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Abstract

This research is concerned with the stability and time-dependent

motion of a spinning satellite, simulated by a rigid body with a

cavity partially filled with liquid. The work includes the problem

formulation, consisting of the boundary-value problem for the liquid

and moment equations for the entire system. Because of large Reynold's

numbers involved, viscosity effects are negligible everywhere except

for a thin boundar ,,- layer near the wetted surface. Using a boundary-

layer analysis, the effect of the boundary layer is replaced by modified

boundary conditions for the liquid. The solution of the differential

equations for the inviscid problem has been solved in closed form. A

semi-analytical numerical solution of the inviscid equations subject to

the viscous boundary condition has proved unsuccessful.
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1. Kinematical Relations

Let XYZ be an inertial coordinate system wi.h the origin at the

mass center c of the satellite (see Fig. 1), and let the satellite

be rotating with an angular velocity w with respect to axes XYZ.

Denoting by xyz a set, of body axes, and by i, j, k the unit vectors

along these axes, the angular velocity of the satellite can be written

in the form

•	 w ^Xi + wyj + wzk	 (1)

where wX , wy, 
W  

are the corresponding angular velocity components.

It will prove convenient to introduce a set of axes TIC parallel

to axes xyz but with the origin at the center 0 of the spherical tank

instead of the center c of the satellite, as shown in Fig. 1. Denoting

by R  the vector from c to 0 and by r the vector from 0 to any position

in the li^uid, the absolute position of any point in the fluid can be

written as

R=RO+r=xi+yJ+A	 (2)

where

R  = ROXi + ROy .] + R Oz k	 (3)

and

+ TO + ^k	 (4)

Differentiating Fq. (2) with respect to time, and recognizing

the fact that the unit vectors i, j, k rotate w i th angular velocity w,

qtr



we obtain the absolute velocity at a point in the liquid in the form

v	
dt	 dt (p0+r) = v 0 +q +wx r	 (5)

where v 0 is the velocity of the origin 0 and

	

= dF3+ do— + d r_ 	(6)
q	 dt	 dt j	 dt

is the velocity of the liquid relative to the tank. The absolute

acceleration of the liquid can be obtained by differentiating Eq. (5)

with respect to time. The result is

a = dt a O + D +Wxq+ at x'r+`wx dt 	 (7)

where

D _ ^+ q 0
Dt at

is known as the substantial derivative operator. Denoting d)/dt by

w, and inserting Eq. (8) into Eq. (7), we can express the absolute

acceleration at a point in the liquid as

a = a0 +	 +q %f +2wxq +wx r+wx (wx r)	 (9)

in which q • oq is known as the convective acceleration. The absolute

acceleration of a point in the rigid part of the satellite can be obtained

by lett'.ng q = 0 in Eq. (9).

(8)
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2. The Mathematical Formulation for the Motion of the System

The problem formulation consists of the boundary-value problem,

namely, the differential equation and boundary condition for the liquid,

and the moment equation governing the rotation of the satellite.

2.1 The equations governing the liquid motion

For an incompressible fluid, the velocity vector q must satisfy

the continu4ty equation

V - q = 0	 (10)

In this case, the Navier-Stokes equations become

a = a 0 +t+q . Vq+26)xq+wx r+wx (wx r)

	

_ - p Vp+f+VV2q	 (11)

where f is the body force per unit mass, and 1), p, and v are th

density, pressure, and :inematic viscosity, respectively.

From vector algebra, we have

q • Vq= 2 V ( q -0- qx (Vxq)

W x (w x r) _ - 2 V[;w x r) • (w x r))	 (12)

ao = V(a O	 r)

3



where V x q is known as the vorticity of the liquid relative to the

tank. Assuming that the body force is derivable from a potential

function, we can write

f= - VB	 ,13)

where B is a scalar function. It is convenient to introduce a pressure

function p* defined by

P* = 1)p + Q + a^	 r + 2 q	 q - 2 (w x r )	 (w x r )	 (14)

Then, Eq. (11) can be rewritten as

at - 
q x (V x q ) + 2u, x q + w x r = - Vp* + VV 2q	 (15)

2.2 Boundary conditions

The boundary conditions on the liquid are of two types, namely,

geometric and natural. The geometric boundary conditions are the result

of kinematic considerations, whereas the natural boundary conditions are

the result of dynamic considerations. Moreover, we must distinguish 	
r
i

between the boundary co-editions on the wetted surface S  and the free

surface Sf.

At the vetted surface the velocity of the liquid relative to the

satellite is zero. If n, ti, and t 2 denote unit vectors normal and

tangential to the w p t ed surface, then we have

4
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q  = q • n = U	 on S 	 (16a )

q tl - q • t  = 0, q t2 = q	 t 2 = 0	 on S 	 (16b)

The boundary condition (16a) is a result of the impermeability of the

rigid part of the satellite and must be satisfied whether the fluid is

viscous or inviscid. On the other hand, the boundary conditions (16b)

are referreu to as the no-slip conditions because, irrespective of how

small the viscosity of the fluid is, there can be no relative tangential

velocity between the fluid and the wetted surface. If the fluid is

inviscid, the boundary conditions (16b) may not be satisfied.

