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DEVELOPMENT AND APPLICATIONS OF TWO COMPUTATIONAL
PROCEDURES FOR DETERMINING THE VIBRATION MODES
OF STRUCTURAL SYSTEMS*

Raymond G. Kvaternik
Langley Research Center

SUMMARY

Two computational procedures for analyzing complex structural systems for their
natural modes and frequencies of vibration are presented. Both procedures are based on
a substructures methodology and both émploy the finite-element stiffness method to model
the constituent substructures. The first procedure is a direct method based on solving
the eigenvalue problem associated with a finite-element representation of the complete
structure. The second procedure is a component-mode synthesis scheme in which the
vibration modes of the complete structure are synthesized from modes of substructures
into which the structure is divided. The latter method provides for a significant reduc-
tion in the number of degrees of freedom through the expedient of partial modal synthesis
wherein only a truncated set of the modes corresponding to each substructure is employed
in the synthesizing procedure. The analytical basis of the methods contains a combina-
tion of features which enhance the generality of the procedures. The computational pro-
cedures so established are thought to be new and to exhibit a unique utilitarian character
with respect to their versatility, computational convenience, and ease of computer
implementation.

The computational procedures have been implemented in two special-purpose com-
puter programs designated SUDAN and SCORE. The results of the application of these
programs to several structural configurations are shown and comparisons are made with
experiment. These studies, as well as others, have verified the analytical basis of the
procedures and have demonstrated a wide range of engineering applicability for the
SUDAN and SCORE programs.

*The information presented herein is based on a portion of a thesis entitled
""Studies in Tilt-Rotor VTOL Aircraft Aeroelasticity' which was submitted to Case
Western Reserve University; Cleveland, Ohio, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Engineering Mechanics, June 1973. Some
additional material not contained in the original work is included.



INTRODUCTION

A fundamental problem in the design of aerospace vehicle structures is the deter-
mination of the natural modes and frequencies of vibration. These data constitute the
essential ingredient in aeroelastic stability and response analyses which employ the nor-
mal mode method to establish the system equations of motion. Two basic approaches for
analyzing aerospace structures for their natural modes and frequencies of vibration have
been established in the literature. The first approach is a direct method based on con-
structing a finite-element model of the structure and solving the resulting matrix eigen-
value problem for the system modes and frequencies (refs. 1 to 7). For large structures,
such as those exemplified by the space shuttle, the number of degrees of freedom asso-
ciated with such an approach may be excessive, resulting in prohibitive execution times
and large computer central-memory requirements. The second approach is component-
mode synthesis (refs. 8 to 23) which is based on the concept of employing the modes of
conveniently defined components, or substructures, into which the structure is divided in
order to synthesize the modes of the complete structure. The expedient of reducing the
number of system degrees of freedom, and thus the size of the computing task is intro-
duced by using only a truncated set of the modes corresponding to each component in the
synthesizing procedure. The latter method is thus uniquely suited to the analysis of
structures which are too large to be treated by the direct method.

Two general computational procedures for calculating the natural vibratory modes
and frequencies of structural systems are presented. One is a direct method and the
other is a component-mode synthesis scheme. Both procedures are based on a substruc-
tures methodology and employ the finite-element stiffness method to model the constitu-
ent substructures. Salient features common to both the direct and component-mode
synthesis procedures include: the imposition of the compatibility relations on the sub-
structure attachment coordinates according to an algorithm conceived by Walton and
Steeves (ref. 24); the assumption of a full (i.e., nondiagonal) mass matrix; and the ability
to treat the case in which both the mass and stiffness matrices are singular simulta-
neously, in contrast to the usual assumption that one or the other is nonsingular. Addi- A
tional features are incorporated in the component-mode synthesis formulation. A hybrid
coordinate representation whereby both modal and discrete coordinates can be employed
simultaneously is included. The component-mode shapes used are completely arbitrary
with respect to their origin, type, and normalization in that the mode shapes can be
either for free or restrained support conditions; can consist of either calculated or mea-
sured modes, static deflection shapes, assumed deflection shapes, or any combination of
these; and need not be orthogonal or normalized in any consistent manner. A unified
treatment of the component-mode shapes is employed in the synthesizing procedure,
without recourse to matrix partitioning according to the type of component modes




employed. The combination of these features in the direct and component-mode syn-
thesis formulations described herein is thought to be new and to provide the basis for
computational procedures which are unique with respect to their generality, computational
convenience, and ease of computer implementation.

The computational procedures described are general and apply to a structural dis-
cretization based on any type of finite element. The procedures have been implemented
in two special-purpose computer programs designated SUDAN (SUbstructuring in Direct
ANalyses) and SCORE (Synthesis of COmponent REsponses). The results of the applica-
tion of SUDAN and SCORE to several structural configurations are shown. These con-
figurations include: a free-free beam; an assembly of beams configured in the shape of
an airplane; a 1/15-scale dynamic model of an early space shuttle concept; and a 1/30-
scale dynamic, aeroelastic model of a B-52E airplane. Comparisons are also made with
experimental results for three of the configurations. These studies, as well as others
for a variety of airframe dynamic analyses in support of various projects, have verified
the analytical basis of these procedures and demonstirated a wide range of engineering
applicability for the SUDAN and SCORE programs.

SYMBOLS
Physical quantities in this report are given in the International System of Units (SI).
U.S. Customary Units, if shown, are given parenthetically. All measurements and cal-

culations were made in U.S. Customary Units.

[B] symmetric matrix constructed from the coefficients of the
constraint equations

[Bll] submatrix of [B]

[C] matrix of coefficients of constraint equations expressed in dis-
crete, physical coordinates

[CIJ, [02] submat.rices of [C]

[D] matrix of coefficients of constraint equations expressed in modal
coordinates

[Dl], [Dz:l submatrices of [D]

[E] symmetric matrix constructed from the coefficients of the con-

straint equations



NS

NSM

N

bending stiffness of beam

calculated frequency, Hz

measured frequency, Hz

torsional stiffness of beam

unit matrix

generalized stiffness matrix of assembled structure

composite matrix containing free-body stiffness matrices of
substructures as submatrices on the principal diagonal

modal stiffness matrix for ith substructure

stiffness matrix of ith substructure regarded as a free body
Lagrangian function

generalized mass matrix of assembled structure

composite matrix containing free-body mass matrices of sub-
structures as submatrices on the principal diagonal

modal mass matrix for ith substructure
mass matrix of ith substructure regarded as a free body

total number of discrete, physical coordinates describing the
substructures

number of substructures into which system is divided

total number of substructure modes employed in the synthesizing

procedure

column matrix of discrete, physical coordinates for ith substruc-
ture regarded as a free body



modal matrix containing eigenvectors of system mass
matrix [M]

column matrix of generalized coordinates
column matrix containing amplitudes of generalized coordinates
number of constraint equations

generalized stiffness matrix; permutation matrix

submatrices of generalized stiffness matrix [S]

generalized stiffness matrix
reduced generalized stiffness matrix

uncoupled system modal expansion matrix containing substructure

modal subsets [U](l) on principal diagonal
subset of modes for ith substructure
matrix of eigenvectors for constraint eigenvalue problem
column matrices

composite matrix containing [Yl] and ]:Yz] as submatrices

on principal diagonal

matrix of eigenvectors of [Bll]
matrix of eigenvectors of [0]

submatrices of (y)

Y



{z1}> {72}
{Z>i

[8]

column matrix containing the discrete, physical coordinates of
all the substructures

submatrices of {z}
ith mode shape of system in discrete, physical coordinates

connectivity matrix which enforces geometric compatibility at the
interfaces of the substructures

column matrices of generalized coordinates
submatrices of {7}

ith mode shape of system in generalized coordinates
eigenvalue

ith eigenvalue

diagonal matrix of eigenvalues

eigenvalue

diagonal matrix of eigenvalues of [M]

submatrix of E p.]

column matrix containing all substructure modal coordinates

modal coordinates of ith substructure

submatrices of {&}




[92] diagonal matrix of squares of substructure natural frequencies

w2 square of natural frequency
[0] null submatrix of [B]
Superscripts:

T denotes matrix transpose

-1 denotes matrix inverse

Primes are used to distinguish between common symbols representing matrix
quantities which are different numerically.

Dots over symbols are used to denote derivatives with respect to time.
ANALYTICAL FORMULATION

Mathematical Model of Substructures

The procedures for natural mode vibration analysis by direct and component-mode
synthesis techniques presented here are based on a substructures approach in which the
structure is conceptually divided into separate smaller components or substructures.
Such a division into substructures is schematically depicted in figure 1. The application
of finite-element modeling (refs. 1 to 7) to each of the substructures regarded as a free
body (i.e., with free boundary conditions) leads to a discrete mass matrix [m], a discrete
stiffness matrix [k], and a vector of discrete coordinatesl {p} for each substructure.
Since the substructures are treated as distinct components in a substructuring methodol -
oéy, their structural properties are most conveniently defined relative to the axes local
to each component. The definition of the substructure inertial and elastic matrices with
respect to such local coordinate axes is assumed here. When a suitable set of substruc-

tures has been identified and the corresponding mass and stiffness matrices, [m ](i) and

[k](i), are determined, the free-vibration equation of motion for the ith substructure has
the form

m 1O + 110V - (o M

Ipiscrete coordinates define the translations and rotations at a set of discrete
points on a structure. In contrast, distributed or modal coordinates specify the magni-
tude of given space distribution of dlsplacement and thus provide information at all points
on a structure (cf., ref. 4).




Collecting the equations for all the substructures into one diagonally partitioned matrix

equation gives

[m]® (W) |a® (@®) [@®)
[ m ](2) {p} (2) [ k ](2) <p} (2) {0} (2)

: _ (2)
_ ()™ ()| IO @) (09

or, in more compact notation

[MKE) + Rz} = {0} (3)
where the diagonally partitioned form of [M] and [K] reflects the fact that the sub-

structures are not connected.

For the substructures shown in figure 1, for example, the composite matrices [M]
and [K] appearing in equation (3) would each have the form given diagrammatically in
figure 2. Each block in figure 2 represents the mass or stiffness matrix appropriate to a
substructure. The ordering of the substructure matrices (blocks in fig. 2) within [ﬁ]
and [K] must be consistent but is otherwise arbitrary. Since the mass and stiffness
matrices for each substructure are generated independently, no intersubstructure coupling
exists between the partitions of [M] or [K], as indicated in figure 2.

Formulation of the Coupling Procedure and Establishing
the System Equations of Motion

If the composite matrices containing the mass and stiffness matrices of the indi-
vidual substructures as submatrices on the principal diagonal are denoted by [M] and
[K], respectively, according to equations (2) and (3), the Lagrangian of the partitioned
(i.e., uncoupled) structure can be written as

L= 2 M) - () R 4)

where <z} is a column matrix containing the discrete, physical coordinates of all the
substructures. Now a consequence of any substructuring procedure is the introduction of
coordinates which are not independent but are related by equations of constraint. Such
equations must be imposed to restore geometric compatibility at the interfaces. Since

the matrices [M] and [K] in equation (4) have been established on the basis of such

a substructuring procedure, the coordinates forming the vector {z} are not independent,

8



The equations of constraint must be used to construct a transformation matrix relating
the dependent coordinates {z} to a set of independent coordinates. This transforma-
tion is then used to analytically join the individual substructure mass and stiffness matri-
ces to arrive at the mass and stiffness matrices of the complete system.

