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Mechanical test in-situ fracture device

for Auger electron spectroscopy

!,'	 R. Dale Moorhead

Ames Research Center, NASA

Moffett Field, California 94035

Abstract

An in-situ fracture device for Auger spectroscopy is described. The

device is designed to handle small tensile specimens or small double

cantilever beam specimens and is fully instrumented with load and dis-

placement transducers so that quantitative stress-strain measurements can

be made directly. Some initial test results for specimens made from 4130

and 1020 steel are presented.

INTRODUCTION

The analysis of fracture surface chemistry has been one of the more 	 f

fruitful applications of Auger electron spectroscopy (AES). Since the

importance of doing the fracture in-situ to avoid contamination has been

emphasized repeatedly, this success, at least in part, has been due to the

availability and utilization of in-situ fracture devices. Probably the

most popular in-situ fracture apparatus for AES is a commercial model that

is designed to fracture small, notched bar specimens by impact loading.

The reported cases where this device was used are many, attesting to the

fact that it has been and will continue to be a most useful tool. However,

impact loading to failure is a high-rate fracture process while many real

material failures are controlled by time-dependent mechanisms such as creep-

rupture, fatigue, stress-corrosion, and hydrogen embrittlement. Thus, there
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is a wide range of time-dependent problems that can utilize the impact

fracture techniques in only a secondary way. Additionally, when one is

attempting to correlate some important change in mechanical strength with

fracture surface chemistry by AES, it would be much more desirable (and

more economical) if one could determine the fracture properties of the

specimen directly in-situ.

For these reasons, it was decided to design and construct a new frac-

ture apparatus that would permit the in-situ fracture and AES examination

of a variety of specimen types under well-controlled, measurable test

conditions. The following is a description of the device which consists

of a main load frame and a pair of multiple specimen holders; one holder is

designed for use with small tensile specimens, and the other for small

double-cantilever beam (DCB) specimens.

DESCRIPTION OF APPARATUS

The point of departure for the design of the fracture mechanism was

an existing screw-bellows assembly mounted on a 6-in. (15.24-cm) OD ultra-

high vacuum flange. The former use of this assembly is not known, but it

is doubtful that even with prior purpose one could have designed a more

suitable vacuum assembly for a fracture apparatus. Ruggedly constructed,

with a heavy duty 5/8-8 Acme screw, the mating nut works against a

ball thrust bearing enclosed in a housing that keeps the system in

alignment.

In addition to developing a scheme fo-: moving the specimens into and

out of the mechanism, the principal consideration in converting the

apparatus into a fracture device was to design a load frame that would

complement the high stiffness and load capacity of the existing assembly.
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This finally took the shape of a cylinder which is seen detached and sitting

upright in Fig. 1 (a). The cylinder is machined from high -grade steel and is

bored to a size just large enough to permit it to slip over the bellows

sleeve of the vacuum assembly and come to rest against the inside surface of

the vacuum flange, as shown in Fig. 1 (b). Slots and openings machined into

the closed end of the cylinder at various locations and directions are for 	 If

.^	 loading and alignment of the specimen. The specimen is gripped by dowel pins

pressed into holes in the specimen ends. Figure 2 is a cutaway view of the

apparatus as it appears with a tensile specimen in the loaded position. The

free end of the specimen is fed into the apparatus through the horizontal

and vertical slots in the bottom half of the load-frame cylinder and springs

up to be caught by the yoke attached to the bellows and screw. For DCB speci-

mens, the yoke shown attached in Figs. 1(a) and 2 is replaced by a clevis

type with a fixed pin shown unattached in Fig. 1(a). The DCB specimen is

manipulated into the assembly in such a way that the "hook" side of the speci-

men is caught by the clevis pin. A DCB is shown in the loaded position in

Fig. 1(b).

In order to measure load, a compression washer was installed and is held

in position between the thrust bearing and body of the assembly by a center-

ing bushing. The washer is thus compressed by the load on the screw. A

rotary potentiometer that engages gear attached to the nut serves as a dis-

placement transducer. A convenience item added to the system is a constant-

torque, variable-speed motor. The motor is coupled to the fracture assembly

by pulley and cord as seen in Fig. 1(c). Thus, load-displacement curves like

that shown in Fig. 3 for a 1020 tensile specimen can be recorded as a matter

of routine.