At the free surface there are three boundary conditions. The

first is kinematical in nature, expressing the fact that a particle on

the free surface must always remain on the free surface that is, if

F(x,y,z,t) = 0 is the equation of the free surface, the we must have

D
t [F(x,y,z,t)] = 0	 on	 F(x,y,z,t) = 0	 (17)

Recalling definition (8), Eq. (17) becomes

at + qx ax
aF 

 + ^y ay + qz az 
0 on F(x,y,z,t) = 0	 (18)

where q x , qy , q  are the components of q along the xyz axes. The other

boundary conditiuns are dynamic, representing the continuity of normal

and tangential stresses across the free interface. Taking the surface

5
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tension into account, we can ,Trite the continuity of the normal

stresses

T(K 1 + K 2 ) + P = (3	 on F(x,y,z,t) = 0
	

(19)

where T is the surface tension, K1 and K2 are the curvatures of the

free surface along two orthogonal directions, P represents the pressure

in the vacant pa-t of the tank, and c is the normal stress. The

continuity of the tangential stresses is expressed by

It 	 = 0	 ,	
'2 = 0
	 on F(x,y,z,t)
	

(20)

2.3 The moir,ent equation for the satellite

We assume that the mass center c of the satellite is fixed in

an inertial space, and, moreover, that it does not shift with respect

to the rigid part of the satellite, even though the liquid may be

ring. Recognizing that the acceleration of any particle in the

jid ,-iart of the satellite can be obtained by letting q = 0 in Eq.

I, we can write the moment equat i on about c in the form

J
R x [a 0 + ' 3̂ qt +q . Vq+2wx q +wx r+wx (wx r)]dme+

me

Jill Rx 
[ a 0 +wx r +wx (wx r)]dmr=

r

I	 R x [V(P
p 

p a• B) + vV 2q]drn
.^ + I

m  
R x f 

r 
dm 

r	
(21 )

tin 
Q	 r•

i
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where the subscripts £ and r d •!signate the liquid and rigid parts of

the satellite, respectively. Because the acceleration of the point

0 is

aO=wxRO+wx (wxA 0 )	 (22)

and recalling that RO + r - k, we can write*

f in	
x [w x R +wx (wxR) ]dmQ + `

m 
Rx [w xR +wx (w xR)]dmr

 r

T - w + w x T W-
	

(23)

where I is the inertia dyadic of the satellite as if it were entirely

rigid. Using Eqs. (12), (14), and (23), we can rewrite Eq. (21) as

^•w+wx I	 w = -
J 

Rx {V[p*-a 0 	r+2 (wxr)	 (wxr)] -
mo

q x (V x q) +	 + 2w x q + W 2!q}dm^ + j R x T
r
 dmr	(24)

m
r

where the first integral on the right side of Eq. (24) is the disturbing

torque due to the liquid motion and the second integral is due to body

forces acting on the rigid part.

Steady-State Equilibrium Configuratio n

First we seek an equilibrium configuration in which the satellite

rotates with a constant aniular velocity n about the inertial axis Z

* See Ref. 1, Sec. 12.8
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and in which the liquid is at rest with respect to the satellite. More-

over, the body force is assumed to be zero. To describe this configu-

ration, we introduce a coordinate system x'y'z' rotating with the

angular velocity 52 about the axis Z, and denote by i', ,j', k' the unit

vectors along these axes. Hence, the equilibrium configuration is

given by

q = 0 , u,	 S2k'	 w = 0 , F 0 (x,y,z) = 0	 (25)

where F 0 (x,y,z) = 0 is tht equWoi of the free sur -e.

Substituting Eq. (25) into Eqs. (14) and (15), and recalling

Eq. (22), we obtain

P* = ' P52
2

522 (x' 2 + y' 2 ) = const	 (26)
P

The boundary conditions (16), (18), and (20) are automatically satisfied,

whereas, boundary condition (19), together with Eq. (26), yields

T(K l + K 2 ) + 2 p S2	 + v' 2 ) = const	 (27)

which describes the free surface F 0 (x', y', z') = 0. Hence, the free

surface is the intersection of the curve given by Eq. (27) and the

sphere

	

(x' - R Ox ,) 2 + (y' - R Oy ,) 2 + (z' - R Oz ,) 2 = R 2 	(28)
i

where R s is the radius of the spherical tank. In the case in which the

surface tension T is negligible, the free surface is given by the inter-

I *1,	 8



section of the cylinder

x' 2 + y' 2 = R 2 	(28)

and the spherical tank given by Eq. (28), where the radius R  of the

cylinder is a function of the volume of liquid in the tank.

4. Linear Perturbation Problem

Next, let us consider the case of a small perturbation from the

steady-:.tate solution discussed in Section 3. To this end, we write

W = stk' + LW-1 + ...	 w - Ew l + ...	 ( 30)

R_IZ'+eIT1+...	 (31)

q = cq l + ...	 (32)

p=p'+L p l +...	 ( 33)

F( x ,Y, z ,t) = R - R  + c F l (m,z,t) + ... = 0	 (34)

where c is a small parameter and R, T, z a cylindrical coordinate system

with the origin at c. Recogniz i ng that the perturbed body is inclined

slightly with respect to axes x'y'z', we let the body axes triad xyz be

	

obtained from x'y'z' by means of the sr;iall rotations ee l about x', ce2	
111

•	 about y', and ce 3 about z', which enables us to write

x = x' + e (e 3y' - 6 2z') + ...

Y = Y , + E (O l z' - 6 3x') + ...	 (35)

Z = z' + e (6 2x ' - e 2y') + ...