The linear algebraic equations of constraint which follow from considerations of
deflection2 compatibility at the junctions of the substructures can be written as

[c] {z} ={0} (5)

rXxNNx1

where [C] is a constant matrix depending solely on the geometric configuration of the
interfaces and {z} is the vector of discrete coordinates appearing in equation (4). In
practice [C] is rectangular with the number of rows r generally much less than the
number of columns N. Since there are many coordinates which do not appear in the
constraint equations, the matrix [C] is also characterized by the presence of many null
(zero) columns.

The usual practice when dealing with equations of constraint (see, for example,
ref. 8) is to select certain of the coordinates as independent coordinates. The remaining
(dependent) coordinates are expressed in terms of those coordinates which have been
selected to be independent by solving the constraint equations as simultaneous equations.
In an alternate method devised by Walton and Steeves (ref. 24),3 the solution of the con-
straint equations for the independent coordinates is associated with computing the eigen-
values and eigenvectors of a symmetric matrix formed from the matrix of coefficients
appearing in the constraint equations. For completeness, both methods are reviewed
here.

Usual method for establishing independent coordinates.- Usual practice when dealing

with equations of constraint is to partition equation (5) in the form

{=1)

[c1]!  [ca] rxl
rXrErX(N—r) {Zz} ={0} (6)
(N-r)x1

where (z;} is the subset of {2z} chosen to be the dependent variables and {z2} is
the subset chosen to be the independent coordinates. The partitioning indicated in equa-

ZHerein, deflection compatibility is used in the generic sense to include both linear
and angular displacements.

3A modified version of their original work is also available as a National Aeronau-
tics and Space Administration (NASA) Technical Report (ref. 25).



tion (6) is carried out by rearranging the columns of [C] such that the columns of
[C1] and [Cg] correspond to the elements in {z1} and {2z}, respectively. The
selection of the independent coordinates is arbitrary except for the requirement that the
choice lead to a matrix [C1] which is nonsingular. If [C1] is nonsingular, equa-
tion (6) yields

{z1)=-[C11 Y Ca ) zg) (7)

The vector { z } is then related to the independent subset {zz} by

O TR A=A e {22) ®)

or, more compactly,

{z}=08)z2) (9)

Equation (9) defines a coordinate transformation from a set of constrained or dependent
coordinates {z} to a reduced set of unconstrained or independent coordinates {zz}.
The transformation matrix [8] may be interpreted as a connectivity matrix which
enforces geometric compatibility at the interfaces of the substructures. It should be
noted that the independent coordinates obtained in this manner are a subset of the original
dependent coordinates.

the constraint equations in the partitioned form given by equation (6), it has been implicitly
assumed that the rank of the matrix [C] is equal to the number of rows in [C [; that is,
the equations are assumed to be linearly independent. In practice, for complex structures
redundancies often inadvertently appear in the equations of constraint (ref. 26), resulting
in equations which are not linearly independent. The rank of [C] would then be less
than the number of rows r; thus, it would not be possible to find a nonsingular partition
oforder rXr in [C] and proceed as outlined above. Even if the rankof [C] is
equal to the number of rows r, in order to arrive at a nonsingular submatrix [Cj1] by
rearranging the columns of [C ], it must be possible to identify the r linearly inde-
pendent columns of [C]. This identification may not be an easy task. The method of
Walton and Steeves (ref. 24) obviates the need to treat the case of redundant equations of
constraint in any special manner and the necessity of being able to identify the independent
columns of [C]. The basis of their method is a mathematical theorem designated the

10
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""zero eigenvalues theorem." This theorem expresses the solution of a set of linear
homogeneous algebraic equations (such as the constraint equations) in terms of eigen-
vectors of a symmetric matrix constructed from the coefficients of the equations. The
method proceeds as follows. With [C] from equation (5) the symmetric matrix [E ]
is constructed according to

[E]=[c]T[c] (10)

The eigenvalue problem

[E1{x} =2{x} (11)

is solved for all its eigenvalues and eigenvectors. The resulting set of eigenvalues can
be arranged in the diagonal matrix [7\] and the corresponding eigenvectors in the

matrix [X]. Now the eigenvalues of [E] are positive or zero (ref. 24). If P repre-
sents the number of eigenvalues which are zero, the most general solution of equation (5)
is given by

{z} = [8] {a) (12)

NX1 NxPPxI1

The matrix [pB] is formed from the columns of [X] which correspond to eigenvalues
A; having the value zero, and {q} is a column matrix of independent coordinates. If
there are any redundant constraint equations, the number of positive eigenvalues result-
ing from the solution of the eigenvalue problem of equation (11) is equal to the number of
independent equations of constraint and the matrix [g] is still formed from the columns
of [X] corresponding to the zero eigenvalues of [E]. Equation (12) then defines a
transformation from dependent coordinates { z} to independent coordinates { q}
through the matrix [B8] which imposes the condition of geometric compatibility at the
junctions of the substructures.

In summary, the problem of determining [ B8] by the method of Walton and Steeves
reduces to that of calculating the eigenvalues and eigenvectors of [E]. The independent
coordinates established in this manner are not usually amenable to direct physical inter-
pretation. However, the transformation to the original (physical) coordinates is available
through equation (12). In contrast, the independent coordinates obtained by proceeding in
the usual manner (discussed previously) are a subset of the original (physical), dependent
coordinates.

The manner of introducing the transformation to independent coordinates and arriv-
ing at the system equations of motion is outlined here for both the direct and component-

11



mode synthesis methods. The development is general and can accommodate a connec-
tivity matrix [B] arrived at in any manner. However, because of the computational
conveniences associated with the method of Walton and Steeves, the adoption of their pro-

cedure is assumed here.

ence 24 to establish [g], a transformation to independent coordinates is effected by sub-
stituting equation (12) into the Lagrangian for the partitioned structure as given in equa-
tion (4). This substitution leads to

L= %{QT[ s (M8 a) - %{CI}T[ BT IR B1{a) (13)
By defining

[M] =[8]T[™][ 8]
(14)

[k]=[8]T[R] 8]

as the generalized mass and stiffness matrices of the coupled system, the Lagrangian

for the assembled structure becomes

L= 2@} MmN} - 3{a}T [k ){a} (15)

The substitution of equation (15) into Lagrange's equation for a conservative system

i<ﬂ> 8L _ g (16)
yields

[M{d}+[KKa}={0} (17)

as the free-vibration equations of motion for the complete structure.

The method of Walton and Steeves requires the determination of all the eigenvalues
and eigenvectors of the matrix [E]. Since [E] is of order N XN, where N is the
total number of discrete coordinates describing the substructures, this eigenvalue prob-
lem constitutes a rather large computing task. Because the matrix [EJ is character-
ized by the presence of many null (zero) rows and columns, a practical computational

12
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procedure for significantly reducing the size of this eigenvalue problem and thus increas-
ing the utility of the method of Walton and Steeves is given in the appendix.

It should be pointed out that the preceding development has explicitly considered
only the case of undamped free vibration. However, the procedure can be extended to the
more general case in which damping and external forces are included.

Substructure coupling in component-mode synthesis.- Component-mode synthesis

is based on the concept of synthesizing the modes of the complete structure from the
modes associated with the substructures into which the structure is divided. The expe-
dient of reducing the degrees of freedom and thus the size of the system eigenvalue prob-
lem is introduced by employing a truncated set of component modes in the synthesizing
procedure. The selection of the substructure modes is generally based on a frequency
cutoff criterion in which only the substructure modes below the maximum frequency of
interest for the complete structure are used. The substructure modes either can be
computed by utilizing the discrete element analytical model available for each isolated
substructure or can be obtained from ground vibration tests. Also, since the orthogonal-
ity of the component modes is not assumed, it is possible to use shape functions other
than natural modes to be used alone or in conjunction with the selected subset of natural
modes to describe the behavior of a component. Included in this latter category are
static deflection shapes, such as the "constraint modes™ of Hurty (ref. 8) and the
"attachment modes' of Bamford (ref. 11), and assumed deflection shapes, such as poly-
nomial shape functions.

In the original work of Hurty (ref. 8) the component shapes are classified into three
types: rigid-body modes, constraint modes, and fixed-constraint normal modes. Rigid-
body modes are associated with displacements in which no strain energy is involved. A
component can have up to 6 rigid-body degrees of freedom, depending on the number of
fixed external constraints. Constraint modes are the static shapes assumed by the com-
ponent when each of the redundant constraints is independently given a unit displacement,
all others being held fixed. As many such modes exist as there are redundant constraints
in the interface connection of the component. If the connection between the substructures
is statically determinate, then no constraint modes are required. Fixed-constraint nor-
mal modes are the free-vibration modes of the component with all the constraints fixed.
For computational convenience Bajan and Feng (ref. 12) and Craig and Bampton (ref, 13)
do not distinguish between rigid-body modes and redundant constraint modes. Their con-
straint modes are established by giving a unit displacement to each connection degree of
freedom in turn so that no rigid-body modes occur. Any rigid-body modes associated
with the component turn out to be a linear combination of the constraint modes in this
case. This method works even if the constraints are statically determinate., Attachment
modes are the displacements of a substructure corresponding to concentrated loads on
the substructure. These were introduced by Bamford (ref. 11) to allow for the concen-

13



trated attachment forces induced by one component on another at their points of connec-
tion. The present work does not address the problem of determining the component con-
straint and attachment modes. These modes, when required, can be determined by
straightforward static analyses utilizing the finite-element models established for the
individual substructures, as described in references 12 and 22, for example. However,
the present development is general and can accommodate any of these component shapes.
Within the context of the present development then, any reference to substructure modes
should be interpreted in the general sense to include any of these shapes.

The modes selected to define each substructure are arranged by columns in the

matrices [U](i). The superscript denotes the ith substructure. No restrictions are
placed on the arrangement of the chosen substructure modes in [U ](i) . The support
conditions imposed for calculating or measuring the substructure modes need not cor-
respond to the restraint conditions which exist for the substructure in the assembled con-
figuration; in this case appropriate rigid-body modes (and possibly constraint modes
and/or attachment modes) would be included in the selected set of modes. Although the
modes within each subset [U] @ must be linearly independent, they need not be orthog-
onal or normalized in any consistent manner. 4 By employing these substructure mode
sets, the transformation from discrete coordinates {p } 1) to modal coordinates { g}(l)

can be written as
( ~N - - r N
{p}(l) v ](1) <£}(1)

4:r= . {ﬁ a8)

(@) [u1®| | )%

. J L AN J

or, in abbreviated notation

{z} = [u] (&} (19)

NX1 NXNSMNSMXx1

4The one exception is discussed in the next section.

