prove convenient to introduce a set of axes &ng paraiiel
to axes xyz but with the origin at the center 0 of the spherical tank
instead of the center c of the satellite, as shown in Fig. 1. Denoting
by ﬁb the vector from ¢ to 0 and by r the vector from 0 to any position

in the 1i~uid, the absolute position of any point in the fluid can be

written as

R = ﬁb +r=xi+yj]+zk (2)
where

ﬁo = ROxT + Roy‘j‘ + ROZF (3)
and

"= Ef 4]+ ok (4)

Differentiating FEq. (2) with respect to time, and recognizing

the fact that the unit vectors 7, j, k rotate with angular velocity w,



we obtain the absolute velocity at ¢ point in the liquid in the form

—_dﬁ_d__— = . T -, - =
¥ w A S (R0 +r) Votatuxr (5)

where Vb is the velocity of the origin 0 and

- _dE d dz
q=E€T+a—g]+a‘t~R (6)

is the velocity of the liquid relative to the tank. The absolute
acceleration of the liquid can be obtained by differentiating Eq. (5)

with respect to time. The result is

7= .7 E. . ,du,,-’_ = s dr
Eng Yt tuxartGrrraxyy (7)
where
D . ..
pt "t t9V (8)

is known as the substantial derivative operator. Denoting dw/dt by
w, and inserting Eq. (8) into Eq. (7), we can express the absolute

acceleration at a point in the liquid as
=3, +2+q  GrAxTraxFrux @xT) (9)

in which @ + vq is known as the convective acceleration. The absolute
acceleration of a point in the rigid part of the satellite can be obtained

by letting q = 0 in Eq. (9).



2. The Mathematical Formuiation for the Motion of the System

The problem formulation consists of the boundary-value problem,
namely, the differential equation and boundary condition for the liquid,

and the moment equation governing the rotation of the satellite.

2.1 The equations governing the liquid motion

For an incompressible fluid, the velocity vector q must satisfy

the continuity equation

vV'q=0 (10)

2

= - %-Vp +f+vV5 (11)

where f is the body force per unit mass, and p, p, and v are ti.
density, pressure, and kinematic viscosity, respectively.

From vector algebra, we have
q v =z9q D -Tx (X7
Gx @xF) = -3V Gx7) - (@x7)] (12)

a = v(a0 - r)



where V x q is known as the vorticity of the liquid relative to the
tank. Assuming that the body force is derivable from a potential

function, we can write
f=-98 13)

where B is a scalar function. It is convenient to introduce a pressure

function p* defined by

Fe3a-q-5@x7) . @x¥) (14)
Then, Eq. (11) can be rewritten as

~gx(VXxT) +2XxqrOXT = - Up* + WP

q (15)

|
+io|

2.2 Boundary conditions

The boundary conditions on the liquid are of two types, namely,
geometric and natural. The geometric boundary conditions are the vesult
of kinematic considerations, whereas the natural boundary conditions are
the result of dynamic considerations. Moreover, we must distinguish
between the boundary conditions on the wetted surface Sw and the free

surface Sf.

At the wetted surface the velocity of the liquid relative to the
satellite is zero. If n, fi, and fz denote unit vectors normal and

tangential to the wetled surface, then we have



=q-.-n=0 on S (16a)

Gy =9+t =0, Gp =9 -ty = 0 on S (16b}

The boundary cundition (16a) is a result of the impermeability of the
rigid part of the satellite and must be satisfied whether the fluid is
viscous or inviscid. On the other hand, the boundary conditions (16b)
are referread to as the no-slip conditions because, irrespective of how
small the viscosity of the fluid is, there can be no relative tangential
velocity between the fluid and the wetted surface. If the fluid is
inviscid, the boundary conditions (16b) may not be satisfied.

At the free surface there are three boundary conditions. The
first is kinematical in nature, expressing the fact that a particle on
the free surface must always remain on the free surface that is, if

F(x,y,z,t) = 0 is the equation of the free surface, the we must have

B [FOGy,z,0)] = 0 on  Flx,y,z,t) = 0 (17)
Recalling definition (8), Eq. (17) becomes

3F 4 q E,q F,q E, )
st O ax 9oyt 9z =0 on Fluy.zt) =0 (18)

where q,» 9,0 9, are the components of q along the xyz axes. The other

y’
boundary conditiuns are dynamic, representing the continuity of normal

and tangential stresses across the free interface. Taking the surface



tension into account, we can write the continuity of the normal

stresses
T(K] + KZ) +P=g on F(x,y,z,t) =0 (19)

where T is the surface tension, K] and Kz are the curvatures of the
free surface along two orthogonal directions, P represents the pressure
in the vacant pa~t of the tank, and o is the normal stress. The

continuity of the tangential stresses is expressed by

7,0, T, = 0 on F(x,y,z,t) (20)

