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I. Introduction

With the increasing availability and decreasing cost of digital hara-

ware and software, there has developed a desire in several disciplines for

the development of sophisticated digital system design techniques that can

i
	 greatly improve overall system performance. A good example ')f this can be

found in the field of digital aircraft control (see, for example, Doolin

[45), Taylor [46), and Meyer and Cicolani [471), where a great deal of

effort is being put into the design of aircraft with reduced static stabi-

lity, flexible wings, etc. Such vehicles can provide improved performance
k

in terms of drag reduction and decreased fuel consumption, but they also

require sophisticated control systems to deal with problems such as active

control of unstable aircraft, suppression of flutter, the detection of

system failures, and management of system redundancy. The demands on such

a control system are beyond the capabilities of conventional aircraft

control system design techniques, and the use of digital techniques is

essential.

Another example can be found in the field of electrocardiography.

In recent years a great deal of effort has been devoted to the development

of digital techniques for the automatic diagnosis of electrocardiograms

09CG'ss see, for example, [47 ]). Such systems can be for preliminary

screening of large numbers ECG's, for the monitoring of patients in a

hospital, etc.
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In this paper we review some of the recent work in one area of system

theory that is of importance in both of these examples, as well as in

many other system design problems. Specifically, we will discuss the pro-

Mem of the detection of abrupt changes in dynamical systems. In the

aircraft control problem one is concerned with the detection of actuator

and sensor failures, while in the ECG analysis problem one wants to detect

arrhythmias --sudden changes in the rhythm of the heart. For the sake of

simplicity in our discussion, we will refer to all such abrupt changes as

"failures", although, as in the ECG example, the abrupt change need not

be a physical failure. Our aim in this survey is to . provide an overview

of a number of the basic concepts in failure detection. The problem of

system reorganization subsequent to the detection of a failure is consi-

dered in several of the references. We will point out these references ir.

the sequel, but we will concentrate primarily on the detection problem.

The design of failure detection systems involves the consideration

of several issues. One is usually interested in designing a system that

will respond rapidly when a failure occurs; however, in high performance

systems one often cannot tolerate significant degradation in performance

during normal system operation. These two consideration are usually in

conflict. That is, a system that is designed to respond quickly to certain

abrupt changes must necessarily be sensitive to certain high frequency

effects, and this in turn will tend to increase the sensitivity of the

system to noise (via the occurrence of false alarms signaled by the

failure detection system). The tradeoff between these design issues is

best studied in the context of a specific example in which the costs of

i
t

1
4



-3-

the various tradeoffs can be assessed. For example, one might be more

willing to tolerate false alarms in a highly redundant system configuratior.

than in a system without substantial back-up capabilities.

In general, one would like to design a _failure detection system that

takes system redundancy into account. For example, in a system containing

several back-up subsystems we may be able to devise a simple detection

algorithm that is easily implemented but yields only moderate false alarm

rates. On the other hand, by implementing a more complex failure detection

algorithm that takes careful account of system dynamics, one may be able

to reduce requirements for costly hardware redundancy.

In addition to taking hardware issues into consideration, the designer

of failure detection systems should consider the issue of computational

complexity. one clearly needs a scheme that has reasonable storage and time

requirements. It would also be useful to have a design methodology that

admits i range of implementations, allowing a tradeoff study of system

complexity vs. performance. In addition, it would be desirable to have a

design that takes advantage of new computer capabilities and structures

(e.g. designs that are amenable to modular or parallel implementations).

In this paper we survey a variety of failure detection methods, and,

keeping the issues mentioned above in mind, we will comment on the

characteristics, advantages, disadvantages, and tradeoffs involved in the

various techniques. In order to provide this survey with some organization

and to point out some of the key concepts in failure d-_Lection system design,

we have defined several categories of failure detection systems and have

l_
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placed the designs we have collected into these groups. clearly such a

grouping can only be a rough approximation, and we caution the reader

against drawing too much of an inference about individual designs based

on our classification of them (several of the techniques could easily

fall into a number of our classes). In addition, for the sake of brevity

we have limited our detailed discussions to only a few of the many

techniques. Our choice of those techniques has been motivated by a desire

to span the range of available methods and by our familiarity with certain

of these algorithms- Finally, we have attempted to collect all of those

studies of the failure detection problem of which we are aware, and we

apologize for any oversights.

II. Formulations of the Failure Detection Problem

In this paper we are mostly concerned with the analysis of linear

stochastic models in the standard state space form

System Dynamics

x(k+l) - @(k)x(k) + B(k)u(k) + w(k)	 (1)

Sensor Equation

z(k) - H(k)x(k) + J(k)u(k) + v(k) 	 (2)

where u is a known input, and w and v are zero-mean, independent, white

Gaussian sequences with covariances defined by

E[w(k w'(j)I - Qdkj 
0 

E[v(k)v'(j)l - Rdkj	(3)
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_	 where 6 k is the Kronecker delta. We think of (1)-(3) as describing the

"normal operation" or "no failure" model of the system of interest. If no

failures occur, the optimal state estimator is given by the discrete Kalman

I	 filter equations (33)

x(k+llk) = 0(k)x(k1k) + B(k)u(k)	 (4)

.^,	 x(klk) = x(klk-1) + K(k)Y(k)	 (5)

y(k) = Z(k) - H (k) x (k k-1) - T(k)u(k) 	 (6)

where Y is the zero-mean, Gaussian innovation process, and the gain K is

calculated from the equations

P(k+l+k) = f(k)P(kjk)@' (k) + Q	 (7)

V(k) = H(k)P(kjk-1)H' (k) + R 	 (8)

K(k) = P(kik-1)H-(k)V 1 (k)	 (9)

P(kik) = P(kjk-1) - K(k)H(k)P(klk-1)	 (10)

Here P(iID is the estimation error covariance of the estimate x(ilj); A

V(k) is the covariance of y(k). We refer to (4)-(10) as the "normal mode

filter" in the sequel.