14
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where NS denotes the number of substructures. The block-diagonal form of [U]
reflects the fact that the substructures are not connected. This fact is more clearly
illustrated in figure 3 which shows the form of this matrix for the aircraft of figure 1.
The number of rows in the uncoupled system modal expansion matrix [U] is equal to
the total number of discrete degrees of freedom for all the substructures N. The num-
ber of columns in [U] is equal to the total number of selected modes NSM. The sub-
stitution of equation (19) into the Lagrangian of the partitioned structure as given by equa-
tion (4) gives '

L= 2T MU (e ) - 2(e) IR UKD (20)

where [M] and [K] are numerically identical to the corresponding matrices in the
direct method. Because of the block diagonal character of [U], [M], and [K], the
expanded form of the matrix products [U]T[ﬁ][U] and [U]T[X][U] in equation (20)
can be written as

F[Jr{](l) )
(@
[ul¥[M]u]= ' - (21a)
[uu](NS)
[ -
(% 1@
[u]T[R][U] = ' 21b)
[ ]NS)
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where [JA](l) and [g(](i) are, respectively, the modal mass and stiffness matrices
for the ith substructure and are given by

(1 - (010 [ m)O[u1® (223)
[5]® = (010 [k )0 1® 225)

If the orthogonality of the substructure modes normalized to give unit generalized

mass is assumed, the matrix products [U]T[M][U] and [U]T[I_(][U] in equation (20)
simplify to

[v]T[¥M][u] = (1] | (23a)

and

(uiT[k]u]= 3] | (23b)

The matrix [I] is the unit matrix and the matrix [92] has the squares of the sub-

structure natural frequencies corresponding to the selected modes® on the main diagonal.
Neither the mass nor stiffness matrices of the components is explicitly required in this
case. The use of free-interface component modes, such as in the synthesis schemes of
Goldman (ref. 10) and Hou (ref. 14), for example, leads to the simple forms given in equa-
tions (23a) and (23b). Since in practice it is often either necessary or convenient to
employ component shapes which are not orthogonal (such as attachment modes or assumed
deflection shapes), the analytical procedure should be independent of the type of shapes
used in the synthesizing procedure and should not require their orthonormalization to com-
ply with equations (23a) and (23b). As already remarked, in the present formulation the
orthogonality of the component modes is not assumed and utilized in forming the reduced
mass and stiffness matrices in terms of modal coordinates; thereby, the use of a combina-
tion of various types of component modes corresponding to arbitrary support conditions
and normalizations is permitted.

Since continuity conditions at the junctions of the substructures have not yet been
imposed, the coordinates { g} in equation (20) are not independent but related by equations
of constraint which express kinematic dependencies among the coordinates established
for the various components. These coordinates are therefore not generalized coordinates

5Zero frequency modes are included.
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and the equations of constraint must be used to relate the dependent set {!;‘} toa
reduced set of independent coordinates. The constraint equations in terms of discrete,
physical coordinates are given by

[cKz) = {0} (24)

These constraint equations are identical to those which would be written if proceeding

by the direct method. With the substitution of the transformation of equation (19) into
equation (24), the constraint equations expressed in terms of the modal coordinates {1;}
have the form

[c] [U] {¢} ={0) (25)

r X NN X NSM NSM X 1

or

(D] (&) ={0} (26)

r X NSM NSM X 1

where the definition of [D] follows from equation (25). The equations of constraint in
the form given by equation (26) must now be used to determine a set of generalized coor-
dinates equal in number to the total number of component modes minus the number of
(independent) constraint equations.

If the usual method of dealing with equations of constraint is employed, equation (26)
is partitioned in the form

([ Gy
. rx1
[Dy]y  [D2]  [{-=--------- ?z@} &0
rXr E r X (NSM-r) {‘52}
dNSM—r) X rJ

The submatrix {gl} is the subset of { £ } chosen to be the dependent coordinates
and {52} is the subset chosen to be the independent coordinates. When [Di1] is
assumed to be nonsingular, the dependency of {£;} on {&9} is given by

1



{¢1)= -[D1]'1[D2]{£2} (28)

so that

{6} = Dl e (&) (29)

or

{(e)=18Kt) | (30)

Again, this method requires that the rank of the matrix [D] be equal to the number of
rows of [D] and that one be able to identify r linearly independent columns of the
matrix [D]. Again, the method of Walton and Steeves obviates the need to treat the
case of redundant equations of constraint in any special manner and the necessity of
being able to identify the independent columns of [D].

By following reference 24, the symmetric matrix [E'] is defined by

[E']=[D]T[D] (31)

The eigenvalue problem

[E']{X'} = )\'(X'} (32)

is then solved for all its eigenvalues and eigenvectors. From the resulting matrix of
eigenvectors [X'] those columns corresponding to eigenvalues having the value zero
are selected and are used to form a matrix [B']. A suitable transformation from
dependent modal coordinates {!;'} to independent system coordinates (geometric com-
patibility at the interfaces of the substructures restored by the transformation) is then

given by

{£3=[pKa) (33)
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The substitution of equation (33) into equation (20) gives
L= @) e 1ol M u e Ko |
ECOALARIIRES S ERICY: (34)
By defining

[M]=[p 1ot [ M Ullp]

(35)
[x'] =[] U] [RI[Ulp]
as the generalized mass and stiffness matrices of the coupled system, equation (34)
becomes
1, T t o 1 1 T t t
L=g{a} [M){a)-5{a) [x a2} (36)

where {q'} is a column vector of independent coordinates. The subgtitution of equa-
tion (36) into Lagrange's equation (eq. (16)) yields

[M @) +[K Ka)={0} (37)

as the free-vibration equations of motion for the assembled structure. Equation (37) is
seen to be of the same form as equation (17).

It has already been pointed out that the matrix [C] is characterized by the pres-
ence of many null (zero) columns. The product [D]=[C ] U], however, does not gen-
erally contain any null columns. Hence, the procedure outlined in the appendix cannot be
employéd to reduce the order of the eigenvalue problem given by equation (32). However,
the fullness of this matrix in no way detracts from the usefulness of the method of Walton
and Steeves when applied in a component-mode synthesis formulation since the order of
the matrix [E'], being equal to the number of component modes employed in the synthe-
sizing procedure, is usually much less than the order of [E] obtained in the direct
method.
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The preceding development has explicitly considered only the case of undamped
free vibrations. However, the procedure can be extended to the more general case in
which damping and external forces are included.

Some Additional Comments on the Method of Component-Mode Synthesis
Origin of component-mode shapes.- In order to perform the synthesis, the modal
mass matrix [ M ](i), the modal stiffness matrix [K ](1), and the mode shape matrix
[U](l) corresponding to each substructure must be known (cf., egs. (21), (22), and (25)).

Within the context of the present development these matrices can be established in sev-
eral ways.

The substructure mass and stiffness matrices [m](i) and [k](i) can be for-
mally established as an integral part of the computational procedure and used to
calculate the substructure modes. From these modes a subset, augmented by any static

or assumed shapes, is selected and assembled into [U](i). The matrices | J,{}(i) and
[CJ(](i) then follow from equation (22). '

The present computational procedure can also incorporate the representation of
individual substructures which have been analyzed by other engineering groups. If

!

[m ](i), [k](i), and [U](i) are available from some external source, equations (22a)

and (22b) can be used to determine [ _u ](1) and [<K ](1). Considerable computational
convenience can be realized, however, if the substructures are defined by a truncated set
of orthogonal modes and their associated generalized masses and natural frequencies,

since in this case there is no need to determine [m](i) and [k](i) explicitly, The

modal mass and stiffness matrices [ _M ](i) and [ K ](i) are both diagonal in this case.

i .
The set of generalized masses is assembled to give EMJ( ); FCJ<J(1) follows from

Fo]® - [o2] ) o

i)
where [sz is a diagonal matrix containing the squares of the natural frequencies of

the ith component on the main diagonal.

The definition of a substructure can also be based either partially or wholly on data
obtained from a ground vibration test. If a set of orthogonal modes and associated fre-
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quencies for the ith component has been determined experimentally and the mass matrix

[m](i) is known, the generalized mass matrix for the ith substructure is given by

[ ](i) - (U0 [ Oy j© (39)

and the generalized stiffness matrix follows from equation (38). Note that in this case
only the stiffness matrices of the components are not required. Alternately, the gen-

i
eralized masses, and hence [ M ]( ), could be obtained experimentally by means of the

displaced frequency technique (ref. 27). The generalized stiffness matrix then follows
easily from equation (38). It should be pointed out, however, that in practice it may not
be possible to determine experimentally a sufficient number of generalized masses with
accuracy; in such cases, the mass properties of the substructures must be known and

[J\AJ(I) must be determined by means of equation (39).

Simultaneous use of discrete and modal coordinates.- Various aircraft appendages,
such as engine-nacelle combinations, ordnance, external fuel tanks, and so on, can often
be treated as rigid bodies in dynamic analyses. The inertial properties of such com-
ponents can be conveniently introduced in the form of lumped values for the mass and
for the moments and producis of inertia relative to some axes fixed to the center of mass
of the item. Conversely, other structural members such as pylons, landing-gear struts,
control surface actuators, and so on, can frequently be adequately treated as springs in
dynamic analyses. When such structural members are identified as substructures in a
modal synthesis formulation, no modal expansion is associated with them. In order to
accommodate the components idealized in this manner, the modal expansion matrices

[U](i) (cf. eq. (18)) corresponding to such substructures are taken to be unit matrices

[1 ](i) and their expansion given by

(o3 = (1196 (40)

where the order of [I](i) is equal to the number of degrees of freedom of the rigid body
or spring substructure. It is possible to use an "identity expansion'' of the form given in
equation (40) for any substructure by setting the order of [I](i) equal to the number of
discrete degrees of freedom of the substructure. This expedient provides the basis for
what might be termed a hybrid method of analysis in which some substructures are
described in terms of discrete coordinates while the remaining substructures are
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described in terms of modal coordinates. Such a simultaneous use of both discrete and
modal coordinates may be useful in practice.

It is interesting to note that if [U] in equation (I19) is taken to be a unit matrix
[I] of order N X N, the component-mode synthesis formulation becomes numerically
identical to that of the direct method. Hence, as formulated herein, the direct method
is a special case of component-mode synthesis.

Solution of Equations of Motion

Transformation of generalized eigenvalue problem to standard eigenvalue form.-
The free-vibration equations of motion resulting from the application of either the direct
or component-mode synthesis methods have the matrix form

[MI{§}+[KI{a}={0} (41)

where [M] and [K] are symmetric, full, and (possibly) singular. The singularity of
[M] is associated with the presence of zero masses in the substructure mass matrices
either as a consequence of setting to zero certain mass terms (e.g., rotary inertias) or
as a consequence of the introduction of auxiliary coordinates (having no mass) to provide
points of connection with other components. The stiffness matrix [K] is singular if
the structure is unrestrained either internally (i.e., has internal linkages) or externally
(i.e., the system moves as a rigid body). Mathematically, [M] and [K] are termed
positive semidefinite, a term which means that the eigenvalues of [M] and [K] are
greater than or equal to zero (ref. 28).6 A matrix which is positive definite has eigen-
values which are all positive and is thus nonsingular. A matrix which is semidefinite
has one or more zero eigenvalues and is thus singular.

With the assumption of a solution of the form { q} = {qo}eiwt, equation (41)
assumes the familiar form

[K1{ay) = w2 [MI{ay} (42)

by removal of the time factor el@t  In order to take advantage of the algorithms avail-
able for the solution of the eigenvalue problem in standard form (ref. 29), it is the usual
practice to reduce equation (42) to the standard form

[AN(x) = 2 {x) (43)

Gstated physically, the kinetic and potential energy of a linear conservative system
can never be negative.
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If [M] (or [K])is nonsingular, equation (42) can be reduced to this form by simply
multiplying through by the inverse of [M] (or [K]), in which case X would be iden-
tified with w2 (or 1/w2). The matrix [A] established in this manner would, in gen-
eral, be nonsymmetric. Since there are several attendant numerical advantages which
may be realized if the problem is formulated in symnietric eigenvalue form (cf. refs. 30
and 31), an alternative approach would be to reduce equation (42) to the form of equa-
tion (43) in a manner which leads to a matrix [A] which is symmetric. Procedures
for solving either the symmetric or nonsymmetric eigenvalue problem are well docu-
mented in the literature (refs. 29 to 35).