*i
1	 9



so that, from Eqs. (31) and (3 1i), it follows that

	

R 1 = (9 3y' - 0 2z') T + (© y z' - 0 3x') 3 + ( 02x, - © l ye ) k	 (36)

Substituting Eqs. (30) - (34) into Eqs. (14), (15), (19) - (20),

and (24), and equating coefficients of equal powers of c, we obtain

the steady-state solutijn of Section 3, corresponding to the 0(co)

problem, and the following equations for the 0(c) problem

V • q l = 0	 (37)

aql
of + 21 X x q l + wl x

-V[
P
 p l - (SZk' x R') . (w l x R' +	 x R l )J + v V 2g 1	(38)

T	 —W I + Sik' x I • m
I 

+ W1 x I • Stk'

[R' x ( p Vp l + at + 2Sk x q l - v V 2g l ) + R 1 x p Vp'Jdme
Im Q

(39)

where q 1 is subject to the following boundary conditions

q  = 0	 on r = R s	(40a)

q 	 %	 0	 on r = R s	(40b)

aF
qR + atl = 0	 on R = R

C
	(41)

10



r

Olt =-p1+2pvaRF^=0

)qR	
aqz

TRz = pv( az + aR ) = 0

on R = R 	 (42a)

on R = RC	(42b)

TRH PV[R R (R ) + 
R â R ] = 0
	

on R = R 	 (42c)

where r, a, 0 is a spherical coordinate system centered at 0, whereas

R, Q, z is a cylindrical coordinate system centered at c. Note that

the boundary condition (41) was obtained by inserting Eq. (34) into the

kinematic condition (18i, performing a so-called "t"ansfer of boundary

conditions", and keeping the O(E) 	 rms*.

5. Method of Solution

5.1 The equations: of motion in dimensionless form

To solve Fq;. ! -,,7) - (39) subject to the boundary conditions

(40) - (42), we first consider the fluid problem. To this end, we

introduce the dimensionless quantities

x = x'/2R s , y = y'12R s , z = z'/2Rs

t = 
t`' N	 = Q/wN

F = R 
s 
F1 eat

1 

ql = q l U eat

(43)

pl =
 PI pU2 eat

a	
* See Ref. 2, Sec. 2.1.3
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W
1 
=01 1 +62j +03k= awNOeat

U	 at
R1 

=R1 
wNe

where U = 2R swN is a fictitious velc,city and "'N = Q(C-A)/A i s the

nutational frequency or the rigid satellite, in which A is the principal

moment of inertia about x or y and C the principal momei.t of inertia

about z. Moreover, a is the dimensionless eigenvalue sought. Sub-

stituting Eqs. (43) into Eqs. (37) and (38), we obtain

	

v • q l = 0	 (44)

Xq l + 2Qk' x q l + a go x R'

- v[p l - (Sk' x R')•(a0 x R' + Q k ' x R 1 )] + R v 2g 1	 (45)
e

where, in terns of cartesian components,

V =i a^+i a- + ka^

ax	 ay	 a 

represe,its a dimensionless nabla, and R e = 4R5wN/v is Reynold's

number.

In a similar fashion, the moment equation, Eq. (39), becomes

^ ^

	

a I • 0+ a'.2(k' x I	 0+ 0 x

1 "2n- m[ R' x (vp l + aq l + 2Stk'	 q l - Re v ql) + R 1 x vp l ]dmf 	 (46)

12



where I = I/4Rsm is the dimensionless inertia dyadic of the complete

system as if the system were entirely rigid, in which m is the total

mass (rigid plus liquid) of the system. Moreover, rnf = mf/m is the

dimensionless mass of the liquid. For simplicity, T is evaluated by

regarding the mass of the liquid as frozen in the equilibrium con-

figuration.

Typical values of Rs, 
W  

and v show that R e = 0(10') or larger*.

Hence, one can neglect the last term in Eq. (45) and obtain

Aq l + 22k' x q l +X o x R' = -a[p l - (S2k x R') • (X6 x R' + Ok' x R l )]

(47)

However, Eq. (47) is of first order in the spatial variables rather than

second order. Hence, the general solutions of Eqs. (44) and (47) cannot

be expected to satisfy all the boundary conditions (40) - (42). Because

letting R e -► - is equivalent to assuming an inviscid fluid, the no-slip

boundary conditions (40b) and the shear boundary conditions (42b) and

(420 cannot be satisfied in general.

To obtain a solution valid everywhere, we must supplement the

solutions of Eqs. (44) and (47) by two boundary layers, one near the

tree surface and the other near the wetted surface, by using the method

of composite expansions.**

The result of the boundary layer analysis will be the modification

of the boundary conditions for the inviscid proble:u by accornting for

* See Ref. 3

** See Ref. 2, Sec. 4.2
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the liquid viscosity. Hence, the problem will reduce to the solution

of an inviscid problem, with the effect of the viscosity reflected

in the modified boundary conditions.

The nature of the geometry of the liquid boundaries demands the

use of a cylindrical coordinate system with the origin at c to de-

scribe the boundary layer near the free surface and a spherical coordi-

nate system with the origin at 0 to describe the boundary layer near

the wetted surface. Note that either coordinate system can be used

away from the boundarie,. As a result, we shall seek the Folution in

two parts, one valid everywhere except near the free surface and the

other valid everywhere except near the wetted surface.