2.3 The moment equation for the satellite

We assume that the mass center c of the satellite is fixed in
an inertial space, and, moreover, that it does not shift with respect
to the rigid part of the satellite, even though the liquid may be
moving. Recognizing that the acceleration of any particle in the
rigid part of the satellite can be obtained by letting q = 0 in Eq.
(9), we can write the moment equation about ¢ in the form

[ Rx[ay+38+T - va+ B xT+axF+ax @xPldng +

Me

J ﬁx[§0+ExF+Gx (w x ¥)]dm_ =
mr r

| ﬁx[v(]—p4~8)+vvza]dm£+I RxT. dn (21)
m, P m, o



where the subscripts £ and r d2signate the liquid and rigid parts of

the satellite, respectively. Because the acceleration of the point

0 is
a, = t xRy +wx (0xRpy) (22)
and recalling that Eb +r =R, we can write*
szﬁ X [é'x R+wx (wx R')Jdm£ + Jm R x [ﬁ xR+wx (wx ﬁ)]dmr
r
T Gt EaTs2 (23)

where T is the inertia dyadic of the satellite as if it were entirely
rigid. Using Eqs. (12), (14), and (23), we can rewrite Eq. (21) as

T o+axT ae-| Rx(op-a F+pGxr) - Gxl-
m

Ix (Vxq) +8+ 25 xq+woqldm, + | RxF. dn (24)
ot £ » r o r
1

where the first integral on the right side of Eq. (24) is the disturbing
torque due to the liquid motion and the second integral is due to body

forces acting on the rigid part.

3 Steady-State Equilibrium Configuration

First we seek an equilibrium configuration in which the satellite

rotates with a constant anjular velocity 0 about the inertial axis Z

* See Ref. 1, Sec. 12.8



and in which the liquid is at rest with respect to the satellite. More-
over, the body force is assumed to be zero. To describe this configu-
ration, we introduce a coordinate system x'y'z' rotating with the
angular velocity 1 about the axis Z, and denote by 1', j', k' the unit
vectors along these axes. Hence, the equilibrium configuration is
given by

G=0, w=ak', w=0, Fylx,y,2) =0 (25)

where FO(x.y.z) = 0 is the equatioy of the free sur -e.

Substituting Eq. (25) into Eqs. (14) and (15). and recalling
Eq. (22), we obtain

p*gl

L} ] 2 |2 |2 -
Sp' -z 05T+ y'°) = const (26)

The boundary conditions (16), (18), and (20) are automatically satisfied,
whereas, boundary condition (19), together with Eq. (26), yields

T(K] + Kz) + % p nz(x'2 + y‘z) = const (27)

which describes the free surface Fo(x', y'ys 2') = 0. Hence, the free
surface is the intersection of the curve given by Eq. (27) and the

sphere

2

(x = R) #+ (y' - Ry )2+ (2" = Rop )2 = RE

(28)

where Rs is the radius of the spherical tank. In the case in which the

surface tension T is negligible, the free surface is given by the inter-



section of the cylinder
(28)

and the spherical tank given by Eq. (28), where the radius R, of the
cylinder is a function of the volume of liquid in the tank.

4. Linear Perturbation Problem

Next, let us consider the case of a small perturbation from the

steady-state solution discussed in Section 3. To this end, we write

G-QF'+£]+....$-=$1+... (30)
R=R'+cR +... (31)
E'CE] ¥ 55 (32)
p=p' +tep t... (33)
F(x,y,z,t) =R - R+ ¢ Fi(o,z,t) + ... =0 (34)

where ¢ is a small parameter and R, ¢, z a cylindrical coordinate system
with the origin at c. Recognizing that the perturbed body is inclired
slightly with respect to axes x'y'z', we let the body axes triad xyz be
obtained from x'y'z' by means of the small rotations €8, about x', 502
about y', and €fy about z', which enables us to write

x=x'+¢e (635" - ezz') ® auis

y=y' +e (62" -85x') + ... (35)

z2=2"'+¢ (ezx' - azy') TR

9



so that, from Eqs. (31) and (35), it follows that
'R'] = (05" - 6,2') i+ (642" - 64x") J+ (Bzx' - 0yy') k (36)

Substituting Eqs. (30) - (34) into Eqs. (14), (15), (19) - (20),

and (24), and equating coefficients of equal powers of e, we obtain

the steady-state solution of Section 3, corresponding to the 0(e?)

problem, and the following equations for the O(c) problem
Palgye 0 (37)

36} -
3T+2$2F1q1 +w1xﬁ =

9L py - (@K' X R)-(5) x R + k' x R)] + v 07, (38)

T-$]+QF'xT-E]+E:']xT-Q‘E'-

- [ﬁ'x(lv +Eﬂl+2m€x‘-uv2‘)+ﬁ xlv']dm
. A I % % 1% P A0,
L
(39)
where E& is subjact to the following boundary conditions
qruo on r‘=Rs (40a)
R 0 on r=Rg (40b)
BF] ‘
qR+-§-t—=0 on R'Rc (4])

10



R
°R"pl+2""é'ﬁ—'° on R'Rc (42a)
39, 39
Tpy pv(é—i& +o28) = 0 on R =R (42b)
a T T .
TRe ov[R sﬁ-(ﬁi) tE 55—& =0 on R = Rc (42¢)

where r, a, £ is a spherical coordinate system centered at 0, whereas
R, ¢, z is a cylindrical coordinate system centered at c. Note that
the boundary condition (41) was obtained by inserting £q. (34) into the
kinematic condition (18), performing a so-called "transfer of boundary

conditions", and keepirg the 0(e) ' rms*.