Since [K] is singular in any vibration analysis of a structure having unrestrained
degrees of freedom, the reduction of the generalized eigenvalue problem given in equa-
tion (42) to standard symmetric form is usually based on the assumption that [M] is
nonsingular. Then either a Cholesky decomposition procedure (ref. 7) or the eigenvectors
of the mass matrix (ref. 32) are employed in a coordinate transformation to reduce [M]
to a diagonal matrix. In general, however, [M] may also be singular and these pro-
cedures are not applicable. If the mass matrix in equation (41) were diagonal, the singu-
larity of [M] would be reflected by one or more zero elements on the diagonal of [M];
thus, equation (42) could easily be cast into a partitioned form which is amenable to static
condensation of the massless degrees of freedom (ref. 36). The mass matrix in equa-
tion (41) is a full matrix, however, and the singularity of [M] is not evidenced by the
presence of null rows and columns of [M]. Hence [M] cannot be cast into the par-
titioned form required for static condensation of the massless coordinates. A practical
procedure for transforming equation (42) to standard symmeiric form, in the case where
both [M] and [K] are singular and [M] is not diagonal has been given by Walton
and Durling (unpublished work, 1966) and has been implemented in a NASA Langley
Research Center computer program designated BJD5. In their procedure the mass
matrix is first diagonalized by a modal transformation as suggested in reference 32.

The zero diagonal elements are then eliminated by the condensation procedure given in
reference 36. Since their method is adopted in the present work, the analytical basis of
their procedure is reviewed here for completeness.

The initial step in the procedure of Walton and Durling is the solution of the mass
eigenvalue problem; that is, the solution of

[MKx}=n{x} (44)

for all its eigenvalues and eigenvectors. The matrix [M] in equation (42) can then be
reduced to a diagonal matrix [ m J through the orthogonality transformation

[QIT[MIQ]=[u] . (45)
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The matrix [Q] is a square matrix the columns of which are the eigenvectors of equa-

tion (44) and the diagonal elements of E N J are the corresponding eigenvalues. For-
mally, this reduction is carried out by substituting the coordinate transformation

{3 =1Q)n) (46)

into equation (42) and premultiplying by [Q]T. This substitution gives

[QITIKIQI(n)=w2[Q)[M][QI{n) (a7)

[8){(n}=w?[u J{n} (48)

where the definition of [S] follows from equation (47). If [M] is singular one or
more of its eigenvalues is zero. It is assumed that all of the eigenvalues which are zero
are grouped so that they constitute the lower diagonal elements of the matrix F“ J
This arrangement is a natural consequence of any eigenvalue routine which arranges the
eigenvalues in descending order according to magnitude, such as the Jacobi method

(ref. 30) employed in BJD5. Otherwise, an appropriate rearrangement of rows and col-
umns must be carried out. In either case equation (48) can then be written in the parti-

tioned form

----------------- S [ P (49)

where rp. 1] is a nonsingular diagonal matrix containing the eigenvalues of [M] which

are not zero. The inertia matrix on the right-hand side of equation (49) is now in the
form required to effect a static condensation (ref. 36). The application of static conden-
sation to the "inertialess' coordinates {71y} yields

[8)(n, )= iozfulj(nl} (50)
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where [§] is the reduced stiffness matrix given by

[8]= {[311] - [S12][Szz]—1[521]} | (51)

and [“1] is the reduced mass matrix. Since [Sy3] and [S99] are symmetric and

[S21] is the transpose of [Sy9], the reduced stiffness matrix given by equation (51) is
symmetric. Since all the submatrices of the original generalized stiffness matrix appear
in [S] and all the submatrices of the original generalized mass matrix appear in [ “1]’

the eigenvalue problem is preserved (ref. 37). The final step in the reduction procedure

consists of reducing [“1] to a unit matrix using the coordinate transformation

{m}= ﬁ {717 (52)

If equation (52) is substituted into equation (50) and is premultiplied by 1 , the result

Hq
is
1 ~. 1 ~ ~
— (8] ==Ky} = w?[1K#;) (53)
\/Tl‘_i \f“'_l < 1> 1
or, finally,
[8K Ay} = 0} (54)

where [§] is symmetric.”’

An alternate final form for the eigenproblem, in which the eigenvalues are the recip-
rocals of the squares of the natural frequencies, could also be established within the con-
text of this development. In order to arrive at such a form, the preceding matrix manip-
ulations would be modified only to the extent that the roles of [M] and [K] from
equation (44) onward would be reversed. If such an interchange were made the final
equations would assume the form

TMore recently, a procedure for reducing the general eigenvalue problem to
standard symmetric form has also been given by Peters and Wilkinson ?ref. 38).
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[SKm1} = ;15{31} (55)

A reduction to this alternate form is not included as an option in BJD5 but is only men-
tioned here for completeness.
Interpretation of eigensolutions.- Solution of the eigenvalue problem given in equa-
tion (54) leads to a set of eigenvalues wiz and associated eigenvectors { ﬁ1>_. Since
_ i

eigenvalues are invariant under orthogonality transformations such as those employed in

reducing equation (42) to the form given in equation (54), the wiz are squares of the

desired system natural frequencies. However, the eigenvectors { ﬁl}- are generalized
i

mode shapes and must be transformed back to the original coordinates { z}i for phys-
ical interpretation. For the direct method this back transformation is given by

(1]
2); = [BIQ] LG, (56)
{ 1 " u‘ﬁ {771}1
-[S22] (8211
For component-mode synthesis the back transformation is
[1] .
(z};=[vlpla] L (A, (57)

1

[S59] 8311 1

where the primes have been reintroduced for the purpose of distinguishing between com-
mon symbols representing matrix quantities which are different numerically. It should

be noted that the nodal deflections at the massless degrees of freedom are recovered in-
the back transformation.

The final mode shapes {z}i, as given by equations (56) and (57), are all normalized
to unit generalized mass. This particular normalization is a direct consequence of reduc-
ing the general eigenvalue problem to a standard form which is symmetric using a trans-

.formation which reduces [M] to a unit matrix rather than [K]. It should also be noted
that these mode shapes are given in terms of the local coordinates established during the
discretization of the substructures rather than in terms of a single set of coordinates
appropriate to some global axis system.
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problems require solution during vibration analysis by either the direct or component
mode synthesis methods as previously outlined. Two of these problems, the eigenprob-
lem formed from the coefficient matrix of the constraint equations (eqs. (11) and (32))
and the eigenproblem for the mass matrix (eq. (44)), require the computation of all the
eigenvalues and eigenvectors of full matrices. Since these matrices are symmetric,
Jacobi's method (refs. 30 to 32) is directly applicable and leads to all eigenvalues and
eigenvectors simultaneously. Another general-purpose approach to the solution of the
complete eigenproblem is either Givens' or Householder's method. This approach trans-
forms the matrix to tridiagonal form (refs. 31 and 34) followed by the QR transforma-
tion (refs. 30, 31, and 35) to obtain the eigenvalues. The associated eigenvectors are
then obtained through inverse iteration (refs. 30, 34, and 35). Both of the preceding
approaches can also be employed in the solution of the final eigenproblem as given in
either equation (54) or (55). The numerical effort required to solve the final eigenvalue
problem in either form can be reduced if only the eigenvalues (and corresponding eigen-
vectors) of interest are computed. For example, with the use of equation (55) some vari-
ant of the power method in combination with matrix deflation (refs. 30 to 33) could be
employed to solve for only the largest eigenvalues corresponding to the lowest frequency
modes of interest. Alternately, the use of the Sturm-sequence property in conjunction
with bisection (refs. 30, 31, 33, and 34) can be applied to either equation (54) or (55) to
determine the eigenvalues of interest. Inverse iteration would then be used to obtain the
corresponding eigenvectors. Detailed considerations of these procedures for solving the
matrix eigenvalue problem in standard form are contained in the cited references. Sev-
eral algorithms which deal with the eigenvalue problem in the form given by equation (42)
have also appeared in the literature. (See, for example, refs, 35 and 39.) These latter
methods solve directly for the eigenvalues and eigenvectors without a transformation to
standard form.

The computer implementation of the reduction procedure of Walton and Durling in
BJD5 is based on the use of Jacobi's method for solving both the mass eigenvalue prob-
lem and the final eigenproblem in the form given by equation (54). The Jacobi method is
also employed to solve the constraint eigenvalue problem in the implemented versions of
the direct and component-mode synthesis formulations. A variant of BJD5 is employed
to calculate the component modes which are generated internal to the implemented ver-
sion of the modal synthesis procedure. Thus, Jacobi's method is used to solve all the
eigenproblems which occur in the computer implementation of the procedures described.
It should be emphasized that Jacobi's method is particularly appropriate for solving the
constraint and mass eigenvalue problems. With respect to the constraint eigenvalue prob-
lem, recall that the identification of a suitable transformation matrix from dependent to
independent coordinates by the method of Walton and Steeves requires that the eigenvec-
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tors corresponding to the zero eigenvalues be linearly independent. The Jacobi method
appears to be the only algorithm which avoids the numerical problems and special con-
siderations associated with determining linearly independent eigenvectors corresponding
to equal eigenvalues; the resulting eigenvectors are almost exactly orthogonal and pro-
vide full digital accuracy (ref. 30). With regard to the mass eigenvalue problem, the
eigenvectors (assumed to be orthogonal) are used to establish a transformation matrix
which serves to diagonalize the mass matrix. Since [M] can be singular and have
more than one zero eigenvalue, the use of the Jacobi method not only minimizes the
numerical problems associated with determining linearly independent eigenvectors cor-
responding to equal eigenvalues but also obviates the need to apply any type of orthogo-
nalization procedure to the computed eigenvectors. :

NUMERICAL RESULTS: ANALYTICAL AND EXPERIMENTAL
VERIFICATION OF ANALYSES

The computational procedures for natural mode analysis by the direct and
component-mode synthesis techniques developed herein have been implemented in two
special-purpose computer programs — SUDAN and SCORE. The SUDAN program is
intended for structures which can be represented as an equivalent system of beam, spring,
and rigid-body substructures. A combined lumped-mass/finite-element stiffness
technique is used to model each of the substructures comprising the system. The SCORE
program, however, is more general in that it provides for the use of both internally and
externally generated substructure modal information either separately or in combination.
Modal properties generated internally to the SCORE system are based on the same model-
ing which is used in SUDAN. Modal properties of substructures generated external to the
SCORE system can be based on any type of finite-element analysis, the required input
data being a truncated set of orthogonal modes and the corresponding natural frequencies
and generalized masses. This latter feature thus provides for the direct use of substruc-
ture modes which may have been calculated by different engineering groups or analyses
based on more sophisticated mathematical models.

Some comparative studies based on the application of the direct and component-mode
synthesis procedures to a free-free beam and a collection of beams configured in the
shape of an airplane are presented first. A comparison of the theoretical solutions with
experimentally measured modes and frequencies of the airplane beam assembly is also
shown. The next application shown has reference to a 1/15-s¢ale dynamic model of an
early space shuttle concept where experimentally measured frequencies are compared
with those obtained from the present component-mode synthesis analysis as well as from
two other different analyses. These results point out the importance of properly model-
ing the interfaces between substructures. The last application considered has reference
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to a comparison of the modes and frequencies measured on a 1/30-scale dynamic aero-
elastic model of a B-52E airplane with those modes and frequencies obtained from an
analysis by the direct method.

