
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19760003726 2020-03-22T19:36:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42886404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i

t

"s

ik

i	 d

^^y oFy	 '

^a	 DEPARTMENT OF MATHEMATICS
	 NASA CR-

^o
	 "Okndo4 %92' 

UNIVERSITY OF HOUSTON 	 HOUSTON, TEXAS _^ {

(NASA-CR-144463) AN ITERATIVI; PROCEDURE FOR
OBTAINING MAXIMUM-LIKELIHOOD ESTIMATES OF

t	 +	 THE PARAMETERS FOR A MIXTURE OF NORMAL

g	 DISTRIBUTIONS (Houston Univ.) 22 p HC $3.25
CSCL 12A G3/67

N76-10814

Unclas
39401

AN ITER PROC FOR OBTAINING VAX
LIKELIHOOD ESTIMATES OF THE PARAM
FOR A MIXTURE OF NORMAL DISTS
BY U. PETERSvJR. t & H. WALKER
REPORT #43 JULY, 1975

,,^'^^11 L 3 9 
v

Np) 1g^^

NgSRs^f/VFD
INPUT gRANCy Y

PRFPARI-D FOR
EARTH 05SERVATION DIVISION, JS,"

UNDER
CONTP.ACT NAS-9-12777

3801 CULLEN BLVD.
HOUSTON, TEXAS 77004



An I.tmmuat ive Pnoeedae bon 06tain ing
Maximum-Lk&Uhood Estimates o6 .the Panameteu

bon a Mi.xtuh.e o6 NonmaE DistAibutions

Juty, 1475

by

B. Chaxtess Feta s, Jn.

y	 NASA/Nationae Rezeaxch Couftctt Resecucch Associate

i

	

	 Earth. 06se/wations Division, Johnson Space Centerr /('

and
;i

Homer F. WaChen

Depaniment o6 Mathematics, UniveAz ty o6 Houston
i

Ij

i

j

ii
-

	

	 Repon.t 43
NAS-4 -12771

k



I'
i

An Iterative Procedure for Obtaining

Maximum-Likelihood Estimates of the Parameters

for a Mixture of Normal Distributions

by

B. Charles Peters, Jr.

NASA/National Research Council Research Associate

Earth Observations DivisioD, Johnson Space Center

apd

Homer F. Walker

Department of Mathematics, University, of Houston

Houston, Texas

1. Introduction.

Let X, be an n-dimensional random variable whose density function p

is a convex combination of normal densities, i.e.,

p (x) ° jlaipi(x)
	

for x e AZ 
n

where

A

	
ai ' 0 , Mai ° 1,

r
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t
1	 -1/2(x-U0)TEi 1(x-p)

f
!

Pi(x) _ (2rt) n/2I Eo I1/
i 1

`'	 1 n i.
rmr^If	 {xk}k c U^

is an independent sample of observations on	 x,	 then
{	 ! = 1	 N,...,

a maximum-likelihood estimate of the parameters 	 {a°,}t°,E°}
i	 i	 1 3=1,...,m

i is a choice of parameters ((%,J,>Ei}iwhich locally mhximizes the
=1	 m

x
log-likelihood function

N
L = kE llog P(xk)>

Ili which p is evaluated with the trueP arameters {a°,u ,E°}
i

re laced by the estimate {a U ,£ }	 (In the following, it is

usually clear from the context which parameters are used in evaluating the

L
density functions p i and p. Therefore, these parameters are explicitly

pointed out only ':?hen some ambiguity exists.)

Clearly, L is a differentiable function of the parameters to be estimated.

Equating to zero the partial derivatives of L with respect to these parameters,

one obtains, after a straightforward calculation, the following necessary

conditions for a maximum-likelihood estimate:

3

ai N pi(xk)
(l.a)	 ai N kZ1 p(xk)

i

1 N PiCxk)/ 1 N
E

PiCxk
{	 E x	 1	

)
I ' (Lb)	 µi 	 N klk p	 {N kl P ^, )}	 1=1>...>m

1 N	 T Pi(xk)	 1 N Pi(xk)	
l

(1. C)	 Ei = {N kEl (xk ui)(xk ui) P(xk) }/{N 01 p(xk)}
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These are known as the likelihood eyuations. As observed by Cramer [2],

Huzurbazar [7], Wald (11), Chanda [1], and others, there is,loosely

speaking, a unique solution of the likelihood equations which tends in pro-

bability to the true parameters as the sample size N approaches infinity.