5. Method of Solution

5.1 The equation: of motion in dimensionless fonn

To solve Fqs. (37) - (39) subject to the boundary conditions
(40) - (42), we first consider the fluid problem. To this end, we

introduce the dimensionless quantities

n

X = X /ZRs sy Y=Y /2Rs y Z <2 /2Rs

ot

- tJJ\N y Q= Q/(UN

R o
F RSF] e

5] . 5] U elt
(43)
P = P DUZ e)\t

* See Ref. 2, Sec. 2.1.3
11



Xt

m]=é]T+ézT+é3E=meee
Ry =E1gaelt

where U = ZRsmN is a fictitious velcucity and wy = (C-A)/A s the

nutational frequency of the rigid satellite, in which A is the principal

moment of inertia about x or y and C the principal moment of inertia

about z. Moreover, K is the dimensionless eigenvalue sought. Sub-

stituting Eqs. (43) into Eqs. (37) and (38), we obtain

<]>

L 0 (44)

" Ann A

Aq] + ZQk' X q] + 20 xR' =
- lpy - (AR* x R')-(30 x R* + Gk' x R;)] + 3 v%q, (45)
e

where, in terms of cartesian components,

P eTLaTRaEL
X ay 9z

represents a dimensionless nabla, and Re = 4R§

mN/v is Reynold's
number.

In a similar fashion, the moment equation, Eq. (39), becomes

VI o+x@ xT - 6+6xT-%) =
12



where % = T]4R§m is the dimensionless inertia dyadic of the complete
system as if the system were entirely rigid, in which m is the total
mass (rigid plus liquid) of the system. Moreover, ﬁc = my/m is the
dimensionless mass of the liquid. For simplicity, f is evaluated by
regarding the mass of the liquid as frozen in the equilibrium con-
figuration.

Typical values of Rs’ wy and v show that R = 0(105) or larger*.

Hence, one can neglect the last term in Eq. (45) and obiain

AGy + 20K* x qy + A%0 x R* = -9[p, - (2K x R*)- (X6 x R* + ak* x ;)]
(47)

However, Eq. (47) is of first order in the spatial variables rather than
second order. Hence, the general solutions of Eqs. (44) and (47) cannot
be expected to satisfy all the boundary conditions (40) - (42). Because
letting Rp + » is equivalent to assuming an inviscid fluid, the no-slip
boundary conditions (40b) and the shear boundary conditions (42b) and
(42c) cannot be satisfied in general.

To obtain a solution valid everywhere, we must supplement the
solutions of Eqs. (44) and (47) by two boundary layers, one near the
free surface and the other near the wetted surface, by using the method
of composite expansions.**

The result of the boundary layer analysis wiil be the modification

of the boundary conditions for the inviscid preblem by accournting for

* See Ref. 3
** See Ref, 2, Sec. 4.2

13



the Tiquid viscosity. Hence, the problem will reduce to the solution
of an inviscid problem, with the effect of the viscosity reflected
in the modified boundary conditions.

The nature of the geometry of the 1iquid boundaries demands the
use of a cylindrical coordinate system with the origin at ¢ to de-
scribe the boundcry layer near the free surface and a spherical coordi-
nate system with the origin at C to describe the boundary layer near
the wetted surface. Note that either coordinate system can be used
away from the boundarie:.. As a result, we shall seek the solution in
two parts, one valid everywhere except near the free surface and the

other valid everywhere except near the wetted surface.

5.2 The boundary layer next to the free surface

We assume the solution next to the frez suiface to have the

form

~

q] = ARER * q¢§¢ : ) aZ-é-Z = [ui(§’¢’;) + Guv(a’¢,i)]ER +
[vy(Ry0:2) + v (0:0,2)Je, + [w;(R,0,2) + W, (5,0,2)]e,  (48)

Py = Py(Ry0,2) + p,(5:652) (49)

where p = (ﬁ - ﬁc)/d, in which § = 1//ﬁ;'is proportional to the boundary
layer thickness. MNote that the subscripts i and v refer to inviscid
and viscous solutions. According to this method, we force the quantities

with subscript v to tend to zero as p + =. Substituting Eqs. (48) and (49)

