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LIST OF SYMBOLS

N i	 membrane stress resultant in i th plate

QX	 shearing stress resultant in i th plate

MX bending moment in i th plate

u i	 in-plane displacement in i th plate

Bi	 rotation of normal in i th plate

w^	 transverse displacement in the i th plate

C1 1 extensional stiffness of i th plate

D1 1 bending stiffness of i th plate

L^	 transverse shearing stiffness of i th plate

h i	 thickness of i th plate

tkj thickness of adhesive layer between plate k and
(k = 1,2; j = k + 1)



STRESS ANALYSIS OF ADHESIVE BONDED

STIFFENER PLATES AND DOUBLE JOINTS

by

U. Yuceoglu and D. P. Updike
Lehigh University

Bethlehem, PA 18015

ABSTRACT

The general problem of adhesive bonded stiffener plates and double

joints of dissimilar orthotropic adherends with transverse shear deforma-

tions are analyzed. The adhesive layers are assumed to be of an isotropic,

elastic and relatively flexible material. It is shown that the stress

distributions in the adhesive layers are very much dependent on the bend-

ing deformations in adherends. Also, it is found that, in the adhesive

layer, maximum transverse normal stress is, in many cases, larger than the

longitudinal shear stress and that both occur at the edge of the joint.

The general method of solution developed is applied to several practical

examples.

1.	 INTRODUCTION

Recent advances in composite structures and the new adhesive bonding

techniques based on very strong epoxy type adhesives have made feasible

the adhesive joining and stiffening of structural eleiiiients subjected to

extreme environmental and loading conditions. This type of joining and

stiffening have been used extensively in flight and space vehicle struc-

tures. Epoxy based adhesives are also being used increasingly in stiffen-	 1

ing, joining and repairing precast prestressed concrete and other structures.
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Consequently, the importance of adhesive bonding in technology has

been recognized and considerable amount of experimental and theoretical

research has been carried out on adhesive bonded stiffener plates and

doub^!e joints. Previous analytical work on stiffener plates can be found

in papers by Muki and Sternberg [1], Cohen and De Silva [2], Erdogan [3],

and Erdogan and Civelek [4]. The problems of double lap joint and double

strap joint are considered by Lerchenthal [5], Volkersen [6], Szepe [7]

and Segerlind [8]. Some experimental results are given by Mylonas [9].

Many similar problems and practical aspects of adhesives and bonding are

also discussed in a book by Bikerman [10].

In many of the above cited references, eitier the bending deforma-

tions of the adherends (or, at least, of one adherend) are not taken into

account or the solutions given are valid only for special cases of geom-

etry, material, and loading conditions. The purpose of this paper, there-

fore, is to investigate the transverse normal stress and longitudinal shear

stress distributions in the adhesive layers of bonded stiffener plates,

double lap joints, anu strap joints of dissimilar orthotropic adherends

taking into account the bending of adherends. Furthermore, the transverse

shear defovmations of the adherends will also be included in the analyti-

cal model.

2.	 FORMULATION OF THE PROBLEM

In many practical applications, the adherends and the adhesive layers
i

are arranged so that adherends are plate-like structures sandwiching one

or more adhesive layers. Examples of such joints are the stiffener plate,

double lap joint and strap joints of which simplest forms are shown in

Figure 1.
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In the following, the formulation of the problem of stiffener plate

a	 and double joints are practically the same except that the number of

equations and the choice of boundary conditions change depending on the

particular problem. Thus, a typical problem whether it be a stiffener

plate or double joint or strap joint of length L is composed of upper,

lower and middle adherends (or plates), with different orthotropic mater-

ial constants and thicknesses h l , h 2 , h 3 , and thin elastic, isotropic

adhesive layers of thicknesses t
12 ,

 t23. The principal directions of

orthotropy in ill adherends are assumed to coincide with the coordinate

axes (see Figure 2). All the adherends are treated as plates subjected

to in-plane tension, bending and thickness (or transverse) shear deforma-

tions. The adhesive layers are assumed to be relatively thin i.e.

tkj«hi (i = 1,2,3; k = 1,2; j = k + 1) and they are assumed to behave

•	 elastically as simple tension-compression springs and shear springs,

connecting the adherends. This implies that the variation of stresses

through the adhesive layer is ignored and that only the transverse nor-

mal stress and longitudinal shear stress in the adhesive layer influence

equil ibriulp.

The sign convention for displacements u
i
, vi, wi (i = 1,2,3), the

strain quantities, the stresses and stress-resultants for both the ad-

herends and the adhesive layers are those in Figure 2.

