
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19760003727 2020-03-22T19:36:43+00:00Z



^	 F

`	 A

I

l° c
e

i
1

,..	 ^ tt*>. cen	 . r,a^s.eu	 w.ma^

^. oFyo

,--"'y G^ DEPARTMENT OF MATHEMATICS

7"v' ? UNIVERSITY OF HOUSTON

loadod \S$

NASA CR-

HOUSTON, TEXAS ^^^/^ t

(NASA-CR-144518) ON THE NUMERICAL	 N76-10815
EVALUATION OF THE MAXIMUM-LIKELIHOOD
ESTIMATE OF MIXTURE MEANS (Houston U.^iv.)
16 p HC $3.25	 CSCL 12A	 Unclas

G3/67 39654

ON THE NUMERICAL EVALUATION OF
THE MAXIMUM LIKELIHOOD ESTIMATE
OF MIXTURE MEANS
BY HOMER F. WALKER
REPORT N44 JULY91975

PRFPARCI) FOR
EARTH OBSERVATION oIVISIfJMj JSC

UNDER
CONTRACT NAS-9-12777

1

^ 01 
	

00

a NPNT̂^^^^T^

3801 CULLEN BLVD.

_p
	 HOUSTON, TEXAS 77004

It, ;,



On the Nummizae Evatuati.on o6 the Max,imum-

Li ket-dwod EAt ma-t e o6 MZ tutee Meam

Juty, 1975

by

Homer F. Wa,Qhen
Vepaktment o6 Mathematics

UYL. veAzity o6 Houston

RgoA-t 44

NAS-9-12777

I



On the Numerical Evaluation of the Maximum-

Likelihood Estimate of Mixture Means

by

Homer T. 'Walker

Department of Mathematics, University of Houston

Houston, Texas

1. Introduction.

Let x be an n--dimensional random variable whose density function p

is a convex combination of normal densities, i.e.,

m
p(x)	 J l a i p i (x) for x E^n,

where

mai > 01

and

a	 1	 ei)TFi
-1

(2Tr)n/2 
P i (X)	 too I 1 /2

1 i
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If {x }	 c jRn is an independent sample of observations on x, then
k k-1,...,N —

a maximum-likelihood estimate of the parameters	 {ai'po'Fi}i-1,...,m 
is a

choice of parameters 
{a i ,Po,FO i 1	

m which locally maximizes theEI-

likelihood function

N
L - kE l log P(xk).

in which p is evaluated with the true parameters {oti'u0,E0}i^l,,,,,m replaced

by the estimate {a ,P ,F }	 (In the following, it is clear from the
i i	 i i=l,...,m

context which parameters are used in evaluating the density functions p i and

p. Therefore, these parameters are not explicitly pointed out.)

Clearly, L is a differentiable function of the parameters to be estimated

Equating to zero the tartial derivatives of I. with respect to these parameters,

one obtains, after a straightforward calculations the following necessary con-

ditions for a maximum-likelihood estimate:

a, N P i ( x k)
(l.a)	 ai N k=1 p(xk)

(1. b)	 Pi = {1 E x Pi(xk)}/ {1 E pi(xk)}	
i=l,...,m.

N k=1 k p(xk )	 N k=1 p(xk)

N	 T Pi(xk) A

N1(l.c)	
F{N kFl(xk-ui)(xk-ui)	 p(xk ) }  	 k-1 P(xk)}

These are known as tht likelihood a uations, and we shall assume that the para-

meters under consideration here are r cst:ricted to sets in which these equations

are sufficient, as well as necessary, for a ma-xi.mum-likelihood estimate.

r
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:he likelihood equations suggest the following iterative procedure for

obtaining a solution: Beginning with some set of starting values, obtain

successive approximations to a solution by inserting the preceding approximations

in the expressions on the right-hand sides of (l.a), (l.b), and (l.c).

This scheme s attractive for its relative case of implementation, and it has

been investigated by a number of authors. Empirical studies of Day [11, Duda

and Hart [21, and Hasselblad C31 suggest that this scheme is convergent and

that convergence is particularly fast when the component normal densities in p

are "widely separated" in a certain sense. No proof of convergence is given in

these papers, although Peters and Walker [87 have shown that, with probability

approaching 1 as N approaches infinity, a related procedure (which includes

this one as a special case) converges locally '-o the consistent maximum-likelihoid

estimate whenever a certain "step-size" is sufficiently small. (An iterative

procedure is said to converge locally to a limit if the iterates converge to

that limit whenever the starting values are sufficiently near that limit.)