14



into Eqs. (44) and (4.), and leiting & -+ 0 while holding R fixed,
we obtain Eqs. (44) and (47). Substituting Eqs. (48) and (49) into
Eqs. (44) and (45), taking the 1imit & » 0 with p fixed, subtracting
the quantities perta‘ning to the inviscid solution, and using Eqs.
(44) and (47), we obtain

e R (50)
3p Rc LY 2z

ap
TV =0 (5])
ap

SZVV P 1 ap
- Avv B o — (52)
3p Rc 3¢

2

aw - ap

—L - W, = =L (53)
3 3z

The solution of Eq. (51) tending to zero as 6-» o is Py = 0.
It follows that the solutions of Eqs. (52) and (53) tending to zero as

p +> w are

<
"

r a1(¢.2) e‘,x_a (54)

A~

n Y7 2
a2(¢,z)e7‘ P (55)

Wy

where the real part ofVi is negative. Inserting solutions (54) and (55)
into Eq. (50), we obtain

15



ou oa aa v -
e N e P P (56)
ap Rc L 9z
Hence,
da da T A
uv & - 1 (-]-— ] + __A_Z) eJl_ P (57)
i ﬁc a0 oz
Writing Eq. (42b) in terms of dimensionless variables, and
substituting for aR and az from Eq. (48), we obtain
au au aw ow
0z az R p
Inserting Eqs. (55) and (57) into Eq. (58), we conclude that
a, = 0(¢) (59)
Similarly, boundary condition (42c) leads to
a, = 0(s) (60)
In view of Eqs. (59) and (60), boundary conditions (41) and (42a)
become
K?] + 2wy = 0(62) on R = ﬁc (61)
P, = 0(62) on R =R (62)
Py c

16



Hence, to order &, the boundary conditions at the free surface are the
same as for the inviscid 1iquid and no dissipation takes place in the

boundary layer next to the free surface.

5.3 The boundary layer next to the wetted surface

We seen a solution valid everywhere except near the free surface.
To this end, we use spherical coordinates and write the solution in

the form

~ ~

G = 6.8, + 98, * g8, = [uj(ria8) + suy(psa,8)JE,
+ [Vi(;QQ:B) + Vvlasa.ﬂ)]aa + [W.l(F‘:ﬂ.B) + WV(S,Q.B)JEB (63)

where the viscous terms, namely, the components with subscript v, tend to
zero as 5 > o, in which p = (1 - F)/G. The inviscid components, namely,
the components with subscript i, are solutions of Eq. (47).

To determine the viscous components, we substitute Eq. (63) into
Eqs. (44) and (45), subtract the inviscid components, let § » 0 with

3 fixed, and obtain

au aw
X2 (y sing)+———L=o (64)
9p sin a da sin a 3f
ap
__A_v s (65a)
ap
. aﬁv azvv
J\Vv - ZQWV cos o = - ;a—- + _Taa (65b)

17



Aw, + 2{2vv cos n = = + — y (65¢)
sin a 28 ap
The solution of Eq. (65a) that tends to zero as p » @ is
p, = 0 (66)
from which it follows that the solution of Egs. (65b) and (65¢c) is
516 sza
v, = cila,B)e " + c,(a,B)e (67a)
v 1 2
515 526
wv - i[c](aDB)e - CZ(G:B)E ] (67b)
where
3
=)+ 120 cos a (68)
s2
2

in which i = /=T . Note that the real parts of Sy and Sy must be

negative for Y and W, to tend to zero as p + =. Introducing Egs.(67)

into Eq. (64), and solving for u,» we obtain

C, 23S a SA
T P e Moo SR 11 1°

i
vos 5 aa sin o da (cl sin a) + sin o B—B_]e .

Cy 95 $1p c, 35S . 3C, S,p

o R e A R s PR W . %
1 da b e +§b Sy i sin a da (CZ sin o) sin a 3P

C, 35S, . Sop

+—2——2pe2 = 0 (69)
2(1

18



Oonr =1, so that

Boundary conditions (40) demand that 3]

uy +6u, =0 on r=1 (70a)
vitv, =0 on r =1 (70b)
dy tw, = 0 on r =1 (70c)

Introducing Eqs. (67) and (69) into Eqs. (70), and recalling that

p=0when ¥ =1, we have
u; + G(f1 + fz) =0 on r=1 (71a)
vite te, =0 on r=1 (71b)
Wy + i(c] - CZ) =0 on r=1 (71¢c)

where for convenience we adopted the notation

gl_ Eifd. I 3_. 1 1 Eﬂi =
fs 5 iy 54 9a * $Tna aa (Cj sin ot sl (72)

Equations (71b) and (71c) can be solved for ¢, and c,, with the result

so that ¢, is the complex conjugate of c,. Moreover, from Eq. (68),

it is easy to verify that

19



LA = A0 sin g ff‘_g_ « o J0 sin g (74)
a 5 ' da 5,

Inserting Eqs. (72) - (74) into Eq. (71a), we obtain
ug + % in sin a [(-3- "5)" - 1(—3- —3-)w1] - -2-cot a X
1 %
] 1 1 1 8§ r¢) ]
[(;l"" q)vi - 1(;|‘ - ;'Z-)W.ll o [('5—]' —)— - 1( - —)
—{—[(— —)—— i(‘ 1)3‘1'1]-0 c=1 (75)
? - - 2 38 on r