Furthermore, this solution in a maximum-likelihood estimate, indeed, the

unique cons istent maximum-likelihood estimate. (Strictly speaking, given any

sufficiently small neighborhood of the true parameters, there is, with probability

tending to 1 as N approaches infinity, a unique solution of the likelihood

equations in that neighborhood, and this solution is a maximum-likelihood estimate.

For completeness, we present a brief proof of this result in an appendix.)

This note is addressed to the problem of determining this consistent maximum-

likelihood estimate by successive approximations.

The likelihood equations, as written, suggest the following iterative

procedure for obtaining a solution: Beginning with some set of starting values,

obtain successive approximations to a solution by inserting the preceding

approximations in the expressions on the right-hand sides of (l.a), (l.b),

and (l.c). This scheme is attractive for its relative ease of implementation,

and we discuss below the findings of several authors concerning its use in

obtaining maximum-likelihood estimates. For a discussion of other methods of

determining maximum-likelihood estimates, see Kale [S] and Wolfe [1.3] as

well as the authors given below.

Empirical studies of Day [3], Duda and Hart [4], and Hasselblad [5]

suggest that this scheme is convergent and that convergence is particularly
'	 I

fast when the component normal densities in p are "widely separated" in a

certain sense. Unfortunately, the likelihood equations have many solutions
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in general, and the iterates may converge to solutions, including "singular

solutions" (see [41), which axa not the consistent maximum-likelihood

estimate if care is not taken in the choice of starting values. No theoretical

evident.: of convergence is given in [3], [4], or [5].

Peters and Coberly [1(] have proved that, if all of the parameters 111

and E  are held fixed, then the iterative procedure suggested by the equation

(La) alone converges locally to a maximum-likelihood estimate of the para-

meters ai , i=1,...,m. (An iterative procedure is said to converge locally

to a limit if the iterates converge to that limit whenever the starting values

are sufficiently near that limit.) They also report on numerical studies in

which the computational feasibility of this procedure is demonstrated. Walker

[12; has shown that, if all the parameters a  and E 1 are held fixed, then

the iterative procedure suggested by the equation (l.b) converges locally to

a maximum-likelihood estimate of the means p i , 1-1, ... ,m. provided that

either m = 2 or the component normal densities in p are "widely separated"

in a certain sense.

In the following, we present a general iterative procedure fox cr,termining

the consistent maximum-likelihood estimate, of which the above procedure is a

special case. Indeed, our procedure is in some ways like a steepest-ascent

method, and the above procedure is obtained when a certain " gtpp-size" is

taken to be 1. We show that, if the "step-size" is sufficiently small, then

with probability approaching 1 as the sample size approaches infinity, this

procedure converges locally to the consistent maximum-likelihood estimate. This

scheme is as easily implemented in general as in the above special case, and

it appears to hold considerable promise as an effective tool for obtaining con-

sistent maximum-likelihood estimates in many situations of practical interest.



ai N Pi(xk)
Ai(a,u,E)	 N kEl p(xk) '

5

2. The general iterative procedure.

In order to minimize notational difficulties, we introduce several vector

spaces and give useful representations of their elements. For each i,

1 5 i 5 m, ai ,ui , and E  are elements of the vector spaces a 1
1
 
R n,

and the set of all real, symmetric nXn matrices, respectively. We de-y to

by O(, M , and J the respective m-fold direct sums of these spaces with

themselves, and we represent elements of a(, a , and ,d as columns

al	ul	 E1

a°	 E ^, u a	 E(^ , E ° 	 E^.

am	um	 Em

It will be convenient to represent elements of the direct sum Or G !n 6 j as

either

al

a
m

ul

PM

El

Em

a

or

E

If, for i °	 we denote



f

1

6	 b

I

1 N	 Pi(xk)
Mi(a,u,E) N kElx{c P(xk) /N

1 N Pi(xk)

k£1 P(xk)

N	 T Pi (xk)	 1 N Pi(xk)

	

Si(a,N,E)	 kEl(xlc ui) (xk+N i) p (xk) / N kEl p(xk)

then the likelihood equations can be written as

a	 A(a,µ,E)