Free-Free Beam

Some comparative analytical studies for the purpose of assessing the accuracy of
partial modal synthesis are based on considerations of the free-free bending modes and
frequencies of a uniform beam having the following properties:

L = Total length, 137.16 cm (54 in.)
M = Total mass, 13.28 kg (0.07587 lb-sec2/in.)

EI = Bending stiffness, 1434.9 kN-cm2 (50 000 lb-inZ)

1 _ Section moment of inertia, 188.13 cm?2 (29.16 in2)
A Area of cross section

In order to provide a basis for comparison, the beam eigenvalue problem was first formu-
lated and solved as if it were a single beam represented by a finite-element model con-
sisting of nine elements. The distributed mass and rotary inertia were lumped at 10
equally spaced stations along the lengthwise axis of the beam as shown in the sketch at the
top of table I. Each station had 2 degrees of freedom, vertical translation and rotation,
for a total of 20 degrees of freedom. For the modal synthesis analysis the beam was
divided into three unequal-length segments having 8, 6, and 10 degrees of freedom,
respectively, according to the lower sketch in table I. Since continuity must be preserved
in both translation and rotation at each of the two connection points, there are four equa-
tions of constraint. A summary of the physical properties of these lumped-mass systems
is also given in table I.

Frequencies obtained by direct analysis of the complete beam, by full modal syn-
thesis, and by four combinations of partial modal synthesis employing subsets of the
lower modes from each beam segment are compared in table II. Full modal coupling
using all 24 of the component modes gives results which are identical to those obtained
by the direct method. The direct results are taken as the basis for assessing the accu-
racy of the results obtained by partial modal synthesis. The frequency results shown in
table II indicate that the accuracy of the synthesis results decreases as the number of
component modes used in the synthesizing procedure is reduced. It is interesting to note
that even in the extreme case in which only three modes from each beam segment are
used (one elastic mode and two rigid-body modes) the three predicted elastic~-mode fre-
quencies still compare favorably with those given by the direct method. In figure 4 com-
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parison is made of the mode shape displacements in the first four elastic modes as
obtained from the direct method and partial modal synthesis (employing half of the modes
from each beam segment). In order to provide for a more critical comparison of the
mode shapes, the actual computed displacements and slopes for the fourth elastic mode
resulting from direct analysis, for full modal coupling, and for two combinations of par-
tial modal synthesis are given in table IIl. The results of full modal synthesis are in
agreement with the direct results through the eight significant figures shown. As the
number of component modes used decreases, the degradation in accuracy of the modal-

synthesis results is again evident.

Airplane Beam Assembly

Both the direct and component-mode synthesis methods of analysis have been
applied to a model consisting of an assembly of beams configured in the shape of an air-
plane and the results compared with experimental modes and frequencies. This model
is shown in figure 5 as it appeared during the shake test. Figure 6 summmarizes the geo-
metric properties of the model. The analysis was restricted to symmetric motions. The
motions of interest were fuselage pitch bending and wing and tail vertical bending and
torsion. The distributed mass of the fuselage, wing, and tail beams was lumped at dis-
crete points along the elastic axes of the respective members. Each fuselage station had
two degrees of freedom: vertical translation and rotation. In addition to thése two de-
grees of freedom, each wing and tail station also had a torsional degree of freedom. Each
member was also allocated a rigid-body degree of freedom directed along its lengthwise
axis. The rotary inertia associated with each lumped mass was assumed unimportant
and taken to be zero. The model properties, as discretized for the analyses, are sum-
marized in table IV. There were 68 degrees of freedom associated with the uncoupled
system; 26 of the 68 corresponded to massless coordinates as a consequence of neglecting
rotary inertia. The results of some comparative studies pertaining to this model are
summarized in figures 7 and 8 and in tables V and VI. The results shown for partial *
modal synthesis are for a single combination of the lowest component modes. In addition
to the component rigid-body modes the synthesis included: the 6 lowest fuselage modes, .
the 5 lowest wing modes (3 bending and 2 torsion), and the 2 lowest tail modes (1 bending
and 1 torsion) for a total of 21 modes (8 rigid body and 13 elastic). The wing and tail
modes corresponding to clamped-free, pinned-free, and free-free end conditions were
used in conjunction with the free-free fuselage modes. These combinations are employed
to provide an indication of the type of wing and tail component modes which lead to results
most nearly in agreement with those obtained from the direct analysis.

An assessment of the accuracy of the direct analysis was made by comparing the
results obtained by this method with those obtained experimentally. The frequericy com-
parison given in table V is quite good in view of the rather coarse spacing between sta-
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tions on the fuselage and wing. The corresponding comparison of the mode shapes is
made in figure 7. Excellent agreement is shown through the highest mode for which
experimental results were available (the seventh elastic mode).

With the results of the direct analysis as a reference, the results given for partial
modal synthesis in table V and figure 8 show that best agreement is achieved when
clamped-free modes are employed for the wing and tail. This agreement is a conse-
quence of the fact that those modes are based on root conditions which more closely
resemble the conditions existing in the coupled structure than either the free-free or
pinned-free modes. A more critical comparison of the modes than that shown in figure 8
is made in table VI where the calculated values for the sixth mode (the fourth elastic
mode) are displayed.

An inspection of the first two result columns in tables V and VI indicates that the
results obtained by full modal synthesis do not agree exactly with those obtained by direct
analysis. This lack of agreement is in contrast to a similar comparison made for the
case of the free-free beam in tables IT and III. The ';discrepancy" in the present case is
a consequence of the fact that while all the calculated component modes were used in the
synthesizing procedure, the component-mode sets [U ](i) were not complete; that is,
the number of component modes was less than the number of substructure elastic degrees
of freedom.8 This ""modal defect" is attributable to the presence of massless degrees of
freedom (specifically, the rotary inertias which were set to zero) in the equations of
motion. Mathematically, the component mode sets [U](i) employed in the "full" modal
synthesis did not span the finite dimensional space of each substructure (ref. 40). Hence,
the component-mode sets did not constitute a basis set of vectors for expressing any gen-
eral component displacement vector {p} having N elastic degrees of freedom as
a linear combination of n(n < N) component modes calculated in the presence of zero
masses. This deficiency in the number of modes is equivalent to placing constraints
on the system (ref. 41); these constraints should tend to give frequencies which are higher
than those obtained from the direct analysis. This frequency shift is apparent in table V.
A complete set of component modes (actually, any linearly independent set of shapes
which spans the component vector space) is needed to fulfill the requirement for full
modal coupling. For convenience, a complete set of such shapes was established in this
case by calculating the component ""modes' with the assumption of the arbitrary value of
1.153 kg-sec2-cm (1.0 Ib-sec2-in.) for all the degrees of freedom having zero inertia.
This artifice was employed only to arrive at a complete set of linearly independent shapes
for each substructure; the assumed inertias were not retained in [M] during the sub-
sequent synthesizing procedure. The results obtained using these '‘quasi-component
modes' in a full modal synthesis are given in the columns having the heading ""Quasi-

8The number of elastic degrees of freedom for the fuselage, wing, and tail is 26, 21,
and 18, respectively, while the number of calculated component modes is 13, 14, and 12,
respectively.
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component modes’ in tables V and VI. It should be noted that these particular results are
in exact agreement with those of the direct analysis. Hence, full modal synthesis may be

regarded as "exact" in the case of a finite degree-of-freedom system when the number of
linearly independent shapes employed in the synthes1z1ng procedure equals the number of

discrete elastic degrees of freedom.

Space Shuttle Model

In order to evaluate modal synthesis techniques for dynamic analysis of coupled
systems like the space shuttle, companion experimental and analytical studies were con-
ducted on a 1/15-scale dynamic model of an early shuttle concept consisting of a booster
and an orbiter (ref. 42). The model consisted of a pair of tubular-type beams arranged
in a parallel "'piggy-back' fashion and joined together by two spring assemblies as shown
in figure 9. This figure actually shows the model in a configuration employed in another
investigation in which the wing structures shown in the photograph were present. The
study of reference 42 did not include these wing structures. A cable suspension system
(partially visible in fig. 9) was employed to simulate a "free-flight" condition.

The results obtained for vibrations in the pitch plane using the modal synthesis
scheme described herein as well as two other analyses are compared with the experi-
mental results in figure 10. The analytical results correspond to three different inves-
tigations in which the mathematical models differed as to their idealization of the booster
and orbiter structures. All three investigations used the same mathematical modeling of
the spring assemblies (the interfaces between the booster and orbiter) but used different
attachment conditions for the connections with the booster and orbiter. The model with
pinned connections was employed by a contractor to evaluate a specific modal coupling
procedure. The model with fixed connections employed NASTRAN (_I\léSA STRuctural
ANalysis) in a direct analysis of the complete model (ref. 43). The model with flexible
rotational connecticns was analyzed by the modal synthesis procedure of this report as
implemented in computer program SCORE. The analytical results shown for the flexible
interface model are based on using eight booster modes and seven orbiter modes; each
group consisted of a mixture of free-free elastic modes, rigid-body modes, and assumed

static deflection shapes.

The agreement between the measured and calculated frequencies is good for all
three analyses, except for the fourth mode. The mathematical model with the pinned
connections on the springs did not allow for coupled axial motions and therefore could not
predict this mode, which had significant axial motion. The model with the rigid connec-
tions for the interfaces, while allowing the coupling between beam bending and axial mo-
tion, introduced too much rotational stiffness and severely overpredicted the frequency of
the fourth mode. The results shown for the model with flexible interface connections
were obtained by adjusting the value of the connecting rotational spring stiffness in the
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analysis until the frequency of the mode agreed with the experimental value. A compari-
son of the corresponding calculated mode shape with the experimental shape is made at
the bottom of figure 10.

Since the analytical results of figure 10 are based on three different idealizations
of the booster and orbiter structures, they are not intended to provide a basis for the
comparison of the accuracy of the corresponding analyses. Rather, the analytical results
are intended to illustrate the importance of correctly modeling the interface conditions
between substructures. The interested reader is referred to reference 42 for further
details and discussion.

B-52 Aeroelastic Model

A 1/30-scale dynamic aeroelastic model of a B-52E airplane is being employed in
a Langley Research Center wind-tunnel research program to investigate the use of active
controls for gust alleviation. The model design specification requirements (ref. 44) stip-
ulated that dynamic simulation of the first eight symmetric free-free elastic modes and
frequencies be maintained. Verification of this model design was accomplished by com-
paring measured modes and frequencies with those obtained from an analysis by the di-
rect method by means of a special-purpose B-52 computer program specifically written
to treat only the configuration of this model. 9 Upon completion of the initial gust-
response studies the model was modified to represent a different gross-weight condition
and was then employed in a study of a model flutter-suppression system (ref. 45). Design
verification of the modified model was again established by comparing the measured
modes and frequencies with those obtained from an analysis by the direct method as im-
plemented in the special-purpose B~52 program as well as in the SUDAN program. The
analytical modes were also employed in a model flutter analysis. The results of this
particular modal comparison are shown in this section.