In addition to the above estimator, one may also have a closed loop

control law, such as the linear law

u(k) = G(k)x(klk)	 (11)

We then obtain the normal operation configuration depicted in Figure 1.
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The problem of failure detection is concerned with the detection of

abrupt changes in a system, as modeled by (1)-(3). Such abrupt changes

can arise in a number of ways. For example, in aerospace applications,

one is often concerned with the failure of control actuators and surfaces.

Such abrupt changes can manifest themselves shifts in the control gain

matrix B, increased process noise, or as a bias in equation (1) (as might

arise if a thruster developed a leak [311). In addition, failures of

sensors may take the form of abrupt changes in H, increases in measurement

noise, or as biases in (2). For simplicity, we will refer to abrupt

changes in (1) as "actuator failures," and shifts in (2) will be called

"sensor failures." Again we point out that in many applications shifts

in (1) or (') may be used to model changes in observed system behavior

that have notiinq to do with actuators or sensors.

The main task of a failure detection and compensation design is to

modify the normal ;node configuration in order to include the capability

of detecting abrupt changes and compensating for them by activating back-

up systems, adjusting the feedback design appropriately, etc. Conceptually,

we think of the detection-compensation system as part of the filtering

portion of the feedback loop. As illustrated in Figures 2 and 3, the

resulting filter design can take one of two forms. Either we perform a

complete redesign of the filter, repiacing (4)-0.0) with a filter that is

sensitive to failures, or we design a system that monitors the normal

system configuration and adjusts the system accordingly. We will discuss

examples of both of these structures.
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As mentioned earlier, we will concentrate primarily on the problem

of failure detection, which we consider to consist of three tasks --alarm,

isolation, and estimation, The alarm task simply consists of making a

binary decision --either that something has gone wrong or that everything

is fine. The problem of isolation is that of determining the source of

the failure-- e.g., which sensor or actuator has failed, what type of

arrhythmia has occurred, etc. Finally, the estimation problem involves

the determination of the extent of failure. For example, a sensor may

become completely non-operational (on "off" or "hard-over" failure), or

it may simply suffer degradation in the form of a bias or increased

inaccuracies, which may be modeled as an increase in the sensor noise

covariance. In the latter case, estimates of the bias or the increase in

noise may allow continued use of the sensor, albeit in a degraded mode.

Clearly the extent to which we need to perform these various tasks depends

upon the application. If a human operator is available, we may only be

interested in generating an alarm that tells him to perform further tests.

In other systems in which back-ups are available, we might settle for

failure isolation without estimation. On the other hand, in the absence

of hardware redundancy, we may be interested in using a degraded instrument

and thus would need estimation information.

Intuitively we can associate increased software system complexity with

the tasks -- i.e., isolation requires more sophisticated data processing

than an alarm, and estimation more than isolation. on the other side, as

we increase failure detection capabilities,



w
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hardware redundancy. Also, in some applications we may be able to delay

isolation and estimation until after an alarm has been sounded. In such

a sequential sti. ,cture, one increases detector complexity after a failure

has been detected, thereby reducing the computational burden during normal

operation. Again the details of such considerations depend upon the

particular application.

Another tradeoff involving failure detection system complexity

involves its relation to detection system performance. For example, one

might expect that one could achieve better alarm performance by using a

priori knowledge concerning likely failure nodes. That is, by looking for

specific forms of system behavior that are characteristic of certain failures,

one should be able to improve detection performance. Thus, it seems likely

that alarm performance (as measured by the tradeoff between false alarms

and missed dcLections) will be improved if we attempt simultaneaous detection,

isolation, and estimation of failures. This tradeoff of complexity vs.

performance is extremely important in the design of failure detection

systems.

In the following sections we will discuss several failure detection

methods and will comment on their characteristics with respect to the

issues mentioned in this and the preceding section. We have not provided

'	 a general set of failure models to be considered, as the various techniques

are based on quite different failure models. These will be described as

we discuss the various methodologies.
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III. "Failure-Sensitive" Filters

Our first class of failure detection concepts is aimed at overcoming

the problem of an "oblivious filter". As has been noted by many authors

[1]-[3], [33], the optimal filter defined by (4)-(10) performs well if

there are no modelling errors; however, it is possible for the filter

estimate to diverge if there are substantial unmodeled phenomena. The

problem occurs because the filter "learns the state too well" -- i.e. the

precomputed error covariance P ai•d filter gain K become small, and the

filter relies on old measurements for its estimates and is oblivious to

	

•;	 new measurerents. Thus, if an abrupt change occurs, the filter will

respond quite sluggishly, yielding poor performance. Consequently, one

would like to devise filter designs that remain sensitive to new data so

that abrupt changes will be reflected in the filter behavior.

	

i	 Two well-known techniques for keeping the filter sensitive to new

	

i	 data are the exponentially age-weighted filter studied Fagin [1] and

Tarn and Zaborszky [2] and the limited memory filter proposed by

Jazwinski [3]. Others, such as increasing noise covariances or simply
i

fixing the filter gain are discussed by Jazwinski in [33]. These tech-

niques yield only indirect failure information. That is, if an abrupt

change occurs, these filters will respond faster than the normal filter,

and one can base a failure detection decision on sudden changes of x.

i It is important to note a performance tradeoff evident in this method.