It will prove convenient to introduce the notation

= -1Y = iY
s] s e = s2 s e (76)
where

(A + 402 cos a) 172 y Y = -‘2- tan”! -Z-QC%‘—’- (77)

Then, the boundary condition at the wetted surface reduces to

cot o

Q sin a (
—— W
s

U, = 6§

i sin 3y - w; cos 3y) - 6

(v; cos y - wy sin Y)

'c)v1 aw1 aw.i ) = 0
-6;( cosY+W51ny) G—ST'T—(BB sin y - 55 €08 Y

~

on r=1 (78)

20



6. The Eigenvalue Problem

6.1 The solution of the equations of motion

Equations (44) and (47) must be solved simultaneously for the
components of the velocity vector 31 and pressure B] in terms of the
components of the rotation vector . An examination of Eqs. (44) and
(47), however, reveals that they are not in a form that permits a
convenient solution, because Eq. (47) is a vector equation involving
both 3] and Bl’ whereas Eq. (44) is a scalar equation involving only
ai. If Eqs. (44) and (47) can be transformed into a vector equatio,
involving only 31 and ¢ scalar equation involving 31 and 51. then the
vector equation can be solved independently for aﬁ. thereupon the
scalar equation yields Bl' Indeed, taking the curl and divergence of
Eq. (47), and considering Eq. (44), we obtain the vector equation

A x -2532—‘+ 2% =0 (79)

and the scalar equation

~

~D . 2 — A aq ~ a
Vzp] =R8p . (20 -71 - xze) (80)
A 3z

respectively.

Due to the nature of the problem, the use of cylindrical co-

ordinates is indicated in the solution of Eq. (79). Inserting aj =

GReR * 98 * 98, and 0 = Bpep + 6,8, + 0., into Eq. (79), where

21



eR - 0] cos ¢ + 92 sin ¢

6, = - @1 sin ¢ + 62 cos ¢

and equating the coefficients of Eﬁ. E;, and 3} to zero, we obtain

the three scalar equations

.4 30, 39 T

x(l——-%)-m—,—R+ZAZeR-0
R 9¢ 3z 9z

FS aq aq -~ aa ARA

At - —&) - 20 =L+ 2%, = 0
9z aR 9z ¢

M=t + 2 - = —R) 20—+ zxzez =0
R R 3 3z

(81)

(82a)

(82b)

(82¢c)

Equations (82a) and (82b) can be solved simultareously for aaR/aE and

aa¢/ai. with the result

3q A I S
AR = =5 A 5 [2a —1——-—+ A =& + ZA(ZQBR - Ae¢)]
3z 4° + ) R 3¢ aR

aa - ~ BA ~ aa A AA AR
i, A [Al——’-zn%»«zx(xe + 200.)]
22 402 + 32 R 28 aR R ¢

(83a)

(83b)

Inserting Eqs. (83) into Eq. (82c) differentiated with respect to z, and

recognizing that 36R13¢ =9 ’ a§¢/a¢ = - BR’ we obtain

¢
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N 2 a°q °q
by (wgh + & ek # Ay ~gh) + xxd @ 0 (84)
42 +42 2R2  RIR  RZ 2% a2l

which is a partial differential equation for the velocity component az

alone. Its solution can be obtained by the method of separation of

variables. To this end, let

6, (Re6,2) = Fp(RF, (), (2) (25)

so that, inserting Eq.(85) into (84), and dividing through by az' we

obtain
& 2 2 2
2 e df d°f d°f
A 1 R, 1R I 1 Z
= =5 (= * = =) + 75 — ]+ ——3==0 (86)
42 +22 TR dRZ RAR R f, d¢ f, d2°
Next let
A 2
~2 , d°f
e AL (87)
A fz dz
where k is a number, and denote
Y
40 + 22
so that Eq. (87) can be written in the form
2
d°f
- 8,7 0 (88)
z

having the solution
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f, = A cosh jz + B sinh j2 (89)

In view of Eq. (87), Eq. (86) reduces to

2 2
22 d°f df df
R R,1°R 252 , 1
( + LB) ¢ K°RE + 72-0 (90)
fr "dR? R dR ¥y do
leading to the two equations
2 T
+ 25, = 0 (91)
d¢
and
?f, V1dfy 2
V) + (k --;2—)th0 (92)
dR R dR R

where £ is a number. The solution of Eq. (91) is simply

f¢ =Ccos £p +D s £¢ (93)