(2) µ	
=	

M(a,U,E)	 ,

E	 S(a,u,E)

where

	

^A1(a,U,E)	 M1(a,^,E) 1	 S1(a,u,E)

A(a,u, E) _	 ^^	 , M(a,U, E) _	 , S (a , 11 , E ) 	 _

	

Am(a ,u, E )	 MM(a,N,E)I	 Sm(a,u,E)

One can write (2) equivalently as

	

a	 a	 A(a,u,E)

(3) U	 =	 (a Oil 	_ (1-e)	 u	 + E	 M(a,u,E)

	

S	 E 

for any value of e. (of course, (3) becomes (2) when e = 1.) The

following iterative procedure is suggested by (3) for obtaining a solution
&(1)

of the likelihood equations: Beginning with some starting value 	 u(1)

—M

define successive iterates inductively by

A_.....__..	 .	 11-111.1-	 .



;

a(k+l)

(y)	 ^(k+l)	 a Ê ^a(k)^u(k)^E(k))

E(k+l)
3

4

for k = 1 1 2 0 3 P ... . This procedure becomes the procedure given in the intro-

duction when e = 1.

In the next section, we show that if c is a sufficiently small positive

number, then, with probability approaching 1 as the sample size N approaches

infinity, this procedure converges locally to the consistent maximum-likelihood

estimate. This is done by showing that, with probability approaching 1 as

N approaches infinity, the operator (DE is locally contractive (in a suitable

vector norm) near that estimate, provided c is a sufficiently small positive

number. In saying that $E is locally contractive near a point

a	

oo	 D

Y

e OLO X ®.0, we mean that there is a vector norm I^ ^^ on LX ®li t® 2

4

and a number a, 0 <_ a < 1 such that

a	 tt'	 a

E	 E'	 E

a'

ly

a

whenever	 u'	 lies sufficient near	 u

E'	 E

3. The local contractibility and convergence results.

We now establish the following
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Theorem. With probability .approaching 1 as N approaches infinity, (be

is a locally contractive operator (in soc24; norm on (1(e M e.9) near the

consistent maximum-likelihood estimate whenever a is a sufficiently small

positive number.

Our main result 1s an immediate consequence of this theorem, which we

state as a

Corollary. With probability approaching 1 as N approaches infinity, the

iterative procedure (:;) converges locally to the consistent maximum-likelihood

estimate whenever a is a sufficiently small positive number.

Throughout the proof of the theorem, the symbol "Q" denotes the Frechet

derivative of a vector-valued function of a vector variable. When ambiguity

exists, the specific vector variable of differentiation appears as a subscript

of this symbol. For questions concerning the definition and properties of

Frechet derivatives, see Luenberger [9j.

Proof of the theorem: Let '}1 be the consistent maximum-likelihood estimate.

IE^
We assume that ai ¢ 0, 1 = 1,...,m. (As N tends to infinity, the probability

h
approaches 1. that this is th, case.) It must be shown that, with probability

q

approaching 1 as N approaches infinity, an inequality of the form (5)

holds whenever a is a sufficiently small positive number.

For any norm on 0(0 !M 04 one can write

a	 a'	 a

E	 E'	 E

+ 0

E'	 £

r
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Consequently, the theorem will be proved if it can be shown that, for small

positive E, v 4^ E (a,p,E) converges in probability to an operator which has

norm lees than 1 with respect to a suitable norm on Q(® W 0.4.

One can write V O 6 as (1-E)I plus a matrix of Frechet derivatives:

vaA uA VEA

(1^E)I + E	 va v7M vEM

a'a vu VEI

This is consistent with our representation of elements of ''®N&,p as

columns.

The entries of the above matrix can themselves be represented as matrices

of Frechet derivatives. For i = 1,...,m, we introduce inner products
a

<x,y>i M xT (aiZ
_ 
1)y on Ip n and <A,B>i - tr(A(Zi	)B 

T) on the space cf

real, symmetric nXn matrices. After a straightforward but extremely

tedious calculation, one obtains with the aid of equations . (1) that

	

P1 ( xk)	 p 1 (xk)	 T

N	
P("k)	 P(xk)

vaA(a .µ,E) = I	 (diag ai){N kEl	 '	 }

	

Pm (xk)	 Pm (xk)

	

P(xk)	 P(xk)

r

<xk71 r >1

 m m

P1(xk)

P(xk)
.