As we increase our sensitivity to new data, (by effectively increasing the

bandwidth of the Kalman filter), our system becomes more sensitive to sensor

noise, and the performance of the filter under no-failure conditions



U

-10-

degrades. In some cases this can be rather severe, and one may not be

able to tolerate the degradation in overall system performance under no-

failure conditions. One might then consider a two filter system -- the

normal mode filter (4)-(10) as the primary filter, with this type of failure-

sensitive filter as an auxiliary monitor, used only to detect abrupt

changes. We remark that the tradeoff between detection performance and

filter behavior under normal conditions is a characteristic of all failure

detection systems and is analogous to the costs associated with false alarms

and missed detections in standard detection problems [41].

The techniques mentioned so far in this section are rather indirect

failure detection approaches. Several methods have been developed for

the design of filters that are sensitive to specific failures. One method

involves the inclusion of several "failure states" in the dynamic model

(1)-(3). Kerr [25] has considered a procedure in which failure modes,

such as the onset of biases, are included as state variables. If the

estimates of these variables vary markedly from their nominal values, a

failure is declared. A two-confidence interval overlap decision rule for

failure detection using such failure states is described and its performance

is analyzed in [25]. Note that this approach provides failure isolation

and estimation as the expense of increased dimensionality and some perfor-

mance degradation under no-failure conditions (inclusion of the added states

effectively opens up the bandwidth of the Kalman filter).

An alternative to the addition of failure states to the dynamic model

is the class of detector filters developed by Beard [4) and Jones [5].

Their work has led to a systematic design procedure for the detection of a
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wide variety of abrupt changes in linear time-invariant systems. They

cor.sider the continuous-time,time-invariant, deterministic system model

x(t) = AX (t) + Bu (t)	 (11)

z 	 - Cx(t)	 (12)

and design a filter of the form

at x(t) = AX (t) + D(z(t ) -Cx(t)) + Bu (t)	 (13)

The p-'.A:- •-y .;riterion in the choice of the gain matrix D is not that (13)

provide a ^._od estimate of x (as it is with observers or optimal estimators),

but rather that the effects of certain failures are accentuated in the

filter residual

Y 	 - z 	 - Cx(t)	 (14)

The basic idea is to choose D so that particular failure modes manifest

themselves as residuals which remain in a fixed direction or in a fixed

plane.

To illustrate the Beard-Jones approach, let us consider a simple example

from (4]. Suppose we wish to detect a failure of the ith actuator (i.e.

in the actuator driven by the ith component of u). If we assume the failure

takes the fora of a constant bias, our state equation becomes

x(t) - Ax (t) + B(u(t)+ Vei]

- Az.(t) + Bu (t) + Vbi , t>tO	(15)
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where e  is the ith standard basis vector, b  is the ith column of B, and

t0 is the (unknown) time of failure. Suppose we consider the case of full

state measurement -- i.e., let G-I. In this case we obtain a differential

equation for the residual

Y(t) _ [A-D]y M + Vbi 	(16)

If we choose D=OI + A, we obtain

j  = -(Y (t) + Vbi

-a(t-t0)	 V [1-e^tl
Y(t) = e	 Y(t) +	 D	

bi	 (17)0 

Thus, as the effect of the initial condition dies out, Y(t) maintains a

fixed direction (bi) with magnitude proportional to failure size(V).

Note that as we increase a (thus increasing filter gain), the initial

condition dies out faster, but the magnitude of steady-state value of Y

decreases. Thus, if there is any noise in the system, we cannot make Q

arbitrarily large.

In their work Beard and Jones consider the design of such filters

for an extremely wide variety of failure modes, including actuator and

sensor shifts and shifts in A and B. The initial deterministic analysis

for all of these cases was considered by Beard (4), while a systematic

design procedure is given by Jones (5) for the design of the gain D to

allow detection of several failures modes. Jones' approach is quite

geometric in nature, and his formulation allows one to gain considerable

insight into the detection problem. As pointed out in [5), the gain

selection problem is quite similar to the output decoupling problem and

.............u^^eJWei+euY.,^..a....;iw.^^:..Wr^':h•-..s^^W^ 	 .-ua.^.. Y.f.^.a a:.i.._..:a_ `^

t
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requires the introduction of the important concept of "mutually detectable

failure modes" in order to answer the question of whether or not one can

'	 simultaneously distinguish between several types of failures. Thus the

j

	

	 question of failure isolation is of central importance in the design

methodology derived in [5].

The results in [4],[5] represent perhaps the most thorough study of

the basic concepts underlying failure detection. The tradeoff between

.r

	

	
detection and filter performance is discussed in depth in [5] and an

attempt is made in (4] to introduce the concept of the level of redundancy

in a dynamical system.

As mentioned in the example, the basic design procedure is determi-

nistic. However, in this simple example we can see how one can take

noise into account. If the system (11),(12) contains noise, we have seen

that one may not wish to make the scalar Q as large as possible. In fact,

one could choose v so as to minimize the mean-square estimation error in

the detector filter when there is no failure. In his thesis [5], Jones

describes a procedure in which one first chooses the structure of D for

failure detection purposes and then chooses the remaining free parameters

in order to minimize the estimation error covariance. Although this yields

a suboptimal filter design, it may work quite well, as it did in the

problem reported in [5].

11"	 1	 In summary, the Jones-Beard design methodology is extremely useful

conceptually, can be used to detect a wide variety of failures, and provides

detailed failure isolation information. It is suboptimal as an estimator,
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and if this presents a serious problem, one might wish to use the detector

filter as an auxiliary monitoring nystem. This appears to be only a minor

drawback, and the major limitation of the approach is its applicability only

IA	 to time-invariant systems.