3



, I	 the multiple specimen carousels, one for each kind of specimen, are shown

in Figs. 4(a) and 4(b). Each carousel holds four specimens that are attached

1	 to the carousel by small bolts. The carousels attach to the sting of the
r

standard motion feedthrough supplied with the Auger equipment (PHI Model 10-502).

I	 As shown in the figures, each carousel has one fractured specimen shown in the 	 I

r	 attitude assumed for Auger analysis. In this attitude the fracture surfaces

can be positioned at the focus of the CMA (and optical microscope) for analysis.

There is enough travel in the motion feedthrough to analyze the entire length

of the fracture surface of DCB specimens. The final component added to the

Auger spectrometer, needed to make the overall system operational, was a 	 •

"wobble stick" motion feedthrough of commercial design that is used to flip

individual specimens around as required for loading into the fracture unit.

In Fig. 1(c), this is the device with the black knob mounted on the small

access port located between the large window port and the fracture apparatus.

PRELIMINARY APPLICATION AND DISCUSSION

The first systematic use to be made of this new capability will be the

study of the fracture characteristics and fracture surface hemistry of mild

steel tensile specimens that have been subjected to various degrees of hydrogen

attack, that is, attack that occurs with exposure to high-temperature, high-

pressure hydrogen. Such information, along with the qualitative analysis of

gases that may evolve during plastic deformation or fracture of the specimen

(as measured by quadrupole residual gas analysis) may lead to a greater insight

into the mechanism of hydrogen attack. However, during the development of

the apparatus, and mostly for the purposes of testing its operation, specimens

of both DCB and tensile configurations have been fractured and analyzed. For

example, DCB specimens of AISI 4130 steel, heat treated to a yield strength

of 1330 MNn-2 , were fractured in a vacuum of 4 x 10-7 Pa (3x 10-9 torr) and in
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a 665 Pa (50 torr) atmosphere of hydrogen according to the following routine.

After the specimens were heat treated, a fatigue crack was initiated in air,

using a conventional tensile testing machine, and advanced about 2 mm. The

specimens were then sand blasted, degreased, mounted on the specimen carousel,

and installed in the Auger system. After bakeaut, out-gassing, etc., the speci-

mens were manipulated into the fracture device and fractured. In the case of

vacuum fracture, the load necessary to advance the crack was achieved by

using the motorized drive to increase the displacement slowly. In the case

of the hydrogen atmosphere, the specimens were preloaded to a point somewhat

below that needed to advance the crack and then the system was back-filled

with hydrogen to the stated pressure. The embrittling effect of the hydrogor

was sufficient to cause the crack to propagate to complete failure without

further displacement of the screw.

As might be expected, exposing a fresh fracture surface to an atoosphere

of 665 Pa (50 torr) of hydrogen causes substantial changes in its surface

chemistry as determined by AES. This is demonstrated for a 4130 specimen

in Figs. 5(a) and 5(b). Figure 5(a) shows the spectrum, taken as soon after

fracture as possible, from the surface of a specimen fractured in a vacuum

of 4 x 10-7 Pa ( 3 x 10-9 torr). This spectrum is to be compared to the one in

Fig. 5(b) taken from the same area after being exposed to a hydrogen environ-

ment similar to that used to cause embrittle- ant. This simple exposure to

hydrogen has caused substantial changes. The iron peak at 47 eV has been

greatly reduced and appears to have split into two peaks; the sulphur peak is

diminished (but still ample) as is the carbon and there has been a large

increase in the oxygen signal. The spectrum in Fig. 5(c) was taken from the

same area as those shown in 5(e) and 5(b) after etching the sample for 3 min

with argon ions; it demonstrates that the effects of the hydrogen envir-nment

can be effectively removed by just a small amount of ion bombardment.

i
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It seems evident, therefore, that insofar as contamination is concerned

the fracture surface chemistry of specimens actually fractured in such a hydro-

gen atmosphere would also be affected in the same manner. However, the fore-

going results would encourage one to think that ion etching would again produce

a surface that is nearly chemically equivalent to an uncontaminated surface.

A spectrum from such a surface is shown in Fig. 5(d). This spectrum was taken

from a specimen that was fractured (by embrittlement) in hydrogen, then ion

etched for 3 min. Except for the absence of sulphur, it is almost identical

to that shown in Figs. 5(a) and 5(c). (Except for sulphur, a spectrum very

similar to that in Fig. 5(b) was recorded just prior to ion etching.) Thus,

from a chemical point of view, sulphur seems to distinguish a vacuum-fractured

surface from a hydrogen-fractured surface. This observation has been verified

on repeated occasions during the course of this work. Scanning electron frac-

tography of the surfaces shows the characteristic dimpled morphology of

ductile failure for those specimens fractured in vacuum (Fig. 6(a)) and the

delineated grain structure morphology of integranular fracture for those

tested in hydrogen (Fig. 6(b)).