5.2 The boundar y layer next to the free surface

We assume the solution next to the free surface to have the

form

q l = gR eR + qt,	 + gzez = Lu i (R,b,z) + du v ( o ' ^ )J eR +

	

Lvi (R,^,Z) + vv(p'^'z)]e + Lw i (R,^,Z) + wV ( p 412)1 e z 	(48)

P1 = p i (R,^,z) + p v GM,z)
	

(49)

where p = (R - R c )/d, in which S = 11 
e 

is proportional to the boundary

layer thickness. Note that the subscripts i and v refer to inviscid

and viscous solutions. According to this method, we force the quantities

with subscript v to tend to zero as p a 00. Substituting Eqs. (48) and (49)

14



into Eqs. (44) and (4„), and lei.ting d - ► 0 while holding R fixed,

we obtain Eqs. (44) and (47). Substituting Eqs. (48) and (49) into

Eqs. (44) and (45), taking the limit b - 0 with p fixed, subtracting

the quantities perta'ning to the inviscid solution, and using Eqs.

`	 (44) and (47), we obtain

auv1 av v 	,3wv
+ —	 +	 = 0	 (50)

ap	 R  a^	 az

aPv
= 0	 (51)

ap

3 2y y	 1 apv
^2 - av y	(52)

ap	 R  a^

a 2w	 ap

^2
v - awv =	 (53)

ap	 az

The solution of Eq. (51) tending to zero as p - ► - is p 	 0.

It follows that the solutions of Eqs. (52) and (53) tending to zero as

p-► ware

vy = a 1 (^,z) e	 p	 (54)

WV = a 2	z) eT p
	

(55)

where the real part ofa is negative. Inserting solutions (54) and (55)

into Eq. (50), we obtain

15
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au	 as	 pia	 ,^ ^	
(56)

ap	 Rc a^	 az

Hence,

	

as	 as	 ^
u v = - 1 (^ 1 + 2̂ ) e	 p	 (57)

P c	 z

Writing Eq. (42b) in terms of dimensionless variables, and

substituting for qR and q Z from Eq. (48), we obtain

Du .	 au	 aw.	 aw

az	 az	 aR	
6 

a^

Inserting Eqs. (55) and (57) into Eq. (58), we conclude that

a 2 = 0(6)	 (59)

Similarly, boundary condition (42c) leads to

a l = 0(6)	 (60)

In view of Eqs. (59) and (60), boundary conditions (41) and (42a)

become

	2 	 ^	 ^

	

aF 1 + 2u i = 0(6 )	 on R = R 	 (61)

2	p l = 0(6)	 on R = R 	 (62)

16



Hence, to order 6, the boundary conditions at the free surface are the

same as for the inviscid liquid and no dissipation takes place in the

boundary layer next to the free surface.

5.3 The boundary layer next to 'the wetted surface

We see ►, a solution valid everywhere except near the free surface.

To this end, we use spherical coordinates and write the solution in

the form

q l = g re r + gaea + g HeR = [u i (r,a,6) + 6uv(P'a'6))er

+ [ v i ( r , ri,M + v v (PSUA] ea + [ w i ( r ^a^f3 ) + w v (P+a,R)Ie^	 (63)

where the viscous terms, namely, the components with subscript v, tend to

zero as p	 in which p = (1 - r)/d. The inviscid components, namely,

the components with subscript i, are solutions of Eq. (47).

To determine the viscous components, we substitute Eq. (63) into

Eqs. (44) and (45), subtract the inviscid components, let b -. 0 with

p fixed, and obtain

aw
('UV 	 1	

(vv sin 
a) +	 l	 v = 0	 (64)

ap	 sin a as	 sin a DR

apv = 0
	 (65a)

ap

^P	
a2v

avv - 252w v cos a = -	 + - 2 v	 (65b)

as	 aP

-

17



a 

^	 1	 ^ pv	 a2wv

	

Awv + 212v v cos n = -	 + ^2	 (65c)
	sin a a4	 aP	 I

^
The solution of Eq. (65a) that tends to zero as p -► CO is

pv = 0	 (66)

from which it follows that the solution of Eqs. (65b) and (65c) is

	

s 1 r)	 s2U
vv = C  (a,t>)e 	 + c 2 (a,B)e	 (67a)

^

w  = i[c1(x	

s1p

,6) e	- c 2 (a	

s2p

,6)e	 ]	 (67b)

where

2

s ^
= a + i2P cos a	 (68)

s2

in which i	 Note that the real parts of s  and s 2 must be

negative for v v and wv to tend to zero as p - -. Introducing Egs.(67)

into Eq. (64), and solving for u v , we obtain

C
^

as 	 s p

1u v	 s^ s^ aa l	 + sin a as
 (c	

sinsin a) 
+ sin a a61le	

+

C 1 as 1 s p	 c	 as	 ac	 s p1	 1_	 2	 2	 1	 a	 i	 2	 2
s l as

P +	
( c 2 sin	 le

+s2[

e	 a)	
sin a aBs 2 as	 sin a as

+ c 2 as 2
^

^	 s2p

e	 =	 0	 (64)
S
2

as P

^;	 18
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L'oundary conditions (40) d eiianu that q 1 = 0 on r = 1, so that

u i + 6u  = 0	 on r = 1	 (70a)

v i + v v = 0	 on r = 1	 (70b)

.J i + V1 v  = 0	 on r= 1	 (70c)

Introducing Eqs. (67) and (69) into Eqs. (70), and recalling that

p = 0 when r = 1, we have

u i + 6(f 1 + f 2 ) = 0	 or. r = 1	 (71a)

V i + c 1 + c 2 = 0	 on r = 1	 (71b)

w i + i(c l - c 2 ) = 0	 on r = 1	 (71c)

where for convenience we adopted the notation

k

C• as•	 ^C.

f. = s [- s^ as { sin a 2a (c 
sin

j	 a) + sin a	 ] d 
= 1,2	 (72)

f

Equations (71b) and (71c) can be solved for c  and c 2 , with the result

c 1 = - 2 (v i - iw i ), c 2 = C _ - 2 (v i + iw i )	 (73)

so that c 2 is the complex conjugate of c 1 . Moreover, from Eq. (68),

it is easy to verify that

i

19
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aal x 
ii2 Sin	 2a2 R - Mlino	 (74)

1	 2

Inserting Eqs. (72) - (74) into Eq. (71a), we obtain

u i + 2 iQ 	 sin a [( I 3 - 13) v i - i(1-1 + 13 )w i 1 - 2 cot a x
s 1	 s 2	 s1	 s2

1	 1	 1	 1	 d	 1	 1	
avi	

1	 1	 3wi
[( ŝ  + s2)vi - i( 5̂  - sZ)wi] - 2 [( 5̂  + s2)3a - s 

1
	 52)act

ay. 3w.