IV. Voting Systems

Voting techniques are often useful in systems that possess a high degree

of parallel hardware redundancy. Memoryless voting methods can work quite

well for the detection of "hard" or large failures, and the papers of

Gilmore and McKern (6), Pejsa 171, and Ephgrave (8) discuss the successful

application of voting techniques to the detection of hard gyro failures in

inertial navigation systems.

In standard voting schemes, one has (at least) three identical ins-

truments. Simple logic is then developed to detect failures and eliminate
t

faulty instruments, for example, if one of the three redundant signals

differs markedly from the other two, the differing signal is eliminated.

Recently, Broen (9] has developed a class of voter-estir: ►ators that possesses

advantages relative to standard voting techniques. Consider the dynamical

system

x(k+l) = Ox(k)	 (18)

with a triply redundant set of sensors

yl (k) = H1x (k) + v  (k)

y2 (k) = H2x(k) + v2 (k)	 (19)

Y3 (k) - H
3x (k) + v3 (k)
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0

	

	 Broen develops a set of recursive filter equations for corputing the es-

timate x(k) that minimizes

k	 3

Jk 	wji y^ M Relyj (i)
i-0	 j-1

	 (20)

where R  is the covariance of the measurement noise vi, and y  is the

innovations sequence

Y  W- y  M- H j 0i-kxW
	

(21)

Here wji is a functions of y1 (i), y2 (i), y3 (i) which is large if yj(i)

is close to the other two ym ( i) and is small if y j ( i) deviates greatly

from the other two. In this way, one obtains a "soft" voting procedure

in which faulty sensors are smoothly removed from consideration. This

greatly alleviates the cost of false alarms, but the price is the on-line
r

computation of the filter gain (which is a function of the w ji ). Note that

in equation ( 19), Broen appears to allow the y  to be physically different

sensors (different Hi 's), but the analysis of his paper makes it clear that

he requires identical sensors -- i.e. H1 H 2=H 3.

Voting schemes are in general relatively easy to implement and usually

provide fast detection of hard failures, but they are only applicable in

systems possessing a high level of parallel redundancy. They do not in

Igeneral take advantage of redundant information provided by unlike sensors,

and thus cannot detect failures in single or even doubly redundant sensors.

In addition, voting techniques can have difficulties in detecting "soft"

failures (such as a small bias shift).
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V. Multiple Hypothesis Filter-Detectors

A rather large class of adaptive estimation and failure detection

schemes involves the use of a "bank" of linear filters based on different
F '' 

hypotheses concerning the underlying system behavior. In the work of

Athans and Willner [101 and Lainiotis [11], several different sets of

system matrices are hypothesized. Filters for each of the models are cons-
.---I

tructed, and the innovations from the various filters are used to compute

the conditional probability that each system model is the correct one.

In this manner, one can do simultaneous system identification and state

estimation. In addition, an abrupt change in the probabilities can be

used to detect changes in true system behavior. This technique has been

inveg cigated in the context of the adaptive control of the F-8C digital

fly-by-wise aircraft by Athans, Dunn, Greene, et.al ., [351 and also has

been applied to the problem of classifying rhythms and detecting rhythm

shifts in electrocardiograms. Extremely good results in the latter case

are reported by Gustafson, Willsky, and Wang in [361.

Techniques involving multiple hypotheses have also been used to

design failure detection systems. Montgomery, Caglayan, and Price, [121,

[131 have used such a technique for digital flight control systems and have

studied its robustness in the presence of nonlinearities via simulations.

W ,

	

	 Recently a technique involving a bank of observers has been devised [341,

and a successful application to a hydrofoil sensor failure problem is

reported by Clark, Fosth, and Walton in [34]. Also, Willsky, Deyst, and

Crawford [15],[16] have applied the methodology devised by Buxbaum and

Haddad in [141 to study failure detection for an inertial navigation
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problem. We will briefly describe this technique to illustrate some of

the concepts underlying the back of filters approach. We also refer the

reader to Wernersson [42) for a technique that is similar to that discussed

K
in [16).

Consider the system

x (k+l) = 0(k)x(k)  + w (k)	 (22)

z 	 = H(k)x(k) + v 	 (23)

We are interested in detecting sudden shifts in certain of the components

of x (e.g., bias states). We model these shifts by choosing the distribu-

tion of w appropriately. Let {fl,...,frI be the set of hypothesized failure

directions. We then assume that w has a high probability of being the usual

process noise and a small probability of including a burst of noise in each

of the failure directions. Thus the density for w(k) is

rrpON ( O ,Q) + Li piN ( O ,Q+dififi)	 (24)
i=1

r

	

L pi=l, pO»pi i=1,...,r	 (25)
i!0

Here N(m,p) is a normal density with mean m and covariance P.

If we hypothesize such a density at each point in time and if we

assume that x(0) is normally distributed, we have the following expression

for the conditional density of x(k) given z(1), ... ,z(k):

r	 r

k.	 p(x,k)_	 ••	 pi	 ii

	

N(T^,P)	 (26)
i0

=0• i^=0 — — —
 k-1
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Here i = (10 " "' ik-1 ) and the delsity has the following interpretation.

Let	 0 0 " " 'jk-1) be a random k-triple where j s = i if there is a shift

in the f  direction at time s (i=0 is used to denote no shift). Then

p
i
 = Pr(1=ilz(1),...,z(k))	 (27)

and n  and p i are the mean and covariance of the Kalman filter designed

assuming Z i (i.e. assuming w(s) has covariance Q+Cti fi fi ). The 
P 

can
S s s

be computed in a sequential manner as a function of the various filter

innovations. We refer the reader to [141-[161 for the details of the

calculations.