A more detailed treatment of the derivation of the equations of ad-

hesive joints is presented in a previous report [11]. Assuming cylindrical

bending in x- direction, the governing equations for the general bending

problem of a stiffener plate (or double joint and strap joint, as the case

may be) in the bonded portion are expressed by,

3
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dNx
	 i

-&x = - Px

i
d4x _	 i
-x - Pz

dM 
1
x	

i	 i
dx - - mx + Qx

(i = 1,2,3)
	

0 a-c)

and,

dui i3x =
 

Ix/C11

i
dxx	

Mx/D11	 (i = 1 ,2,3)	 (1 A-f)

dw i 	i	 i	 i
dx = Q x /L 1 - ^x

where single superscripts (i = 1,2,3) indicate the particular adherend and

NX, QX, MX, u^, w^, 3X (i = 1,2,3) are the fundamental variables, and pX,

pZ (i = 1,2 9 3) are the sum of the distributed surface loads and mX (i =

1,2,3) are the moments of these loads acting on the reference planes of

the i th plate.

The load terms pX, pZ, ml (i = 1,2,3), may be expressed as

1	 1	 12	 2	 12	 23	 3	 3+ T23p x =qx -T	 px= T 	 -T	 px= - qx
(Z.a,b)

p  = q l _ 012	 2 = Q12 _ Q23	 3	 3 + Q23

z	 Pz	 Pz = - qz

and,

11 
hl	

12 hl + t12
mx = q x —

F + 
T —T—

E
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m2_ h 2 +t 12 +'[2 3 h2+t23 ( 2	 )T 12 — 
2 --^--	 . c -ex

m3 3 h 3 +	 h 3 + t23-	 T23
x q  'F^-

where single superscripts define a particular adherend and double super-

scripts define relative position of adhesive layer. 	 Thus,	 qx ,	 qX, and

qz , qz are the
distributed surface loads acting on adherends in x and z

directions respectively. The quantities T and Q define the longitudinal
i

shear stress in x- direction and transverse normal 	 stress in z- direction 	 j

in the adhesive (with superscripts indicating relative positl:,n of ad-

hesive layer). Subscripts in geometric dimensions such as thickness h

and t indicate the relative position of the corres ponding adherend and

^	 adhesive layer, respectively.

The stresses in the adhesive layer (or layers) are obtained by

writing the compatibility conditions (or the mechanical he`dvior of ad-

hesive layers) along the bond length,

It	 +- 1

aZ 2 (x)	 =
12

fl	

( w l
2

- w2)

Tx 2(x)	
=

12

Ĝ12 (u

h

ax- Sx	
-

h

u 2	 - SX)	
a

Cy 23 	
-

z

B23 
( w2

t23
- w3)

(3.a-d)	 i

`23 x	 -

x	 (	 )

G 23	 u2

-f23	 (

-	 2 h2 -

Sx
u3 - S3 h3 )

x

where Q, T, h, and t are defined previously, B is an elastic constant re- 	 j

lated to the Young's modulus and G is the shear modulus for a particular

adhesive layer (superscripts of B and G again define the relative posi-

tion of the adhesive layer between the adherends).	 The quantities u, w,
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AA^

dnd B  are displacements in x, z directions and the angle of rotation of

the normal in z- direction respectively.

The elastic constants Bki (k = 1,2; j = k + 1) in adhesive layers car

be expressed in terms of th3 Young's modili Eki (k = 1,2; j = k + 1).

For this purpose, consider th% leastic stress-strain law in any adhesive

layer "kj" in cylindrical bending (no summation un k and j),

a Q = a kj (ex + ez)kj + 2 Gkj e kj
	

(4)

i

	 where QZd is the normal stress and eX
j
, eye , ezi are the strains and Xkj

is the Lamb elastic constant given by

ski 	 Vki E ki /(( 1 + vki )(1 - 2vkj	(5)

The compatability of strains, on the interfaces between adherends and

adhesive layers, requires that e ki (k = 1,2; j = k + 1) in any adhesive

layer must be equal to the adherend strains e  (i = 1,20) on the inter-

faces, however e kj of the adhesive layer given by,

ekj = (wk - wJ* )/ tkj 	 (6)

can be much larger or with(t
12' t23 )

 «hi (i = 1,2,3), in the adhesive layer,

Ie Z j 1»^e X jj 1	 (7)

then, neglecting e ki in comparison with e 	 in (4), the elastic constant

Bki of the adhesive layer becomes,

BkJ = ^kd + 2Gkj	 (1 - vk;)E^^/((1 + vki )(1 - 2vk3 )^	 (8)

which means That Bkj i ĉ  larger than Ekj in the adhesive.