	

i(— +	 ) 1] = 0	 on r = 1	 (75)
- 2 sin a	 s l	 s2 as	 sl	 s2 3S

It will prove convenient to introduce the notation

s 1 = s e - i Y	 s2 = s eiY
	

(76)

where

s = (a 2 + 4SZ2 Cos 200	 , Y 
= 2 tan'1 2sZ xos a	 (77)

Then, the boundary condition at the wetted surface reduces to

ui _ d St si^ (vi sin 3Y - w i	 cos 3Y)	 - d cos ^` 
( v i cos Y - w i	 sin Y)

s

1	 av i 3wi
1

avi 3wi

.	 - d S ( aa	 cos Y + as
sin Y)	 + d	 5	 sin a(aR	

stn 
Y as	

cos Y)	 = 0

on r	 =	 1	 (78)
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6. The Eigenvalue Problem

6.1 The solution of the equations of motion

Equations (44) and (47) must be solved simultaneously for the

components of the velocity vector q l and pressure p l in terms of the

components of the rotation vector 0. An examination of Eqs. (44) and

(47), however, reveals that they are not in a form that permits a

convenient solution, because Eq. (47) is a vector equation involving

both q l and p l , whereas Eq. (44) is a scalar equation involving only

q l . If Eqs. (44) and (47) can be transformed into a vector equatio,,

involving only ql and ^, scalar equation involving q l and p l , then the

vector equation can be solved independently for q l , thereupon the

scalar equation yields p l . Indeed, taking the curl and divergence of

Eq. (47), and considering Eq. (44), we obtain the vector equation

aD x ql - 22 aql + 2x 26 = 0	 (79)

az

and the scalar equation.

o2Pl = 2SZ k' • (2S2 awl - a te)	 (80)
a	 az

respectively.

Due to the nature of the problem, the use of cylindrical Co-

ordinates is indicated in the solution of Eq. (79). 	 Insertinq q l =

g R eR + q^e^ + gzez and 0 = 0 
R 

e R + 0 e^ + 0 
z 
e 
z 

into Eq. (79), where

21



n	 ^	 r

OR = 9
l cos m + 02 sin

sin ^ + 0̂ 2 cos	 (81)

0 z	 03

and equating the coefficients of e R , e,, and e  to zero, we obtain

the three scalar equations

a ( ^ 
"Z - 

a—qk-) - 2s^ 

aqR 
+ 2a 2© = 0	 (82a)

R a^	 az	 az	
R

	

^	 ^	 ^

a( a g R - 1qz ) - 2S a5 + 2a 20^ = 0	 (82b)

	

az	 DR	 az

	

^	 ^	 ^
	aq	 q1 aqR	 ^ aq z	 ^2^X (-1 + ;t - ^ —) - 20 ^ + 2a 0 z = 0	 (82c)

	

DR	 R	 R a^	 az

^	 ^

Equations (82a) and (82b) can be solved simultareously for aq R/at and

aq^/az, with the result

^
aqR = n 2 x ^ 2 [2S2 aQz + a aQz + 2a(2Q - a0^)^	 (83a)

az	 4^ + a	 R	 R

aq	 ^	 ^	 aq	 ^ aq	 ^^	 ^ .

^2 ^2 [a ? - 2S , + 2X(a0 R + 25Z0^)^	 (83b)
,

I	

az	 4;2 + n	 R	 DR

I	 ^
Inserting Eqs. (83) into Eq. (82c) differentiated with respect to z, and

	

recognizing that a0 R/3^ = U	 a0 /a^ _ - 0 R , we obtain
f 
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^2	 a 2u	 a9	 a29	 a2q^2	 (-,^Z + -z? + 1'1 2z ) ♦ - 
^2Z 

0	 (84 )

4:2 +	 DR	 R DR	 2z

which is a partial differential equation for the velocity component q 

alone. Its solution can be obtained by the method of separation of

'	 variables. To this end, let

g z (R,^,z) = fR ( R ) f^W f z ( z )	 05)

so that, inserting Eq.(85) into (84), and dividing through by q z , we

obtain

^2	 d2f	 df	 d 2 f	 d 2 f_	 ^	 1 ( ^ R + 1 f)4. 1 1 — '^ + 1
	7

z -_ 0	 (8E)

	

0 + a2 fR dR 2	R dR	 f cl `	 f  dz^

Next let

2
4:22 + X 2 1 d f 2=	 k 2	 (87)