Note that the implementation of (26) r. juires an exponentially growing

bank of filters (there are (r+l) k terms in (26)). To avoid this problem

a number of approximation techniques have been proposed [141-[161. The one

used in [161 involves hypothesizing shifts only once every N steps. At the

end of each N step period we "fuse" the (r+l) densities into a single den-

sity and begin the provedure again. In this way we implement only (r+l)

filters at any time. We note that the techniques devised in [101-[121 do not

involve growing banks of filters (as the number of hypothesized models do

not grow in time). However, it is possible for all of the filters in the

bank to become oblivious, and thus shifts between the hypotheses may go un-

detected (see [161,[361 for examples). The technique of periodic fusing

of the densities and initiation of new bank effectively avoids this problem

(as would designing the original bank using age-weighted filtering techniques).
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The technique described above was applied to the problem of detecting

gyro and accelerometer bias shifts in a time-varying inertial calibration

and alignment system. The results of these tests are extremely imp=assive.

This is not surprising, as the multiple hypothesis method computes precisely

the quantities of i.terest-- the probabilities of all types of failures

under consideration. The cost associated with such a high level of perfor-

mance is an extremely complex failure detection system. Note, however,

that the parallel structure of the system allows one to consider highly

efficient parallel processing computer implementations. In addition, the

use of reduced-order filters for the various failure hypotheses may increase

the practicality of such a scheme, or one might consider the use of a

simpler detection-only system to detect failures, with a switch to a multiple

hypothesis procedure for failure isolation and estimation after a failure

has been detected.

However, even if such a failure detection scheme cannot be implemented

in a particular application, it provides a useful benchmark for comparison

with simpler techniques. In addition, by studying the simulation of a

multiple hypothesis method, one can gain useful insight into the dynamics

of failure propagation and detection (see the discussion in (161).

McGarty [231 has developed a method for rejecting bad measurements

that bears sane similarity to the approach just discussed. Each measure-

ment has a binary random variable g(k) associated with it. If g(k)=1

the measurement is "good", (i.e. the measurement contains the signal of
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interest), while g(k)=0 denotes a bad data point (the measurement is pure

noise). McGarty devises a maximum likelihood approach for estimating the

values of the exponentially growing set of possibilities (g(i)=1 or 0,

He also allows these variables to have a sequential correlation

(i.e. knowing that the present measurement is good or bad says something

about the next observation). A computationally feasible approximation

method is devised and simulation results are described. We refer the reader

to [23] for details.

Recently, Athans, Whiting, and Gruber [51] have also considered the

problem of designing an estimator that can detect and remove bad or false

measurements. Their approach is Hayesian in nature -- i.e. an estimate is

generated of the a posteriori probability that a given measurement is

false. The method of calculation of these pseudo-probabilities is quite

similar to that used in the other multiple hypothesis methods (see 1101-[14]).

The reader is referred to [51] for details of the analysis and for a dis-

cussion of some successful simulation results.

VI. Jump Process Formulations

The problem of the detection of abrupt changes in dynamical systems

suggests the use of jump process techniques in devising system design

methodologies (see [39], [49]-[50] for general results on jump processes). One

models potential failures as jumps, characterized by a priori distributions

which reflect initial information concerning failure rates. The size of

the possible failures are usually taken to be known. One could, however,

model failure magnitude, as a random variable. This leads to a compound
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jump process formulation which greatly complicates the desired analysis.

In any event, taking such a jump process formulation, one can devise

failure-sensitive control laws and methods for computing the conditional

probability of failure. Control problems of this type have received a

great deal of attention in the literature. Sworder, and Robinson 117)-120]0

(37) and Ratner and Luenberger 1211 have considered the design of control

laws which take into account the possibility of sudden shifts in system

matrices. The results they have obtained are for the full-state feedback

problem with no system randomness other than the jumping of the system

matrices among a finite set of possible matrices.

Davis 1221 has utilized nonlinear estimation techniques to solve a

fault detection problem. His formulation is as follows: consider the

scalar stochastic equations

dx(t) = a(t)x(t)dt + g(t)dv(t)	 (28)

dy(t) = h(t)x(t)dt + dw(t) 	 (29)

where w and v are independent Brownian motion processes and

a(t)	 a0 (t)(1-E(t)) + al (t)E(t)	 (30)

where
	 i

0	 t<T
(31)

1	 t>T

and T is a random variable. Here we interpret a0 as the unfailed dynamics,

and al represents the failure mode. Davis derives the optimal, infinite-

dimensional equations for the computation of the conditional mean of x and

s
-	 s
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the conditional probability

&(t1t) - Pr(t>Tly(s), 0<s<t) 	 (32)

An implementable approximation is described in (22), but evaluation of its

performance has not as yet been made.

Note that Davis' method leads to an estimate of x that is suboptimal

to under no-failure conditions. Chien (24) has devised a jump process

formulation that avoids this difficulty for the problem of the detection

of a jump or a ramp in a gyro bias. He considers the dynamical model.

x 	 -WK (t) + w(t)	 (33)

where w is a white noise process. Three hypotheses are conjectured for the

form of the gyro output

Normal Mode HO:

z (t) - x (t) + v (t) 	 Vt	 (34)

Bias Mode H1:

z (t) - x (t) + ME (t) + v(t) 	 t>T	 (35)

Ramp Mode H2:

z(t) - x(t) + n(t-T)&(t) + v(t) 	 t>T	 (36)

where n and m are unknown constants, ,r is white noise, T is the time of failure,

and &W is as in (31) .