The 1/30-scale model, as it appeared during the shake test, is shown in figure 11.
The model was supported at its center of gravity by a soft spring such that the support
frequency was about 1/8 the frequency of the first elastic mode. Details of the model
construction are shown in figure 12 which gives two views of the model with several of
the segmented shell structures removed; these structures provide the external aerody-
namic shape. The representation of the model as an equivalent system of beam, spring,
and rigid-body components for the vibration analysis is depicted in figure 13. The fuse-~
lage and wing structures were replaced by nonuniform beams lying along the elastic axes
of the respective components. Since the fuselage structure had two discontinuities in its
elastic axis, three beams were used to represent the fuselage structure, with the coupling

SUnpublished work of William C. Walton, Jr., Barbara J. Durling, and Raymond G.
Kvaternik. The computer program was written by Barbara J. Durling.
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joints between the bearhs assumed to be rigid. The tip tank and the empennage were
treated as rigid and were rigidly connected to the components adjacent to them. The
nacelles were treated as rigid and the nacelle pylons were modeled as springs. The
mass of the pylons was distributed to the local wing structure and to the nacelles to '

which they were attached.

For the beam model shown in figure 13 the mass and stiffness matrices for the
partitioned structure ((M] and [K] of eq. (3)) have the general form indicated in fig-
ure 14. Each block in figure 14 corresponds to a submatrix. The ordering of these sub-
matrices within the larger substructure submatrices (indicated by braces) and the order-
ing of the substructure submatrices within [M] and [K] must be compatible; the
ordering is otherwise arbitrary. Since the mass and stifiness matrices for each sub-
structure are generated independently, no intersubstructure coupling exists in [ﬁ] or
[I_{]. However, intrasubstructure coupling (i.e., coupling between submatrices within a
substructure submatrix through off~diagonal terms) can exist. For example, if the sec-
tional centers of gravity of the wings were displaced from the wing elastic axis in the
plane of the wings, mass static unbalance terms would appear outside the block diagonal
areas and couple the vertical bending and torsion submatrices in each of the wing sub-
structures in [M]. In the present case, the bending-torsion coupling induced by wing
mass unbalance is negligible compared to the coupling induced by the nacelles and tip
tanks; hence, the wing mass unbalance has been assumed to be zero. Therefore, no such

coupling is indicated in figure 14.

The measured frequencies and node lines for the first eight symmetric elastic
modes are compared with results obtained by the direct method of analysis in figure 15.
Since the structural properties of the left~hand and right-hand wings and appendages dif-
fered slightly, node lines are shown for both wing surfaces in order to provide an indica-
tion of the effects on the mode shapes of the structural asymmetry inherent in the model.
The analytical results are based on the use of values which are an average of the left-
and right-hand-side properties. Deviation of the calculated frequencies from the mea-
sured values varies from a maximum of 11.2 percent in the third mode to a minimum of
.0.80‘percent in the eighth mode. The theoretical node lines for the wing surfaces are .
generally in agreement with the experiment; the exception is the fourth mode. However,
several disparities exist between the theoretical and experimental fuselage node lines for
the third, fourth, and fifth modes. The seventh vibration mode could not be isolated be-
cause of the presence of a dominant antisymmetric mode at 15.7 hertz. Several aspects
of the model construction which were not accounted for in the mathematical model were
thought to be the cause of the discrepancies. The segmented balsa-fiberglass shell
structures enclosing the fuselage and wing beams to provide the external aerodynamic
shape were intended to contribute negligible stiffness to the fuselage and wing-beam '
structures. However, an inspection of the model indicated that the existing shell struc-
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tures did, in fact, contribute significant stiffness in the region of the wing-body juncture
and, to a lesser extent, elsewhere. The actuator rods for the flaperons, ailerons, hori-
zontal tail, and elevator, being continuous and passing through several shell segments
(see fig. 12), were also identified as likely sources of additional stiffness. In light of
these considerations, the stiffnesses of the fuselage and wing beams used in the analysis
were arbitrarily increased (the largest increase being applied in the region of the
fuselage-wing juncture) and the modes and frequencies recalculated. Although these
results are not shown, it should be remarked that the introduction of these stiffness
adjustments brought the calculated fuselage nodes in the third and fifth modes into agree-~
ment with experiment; the good agreement in the other wing and body node lines in these
" two modes was not affected. The adjustments also had a negligible effect on the nodal
patterns in the other modes. In all cases only small changes in frequency were noted.
The stiffness adjustments did not bring the fourth mode shape into agreement with exper-
iment. However, the experimental definition of this mode was itself questionable because
the closeness of its frequency to that of the third meode, in conjunction with an inability to
excite the mode sufficiently, precluded a reliable identification of the node lines.

The usefulness of the modes calculated without any adjustments in stiffness was
demonstrated in subsequent flutter analyses. The dynamic pressure, frequency, and
mode shape at flutter were correctly predicted by the analyses.

Although component-mode synthesis was not employed in the B-52 model vibration
analysis, it is of interest to indicate the general form of the uncoupled system modal
expansion matrix [U] (cf. eqgs. (18) and (19)) corresponding to the beam representation
given in figure 13. For the substructuring order given in figure 14, this matrix would
have the form shown in figure 16. In addition to indicating the block diagonal composi-
tion of [U], this figure also illustrates the use of the "identity expansion' (see eq. (40))
for both spring and rigid-body substructures and for substructures which are treated as
rigid in one direction and elastic in another.

CONCLUDING REMARKS

Two computational procedures for calculating the natural vibratory modes and fre-
quencies of complex structural systems have been presented. Both procedures are
based on a substructures methodology and both employ the finite-element stiffness
method to model the constituent substructures. The first procedure described was a
direct method based on solving the matrix eigenvalue problem associated with a finite-
element model of the complete structure. The second procedure described was a
component-mode synthesis scheme whereby the vibration modes of the complete struc-
ture are synthesized from modes of substructures into which the structure has been
divided. The latter method was shown to provide for a significant reduction in the num-
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ber of degrees of freedom through the expedient of partial modal synthesis wherein only
a truncated set of the modes corresponding to each substructure is employed in the syn-

thesizing procedure.

The computational procedures presented contain a combination of features which
enhance their generality and utility. Specifically, both methods assemble the structure
by imposing the compatibility relations on the substructure attachment coordinates
according to an algorithm devised by Walton and Steeves. A nondiagonal mass matrix
can be accommodated in both methods. The general case in which the system mass and
stiffness matrices are both singular is also admitted. Additional features which are
incorporated in the component-mode synthesis formulation include: a hybrid coordinate
representation whereby both modal and discrete coordinates can be employed simulta-
neously; component-mode shapes which are completely arbitrary with respect to their
origin, type, and normalization; a unified treatment of the component shapes in the syn-
thesizing procedure without recourse to matrix partitioning according to the type of com-
ponent modes employed. The combination of these features in a direct and component-
mode synthesis formulation is thought to be new and to provide the basis for computational
procedures which are unique with respect to their generality, computational convenience,

and ease of computer implementation.

The results of the application of SUDAN (SUbstructuring in Direct ANalysis) and
SCORE (Synthesis of COmponent REsponses) (the computer implementation of these com-
putational procedures) to several structural configurations were shown. These results
included: a free-free beam; an assembly of beams configured in the shape of an airplane;
a 1/15-scale dynamic model of an early space shuttle concept; and a 1/30-scale dynamic,
aeroelastic model of a B-52E airplane. Comparisons were also shown with experimental
results for three of these configurations. These studies, as well as others for a variety
of airframe dynamic analyses in support of various projects, have verified the analytical
basis of these procedures and have demonstrated a wide range of engineering applicability
for the SUDAN and SCORE programs.

Langley Research Center
National Aeronautics and Space Administration

Hampton, Va. 23665
July 10, 1975
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APPENDIX

REDUCING THE ORDER OF THE CONSTRAINT EIGENVALUE
PROBLEM IN THE DIRECT METHOD

Three eigenvalue problems require solution under vibration analysis by the direct
method as outlined in the main body of this paper. The largest of these problems is that

associated with the matrix product [C ]T[C ]; [C] is the matrix of coefficients of the
constraint equations. There are often many coordinates (degrees of freedom) which do
not appear in the constraint equations, a condition which leads to a matrix [C] having
many columns which are identically zero. Each such null columnin [C] will lead to a

similarly positioned null column in the product [C ]T[ C] and a corresponding null row.
Through an appropriate rearrangement of rows and columns, a significant reduction in
the size of the eigenvalue problem which must actually be solved in such instances can be
achieved.10 The analytical basis on which such a reduction can proceed is given below.

From the constraint equations

[CKz}={0} (A1)
the matrix [E ], defined as
[E]=[c]'[c] (a2)

is formed and the assocciated eigenvalue problem

[E}x)=2{x} (a3)

is solved. Let [S] be a permutation matrix which, when postmultiplying [C ], rear-
ranges the columns of [C] so that all null columns are at the right. The construction
of such matrices is discussed in references 2 and 30. The introduction of the
transformation

{x}=1sKy) (A4)

10his possibility was pointed out to the author by William C. Walton, Jr. of
NASA-Langley.
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into equation (A3) and of the premultiplication by [S]-1 gives

[T HELSKyY= ST sKy) . a9)
With the definition of [B] as

[B]=[s]Y[E]s) (46)
equation (A5) caLn be written as

By} =2y} (A7)

Because of the rearrangiﬂg properties of [S], the transformation given by equation (A6)
permits equation (A7) to be written in the partitioned form

...... R e U Bhifl (A8)

where [Bj1] is a square matrix of an order equal to the number of nonzero columns in
[C]. When expanded, equation (A8) reduces to the two uncoupled eigenvalue problems,

[Butl{y1}=2{v1) (A92)

[0]=2{yy) (A9b)

All the eigenvectors of [Bj3] can be assembled by columns into the matrix [Y1]. The

solutions to equation (A9b) are simply any set of linearly independent vectors (for example,
the identity matrix [I]). These linearly independent vectors can be assembled by col-
umns into the matrix [Y2]. The matrix of eigenvectors associated with equation (A8)

can then be written in the partitioned f¢.'m

3 [ — (a10)
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APPENDIX

The matrix of eigenvectors corresponding to the original problem as specified by equa-
tion (A3) then follows from

[X]=[s][Y] - (A11)

By using the method of Walton and Steeves (ref. 24), a transformation matrix [g] is
then formed from the columns of [X] corresponding to zero eigenvalues11 and is used
in equation (12) to effect a transformation from dependent coordinates to independent
coordinates. For completeness it should be remarked that the computational procedure
just described has been numerically verified.