	

a

2 

	 fz dz

where k is a number, and denote

'2

"2^ ,.2 
k2 = j2

4s2 + a

so that Eq. (87) can be written in the form

.	 2
d 2z - J2fz ^ 0	 (88)

dz

having the solution

rr t	 23



f  = A cosh jz t B sinh jz

In view of Eq. (81), Eq. (86) reduces to

'r

R2 
d
2

f 
RI dfR	 2°2	 1 d2f

-FR	
+ ^ dR ) + k R + fe 

d—	 0	 (90)

leading 0 the two equations

d2f

d^

and

d2f	 1 df	 2
2R	

R + (k2 - e2)fR = 0 	 (92)
dR + R dR	 R

where t is a number. The solution of Eq. (91) is simply

f^ = C cos f^ + D s'n e^	 (93)

On the other hand, Eq. (92) is recognized as a Qessel equation having

the solution

f  = E Je(kR) + F Ye(kR) 	 (94)

where J  and Ye are Besse] functions of order f- of the first and

second kind, respectively. Combining Eqs. (89), (93), and (94), we can

write

q z = (A cosh jz + Q sinh jz)(C cos e^ + D sin ef)[E Je(kR) + F Y.kKR)I
t
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which represents only the homoiieneous part of the solution. Before

obtaining the particular solution, let us derive the homogeneous Darts

Of q
R and q^. Introducing Eq. (95) into Eqs. (83), ignoring the

terms in 0R and 0,, and integrating with respect to z, we obtain

qR =	 j	 „^
J1 

j (A sinh ji + B cosh jz^) { ĝ  (-C sin tQ + D cos tQ ) x

ki + 

[E J Q (kR) + F Y e (kR)] + ak(C cos t^ + D sin f^)[E J^_(kR) + F Y'(kR)])

(96)

and

x(A sinl^ ji	 8 cosh jz){ ^`^ (-C sin Q,, + D cos if)q 	
4s1 2 + a 2 j	 R

[E Jz (0) + F Y f (kR)] - 2s2k(C cos ZQ + D sin t^)[E JQ(6) + F YQ(6)])

(97)

where J  and Yj designate derivatives of J  and Y f, with respect to kR.

Next let us turn our attention to the particular solution, and

assume the solution in the forri

q  = c l (^)z + c 2 (f)R, q = c 3 Wz + c 4 (fl R , q z = c 5 (f) z + C 6 (1,)R

(98)

Introducing sclutinn (98) into Eqs. (82), as well as into the continuity

equation, Eq. (44), we obtain the set of Equations

25
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I

1 1̂ c 5 	dc 6	 ^	 ^2^Al R ( d ,F 2 t d T R) - c 3 ]- 2 s t c 1 + 2a
 OR =  0

A(cI - c 6 ) - 2sic 3 + 2a 20^ = 0

(99)

	

do
1
	doX (c4+c3 z

+c4
_ 1	 Z-?) -2Sx +2a 2Az=0

R	 R 0	 d^

	

z1 dc
3	dc4

c 2 +c 1
 +c 2

+ ^ 
(d^ z+

dam R) +c 5 =0
R	 R

It can be verified that the solution of Eqs. (99) can be written as

c  = -a9	 c2=0 , c3=X0R	
(100)

c 4 = -a0 z , c 5 = 0 , c 6 = ae -258R

Hence, the complete solutions for q R , a,, and q z are

^

q =	 1 (A Binh jz + B cosh jz) 
{2Sle 

(-C sin 4+ D cos ^^) x

R C + A 2 j	 R

[E Jt (6) + F YQ (6)] + 4(C cos Qm + D sin 1t)[E Je(kR) + F Yj(kR^)])

_ AO z	 (101)

^

q =	 (A sinh jz + B cosh 3z){ 
ae 

(-C sin Zfi + D cos 	 x
4,2

+a^ j	 R

[E J t (6) + F Y,(6)] - 2Q-k(C cos 4 + D sin 4)[E JQ(kR) + F Y^(0)11

+ Â (e z - OzR)	
(102)



q Z = (A cosh jz + B sinh ji)(C cos fC + D sin ff) x

[E J1 (0) + F Y l,(kR^)] + (X̂ O" - 2S20 R )R	 ;103)

It remains to obtain the solution for the pressure p l . Introducing

solution (103) into Eq. (80), and recognizing that k' = e z , we obtain

the equation

02p 
= 4Q^21	 j (A Binh jz + Q cosh jz) (C cos Z^ + D sin .ffl x

a

[E Jf (kR) + F Yf (kR)] - 2sia© Z 	(104)

The solution of Eq. (104) can be written in three parts, namely,

P1 = P 2 (R,^,z) + P 3( R ,^ , Z ) + p4 (R)	 (105)

where p2 satisfies the equation

^2

^2- = 4S^ j (A sinh jz + a cosh j

^
z)(C cos .CCU + D sin ec) x

V P2
a

jE J f (0) + F Y t (kR)]	 (106)

p3 is the solution of Laplace's equation, and p 4 satisfies

d2^dp
p2 p4

 = ^24 +
	 ^4 = - 2me	 (107)

dR	 R dR

Writing the solution of Eq. (106) in the form

^I
 = (A sinh jz + a cosh jz)(C cos 1'N + D sin efl[E* J f (kP,) + F* Y^(kR)]

(108)
27
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r --T

and recognizing that

^2P2 - - e2P 	
a2

P2 - J2,
d^2	 2	 3z 2	 2

A	 Eq. (106) reduces to

2
[	 + 1 d^ + ( j2 - f

2

2 )] [E* J^(0) + F* YQ(0)]
dR	 R dR	 R

^2= 412 
j [E JQ (kR) + F Ye(0)]

a

(109)