Chien's approach is as follows: design a filter based on H O (which will

thus yield the optimal estimate for t<T,	 assuming no false alarms

occur), and determine the steady-state effect of the degradations H1 and H2

on the filter residuals. If one then hypothesizes a failure rate q -- i.e.

P(T>t) - e qt	 (37)

a,

64

s
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and if one further assumes a nominal size for the bias m, one can then compute

an approximate stochastic differential equation for Pr(H1 Jz(s), s<t), in which

the input to this equation is the residual Y of the HD filter. The details

of the analysis are described in (24].

For his problem Chien is able to demonstrate that his detection proce-

dure-- based on the assumption of a nominal value for the bias failure m --

has the capability of detecting biases larger than m and also can be used

to detect ramps (mode h2 ). Of course, the delay times until detection in

these cases are greater than if one implemented a filter based on the proper

bias size or if one were looking for a ramp (indicating the potential

usefulness of estimating the failure magnitude). The major advantages of

Chien's approach are the simplicity of the detector (implementation of a

scalar stochastic equation) and the fact that one obtains an estimate of

precisely the quantity of inierest -- the conditional probability of

failure. The simplicity of the scheme may, in fact, make it a great deal

more robust in the face of syetem modelling errors (such as the use of

an extremely simplified gyro error model) than more sophisticated approaches.

Also, this approach leads to no degradation in performance prior to detec-

tion of the failure. In addition, the use of a probabilistic description

of the time of failure allows one to avoid the problem of the oblivious

filter -- i.e. the fact that a failure can occur at any time has been

incorporated in the design, which therefore will remain sensitive to new

data.

Y

t
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The drawbacks of the scheme are the use of a fixed bias size and the

` use of the steady-state effect of the failure on the filter residual. 	 The

first of these may not be too much of a problem (as Chien has pointed out),

K

but the second may cause difficulties. 	 Specifically, this limits the approach

to time-invariant systems and filters. 	 In addition, as the transient effect

of the failure has been ignored, it may be difficult to make quick detections

' of certain changes ( i.e. we may have to wait unti the transient dies out).
^• r

In the next section we will discussed an approach ( the GLR method) which has
t

several concepts in common with Chien ' s approach and which allows one to

overcome these two drawbacks (at the cost of added computational complexity,

of course).

In summary, jump process formulations appear to be quite natural for

failure detection problems. 	 One usually :Hakes approximations in the ana-

lysis in order to obtain 4-nplementable solutions.	 These simplifications

impose some limitations on the capabilities of the designs, but there is

' at present no systematic analytical procedure for evaluating these limita-

tions or for studying tradeoffs between desin complexity and system performance.

VII.	 Innovations-Based Detection Systems

Chien ' s failure detection technique can also be placed in the class of

failure detection methods that involve the monitoring of the innovations of
3

' a filter based on they hypothesis of normal system operation. 	 In such a

configuration the overall system uses the normal filter until the innovations
.S

monitoring system detects some form of aberrant behavior. 	 Tr.e fact that the
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monitoring system can be attached to a filter-controller feedback system

is particularly appealing, since overall system behavior is not disturbed

until after the monitor signals a failure and since the monitoring system

can be designed to be added to an existing system.

Mehra and Peschon [26] have suggested a number of possible statistical

tests to be performed on the innovations. One of these is a chi-squared

test which was applied in (15],[16] by Willsky, Deyst and Crawford. Let

Y(k) be the p-dimensional innovations for the filter defined by (4)-(10).

If the system is operating normally, the innovations is zero-mean and

white with known covariance VW.  In this case the quantity

k

!C(k) _ 2: y1 MV 1MY(])
	

(38)
j=k-N+1

is a chi-squared random variable with ,4p degrees of freedom [26],[15],[16].

If a system abnormality occurs, the statistics of Y change, and one can

consider a detection rule of the form

FAILURE
9.(k) <	 e	 (39)

NO FAILURE

With the aid of chi-squared tables, one can compute the probability P  of

false alarm as a function of the innovations window length N and the decision

threshold E. The probability PD of correct detection depends upon the

particular failure mode (see [16] and the discussion of the GLR approach

to follow).	 We note that for a given failure mode, as N increases the
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E

p

probability of correct detection may decrease -- i.e. by averaging a larger

nr-nber of residuals we smooth out the effect of a failure on y, and the

detector may become somewhat oblivious (or at the very best responds quite

slowly) to new data. On the other hand, too small a value of N may yield

an unacceptably high value of PF.

The implementation of the chi-squared test (38),(39) is quite simple,

but, as one might expect, one pays for this simplicity with rather severe

limitations on performance. As described in [151,[161 this method was

applied to the same inertial calibration and alignment problem to which the

Buxbaum-Hadded multiple hypothesis approach [141-[161, described in Section

V was applied. The performance of the chi-squared test was mixed. The

method is basically an alarm method -- i.e. the system (38),(39) makes no

attempt to isolate failures -- and one finds that those failure modes that

have dramatic effects on y are detectable by this method; however more

subtle failures are more difficult to detect with this simple scheme.

Comparing the performance of the multiple hypothesis and chi-squared

systems, we see that in some cases we can obtain superior alarm capabilities

if we simultaneously attempt to do failure isolation and estimation. One

can obtain some failure isolation information by considering the components

of y separately (this may be especially useful for sensor failures), and we

refer the reader to [151,[161 for a detailed discussion of this and other

aspects of the chi-squared method.

Another innovations-based approach, developed by Merrill [271, is moti-

vated by a desire to suppress bad sensor data. Merrill devises a modification

J
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of the least squares criterion in order to suppress extremely large resi-

duals (which are given a very large weighting in the usual least squares

framework), and he applies his methodology to a power system application.