117he columns of [X] corresponding to zero eigenvalues will all be grouped at
the right in [X] if the Jacobi method is used to solve equation (A9a).
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TABLE I.- DISCRETIZATION EMPLOYED FOR FREE-FREE UNIFORM BEAM

(a) Direct analysis of complete beam

P e e o o o o o o

20 Degrees of Freedom (D.O.F.)

Local Rot

. coordinate Mass, notary EI

Station P X inertia, )
position, g X ) kN-cmt
g-cm'
cm

1 0.00 0.74 153.66 143k, 9

2 15.24 1.48 306.19

3 30.48

i ks, 72

5 60.96

6 T6.20

7 91.kh

8 106.68

9 121.92 1.48 306.19 143k.9

10 137.16 LT 153.66 —_—

(b) Component-mode synthesis analysis of beam

)& e () e dl_® e e «

T  ———— s U,
Beam Beam Beam
segment segment segment
#1 #2 #3
8 D.O.F,. 6 D.O.F. 10 D.O.F,
Logé‘il 1 Mass Rotary EI
. coordinate : .
Station position, kg ’ ligi‘z;;g’ KN- o
cm
Beam 1
1 0.00 0.74 153.66 1L434.9
2 15.24 1.L8 306.19 143h.9
3 30.48 1.48 306.19 1Lk3k4.9
i h5.72 LT 153.09 —_—
Beam 2
1 0.00 LTh 153.09 143Lk.9
2 15.2L4 1.48 306.19 143k4.9
3 30.48 en 153.09 —_—
Beam 3
1 0.0 .Th 153.09 143k4.9
2 15.2h 1.48 306.19 143k4.9
3 30.48 1.48 306.19 1434.9
I k5,72 1.48 306.19 1L43k.9
5 60.96 LTh 153,66 —_—
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TABLE II.- COMPARISON OF CALCULATED FREQUENCIES (Hz)
FOR FREE-FREE UNIFORM BEAM

7 Modal synthesis

Mode Direct solution Full Partial Partial Partial Partial
2(8,6,10) | 2(6,5,7) | *(4,4,4) | 2(4,3,5 | 23,3,3)

1 0 0 0 0 _ 0 0

2 0 0 _ 0 0 0 0
3 5.7016 5.7016 5.7171 5.9313 5.8135 6.3517
4 13.0848 13.0848 13.0890 13.3037 13.5910 14.0724
5 21.7817 21.7817 21.8156 22.2553 22.2265 23.2227
6 30.7180 30.7180 30.7484 31.4144 32.0870 | -------
T 39.0547 39.0547 39.0888 40.0870 41,4177 | ---=~--
8 46.1034 46.1034 46.1238 49.5418 42.2940 | ------~
9 51.4069 51.4069 51,4181 | ~--====} cmmmmem ] eemme—o
10 54.6867 54,6867 54,6937 | ----=---} ~o-eea-} -

Numbers in parentheses indicate the number of lowest component modes (rigid
body and elastic) selected from each of the three beam segments for use in the synthe-

sizing procedure.

TABLE 1II.- COMPARISON OF CALCULATED MODE SHAPES FOR

Direct solution

Full coupling

FREE-FREE UNIFORM BEAM FOURTH ELASTIC MODE

Partial coupling

Partial coupling

4, 6, 10) 36,5, M (4, 3, 5)
1.5407869E+09 1.5407R49E+0N 1¢527T2C6E+0U 1.C72CT08E+0Q0
: =2.1099479E+)0 ~241N99470E+09 -2»1057819E+00 -1.6459134E+00
Beam Displacements -8.6326372E-91 ~846324372E~01 -7+992¢280E-01 ~4.8516823E~01
segment 2.4186T786E4+70 24 4185785E+07 243858377E+uUL 1.7102538E+00
1 ~9.15895%0E-01 ~9,1585550E~01 ~901854928E-01 ~7.9281501€E-01
Slopes ~2.71983T4E~21 ~247198374%E-21 ~2e72695C7E~01 ~8.8633943E-C2
6.3TC7T18T7E=-01 64370T187E-21 €e 429€516E-01 444316537E~01
3.7389223E-01 3.7389223E-01 3,838321%E-C1 2.7372653E-01
2.41R6T86E422 2441857856470 20 385837TE+CO 1,7192538€+C0
Beam Displacements 1.8153843E+79 1.8153843E420G 1. 7831773E+00 1.8284178E+CO
segment ~1.8153%43E490 ~1.8183843E42) ~1e 7S$7C272E+0C ~1+37207C9E+00
2 3.7389223E-91 3. 7389223E-C1 3,8383215£-01 247372L53E-C1
Slopes ~5.6€85512E-01 ~545685512E-21 -5¢6202334E-01 —-2.5686039E-01
~5.6685512E-91 -546685512E-01 ~54 6826 866E~G1 ~7.6744731E-01
-1.815386435+10 ~1.8153843E+0) =1.7970272E+00 ~1.3720709E+CO
-2.4186786E+20 ~244185785E+99 ~244275521E+00 ~3,0063475E+C0
Displacements 8.6326372€-91" 8.6324372E-01 Be5461047E~-G1 7.063C864E-01
Beam 2. 10994 T0E+20 24 109947DE400 241110319E+00 2.5T21887E+00
segment ~1.540786%E+27 ~1¢5407849E+20 ~1e5365871E+00 ~1.6873487E+00
3 ~5.6685512E-91 -545685512E-01 -5,6826866E~01 ~7.8744731E-C}
3.7389223E-01 3, 7389223E-01 3.724C325E-01 2.6495591E-01
Slopes 6.3707187E=01 543707187E~01 64381€020E-01 84703931CE~C1

~2.7198374E~01
~9.1589%50E£-31

-24719337%E~C1
-9.1589557E-01

=20 7114062E~01
~5e 1620 300E-GC1

aNumbers in parentheses indicate the number of lowest component modes (rigid body and
elastic) selected from each of the three beam segments for use in the synthesizing procedure.

~3,20E6058E~C1
-1.1648398E+00



TABLE IV.- DISCRETIZATION EMPLOYED FOR
AIRPLANE BEAM ASSEMBLY

Station

Local
coordinate
position,

cm

o
-1 O

10
11
12
13

Gl W N

0.00
10.16
20.32
30.48
40.64
48.717
60.96
71.12
81.28
91.44

101.60
109.73

-3 O 1 W W DN =

0.00
10.16
20.32
30.48
40.64
50.80
60.96

A G W N =

0.00
5.08
10.16
15.24
20.32
25.40
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aRotary inertia of lumped masses neglected.

121.92

Mass,2
kg

.07296
.077296
.07296
.06567
.52653
.08026
.07296
.077296
.077296
.06567
.0'7296

0.03243
06487

.03243

0.03648

.04378

Torsional
inertia,
kg-cm2

Fuselage

Not applicable

Wing
0.1395
.2790

.1395

Horizontal tail
0.06979
.13958

.06979

bMa.ss of shaker stem and coil included.

El, GJ,
kN-cm?2 KN-cm2
1371.5 Not applicable

270.91 "451.13
270.91 451.13
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TABLE V.- COMPARISON OF CALCULATED AND MEASURED SYMMETRIC

MODE FREQUENCIES (Hz) FOR AIRPLANE BEAM ASSEMBLY

Full modal synthesis

Partial modal synthesis

Free-free fuselage,
wing and tail modes

Free-free fuselage modes

. Mode | Direct solution Measured
Quast-component | Clympedfree | Pluned froe | Frec-fres
tail modes tail modes tail modes
1 0 0 0 0 0 o |  -----
2 0 0 0 0 0 o |  ~----
3 7.3769 8.0234 7.3769 7.4157 8.2024 8.3214 8.0
4 21.4885 21.5986 21.4885 21.5053 21.6805 21.7254 21.5
5 45,9255 50.8958 45.9255 46.2597 53.2747 54,2784 50.9
6 51.8871 54.9862 51.8871 52.3714 57.9148 59,7710 55.2
7 84.3666 86.8019 84.3666 85.0963 90.5896 94.9088 88.4
8 115.6038 127,8944 115.6038 116.4056 133.1559 134.2964 128.4
9 151.8068 154.3213 151.8068 153.3172 159.3065 160.3770 162.2
10 174.2613 175.4510 174.2613 177.1566 184.0957 184.1293 | -----




TABLE VI.- COMPARISON OF CALCULATED SYMMETRIC MODE SHAPES
FOR AIRPLANE BEAM ASSEMBLY (FOURTH ELASTIC MODE)