But E* J f (kR) + F* YQ W) is a solution of Bessel's equation, Eq. (92),

from which it follows that

[ d22 + d^ + (J 2 - 2 )J [E* JV kR) + F* YQ(kR)]

dR	 R dR	 R

(j 2 - k2 )[E* J Q (kR) + F* Y,(kR)] = 4St j[E Jf (kR) + F Y,(kR)J

(110)

Recalling the relation between j2 and k 2 , we conclude from Eq. (110) that

^2
E* 4^ 

J,2	 E _ - E ,	 F* _ - F

Hence, solution (108) becomes

P2 
= -	 (A Binh ji + B cosh jz)(C cos Q^ + D sin C¢)[E J Q (0) + F Y l (0 )]

j

(111)
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The solution of Laplace's equation can be obtained from the solution

of Eq. (36) by letting k F J.	 It follows imllediately that

P 3 = (A 1 cosh jz + D 1 sinh ji) (C 1 cos f^ + D l sin ff) x

[E J e (jR) + F Y^(jR)^	 (112)

On the other hand, the solution of Eq. (101) can be written as

1,.2
p4 = - 2 QXO zR + G	 (113)

where the meaning of the constant G will become evident later.

Combining Eqs. (111), (112), and (113), we obtain the pressure

p l = - j (A sinh jz + B cosh jz) (C cos t^ + D sin Qf) x

[F Ji (kR) + F Y
le
(kR)l + (A 1 cosh jz + al Binh jz) x

( C 1 cos 4 + D 1 sin Zfl [E1 J^( jR ) + F 1 Y^( j R)l - 2 S2^A ZR 2 + G

(114)

Upon introducing solutions (101) -(103) and (114) into the mol,ient

equation, Eq. (46), and performing the appropriate integrations, it is

possible to eliminate the constants 0 1 , 0 2 , and 0 3 from these solutions,

where we note that 0 1 , 0 2 , and 0 3 are related to 0 R , 0 ), and r1z by

Eqs. (81). To this end, it is more convenient to work with the body axes

x, y, z. The inertia dyadic I has the principal diagonal elements

	

I 11' I 22 ,
 I33 and the off-diagonal elements - 1 12' - 1 13'	 123'

29



- 1 2 = - 1 12 , - I 31 = - I 13 , - 1 32 = - 123' Choosing the body axes

to coincide with the principal axes, the products of inertia reduce to

zero. Consistent with previous assumptions, we shall ignore the term

R e in Eq. (46).	 In view of the solutions for q 1 and p l , Eq. (46) can be

written in the form of three simultaneous algebraic equations in O1,

•	 02, and 0 3 . These equations can be conveniently displayed by introducing

the notation

M 1 1 = ^[ a 2 z 2 (cos 2Q -
 sin 2^) + (Q 2 - a 2 )^ 2 sin 2m - 2s2a(R 2 - 2z 2 ) x

m 

sink cosy]dm

M 12 = 
fj('2^2S^ 	 - a 2R 2 - 2a z22 )	 2	 2sinm cosy + 2!; 7XR sin 	 - 2QAz2]dmt
mQ

M 13 =	 X z	 cosh - St sinf)dni
mRE

M21 = ( ^ [2sZaR 2 cos 2^ - 2S2ai2 _ (Q2 _ X2)R2 sink cos^]dme 	(115)

1 mQ

M 22 - 1^ [- ^ 2z-2 + ( ^2 - ^2 )R 2 cos 2^ + 2S' 2 sink cosf]dmt
m^

•	 M23 = ^ a(a sine + Q cos0 Rz dm Q

m^

M31 = ^^ [- (S22 - ^2 )coq + 2 ^̂  sin^]Ri dm,
rnQ

30
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I

M32	 , j - (SZ - A ) sin<; - 2SaJ. cosp]Rz dm^

mQ

M33 = I., (S2 2 w a 2 ) R 2 dint

1 M 

where 
Mij 

(i,j = 1, 2, 3) can be identified as terms involving the

nonhomogeneous parts of q, and p l , and

z aplapl	 apl

H 1 = ^F.{(— -- + azq^ + 2s2zg R ) cosh + [z	 - R	 + a(z q - Rqz)

	

a 	 az

- 2ozq^] sink} H dm,e

z ap l 	 apl	 apt
+ ^zq^ + 2S2zq,) sintt - [z	 - R	 + a(zg R - Rq z )H 2 = I.{(^ 

m^ R	 DR	 az

- 2s^zq^] cosh} H dmt	(116)

apt

H3 = -^ ( 3 ^ + aRq + 2QRg R ) H dm 
J ITI IE

represent terms involving the homogeneous parts of ql and p l , where

the subscript 11 indicates that only the homogeneous parts of the solutions

for ql and p l are to be included in the integrands. Considering the above,

Eq. (46) can be 1, 4 tten in the form of the three scalar equations
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2I 11 
+ U1 12 + M 11 )P 1 + [- a 2 I 12 + AQ(I

33
 - I 22 ) + M123o2

+ (- a 2I 13 + 2,1'2I23 + M 13 ) p 3 n H1

[-	 I
12 + 7Q(I ll - I 33 ) + M211e1 + (a I 22 

- af1I 12
 + M22)©2

(111)
2^

+ (- A I23 - 2XQI
13
 + M 23 )6 3 = H2

(- a I13 - aS2I
23
 + M31 )o 1 + (- a

2^
23 + ai1I

13
 + M32)e2

+ (a I 33 + M 33 )n 3 = H3

Equations (111) can be solved for © i (i=1,2,3) to eliminate these angles

from q1 and p1.