On the other hand, Eq. (92) is recognized as a Bessel equation having

the solution
fo = E Jp(kR) + F Yo (KR) (94)

where Jt and Yl are Bessel functions of order £ of the first and
second kind, respectively. Combining Eqs. (89), (93), and (94), we can

write

az = (A cosh j; + B sinh j;)(c cos £¢ + D sin £4)[E Jg(kﬁ) +F Y;‘“ﬁ)l

(95)
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which represents only the homogeneous part of the solution. Before

obtaining the particular solution, let us derive the homogeneous parts
of aR and d¢. Introducing Eq. (95) into Eqs. (83), ignoring the

terms in 5R and 8¢, and integrating with respect to z, we obtain

~

aR = ;ég-i—iz-i-(A sinh jz + B cosh jz) {3§£-(-C sin £ + D cos £4) x

[E 9,(kR) + F Yz(kﬁ)] + 2k(C cos £& + D sin £4)[E Jé(kﬁ) ¢ F Yé(kﬁ)}}

(96)
and
q, = A1 (A sinh jz - B cosh jz){ 2 (-C sin £& + D cos £4) x
¢ _??? + e J R

[E 9, (KR) + F Y,(kR)] - 20k(C cos £ + D sin £o)[E J3(KR) + F Y;(kR)]}

(97)

where Jé and Yé designate derivatives of Jt and Y£ with respect to kR.
Next let us turn our attention to the particular solution, and

assume the solution in the furn

G = €1 ()2 + ¢, (4R, q = c3(0)z + cu(o)R, q, = c5(4)z + cg(e)R

(98{

Introducing sclution (98) into Egs. (82), as well as into the continuity
equation, Eq. (44), we obtain the set of equations
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1 S 5 9 o A2
A[ (___ 2+ 2R} - 3] - ZQc] + 2) Op =

dg
AMe, - c.) - 20 2%, =0
1 6 3 ¢
(99)
- A~ dc dc A
A(c4 tcy £4 Cq - %‘-l-i - ——gJ - chs + ZAZB =0
R R dé d¢

A dc dc

z 133 "
cy + ¢y " te,t : (33— z + R) + Cg 0

C-|="A.G¢, CZEOQC3=ABR
(100)
Cq = - Aez » Cg = 0 ., Cg = Ae¢ - ZneR
Hence, the complete solutions for GR. a¢, and ﬁz are
GR = —:E—L——— (A sinh jz + B cosh jz) { ( C sin £o + D cos {4) x
40° + A° j R

[E Jp(KR) + F Yp(kR)] + Ak(C cos £6 + D sin £8)[E J;(KR) + F Y;(kR)]}

= A8¢z (101)

(A sinh JZ + B cosh Jz){ ——-(-C sin Lo + D cos £9) x
R

Qg = —=
¢ 4&2 + Ad J

[E 3,(KR) + F Yp(KR)] - 28K (C cos £6 + D sin L8)[E Jj(kR) + F Y3(kR)])

+ i(SRE - ézﬁ) (102)
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az = (A cosh 53 + B sinh jE)(C cos £¢ + D sin £¢) x

o Lo AN AR WD /
[E J,(kR) + F Y, (kR)] + (AB¢ - 206p)R {103)
It remains to obtain the solution for the pressure 51. Introducing

solution (103) into Eq. (80), and recognizing that k' = Eﬁ, we obtain

the equation

ada 49°

Vp-lg—r"

A
[E 9, (kR) +F Yo (kR)] - 208,

j (A sinh jz + B cosh jz) (C cos £ + D sin £¢) *

(104)

The solution of Eq. (104) can be written in three parts, namely,

By = PylRs0s2) + P3(Ry0,2) + Py(R) (105)

where Bz satisfies the equation

nl )
6%, = L j (A sinh j2 + B cosh j2)(C cos £o + D sin £o) *
A
[E 3,(kR) + F Yt(kﬁ)] (106)
53 is the solution of Laplace's equation, and 54 satisfies

2 4By 4 d o |
vp4=——+§—-—=- 2006, (107)

Writing the solution of Eq. (106) in the form

p, = (A sinh jz + B cosh j2)(C cos £ + D sin £o)[E* Jz(kﬁ) + Fr Yz(kﬁ)]

(108)
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and recognizing that

228 823
2 o tza = JZﬁ
? ~
3¢2 2 Bz2 2

Eq. (106) reduces to

2 2
d”_41d , (;2.¢ E* J (kR) + F* Y, (kR)
{Eﬁz 2 R (j Eg)] [ L( ) £( ]

s 5 LE 3,(kR) + F Y, (kR)] (109)

But E* Jttkﬁ) + F* Yz(kﬁ) is a solution of Bessel's equation, Eq. (92),

from which it follows that

d 2 ¢ ‘e -
E’ﬁ + (J = ﬁ_Z)J [E* Jﬂ\kR) ¥ P Yz(kR)]

| —

d
— +
‘2

= (3% - KOLE* 3,(KR) + F* Y, (kR)] = 4 1 Jy(KR) + F Y, (kR)]
3
(110)

Recalling the relation between jz and kz, we conclude from Eq. (110) that

E* 49 _3?JL__§ E =
A j“ -k

g4>a>

\E, F*=- %—F
Hence, solution (108) becomes

Py = - %—(A sinh j2 + B cosh j2)(C cos £o + D sin £4)[E J,(kR) + F Y,(kR)]