Partial modal synthesis

Direct solution Full modal synthesis

_ — -
- K Free-free fuselage, wing, and tail modes\ Free-free fuselage modes N
. Clamped-free Pinned-free Free-free
Quasi-component wing and tail wing and tail wing and tail
modes modes modes modes
s 1.6521193E401 1.7204201F+C1 1.6521193E+01 1.6594463E+01 1.7608114E+01 1.781917084C1
8.9877509E+00 941300285F 00 8.9877505F+00 94C384015E+00 9.14488025400 $.0599976E+CO
| 2.0329730E+00 1e£326853F+00 2.032973CE+00 1.9812990E+00 1.3547642F+00 1.1355911E+C0
-3.389080SE+00 -6,0861526F+00 -3.38908C4E+00 ~3.5027€96F+00 —4.,4415989F4+00 -447009C78E+00C
-5.1886494E+00 ~647673397E+00 -6.1886494E+00 —-6.201) 32TF+00 —5.7896369F N0 -649039300€+C0
~5.9109087E+00 ~641161571F+00 -5.9109087£+00 -8 BAK95&3F+Q0 -5.6N04508F+00 ~€2a377878SE+0C
Displacements { ~) ,8465204E+00 ~1e33BGE I2F+ 0D -1.8465204E+00 —1e6TT9TSTELOO " 7.2080834E-01 1.882946 TE+CO
3.06438T9E+00 3486550 10F+ 00 3.0643879E+00 3.4T02656E+00 T.4780252F+00 G.46494]18F +0C
7.76T0079E+00 844 €198G4E400 7.7670078F +00 Ba2944168E+00 1.2886464F+01 «£274581E+01
1.0942433E+01 141085374F+01 1.0942433E+01 1.1361834F+01 1.4987303E+01 1.7C35672E+01
1.1717232E+01 1.0912538E+C1 1.1717231E+01 1.1R75342E+01 1.2939452E401 1.3872282E+01
1.0412129E+01 Bet515348F+07 1.0412129€+01 1o C5£0546E+01 8.7N25131F+0n £43343843E+00
N 7.3731216E4+00 4,C3€1336E+00 7.3731216E+00 64 S4B5543E+00 =7.2870064F-03 —Z2.€414825E4C0
Fuselage _ -1.9037704E+00 ~2.C 6755 0GF+00 -1.9037704E+00 ~1.9041170E+00 ~2.1373948E400 ~242(50479E+00
-1.8425407E+00 ~145669F 15F+ 0N -1.8425407E+00 -1.8588122E+00 -2.0726358F+C0 -2.1262837F+CO
-1.5922319E+00C ~147024( 4TE+00 -1.5922315E+00 ~1.6205T4TE+ 00 -1.7620763£+00 -1, 75C501 8E400
=1.0711554€+00 —1e106468665F+0D ~1.0711554E+00 =-1.06476T3E+00 “~1.04689263F+0N ~1.6593881E+C0
-2.8936322E-01 -1,9402222E-C1 -2.8936322€-01 ~245711&91E~0} -7.05213965-02 -1.5865870E-C3
4.7927251E-01 % eC5451 94E-01 4.,7927251€-01 4 ,538G5674F~C1 8.15C1981F=-01 G.62C8181E-Cl
Slopes 1.1286242E+00 1,2570124E+00 1.1286242E+00 1.189404TE+ 00 1.6537318F+np 1.67599€2E+(0
1,262367TE+00 1.2882854E4+00 1.26236 T7E+00 1.3134395F+00 1.6173894F¢nn 1.787788TE+00
1.0320514E+00 04 4E54¢ 50F-01 1.0320514E+00 1.0361316E+00 1.00095215+00 1.C165751E4€0
5.1796050€-01 342436225F-01 5.179605CE-01 4.5071046E~01 1.07503516-n2 ~1.7604115E-01
~1.4122561€=01 -4,4808212E-01 -1.4122560E~01 -1.9327517€-01 —1.0042526E+00 -1.3€41350€+0C
-6.6461082E-01 =347778£24E-01 -6.6461081F-01 -5,56728038E~01 ~1.5941397F+rQ —Z40380944E+CC
L \ -6.1738434E-01 ~1.0037323F+01 -6.1738433E-01 -B8.3010708F-01 ~1.92647427E+00 ~2+4109112E4C0
0. Te 0. Oe . Ce
-5.910908T7E+00 —6e11615T1E+00 -5.9109087E+00 -5.8859563E+00 =5.60049085+CN —5+377RTBIE+CD
-2.8247060E+00 ~348420516F+0C -2.824706CE+00 -2.7948218E+0N -3.4835066F+N0 -3.2000837€+C2
2.385284BE+00 243848C4CE+CN 2.385284SF+00 242036757E+00 £.8102183E-n) -1.41C8857E-02
Displacements 5,8543199E¢n0 741401205E+CN 5.8543200F +00 $.5617852£+00 4.3482246€400 2.8527983E+C0
4.8362076E+00 64319301GE+00 4.83620T7E+00 4,72R4910E+00 4.17R0357€+00 205312190E+C2
-6.8898880E-01 54 CB90%64E-01 -6.8898885E-01 -£ 4, 7401759E-01 —2.67474699F-01 -1.2224710E-C)
-9,5602782E+00 —1aC5F0Z 22E+0) -8.5602784E+00 -84 351313¢E+00 -6.62€3127F400 -~4,623793264C0
2.3963676€-01 2497726 45GE-01 2.3963676F~01 2.2694885E~01 4.CTR107TE-N] 4.81G4192E-C1
1.1859534E+00 1.1101255E+07 1.1859534E+00 1e1£45864F+00 .7271660F-01 £.7126259E-C1
1.2386949E+00 146374906€4+400 1.238694S5E+00 1.1803297E+00 1.1377573E+00 8,5673527E-C1
Wing Slopes 3.6853644E~01 546325( 77€-01 3.68536456-01 3.9115005E~01 £.5005268F-01 444145778€~C1
-8.7464862E-01 ~1e0197802F+00 ~B. 74648 64E-01 ~8,1131846F-0C1 ~6.4n20758F-01 -441357054E-C1
~1.7774235E+00 —242470PBTESCD -1.7774235E+00 ~1.7377283F+00 —1.6500970F+n0 ~1.01€4597£+00
-2.0630218E+00 —246416014£409 -2.0630218E+00 -24C476219F+00 ~1.6590656E+0n -1.17885C0E+C9
-4.1506188E-01 —54156T74614E~01 -4.1506188E-01 ~3.53C8583E~01 -7.0582736F-N1 -£.3318670£-C1
—-4,.,3177798E-01 ~53G28184€-01 ~4.3177798E-~01 -64o CBABSC2E~OL =7.1886811F~N1 ~R.4G70222€E-C1
~4.4560976E-01 ~5+56841 90E-01 -4.4560976E-01 ~4q2254942E~01 =7.64977819F~01 ~f.88BE5313F-C1
Twists -4.5646482E-01 ~547420957€-1 -4.5646482E~01 —442343T6SE-NL -7.8083951F-01 =-6542820830E~C1
-4,6427065E-01 ~5,8526958E-01 ~4,6427064E-01 =4 4 40RSHEDE~ 0L ~T.99Nn1132F=01 ~$.5125223€E-01
-4,6897510E-01 —5.5193365E-01 -4.6897510E-01 —%44505713E-01 -8.0414238F-01 -5.57780€3E-C1
-4.7054675E=01 ~549416754E-01 -4.7054675€-01 —4,4643375€~01 ~B.0429361F-N1 -645758490E-C 1
0 e 0. 0. o. 2.
- 1.0412129€+01 80£515348E+C0 1.0412125E401 1.0560546E+01 B.7025131F+00 2,3243843E4C0C
8.0946739E+00 Tel2904458F+00 8.094673SE+00 841211910E+00 6.TT63950F+Cn €.0861761E+0C
. 2.8958563E+00 2.7226E46E+00 2.8958563E+00 2.7227309E+00 3,03115655+00 2.55236€BE4CC
Displacements(  _, 3742901 €£+00 —-347€26% 38E+00 -4.3742001E+00 -6 ,58BR876E+00 ~3.4201934%+00 4138671EF +0)
=1.2820274€E+01 -1414327 20E+01 -1.2820274E+01 ~142900508E+01 —1.,21724B3E+01 +1814026E4C1
~2.1699619E+01 ~149539F 28€+01" -2.1699619E+01 -2.155€¢928E+01 -2.20248D0F+01 ~2416459285E+01
~3,3230612E-01 -%+38894C5E6-01 -3.3230611E-01 ~2450854082E~01 =7.9707155E~-01 ~1.C1904%3E+C0
=1.9377348E+Q0 ~1+4053639E+0C =1.9377348E+00 «24C49351TE+00 =1.2950342E+"0 =1433421736E+00
i1 Slopes -3.1911635E+00 —248330356F+C0 -3.1911634E+00 ~342606742E400 -2.52982B75+00 ~243163T24E 4G
Tai, P -4.0009223E+00 -3,6011145E400 -4.0009223E+00 -3.5730693E+00 -3,88054178+00 -3.6503615E+00
-4.3793420E+00 ~3.€932829E+CD -4.3793420E+00 —44,2819CTTE+00 -4,7534658E+00 —4.£325203€E+00
-4 4698381E+0D -4,G826143F+N0 -4.4698381E+00 -4,2513611E+00 ~5.012504BE+00 —4.6476846E+00
5.7555945€~01 7240134 54E-C1 5.7956944E-01 541725962E~01 1.38056455+00 1.7650402E4C0
5,7996372E-01 Te6AT1691E-01 5. 79963 T1E-01 5,2CR3097E~01 1.3834956€¢00 1.7650223£+0)
R s€43389126-01 7471806 T6E-C1 5.833894E-01 5426052T6E~01 1.3911330¢+00 1. 77944F5E4C0
Twists 5.48583993E-01 7.7545C €3E-01 5.8583992E-01 54266 C95FE~0L 1.40058%75400 1.7523337€+40C
L 5{8731206E-01 7.7763969E-01 5.8731205E-01 % .28 258 23F~01 1.408238YE+400 1.8C27589E+060
5,8780304E-01" T+ 7636294E-01 5.8780303&~01 502881677F-01 1.4111R42F +%0 1.8C6T409E+00
Ne 0. Qe 0. C.
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Figure 1.- Partitioning an aircraft structure into several smaller substructures.
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Fuselage

Wing

Horizontal
tail

Vertical
tail

— -

Figure 2.- Block diagonal composition of uncoupled system mass
and stiffness matrices ((M] and [K]) for aircraft of figure 1.

Fuselage
modes

Wing
modes

Horizontal
tail
modes
Vertical
tail
modes

- -

Figure 3.- Block diagonal composition of uncoupled system modal
expansion matrix [U] for aircraft of figure 1.
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Figure 4.- Comparison of calculated elastic mode shapes for free-free beam. Partial modal synthesis
results correspond to case denoted by (4,3,5) in table II.
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1.-75-184
Figure 5.- Airplane beam model during shake test.

\0.3 18 cm thick

All material steel

0.952 cm square—
C

4877 em— 1219 em- o

- 121,92 cm -

Figure 6.- Geometric properties of airplane beam model.
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Mode 3 , [ Mode 4 ! Mode 5 Mode 8

Measured =000z Z6——eee—— Calculated

Mode 7 ‘ Mode 8

Figure 7.- Comparison of measured and calculated node lines for symmetric elastic modes of airplane beam model.
Calculated results are from a direct analysis. Since the experimental node lines are symmetric about the
vertical plane of symmetry, the results for only half of the model are shown.
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Direct method of analysis

!._ﬁ,__.q Partial modal synthesis

-------- Clamped-free wing and tail modes
——-— Pinned-free wing and tail modes
—— - —— Free-free wing and tail modes

Mode 6 (4th elastic mode)

!

Figure 8.- Comparison of calculated node lines for mode 6
(4th elastic mode) of airplane beam assembly.



PAYLOAD
FORWARD SPRING ASSEMBLY

__ SIMULATED PROPELLANT

AFT SPRING ASSEMBLY

SUSPENSION CABLE

! o M v
Ai® o
L-175-185

Figure 9.- A 1/15-scale dynamic model of early space shuttle concept.
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"""  FREQUENCIES, Hz |
MODE | oy PERIMENTAL INTERFACE
| PINNED FIXED | FLEXIBLE |
1 11.1 10.4 11.2 11.0
2 26.5 29.4 24.9 26.6
3 38.1 40.0 37.4 37.8
4 48.3 75.2 48.3
5 98.3 103.5 104.9 100.0
6 101.9 101.5 118.7 113.2

CALCULATED (FLEX1BLE CONNECTION)
/—EXPERIMENTAL

FOURTH MODE SHAPE

Figure 10.- Comparison of experimental and calculated frequencies for 1/15-scale
space shuttle dynamic model (reproduced from ref. 42).
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L-74-4930
Figure 11.- A 1/30-scale dynamic aeroelastic model of B-52E airplane.
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L-73-2151
Figure 12.- A 1/30-scale model of B-52E with several of the segmented shell
structures forming the external aerodynamic shape removed.




Beam
______ Spring
=== R igid mass

Figure 13.- Beam representation employed for symmetric vibration analysis
of 1/30-scale model of B-52E airplane.
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Vertical
bending Substructure 1 - Forward fuselage beam
— .
Axial rigid body } Substructure 2 - Forward-coupling joint
| Vertical
‘I bending Substructure 3 - Midfuselage beam
o
Axial rigid body } Substructure 4 - Aft-coupling joint
Vertical
bending Substructure 5 - Aft-fuselage beam
Axial rigid body ) Substructure 6 - Empennage
Verticat
bending
Torsion
Substructure 7 - Inboard wing beam
Fore-and- aft
bending
/
Axial rigid bod
¢ y Vertical
bending
Torsion
Substructure 8 - Outboard wing beam
Fore-and-aft
bending
- ] Substructure 9
Axial rigid bod: ubstructure 3 -
ol y } Inbeard pylon
Substructure 10 - {
Inboard nacetle
Substructure 11 -
Qutboard pylon
Substructure 12 - {
Outboard nacelle
Substructure 13 - {
L Tip tank

Figure 14.- Block diagonal composition of uncoupled system mass and stiffness matrices (M] and [K))
corresponding to the beam representation of the 1/30-scale model of the B-52E given in figure 13.




= 4.30 / £ =9.78

= 4.50 f‘C = 9.21
",

— (:; =

1st elastic mode 2nd elastic mode

—— Experiment
—————— Theory

11.03
11,23

3rd elastic mode L4th elastic mode

" —

Figure 15.- Comparison of measured and calculated elastic mode frequencies
and node lines for 1/30-scale model of B-52E airplane.
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= 12.03 = 13.k49
= 12.41 = 13.32
T —— ——

5th elastic mode 6th elastic mode

Experiment
—————— Theory

£, = NA = 16,22
£ =15.30 = 16.35

Tth elastic mode 8th elastic mode

Figure 15.- Concluded.
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Vertical
bending
modes Substructure 1 - Forward fuselage beam

f } Substructure 2 - Forward-coupling joint

" Vertical
bending
modes
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bending
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1

!

Substructure 3 - Midfuselzge beam

! } Substructure 4 - Aft-coupling joint

Substructure 5 - Aft~fuselage beam

}Suhstructure & —Empennage

NASA-Langley, 1975 Li-10279
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Figure 16.- Block diagonal compositidh of uncoupled system modal expansion
matrix [U] corresponding to the beam representation of the 1/30-scale
model of the B-52E airplane given in figure 13.
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