6.2 Satisfaction of th e bou ndary conditions

The solutions q1 and p l contain 13 constants of integration in

addition to the numbers j and t and the eigenvalue X. To determine

these quantities, we must invoke the boundary conditions. The kinematic

,^oundary condition, Eq. (61), merely yields the function F 1 provided

the solution is known. On the other hand, boundary conditions (62) and

(78) can be used to determine the quantities in question.

At the free surface boundary condition (62) reduces to

P 1 = U	 on R = R c	(1181
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F; ,om Eq. (114), we conclude that boundary condition (118) is satisfied

for all (p and z if

i C (d c )	 j1(JRc)	 1	 12F = - --=  77--  E , F = - -	 E , G = - S Z a 0 R 	 (119)

Ye( kk c )	 1	 YZORc) 1
	 2	 z c

From the structure of the solution (114), however, we observe that the

constants E and E 1 can be absorbed by A and B and A l and B 1 , respectively,

To thi-a end, and for convenience, we let arbitrarily

E	 E1
= 1	 (120)

Yf (kR c )	 Ye(jRc)

so that the pressure becomes

P 1
= -	 (A Binh jz + B cosh jz) (C cos t^ + D sin Qf)x

1	 j

[Y e (kR c ) J^(kR) - Jt (kR c ) Yt (kR)] + ( A l cosh jz + B 1 sinh jz) x

(C 1 cos fq) + D 1 sin t^) [ Yf ( jRc ) i f ( j R) - J^( jR c ) Ye(jR)j

+ 2 StaAz(Rc-	 R 2 )	 (121)

Moreover, the velocity components become

q9R
4S22 +

]	 (A sinh jz + B cosh jz){ ^	
(-C sin t^ + D cos U) x

a 2 j R

a

[YQ (kR c ) J e (kR) - J^(kR c ) Y C (kR)] + ^k(C cos et + D sin f^) x

[Y e (kR c ) J^(kR) - Je (kR c ) Yj(kR)] - fiê i}	 (122)

I*1	
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qm _ ^2^ ,_2	 ( A sinh jz + B nosh jz){^^ (-C sin 4^ * D cos Qm)x
412 + a	 R

[Y R(6c )J^(kR) - J i (kRc )Y Q (kR)l - ilk(C cos k< + D sin ey)x

[Y z (6c )JQ(0) - J t (kR c )Y^(6)1 + ^(Y - ; , i))	 (123)

qz = (A cosh jz + B sinh jz)(C cos 4 + D sin X, )[YR(kRc)JQ(kR)

- J Q (kRC )Y p (kR)l + (a 6̂ - eS 6 R )R
	

(124)

The boundary condition at the wetted surface is as given by Eq. (18).

Satisfaction of this condition at every point of the boundary should yield

the effects of viscosity on the stability.

7. Semi-Analytical Solution

Because the solution (121) - (124) is in terms of cylindrical coordinates

with the origin at the satellite center and the boundary condition (78) is in

terms of spherical coordinates with the origin at the center of the spherical

tank, no exact solution is possible by separating variables. 	 In view of

this fact a semi-analytical numerical soltuion has been attempted.

The semi-analytical solution consists of solving the problem in two

stages. In the first stage a solution of the eigenvalue problem is obtained

by regarding the liquid as being entirely inviscid, and in the second stage

'	 the inviscid solution is perturbed, so that the perturbed motion s.tisfies

the viscous boundary condition at the wetted surface. The inviscid solution

was attempted by a Galerkin procedure, whereby a solution was assun;d in the

form of series of admissible functions as follows:

a'	 34
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1	 `l

	n 	 n

ASVRs (R,i,Z)	 q = ): QS ()4S N-( 'z)
	s=1	 s=1

(12b)

	

n	 n

	

q z = ):	 C SQZS (k "1" z) 	pl = ), DSPS(R,4),z)
s=1	 s=1

where QRs , Q(W Qzs, and P s are functions similar to solutions (121)-(124),

•	 but satisfying the toundary conditions at both the free and wetted surfaces.

We note that these functions no longer satisfy the continuity equation and

the equations of m.)tion.

lntroducting Eqs. (125) into Eqs. (44), (46), and (47), multiplying

Eqs. (44) and the three components of Eq. (47) by 
QRt' Q

4,
t' Qzt and Pt,

and integrating over the volume of liquid, we obtained an algebraic eigenvalue

problem of order 4n+6 in the coefficients A s , B s , C s , D s , the angles of

6 19 6 2 and 6 3 , with a as a parameter. The eigenvalue problem and the

angular velocities W 	 XWNOil (0 2 = X1°N6?+ and w
3 = awN

O
3 can be written

in the form

a Ex + Fx = 0	 (126)

A solution of the eigenvalue problem (126) was attempted by the QR

method but, in spite of considerable time and effort, the results proved

unsatisfactory. In particular, the obtained eigenvalues a have real parts,

which is in contradiction with the expectation of a purely oscillatory

motion for an inviscid stable problem. The conclusion that can be drawn

from this is that a Galerkin approach is not feasible for this problem be-

cause of the difficulty in selecting a satisfactory set of admissible functions.

Because the semi-analytical approach described above did not lead to

satisfactory results, a completely numerical solution of the inviscid pro-

blem with the modified boundary condittions may be attempted by means of fi-

nite differences or finite elements. Although that approach may permit
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a ready extension to other tank geometries, the work promises to be

extremely tedious, because a three-dimensional finite-difference grid

or a three-dimensional finite element must be used. We note, in passing.

that truly three-dimensional numerical solutions of fluid dynamical pro-

blems are scarce.

Y
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