(111)
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The solution of Laplace's equation can be cbtained from the solution

of Eq. (86) by letting k = J, It follows immediately that

Py = (A cosh iz + B, sinh jz) (Cy cos £9 + D, sin £9) x
[E 9, (4R) + F ¥, (3R)] (M2)

On the other hand, the solution of Eq. (107) can be written as

1 82
p4 E - EQAGZR + G (113)

where the meaning of the constant G will become evident later.
Combining Eqs. (111), (112), and (113), we obtain the pressure

~

ﬁ] = - % (A sinh jz + B cosh jz) (C cos Ly + D sin £4) x

[E Jt(kﬁ) +F Yz(kﬁ)J + (A cosh jz + B, sinh jz) x

AAA A2

(C, cos £y + Dy sin £9) [E; J,(3R) + Fy Y,(3R)] - 7 M6 R + 6

(114)

Upon introducing solutions (101) -(103) and (114) into the moment
equation, Eq. (46), and performing the appropriate integrations, it is
possible to eliminate the constants 61, 32, and §3 from these solutions,
where we note that 51. 52, and 83 are related to §R’ §¢. and az by
Eqs. (81). To this end, it is more convenient to work with the body axes
X, ¥, Z. The inertia dyadic T has the principal diagonal elements

A ~

?]], 122, 133 and the off-diagonal elements - 112, - 113. - 123,
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- 121 LI 1]2' = 13] B - l]3| o 132 8 = 123. ChOOSing the bOdy axes
to coincide with the principal axes, the products of inertia reduce to
zero. Consistent with previous assumptions, we shall ignore the term

Re in Eq. (46). In view of the solutions for %} and B]. Eq. (46) can be

written in the form of three simultaneous algebraic equations in 61.
82. and 33. These equations can be conveniently displayed by introducing

the notation

My = JA[ 3232(cos%s - sin%e) + (8% - RP)R? sin - 200 (R? - 22%) x
m
£

sing cos¢]dﬁ£

AN

ﬁ]z - IA[(ﬁzﬁz - izﬁz - 23222) sing cosy + 20AR sin2¢ - Zﬁiszjdﬁz
m
L

Mg = Jﬁ ARz (A cosp - Q sin¢)dm£

£

Moy = JA[ZﬁXﬁZ cos?y - 2022 - (8% - A2)R? sing cos:defﬁ2 (115)
e

ﬁ22 s BeE (ﬁz - iz)ﬁz C052¢ + 203R% sing cos¢]dﬁ£

=>
n

3]
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§32 » jﬁ [-(ﬁ2 - 32) sing - 20) cos¢]ﬁ2 dm
m, ¢

ﬂ33 = J,\ (?12 - 'Az) ﬁz dl?lz
Me
where MU (i,j =1, 2, 3) can be identified as terms involving the

nonhomogeneous parts of a& and 61. and

* Z aa] AAA AAA A a’p\'! ~ ap'l A AA A
Hy = JA{(—--- + \zq, + ZquR} cosp + [z — - R —+ A(zqR - qu)
m, R 2 ¢ oR 3z
- anq¢] sing}, dm,
- E aa AAA AAA A 36 A aa A AA AR
H2 = JA{(;-—~J.+ Azq¢ + ZQZQR) sing - [z —:l-- R —;l-+ A(zqR - qu)
ITIz R 2¢ aR 9Z
- 29zq¢] cos¢ly dm£ (116)

~

~ ap] AAA AAA ~
H3 -—JE, (3—¢— + ARq¢ * ZQRQR)H dmz
/
represent terms involving the homogeneous parts of'ﬁ1 and 51, where
the subscript H indicates that only the homogeneous parts of the solutions

for q, and S are to be included in the integrands. Considering the above,
1 1

Eq. (46) can be v itten in the form of the three scalar equations
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A2 AAA ~

(A I]] + AQI]Z + M]])e] + [“ A 112 + AQ(I33 - 122) + hlz]ez

~

‘AZA ANA A ~ -
+baxn+2m%3+mﬁ% H,y

AZA AN A A ~ ’” A2h AAA ~ ~
[- 270 + 2allyy - I33) + Mypdoq + (A1 = 2aly, + Mpp)o,

(117)

AAA

+ (-2 123 - 2)\9113 + M23)83 = H2

ADA AAA ~ ~ n2n AAA ~ ~
(= 27113 = Aaly3 + M3)0) + (= A71p5 + 20l 4 + Myy)0,
+ (A%135 + M33)0, = Hy

Equations (117) can be solved for éi (i=1,2,3) to eliminate these angles

from a? and 51.

6.2 Satisfaction of the boundary conditions

The solutions 3] and ﬁ] contain 13 constants of integration in
addition to the numbers j and £ and the eigenvalue A. To determine
these quantities, we must invoke the boundary conditions. The kinematic
houndary condition, Eq. (61), merely yields the function ?1 provided
the solution is known. On the other hand, boundary conditions (62) and
(78) can be used to determine the quantities in question.