Petbrs and Coberly f71 have proved that, if all of the parameters 
W 

and E 
i 

are held fixed, then the iterative procedure suggested by the equations

(l.a) alone converge8 locally to a maximum-likelihood estimate of the para-

meters a i ,	 They also report on numerical studies in which the

computational feasibility of this procedure is demonstrated. In this note,

we provide sufficient conditions for the iterative procedure suggested by the

equations (l.b) alone, for fixed parameters a 	 and E i , to converge locally

to a maximum-likelihood estimate of the means p i , i- l. .... m. These conditions

are, roughly, that either m = 2 or the component normal densities in p be

"widely separated" in a certain sense.	 r

ott
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2. Preliminary discussion.

We denote by M the m-fold direct sum of [R n with itself, and we re-

present its ...:ments as columns

^' 1

l^
m

(Of course, YR is isomorphic to 9 mn.) We also find it convenient to represent

	

parameter sets {a
1	 1

)	 and {E )	 as columns

a l l	 E11

CL =	 and

C1	 E
M	 m

and, in the following, we use the fact that a and E belong to normed vector

spaces without explicitly introducing these spaces or their norms.

Setting

1 N	 pi(Xk)1 N	 kpi(X)
Mi (a .U, E ) = {N k^l Xk p(X }^{N k

E1 p(X )), 
k	 k

Ml(a,u,E)

M(a'pj)

Mm(a,u,E)

I I
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W.

which we regard as a function from W to itself depending on parameters a

and E. The equations (l.b) can now be . ,ritten as

(2) u	 M(a.u.E)^

and the iterative procedure under consideration is the following: Beginning with

some starting value U (1) , define successive iterates inductively by

(3) a(k+1)	 ,u= M(a(k) .E)

for k - 1,2,...

In our results concerning the convergence of the procedure (3), the

Frechet derivative of M with respect to p, which we denote by O V M, is

of central importance. (For questions concerning the definition and properties

of Frechs` derivatives, see '.uenberger [6].) Indeed, if a,u ,and L satisfy

(2) and if II II is any norm on	 then one can write

M O ' W E ) - u = VUM(a'P,E)(u' -u) +	 P'- ull 2)

for 
w  

near V. Consequently, if there exists a norm II II on W with

respect to which V (a,p,E) has operator norm less than 1, then M is

locally contractive in that norm near u, i.e., there is a number X, 0 <_ a < 1,

such that

(4) II M(a,u',E) - uI I S X Ilu' -	 11
^i
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•	 b

whenever u' is sufficiently near U. Since an inequality of the form (4)

implies the local convergence of the iterative procedure (3) to U, our

objectives will be met by giving sufficient conditions for V--M(a,p,E) to have

operator norm less than 1 (with respect to some norm on 	 ) at parameter

vectors a,U, and E which satisfy (2).

	

n ^	 n

We no-, , calculate VuM at a set of parameter vectors d,U, and E (with

A
components a i ,U i , and E i , i=1,...,m) which satisfy the likelihood equations.

We first define inner products < • , •> i on (R n by

w..l
<x , Y > i ' xT 0 1 

E 
i 
)y for x,y e	 ",

Then, denoting the Frechet derivative of M  with respect to P  by VU

j 
Mi,

one verifies with the aid of the likelihood equations that

1 N P i (xk )	 n	 P (xk)
E l 	(x -U )<

N k
	 ^L-( -U ).•> if i # j

M n n	
p(xk) k i	 P(xk) xk j	 j

V M (a,U,E) _
1 N P i ( xk )	 Pi(xk)

I - N kEl P(
xk )

(xk-Ui)< p(xk)(xk U
i ), • > i if i	 j.