VVA(a,u,E) _ -(diag a
i) I k£1

Pm(xk)

P(xk)

T

)'
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T

Pl(xk) 4E-1	 _111)T_1 (xk̂ P].) (xk	
1

F

P

-(diag	 N k7-1

1-1^!
p m ck)

rP 0 1
P m(xk)	 I,
P (xk)	

m	 IM	 m
)T	 •>m

efi

Pl(xk)

T
P I (xk)

P(xk
(xk-u1)	 P (xk)

N

Vel(a,p	 N k-1

p M(xk) p ' (xk)
m

P (xk) P(xk)

PI(xk)

p (Xk)

x

k)	 T

k	
>

(x k7 µl)	 1p (^-W)

to	 T	 kil

PM(xk)

P (xk)

PM(xk)	 <x	 f> l
(xk7PM) 	p (

x

k	
Ic"M o 	m

N i(xk)	 T	 F>
i (xj^-llj) (xk7V'i)(diag aiN kEl P-^(xk)

(xk7_Vll) (Xj^ 	 >Pl(xk) <E	
_PJ)T	 T

	k7PI)	 P (xk)	 1P (xk

N

N k.1

m(xk	 (xk) <E -3.	
(X,^_,,M)TV(x	

Pm	 (xk7Pm)	 m

to

	

(x^7Pm)	 m
k)	 P (xk)
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Pp`xk;IEll(xk-ul)(xk-Nl)'- I]

v (aPp5E) = -(diag Ei){.1 k^l

Pp(^) IEm (xk-Pm)(xk-)m) T- T]

Pl(xk) T

P(xk)

r

Pm( xk)

P(xk)

pl (xk) -1	 T
P(xk)LEl (xk-µl)(xk-ul) - 1]

PLEml(xk µm)(xk-µm)TP(xk)	 - I]

Pl (xk)	 T

P() iN7 111 , •>1

pm(xk) .
P(xk) x

k-u
m' 

'>m'

VDS(a,,E) - -(diag Ei){Nµ 	 Ol

V 5 (a,u ' E)	 (diag Ei aiN Jl PP(xk)IEil(xk-ui)(xk-ui)T-I]<Eil(xk Ni)(xk-Ui)T-I,' >i) -

pl (xk.) -1	 T	 pl(xk). -1	 T
P(xk)LEl (xk-ul)(x4; ul),-I] 	 P(xk) El (xk-"l)(xk-ul) -I,'>1 T

N
(diag Ei){N k^l
	 /	 f }

Pp( )IEml(xk-um)(xk-um)T 17 ^pP(xk)'Eml(xk-um)(xk-Pm)T-'P`
>m

The inner products <^,.>i and <,,.>i, together with scalar multiplication

on	 1, induce an inner product <',•> . on O(® t1 OA. Setting



Pl (x) \

PW IPM(x)

p 

ri(x) (x-ul)

P(x)

Pm(x)

P(x)
(x-u^)

P1 (x) 1	 T

IEi (x-µl) (x-ul)	 - I]
P(x)

P.W -1	 T

IEm (x- P.M) (x--Um)	 - I]
P(x)

e item m'6,V(x) o

12

one obtains

^I 0

V$ (a,	 0 I

0

1 N Pi(xk)	 -1	 T
E(diag a

1N kLl 
P(xk) (xk-ui) <E 1 (xk-ui)(xk-ui) -I,.>1 )

1 N Pi(xk) -1	 T
0 0 (1-01 + e(diagE131 N  J1 P(xk) I E i (xk-li) (xk }li) -I]+

l(xk Pi)(xic ui) T	i, i )<Ei 

(ding ai) 0	 0
N

-e	 0	 I	 0	 {N kE2(xk)<V(xk),">)-

0	 0 (diag Ei)

F
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a
We have assumed that the solution u 	 of the likelihood equations 'is

E

consistent. Denoting the true parameters by ao , one verifies without
u.	 £o

difficulty that O(6E (a,µ ) converges in probability to E(OR)E (ao ,µ ,E) as

N approaches irf{ni:y. A straightforward calculation yields

I 0 0

^0 0 I

	