At the free surface boundary condition (62) reduces to

py =0 on R = ﬁc (118)
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From Eq, (114), we conclude that boundary condition (118) is satisfied
for all ¢ and z if

3, (kR ) 3, (3R ) ———
L S g, p .t e £y, 6= ; o Rz (119)
Y, (kR )

F =« v By -
V YZ(ch)

From the structure of the solution (114), however, we observe that the
constants E and E] can be absorbed by A and B and A] and B], respectively.

To this end, and for convenience, we let arbitrarily

E £
= = (120)

Yo(kR) Y, (3R,)

so that the pressure becomes

~

py = - % (A sinh jz + B cosh jz) (C cos £ + D sin £¢)x

[V, (kR.) 3, (kR) = 9,(KR_) Y,(kR)] + (A, cosh jz + B) sinh j2) x
(C; cos &9 + Dy sin £8) [Y,(3R.) J,(4R) = J,(3R.) ¥, (5R)]

+]§ni§ (R - fif) (121)

Moreover, the velocity components become

~

4g = ;éﬁ—f—zﬁ-j (A sinh j2 + B cosh j2){ 22‘ (-C sin £p + D cos £) x

Y, (kR,) Jz(kﬁ) - Jt(kac) Yt(kﬁ)] + 2k(C cos €4 + D sin £4) x
[vz(kﬁc) Jé(kﬁ) 5 (KR_) Y} (kR)] - %8,3) (122)
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q, * —:zx 3 1-(A sinh jz + B cosh jz) {éi-(-c sin L + D cos L¢)x
® 4q% + 2 j R

[Yl(kﬁc)di(kﬁ) . Jg(kﬁc)Yl(kR)] - 20k(C cos 24 + D sin £¢)x

[YR(kRC)Jé(kR) - Jl(ch)Yi(kR)J + A(BRZ - BZR)} (123)

az = (A cosh jz + B sinh jz)(C cos 24 + D sin £¢)[Y2(kﬁc)dl(kﬁ)
- Jg(ch}YE(kR)] + (A6¢ - ZQOR)R (124)

The boundary condition at the wetted surface is as given by Eq. (78).
Satisfaction of this condition at every point of the boundary should yield
the effects of viscosity on the stability.

7. Semi-Analytical Solution

Because the solution (121) - (124) is in terms of cylindrical coordinates
with the origin at the satellite center and the boundary condition (78) is in
terms of spherical coordinates with the origin at the center of the spherical
tank, no exact solution is possible by separating variables. In view of
this fact a semi-analytical numerical soltuion has been attempted.

The semi-analytical solution consists of solving the problem in two
stages. In the first stage a solution of the eigenvalue problem is obtained
by regarding the liguid as being entirely inviscid, and in the second stage
the inviscid solution is perturbed, so that the perturbed motion s.tisfies
the viscous boundary condition at the wetted surface. The inviscid solution
was attempted by a Galerkin procedure, whereby a solution was assuned in the

form of series of admissible functions as follows:
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- n n
"r = 2 ASQRS(R'¢'Z) » qh - ) BSQ¢S(R'¢’Z)

s=1 s=1
(125)
. n " n
q, * L C.Q (R.¢.Z) ’ Py = % DP_(Ry0,2)
Z o) S2S LIS

where QRs' Q¢s‘ 0. , and Ps are functions similar to solutions (121)-(124),

zs
but satisfying the boundary conditions at both the free and wetted surfaces.
We note that these functions no longer satisfy the continuity equation and
the equations of mation.

Introducting Eqs. (125) into Eqs. (44), (46), and (47), multiplying
Eqs. (44) and the three components of Eq. (47) by QRt' °¢t' ta and Pt'
and integrating over the volume of liquid, we obtained an algebraic eigenvalue
problem of order 4n+6 in the coefficients As' Bs’ Cs’ Ds' the angles of
5]. 52 and 53. with A as a parameter. The eigenvalue problem and the
angular velocities G] = imNél. ;2 = iwuéz. and &3 = imué3 can be written
in the form

\EX + Fx =0 (126)

A solution of the eigenvalue problem (126) was attempted by the QR
method but, in spite of considerable time and effort, the results proved
unsatisfactory. In particular, the obtained eigenvalues ; have real parts,
which is in contradiction with the expectation of a purely oscillatory
motion for an inviscid stable problem. The conclusion that can be drawn
from this is that a Galerkin approach is not feasible for this problem be-
cause of the difficulty in selecting a satisfactory set of admissible functions.

Because the semi-analytical approach described above did not lead to
satisfactory results, a completely numerical solution of the inviscid pro-

blem with the modified boundary condittions may be attempted by means of fi-

nite differences or finite elements. Although that approach may permit
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a ready extension to other tank gecometries, the work promises to be
extremely tedious, because a three-dimensional finite-difference grid

or a three-dimensional finite element must be used. We note, in passing,
that truly three-dimensional numerical solutions of fluid dynamical pro-

blems are scarce.
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