This yields the following expression, in the form of a matrix of Frechet derivatives,

for Vu dt a solution of the likelihood equations:

i.nn	 A An
VU M 1 (a .U, E ) ... VU M1(a,U,E)

(5)	 -	 1	
m

VUlMm ( a ,U, E ) ... VU Mm(a,U.E)
m
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Pi(xk)	 ^ 1	 pl(xk)	 ^	 T
P( xk

) (xk-U1) I	 P(xk) (xk-ul)	 1

1 N

prii(x!c) (x _u )	 Pm(xk) 
(x _^ ) ^.>

p(xk, k m	 p(xk) k m	 m

The inner products <•,•>	 induce an inner product <•,'> on	 In

the following, II II will deno +.e both the vector norm and the operator norm

defined by this inner produc.. 7.t is apparent from (5) that, at a solutions

of the likelihood equations, V-M is of the form I-Q, where Q is positive

semi-definite and symmetric with respect to n e inner product <•,•>. In fact,

we prove in an appendix that Q is positive-definite with probability 1

whenever N 2! mn. It follows that, with probability 1 for N ? mn, Ila--Mi1 < 1

at a solution of the likelihood equations if and only if IIQII < 2. We con-

clude these preliminary remarks with the following

Lemma:	 IIQII < M.

Proof: Since Q is symmetric with respect to <•,•>, one has

I V I I<1

If {v}	 n is such that^

v 

v	 E M satisfies IIvII 5 1, then

vm

r



m	 m 1 N	 Pi (xk)	 r,	 P(xk)	 A
<v.Qv>	 im l j l N k-1<vi' P(xk) (xk-u i )> i <vj ' P(xk)(xk-uj)>j

m	 m 1 N	 Pi(xk)	 n	 2 1/2 1 N	 P (xk)	 2 1/2
s i

El J=I 
N k-l<vif p(xk)(xkui)>i}
	 k!
	 p̂  ̂ (xk-uj)>j}

N	 p ( )	
1	

1/2
< Sl j Fl<v i , [N kZ ( xkUi) ( xk jii ) T p ( N) ]E1vi>i

N	 ^	 A T P (xk) ^_1	
112

•<Vj,[N k4 (xk-u j )(xk-u j )	
P- ( X ) }Ej vj>j

aiPI(x)
sincep(x)
	

< 1 for i = 1,...,m. From the likelihood equations, one con-

cludes that

M M	 m

<v.Qv> < E	 E <v ^ v >1/2<v,.v >1/2 = (
	 <v *v >1/2)2	 m,

i=1 j = 1 i i i	 , j j	 i 1 i i i

and the lemma is proved.

3. Sufficient conditions for local ccnvergence.

Sufficient conditions will now be riven for local convergence of the pro-

cedure (3) to a solution of (2). Our first condition is given by the theorem

below.

A n_A
Theorem 1: Suppose that m = 2 and N = 2n, and let a,p,E be vectors of

parameters which satisfy the likelihood equations. I:
A n	 A

(2) and lie sufficiently near a,u, an.: E, then tl

(3) converges locally to p with prcbability 1.

8
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Proof: From the preliminary discussion, we

locally to u if ^t(a,u,E) has operator

some vector norm on	 Then, since 'jut

E, it suffices to find a norm on V with

know that the procedure (3) converges

norm less than 1 w_Lh respect to

depends continuously on a,u, and

Ace
respect to which 0-uM(a,u,E) has

operator norm less than 1 in order to prove the theorem.
A A

Now Q-p-M(a,u,E) - I-Q, where Q is the operator introduced in the pre-

liminary aiscussion. With probability 1, Q is positive-definite as well as

symmetric with respect to <','>, and, f^ia the Lemma, jj Q jj < m - 2. Con-
AA A

sequently,	 uM(a,u,E)jI < 1 with probability 1, and the proof is complete.

We now define an operator Q° on M by

P
i 
(x)	 o
(x)(x-pl)
P 

Qo

m n p (x)

<pl(x) 	 T

Pm(x)

p(x)dx,

in which the true parameters (whose vectors we denote by a ,u°, and E°) are

used in evaluating the functions p i and p and the inner products <',•>i'

The operator Q° can be thought of as an m xm array of operators on ^ n , the

ijth operator of which is

I 1

P i ( x )	 o
p(x)(x-ui)

•	 ^ n

If the component normal densities

that each pair of parameters p 

p (x)

< p x) (x-wj >j P(x)dx.

in p are "widely separated" in the sense

and Ei differs greatly from every other

E) 7
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pair, then the off-diagonal operators in this array are near zero. On the

ether hand, regardless of the "separation" of the component densities, the

diagonal operators define an operator on W which lies strictly between the

zero operator and the identity operator in the ordering on symmetric operators

defined by the inner product <•,•>. Consequently, if the component normal

densities in p are sufficiently "widely separated" in this sense, then the

operator I—Q° has spectral radius less than 1, and, hence, there exists a

norm on W with respect to which I-Q° has operator norm less than 1. (See

Householder [4].) This motivates our second condition.