6



Thn st , t3titution of (3.a-d) into (2.a-e), and then replacing pi g pi'Jx	 z
i

mx (i = 1,2,3) in (l.a-f), the system o f equations with the appropriate

boundary conditions finally reduce to a two-point boundary problem in the

region of (- Z< x < + t) and (--<y<+-),

dU_X Yr(k) = JArk Y k (x) + P r (x)	 (r = k = 1,2,..,18)
k

(9.a)
and,

IT-mk Y k (-f) = U*m

k	 (m = n = 1,2,..,9)	 (9.b.c)

FTnk Y k (+.e)	 U*n
k

where Ark is a coefficient matrix of order (18,18) including elastic con-

stants and geometric dimensions such as thicknesses, etc. of adherends

and adhesive layers [*]. P r (;) is a column matrix of order 18, co rre-

sponding to the distributed surface loads qx, qZ. The matrix Y r (x) is the col-

umn matrix of order 18, including all the fundamental variables of the

three adherends as its elements. In the boundary conditions of (9.b,c),

the matrices 
T
mk' T+ are constant matrices each of order (9,18) and, in

general, are, depend i ng on support conditions, unit matrices. The quanti-

ties U M and U*n are column matrices correspond-Ing stress resultants and

displacements in the boundary conditions prescribed at x = - Z and x =

+ P respectively.

The boundary conditions are obtaincJ from !-mown stress resultants and

displacements of adherends at the ends of the joint. For instance, the

I* Ifthe thicknesses of the adherends are not constant, then the cu-
efficient matrix A rk becomes a function of x i.e. A r (x). However,
this does not pose any additional difficulty in solv ng the system
of (9.a-c) by the method employed in this work.

7



appropriate boundary conditions for the stiffener plate subjected to an

external tension N o and considering the symmetry of the system are as follows:

at x = 0 the column matrix U*m:

N i =O , QX = O , Mx= O , u2 =0 ,w2	0

ax = 0 , NX = 0 , QX = 0 , Mx = 0	 (10.a)

at x = + t the column matrix U*n:

Nx = 0 , QX = 0 , MX = 0 , Nx = N* , QX = Q*

Mx = M*	 NX = 0 , QX = 0 , Mx = 0	 (10.b)

where the subscripts "*" designates quantities prescribed at x = 0,Z. A

more detailed discussion of the appropriate conditions is given in [11].

In general, the system of 18 ordinary differential equations in (9.a)

and two sets of 9 boundary conditions ifs (9.b,c) constitutes a two-point

boundary value problem of order 18.

3.	 SOLUTION OF THE SYSTEM OF EQUATIONS

In the case of dissimilar adherends with unequal but uniform thick-

nesses and different elastic properties, a multi-segment method of inte-

gration is the most suitable to solve the system in (9.a-c) (see, for in-

stance, [11] and [121).

In the practical case of geometric, material and external loading

	

symmetry with respect to the x- axis, the number of equations in (l.a-f) 	 4

reduces to 12 and the adhesive layer stress in (3.a-d) can be replaced by,
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•	 a12(x) = a23 (x) ; (J ( x )	 Tx2( x ) = T x 3 (x)	 T(x)

(ll.a,b)

•	
hl = h3-)-.hl ,
	 h2 -h2 	 , t12 = t23-+t

Thus, the solution of the two-point boundary value problem may be

obtained numerically by the method described in [11]. This procedure is

sufficiently general so as to allow for non-symmetry and the variation of

adherend thickness and material properties along the joint[ll, 12].

The effect of the average transverse shear deformations of adherends

a rle given by the terms Q i /L^ (i = 1,2,3) in (l.a-f). The influence of

these terms on the adhesive stresses T(x) and u(x) were discussed in

[11]. Therefore it will not be repeated here.

4.	 DISCUSSION OF RESULTS

A computer program for the solution of the equations of stiffener

plates and double joints bonded through one or more flexible adhesive

layers has been developed. The numerical results for several typical

problems are discussed in the following.

a. Stiffener Plate with Dissimilar Adherends

As an example, the adhesive stresses T(x) and a(x) in the case of

an aluminum plate stiffened by a single boron-epoxy plate subjected to	 i

the basic external Ic.ads N o , Qo , Mo are presented in Figures 3, 4, and

5, respectively. It can easily be seen that, especially in Figures 4

and 5, 
Amax 

is larger than Tmax when the external bending is dominant

in the unstiffened section of the base plate.

i
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In order to illustrate the significant effect of bending of adherends,

•	 even in the absence of external bending moment, the analytical model for

the stiffener plate solution of this paper may be compared with that of

Erdogan and Civelek [4]. The results of both methods corresponding to an

external tension a  for the identical stiffener-base plate combination

are plotted in Figure 6. The curves "a" and "b" are obtained by Erdogan

and Civelek [4]. In their analysis, "a" is based on a model which treats

the base plate as an elastic continuum and the stiffener Flate as a mem-

brane while "b" is based on both plates being membranes [4]. It is easy

to see that, in Figure 6, the maximum adhesive shear stress T max calcu-

lated by the present method is somewhat less than the Tmax values of "a"

aod "b" obtained by Erdogan and Civelek [4]. In both cases "a" and "b",

Erdogan and Civelek [4] assume that the transverse normal stress a(x) in

the adhesive is identically zero and also ignore the bending resistance

of the stiffener plate.