(diag ai) 0	 0

E	 0	 I	 0	 { J V°(x)<V°(x),• >po(x)dx}.
^n

0	 0	 (diag Si)

(In this expression, the superscript "o" on V and p indicates that the

true parameters are used in evaluating these functions.) Thus

E(0$ (a°,µ°,E°)) is an operator on Q(® M ® -4 of the form I - EQR, where

Q and R are positive-definite and symmetric with respect to the inner product

<<,,>. Since QR is positive-definite and symmetric with respect to the

inner product <*,Q l+ > on 0( 0 JW ®,J, it must be the case that, for small

positive E, the operator norm of E(VQ)E (a 	 with respect to the

inner product < •,Q 1e >', is less than 1. So, for small positive E,

converges in probability to an operator having norm less than 1
•	 E

with respect to the inner product <	 1 > on (J®Rio4. This completes the
,

proof of the theorem.

i
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We remark that, in order for the conclusion of the theo. . em to hold, it is

sufficient Co take a leas than. m(n+l)(n+
2)' Indeed, it is.cbser:ed in the

proof of the theorem that E(V(D(o ,u ,Eo)) I - eQR, where QR is positive-

definite and symmetric with respect to a certain inner product and, hence, has

positive eigenvalues. Denoting the spectral radius of QR by O (QR), one then

verifies that E(04)E (a ,p ,E )) has operator norm less than 1, with respect

to some vector norm, whenever a is less than p(QR) . (See ( 6].) Now

P(QF: < tr{QR)

m	 /^pi(x)2/'Pi(x)2

Mai J P(x) dx + 1 Itr{ J P(x) (x-ui)<x-ui^'>i dx}

IR 
n	

2	 Qzn
n

+ 1E1 tr{Ei ^ pp(x) 1Ei
1
(x-11i)(x-11 i)T- I]<Ej (x-11 i)(x-11i) T71 ,' > i dx}

n 
m	 m /'

< iEI n 
pi (x)dx + iEI J (x->li)TE11(x-µi)Pi(x)dx

+ J,
J 2 tr{(Eil(x-111)(x-Pi)T-I)2}pi(x)dx}
L%n

= m + mn + 2(n2 + n) = 
m(n+l)(n+2)

It follows that the conclusion of the theorem holds whenever e < m(n+l)(n+2)

4. Concluding remarks.

A number of numerical techniques for obtaining maximum-likelihood estimates

of the parameters for a mixture of normal distributions have been discussed in the

literature. In addition to the usual steepest-ascent method for obtaining a local

maximum of the log-likelihood function, we mention in particular Newton's method,

the method of scoring, and the modifications of these procedures investigated by

Kale [8] for obtaining solutions of the likelihood equations. It is our feeling
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that the iterative procedure presented here offers considerable computational

advantages over these procedures in many cases of practical interest.

Although Newton's method and the method of scoring offer quadratic and

near-quadratic convergence, respectively, for large sample sizes, they require

at each iteration the inversion of a square matrix whose dimension is equal to

the number of independent variables among the parameters, namely m(n+1)2(n+2) - 1.

Thus these methods may be less efficient computatxunally than the iterative

procedure (4) if m and n are large, even though they may yield a satisfactory

approximate solution after fewer iterations. The modified versions of Newton's

method and the method of scccing do not require the re-calculation of the inverse

of a large matrix at each step. However, quadratic convergence is not achieved

with these modified methods, and multiplication by a large matrix must still be

carried out at each iteration.

Even though the partial derivatives of the log-likelihood function are not

appreciably more difficult to evaluate than the expt;ssions used in defining

the function (P E , the procedure (4) appears to have two particular advantages

over the steepest-ascent method. First, the successive iterates defined by

(4) automatically satisfy the requisite constraints on the parameters, i.e.,

the successive S i 's are, in probability, positive-definite and the successive

ai 's are positive and sum to I. Second, by the remarks following the proof

of the theorem, one knows that, in probability, there is a value of e, depending

only on m and n, for which the procedure (4) converges locally to the

consistent maximum-likelihood estimate. We doubt that there exist-9 a step-size

depending only on m and n which is similarly sufficient for the local

convergence of the steepest-ascent procedure.

.=rI
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Appendix

We now give a brief proof of the existence and uniqueness of the consistent

maximum-likelihood estimate. For the sake of generality, this is done in a

somewhat broader context than is necessary for this paper.