Theorem 2: Suppose that the component normal densities in p are sufficiently

"widely separated" that the spectral radius of I-Q° is-less than 1. Then

the probability is 1 that, for sufficiently large N, there exist neighborhoods

of a ,u°, and E° such that, if _0L,

-
P, and E lie in these neighborhoods

and satisfy (2), then the iterative procedure (2) converges locally to P.

Proof: A straightforward calculation and an application of the Strong Law of

Large Numbers (see Loeve [5)) yields that ouJ(n^,U°,E^) converges with

probability 1 to I —Q° as N approaches infinity. Since I —Q° is assumed

to have spectral radius less than 1, it follows that, with probability 1,

if N is sufficiently large, then O-uM(a	 r,p,E) has operator nom less than 1

with respect to some norm oii M whenever a,u, and E lie near a°,u°, and

E^ If Pu t(a, u, E) has operator norm less than 1 and a,p, and E also

satisfy (2), then the iterative procedure (3) converges locally to p.

This completes the proof.

I

to

R'+
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Appendix

We now prove that the operator

P 1 ( xk )	 1	 pl(
^ p(x

xki
)(xk-u	

T

	

H	 P(xk)(xk U
1 )1	 ki)^•^,

a

	

Q '
1 E	 •

N k-1	
•

pm (xk )	 Pm(xk)

P( x ) (xk u ir ) 1^ P(xk) (xk um)'.>mk

is ;positive-definite or M with probability 1 whenever N s mn. Clearly,

it suffices to show 1'.iaL the vectors

Pi(xk)

P(x ) (xk	
k ul)

(xk)

Pm(xk)

P(xk)(xk-um)I

span F9 
with probability 1 whenever N ? mn. This ':'ollows from the more

general result below.

Lemma. Let {xk}k=1,..,,N be an independent sample of observations on a

random variable x in R s which is distributed with a probability density

function p. If V is a real-analytic function from IR s to JZ t whose

component functions are linearly independent, then the vectors V(xk),

•	 k=1,...,N, span M t with probability 1 whenever N > t.

.y
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Proof: Denoting the j th component function of V by vi, we define a real-

•	 analytic function V j from & s to (R j by

vl(x)

(X)Vj

vi (x) 

for j = 1,...,t. Our proof of the lemma consists of showing inductively that,

for j = 1,...,t, the set (Vj(xk)}k°1.
	

.j spans [P j with probability 1.

We make the preliminary observation that, since the real-analytic functions

v 
	 are assumed to be linearly Independent, ..ay non-zero linear combination

of them vanishes or ►ly on a set of Lebesgue measure zero in IR s.

From the observation above, V 1 (x I ) is non-zero with probability 1;

hence V 1 (x 1) spans (R 1 with probability 1. Suppose now that, for some

J, 1 s j < t, the set (V j ( x l,) } k=1 . , • , j spans [R j with probability 1.

Then, with probability 1, the set {V jtl (xk)} k-1	 j+l fails to span

IR 
j+1 if and only if

j

(*)	 V j
+] (x j +1 ) _	 `k Vj+'(xk)

for some set of constants {c k } k_ 1 	If (*) holds, the constants c 

•	 are determined by

i	 cl
: 

Vi V j ( x j+l)
^	 `j
E

i

I



[ _V lv j (x) IT - vj+l(x)
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with probability 1, where	 '*/ j is the j kj mat"ix whose k th column

is Vj ( xk). Thus, with probability 1, (*) holds i` and only if

v j+1(x1)

( -Vj lvj(xj+l)IT	 - vj+l(xj+l) = 0.

vj+i(Xj)

vj+1(x1)1

Now

vj+l(xj)

is a non-zero linear combination of the functions vl,...,vj+l and, hence,

vanishes only on a set of Lebesque measure zero in LPI s . One concludes that

(xk)lk=l,...,j+1 fails to span 
[R J+' with probability zero. This

completes the induction, and the lemma is proved.

4
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