It should also be emphasized here that in [4], only external uniform

tension loading a  is taken into account as an external load acting on the

base plate. If the same base plate is subjected to an external bending

stress, it can be expected that Tmax and amax in the adhesive are to be

increased drastically. This, in fact, is the case seen in Figure 7. The

adhesive stresses r(x) and a(x) corresponding to an identical stiffener-

plate combination subjected to an external bending stress a* which is

equal to the average tension a  of [4] in the uns;.iffened section are

calculated by the present method and plotted in Figure 7. A simple com-

parison of Tmax values for the sarre geometry and material in Figures 6

and 7 indicates that 
'max 

due to an external bending moment producing the

10



same nominal stress 
a
  is larger than 

Tmax 
due to the uniform external

tension oo . Not only that but also there is an additional stress that is

the transverse normal stress o max , in Figure 7, which is very much larger

than 
omax 

of Figuro c. Thus, it is obvious that the normal stress o(x)

in the adhesive layer and the effect of bending of adherends on the ad-

hesive stresses T(x) and o(x), specifically in the latter, cannot be ig-

nored as it was done in [1] in the analysis of stiffener plates. This

point should be taken in to account in the practical design of stiffener-

base plate combinations when external loads are bending moments.

b. Double Lap Joint with Dissimilar Adherends

The distribution of adhesive stresses in a typical lap joint composed

of two aluminum plates bonded to a boron-epoxy plate subjected to an ex-

ternal tension load N o is calculated and plotted in Figure 8. It should

be noted here that, due to the symmetry of the geometry and the loading

with respect to x- axis, there is no bending in the middle adherend. The

calculated values of 
omax 

and 
Tnax 

are of the same order of magnitude.

However, if the joint is under the action of external shear loads or

bending moments it can be expected that omax could be the dominant stress

in the adhesive layer.

In this connection, a variant of the so called the "trouser leg"

problem for the same double lap joint configuration is also considered.

This double lap joint configuration is subjected to self-equilibrating ex-

ternal shear Q0 , externL. moment M  and the results are plotted in Figure 9

and Figure 10 respectively. It can be seen that, in both cases of the

trouser leg problem, the omax stresses are very much larger than that of

•	 the double lap joint of identical geometry and material under only external

11



tension No in Figure 8. Even more so in the case of external bending mom-

ent Mo given in Figure 10.

C. Single Strap and Double strap Joints with Dissimilar Adherends

The stress analysis of a single strap joint of boron-epoxy bonded

through an epoxy layer to two aluminum plates subjected to basic external

loadings is considered in Figures 11, 12, and 13. It is obvious that,

even in the external tension case, the transverse normal stress amax is

very much larger than the longitudinal shear stress Tmax and that the

larger stress concentrations occur as expected at the point of geometric

and material discontinuity that is at the middle of the jointing plate.

As a further example a double strap joint is also analyzed (see

Figure 12). It is ;,f interest to observe here that, in contrast to the

single strap joint, the stresses a
max 

and Tmax are of the same order of

magnitude. This is of course not unexpected since the symmetry of the

loading and geometry as in Figure 14 prevent the bending deformations in

the middle adherends. In this respect, the similarity of the stress dis-

tributions in the double strap joint in Figure 14 and the double lap

joint in Figure 8 should be noted.

5.	 CONCLUSIONS

1. Concentrations of stresses Tmax and amax in the adhesive layer

occur at locations of geometric and material discontinuity namely, at

the ends of the joint.

12
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The effect of adherend transverse shear deformation may be

out difficulty.

13I
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2. The present analytical model does not take into account the fact

that the adhesive shear stress T(x), after reaching to peak values in a

small distance from both edges, ought to be ze ro at both ends of the joint.

This point was considered for only double lap joints by Volkersen [6].

However, his solution is valid only for a special case of isotropic, sym-

metrical adherends of identical material with an upper (c ar lower) adherend

to middle adherend thickness ratio equal to 112.

3. Bending deformations of adherends, even if only in one of the

adherends, have a significant effect on T(x) and o(x), particularly in

the latter, in the adhesive layer. This bending effect is observed in

stiffener plate and double lap joint problems, even in the case of direct

external tension loading.

• 4. Due to this bending effect, the maximum normal stress amax 
can

be larger than the maximum shearing stress 
Tmax 

in the adhesive layer.

5. The solution technique employed in this paper can easily be used

for problems of double joints and stiffener plates with tapered adherends.
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