This correlation of sulphur with a ductile mode of fracture is in accord

with the findings of Cox and Low. l Working with 4340 steel, they concluded

that plastic fracture occurred by the nucleation and growth of voids fo.med

by the fracture of the interface between sulfide inclusions and the matrix.

Accordingly, the fracture path more or less follows the dispersion of these

inclusions within the fracture zone and consequently sulphur bearing particles

i

become a prominent feature of the fracture surface. In terms of surface

chemistry, this has the effect of concentrating sulphur at the fracture surface

11	 in amounts that are surely in excess of the stereological equivalent amounts

of a randomly dispersed bulk distribution that the heat treatment of the specimen
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was supposed to produce. In the case of the hydrogen-fractured specimen, this

mechanism of concentration is absent because the fracture path is defined by

the grain boundaries and, although an occasional sulfide may be encountered

here, the amount of sulphur present on such surfaces is frequently bel•,w that

detectable by Auger spectroscopy. Marcus and Harris have recently expressed

a similar opinion regarding sulfide inclusions and the part they play in ductile

fracture.2

Another interesting observation concerns the Auger analysis of the 1020 tensile

specimen used to obtain the load displacement curve shown in Fig. 3. This

specimen was machined from a commercial grade of 1020 steel and was tested in

vacuum without further heat treatment. Thus, the exact thermal history of 'i:e

specimen is not known. Partial Auger scans from the fracture surface of thtb

specimen are shown in Fig. 7. The first scan (Fig. 7(a)) was taken at 4 x 10' Pa

(3X10 9 torr) as soon after fracture as possible. The focus of the following

discussion will be on the phosphorous that shows up in this spectrum. Like

sulphur, phosphorous is a common impurity in steels like 1020 but is usually

present in even lower concentrations than sulphur. Thus, finding phosphorous

in the spectrum must also imply some mechanism for its concentration at the

surface. Unlike sulphur (which is frequently enhanced by ion etching), ion

etching for less than 3 min causes a complete disappearance of the phosphorous

signal (Fig. 7(b)). Except for chemical species, this very same phenomenon has

I	 been reported by Marcus and Harris. 2 They reported the presence of arsenic on

the fracture surface of a 1018 steel specimen in a zone that had failed in the

ductile mode. They were able to cause the complete disappearance of the arsenic

Auger signal by removing as little as 20 X of the surface by ion etching. They

explained this by observing that in their specimen the arsenic occupied a very

narrow zone at the carbide matrix interface causing a weakness for the fracture

7

_T



8

path to follow. Thus, upon fracture this narrow zone in the bulk becomes a

thin layer covering the carbide particles and is rapidly etched away by ion

bombardment. P-_rhaps this same explanation holds for the phosphorous in the

present case. In any event. the carbon signal (with a shape indicating; a

carbide chemistry) is substantially enhanced by a little ion etching, a fact

that (Fig. 7(b)) would be in accord with such an explanation.

CONCLUSIONS

The results presented above demonstrate the workability of the fracture

apparatus described herein. They also demonstrate the broad utility of the

apparatus by showing how it can be used to produce, in-situ, a variety of

fracture surfaces including those produced by environmentally induced slow-

Icrack growth. We think it is significant that we can interpret our Auger

results along lines already suggested because they bear upon the mechanisms

of plastic fracture whereas in the past, most Auger studies have been concerned

with intergranular failure and grain boundary phenomena.
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^a)

(b)

^c1

Figure l.— (a) Fracture device partially disassembled. The large cylinder
is the load frame. The extra (unattached) clevis with the pin is
used for the DCB type of specimen. (b) Fully assembled with a DCB
specimen in the loaded position. (c) General view of Auger
spectrometer with fracture attachment installed.
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Figure 4.— Specimen carousels: (a) for DCB type showing two halves of one that
has been fractured; (b) for tensile specimen, with one fractured.
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Figure 6.— Electron micrographs of a 4130 DCB fracture surface, (a) fractured
in vacuum, (b) fractured in hydrogen.
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