A final technique in this category has been studied by several

J

researchers -- Willsky and Jones [281,[291, McAulay and Denlinzer [301,

Deyst and Deckert [311, Sanyaland Shen 1321, and Chow, Dunn and Willsky

[381—and we will describe the most general formulation of the approach,

developed in [281,(29). This technique, which we call the generalized

likelihood ratio (GLR) approach, was in part motivated by the shortcomings

of the simpler chi-squared procedure. The GLR approach, which can be

applied to a wide range of actuator and sensor failures, makes an attempt

to isolate different failures by using knowledge of the different effects

such failures have on the system innovations. The method provides an

optimum decision rule for failure detection and provides useful failure

identification information for use in system reorganization subsequent to

the detection of a failure. In addition, one can devise a number of sim-

plifications of the technique and can study analytically the tradeoff

between GLR complexity and GLR performance.

Consider the basic dynamical model (1)-(3). The following are 4

possible modifications of these equations that incorporate certain sudden

system changes (see Willsky and Jones [281,[291 and Gustafson, Willsky, and

Wong 1361 for physical motivation for these and other failure modes of the

same general type):
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Dynamics Jump

x(k+l) _ $(k)x(k)+B (k)u(k) + w (k) + Ak+l,e
	

(40)

Here v is an unknown n -vector, 9 is the unknown time of failure, and 6 i

is the Kronecker delta. Such a model can be used to model sudden shifts

in bias states (as in the inertial problem studied in [151,[16)).

Dynamic Step

x(k+l) = f (k)x(k) + B (k)u(k) + w (k) 
+'k+l,e	 (41)

Here Qij is the unit step

1	 ij
Qij	 (42)

o	 i<i

This model can be used to model certain actuator failures (compare to the

Beard-Jones example in Section III= see equation (15)).

Sensor Jump

z(k) - Hx (k) + Ju(k) + v(k) + vdk,e	 (43)

We can use this to model bad data points.

Sensor Step

z(k) - Hx (k) + Ju(k) + v(k) + 'k,e	 (44)

Sudden changes in sensor biases fit into this model.

By the linearity , of the system (1)-(3) and the filter (4)-(10), one

can determine the effect of each of the failure modes on the innovations.

The general form is

y(k) - G(kie)v + YW	 (45)
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-
where y M is the filter innovations if no failure occurs, and the matrix

G can be precomputed (see (29),(381). This matrix, which is different for

each of the four cases (40)-(44), is called the failure signature matrix and

provides us with an explicit description of how various failures propagate

through the system ani filter.

The full-blown GLR method involves the following: we assume we are

looking for one of the four classes of failures and have computed the

appropriate signature matrix. Given the residuals, we compute the maximum

likelihood estimates of V and 6, and, assuming that these estimates are

correct, we compute the log-likelihood ratio for failure versus no failure

(see van Trees (411 for a general discussion of GLR methods). The imple-

mentation of the full GLR requires a linearly growing bank of matched filters,

computing the best estimates of V assuming a particular value of Ac { 1,...,k}.

A number of remarks can be made concerning the GLR system. We note that,

as with ether methods such as Buxbaum-Haddad or Chien, the inclusion of the

variable 6 to indicate our uncer tainty as to the time of failtre keeps the

detection system sensitive to new data. However, it is the estimation of 6

that causes the growing complexity problem. On the other hand, even if the

full GLR is not implementable, it can serve as a benchmark for other schemes

and can in fact be used as a starting point for the design of simpler systems.

One simplification that eliminates the growing complexity is the restriction

of the estimate of 6 to a window

k-N < 6 < k-M
	

(45)

1

sl^
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where the lower bound is included to limit complexity, and the upper -hound

is set by failure observability and false alarm considerations. Successful

simulation runs with N=M (i.e., when we don't optimize 6 at all and have

only one matched filter for v) are reported by Willsky and Jones in (29).

We remark only that the price one pays for "windowing" the estimate of 9 is

in a reduction in the accuracy of the estimate of v. For example, in the

case of N=M, we often are able to detect failures extremely quickly, but if

0-k-N is not the correct time of failure, the estimate of v may be severely

degraded (e.g., our estimate of the slope of a ramp changes as we change

our estimate of the time at which it started). We note that the estimation

of 9 is similar to time-of-arrival estimation problems that arise in various

applications, and refer the reader to Van Trees [44) for a general discussion

of several techniques.

Also, we note that even if the physical system and filter are time-

invariant, the GLR monitoring system is time-varying, as the failure sig-

nature G includes transient effects. In some cases one may be able to

neglect these and utilize a simpler steady state signature. This is quite

similar to Chien's use [24) of the steady-state effect of the failure on the

residuals, and the criticisms of that approach, given in Section VI, apply

here as well.

One can also simplify the implementation by either partially or

completely specifying the failure magnitude v. Constrained GLR (CGLR) is

based on the assumption that

V -afi	(46)

I ._
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where a is an unknown scalar and f  is one of r possible failure directions.

This technique is described in (29). If we completely specify V

V_V0	(47)

we obtain the simplified GLR (SGLR) algorithm which is extremely simple to

implement, as we have completely eliminated the need for the matched filters

to estimate V. The use of specified failure sizes is similar to that pro-

posed by Chien [24), although in SGLR one can use the time-varying failure

signature, which should aid in failure detection. As initial results for

the detection of electrocardiogram arrhythmias, indicate (see Gustafson,

et.al ., 1361)the estimation of V is not nearly as important for detection as

the matching of failure signatures. Also, by the use of several values of

V0 (i.e. by implementing several parallel SGLR's), one can achieve a high

level of failure isolation without a great deal of additional software com-

plexity. In addition, one could consider a "dual-mode" procedure in which

SGLR is used for alarm and isolation, with full GLR used only afterward in

order to estimate the magnitude of the failure.