Let p(x,0) be a probability density function of a vector variable x eJR n

and a vector parameter 0 cIRV. If (xk)k=1,...,N is an independent sample of

observations on a random variable x .Rn whose probability density function is

p(x,0
0

)	 for some 00 c [V , then a maximum-likelihood eeLimate of 0
0
 is a

choice of 0 which locally maximizes the log-likelihood function

N
L = kEl log P(xk,0).a

If p is a differentiable function of 0, then a necessary condition for a

maximum-likelihood estimate is that`the likelihood equations

2L
291 = 0, i = 1,...,V,

be satisfied, where 0 1 is the 
ith component of 0. In the following, our

objective is to show that if p satisfies certain conditions, then, given any

sufficiently small neighborhood of 0°, there is, with probability approaching

1 as N approaches infinity, a unique solution of the likelihood equations in

that neighborhood, and this solution is a maximum-likelihood estimate of 0
0 .

We assume that p(x,0) satisfies the following conditions of Chanda [1]:

(a) There is a neighborhood n of 0° such that for all 0 e 9, for almost

}
[ r

t
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2	 3

all x e IR	 and for i,j,k=1, .... V, a i , IN-1	 and a iaae a 	
exist

and satisfy

2
IiI s fi (x)r I arj I 5 fij(x), Ia01DojIN 

5 fijk(x),

where f  and fij are integrable and f ijk satisfies

J 
fijk(x)p(x,0°)dx < ^.

^n

(b) The matrix J(0) _ ( J 
a l g P a log p p dx) is positive-def'_nite at 0°

/

^n 

1 8L

N ^1,
Let X(0)

18L
N 00 V

It is immediately seen that d°(0) = 0 if and only if the likelihood equations

are satisfied, and that, by the weak law of large numbers, ,`e(0°) converges in

probability to zero. Furthermore, it follows from assumptions (a) and (b)

above that there exists a neighborhood ao of 00 (contained in 9 and, for

convenience, convex) and a positive a such rhat, with probability approaching

1 as N approaches infinity, V;C(0) <- - e I for all 0 e 0	 (The inequality

is with respect to the usual ordering on symmetric matrices.) Denoting the

spherical neighborhood of radius d about 0° by Q,, we establish the following

F
Lemma :• With probability approaching 1 as N .approaches infinity, i

(i) oL° is one-to-one on °,	 11

ii

^i
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(11) O°(96) contains the ball of radius ed about ee(O°) whenever

06 c S;°.

Proof: We may assume that VX(0) 5 - e I for all 0 e S2°, since the probability

that this is the case tends to 1 as N approaches infinity. To prove (i),

suppose that X(E)I) - X(02) for 01 and OZ in Q . Then

0 
° (01 - 

02 ) TV(01) - Z(02 ) ]

(01 - 02 )T( flVX(02 + t[Ol - 02 ])dt)(01 - 02)•

The negative-definiteness of VX implies that O1 . O2 , and (i) is proved.

To prove (ii), suppose that Std c St°, and let O1 be.a boundary point

y of Std . Then

(flVAOo + t[Ol - O°])dt)(0l - 0°).

After left-multiplying this equation by (O1 - 0°) T , one verifies using Schwarz's

inequality and the negative-definiteness of Vtd that

IIX(O1) -.Z(00) 11 Z e lief - 0° 
11 

° e d,

where 
^I 

II denotes the usual Euclidean norm on IR v . Since all boundary points

of X(Std ) are imagzs under oG of boundary points of Std , the proof of (ii)

is complete.

The desired result of this appendix follows immediately from this lemma and

j



the jtemarks preceding it. Indeed, if R 1 is any neighborhood of Oo which is

contllined in n0 , then one can find a d for which ns c n l c n0 . By the lemma,

the probability approaches 1 as N tends to infinity that X is one-to-one

on n  and that ^(nd) and, henge, X(nl) contain the ball of radius ed

about X(00). Sire ..x(00 ) converges, in probability to zero, one concludes

that, with probability tending to 1 as N approaches infinity, there exists

a unique 0 e ni for which X(0) - 0. Since the probability also tends to 1

that 0„L°_ is negative-definite on n l , this 0 is, with probability approaching

1, a maximum-likelihood estimate.
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