The various simplifications of GLR, as well as full GLR, are amenable

to certain analysis, such as the calculation of PF, Pp and (at least for

SGLR) the expected time delay in detection. By performing such analyses,

one can study in detail the tradeoff between complexity and performance. A

methodology for such comparisons is presently being developed and is being

applied to an aircraft failure detection problem. Initial results are

reported by Chow, et.al ., in [38), and a description of a detailed methodolog•,►
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will be reported in the near future. (see Bueno, Chow, Gershwin, and

Willsky (431). In addition, to the calculation of P  and P D, the comparison

methodology reported in (431 includes the computation of cross-detection

probabilities -- i.e. the probability of detecting a failure of type A when

a failure of type B has occurred. Such information can be useful in

'	 designing failure isolation procedures and also in determining if failure

detector A can be successfully utilized as an alarm for failures of type B.

This can lead to substantial simplifications in a failure alarm system.

Also, we refer the reader to [291,[361, and [381 for successful simulations

of the GLR method.

Presently the GLR method is being extended to other failure modes, such

as:

Hard-Over Actuator Failure

x(k+l) = 0 (k)x(k) + [B+M6k+l,Alu(k) + w 	 (48)

With this model we can take into account complete (or "off") failures of

certain actuators. For example an off failure of the ith actuator can be

modeled by choosing M all zero except for the ith column, which is taken to

be the negative of the ith column of B. The GLR detector for (48) is presently

under development [381,[431, and we note that this model is more difficult

than the others as the effect of the failure is modulated by the input values

u (k) .

Increased Process Noise Failures

x(k+l) - M)x(k) + B(k)u(k) + w(k) + t(k) k+1,9 	
(49)
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Here & is additional white process noise.

Hard-Over Sensor Failures

x(k+l) = Hx(k) + Ju(k) + v(k) + [Mx(k) + Su(k))a a	(50)

Here the failures are modulated by u and x, and a failure of the ith sensor

is modeled by choosing the ith rows of M and S appropriately.

Added Sensor Noise Failures

z (k) = Hx (k) + Ju (k) + v 	 + E (k) vk+l, e
	 (51)

The analysis of these failure modes is presently being performed [38],[43),

and it is anticipated that SGLR algorithms will also be developed.

In addition to these failure modes, one can develop additional models

along these lines for particular applications. In particular, we have

developed several additional models similar to those described by equations

(40)-(44) for our work on the detection and classification of arrhythmias in

electrocardiograms. The results reported in [36] are rather stricking, as

in all the tests performed we observed no false alarms, detected all rhythm

changes immediately (with no incorrect estimates of e), and classified all

rhythm changes correctly. These tests utilized the full GLR approach and

have provided useful insight into the characteristics of the method. For

example, the use of maximum likelihood estimates of v and a precludes the

use of a priori statistics on these variables. In the ECG problem, one is

quite interested in accurate estimates of v, and one also can come up with

reasonable a priori statistics on v based on physical arguments. Thus, it

may pay to incorporate such a priori statistics into the GLR system, and this

can be done rather easily by proper initialization of the matched filters
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estimating V. on the other hand, for the ECG problem one does not want to

look for abrupt changes at one Print in the record more than at another,

and thus it does not make sense to include a priori statistics on 0.	 In

fact, one can argue that inclusion of a priori failure information tends

to discount the observed data in order to avoid false alarms (unless failures

are extremely likely), and one should probably avoid the inclusion of such

information unless one in especially worried about false alarms. However,

if one wishes to use such data, one can utilize the interpretation of the

likelihood ratios as ratios of conditional probabilities of failure times in

order to determine the appropriate modification of GLR [291.

Finally, we note that the GLR system provides extremely useful informa-

tion for system compensation subsequent to the detection of a failure. For

example, one can utilize the GLR-produced estimates of v and 0 to determine

an optimal update procedure for the filter estimate and covariance [291.

once this update has been performed, the GLR system can be used to detect

further failures, thus allowing the detection of multiple events. We refer

the reader to [ 291,[ 38 1 for further discussions of the use of GLR-produced

information in the design of failure compensation systems.

VIII. Conclusions

In this paper we have discussed a number of the issues involved in the

design of failure detection systems. We have also reviewed a variety of

existing failure detection methods and have discussed their characteristics

and designs tradeoffs. The failure detection problem is an extremely

complex one, and the choice of an appropriate design depends heavily on the
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particular application. Tssues such an available computational facilities

cued level of hardware redundancy enter in a crucial way in the design deci-

sion. For exa:aple, as we have mentioned, the use of a sophisticated failure

detection-compensation system may allow one to reduce the level of hardware

redundancy without much of a loss in overall system reliability.

The development of failure detection methods is still a relatively 	
f,

new subject. At this time most of the work has been at a theoretical level

with only a few real applications of techniques [6]-[9], [13], (31), [36].

Much work is yet to be done in the development of implementable systems

complete with a variety of design tradeoffs. Work is needed in the develop-

ment of efficient techniques for failure compensation and system reorganiza-

tion. In addition, there is a great need for the analysis of the robustness

of various failure detection systems in the presence of variations in system

parameters and in the presence of modeling errors and system nonlinearities.

For example, it is conjectured that SGLR is less sensitive to parameter

errors than the more complex full GLR; however, at present there are no ana-

lytical results or simulations to support this conjecture. These and other

issues, such as the incorporation of fault-tolerant computer concepts into

an overall reliable design methodology (see Deyst [401) await investigation

in the future.
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