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I. INTRODUCTION 

The NASA program f o r  growth of semiconductor s i n g l e  c r y s t a l s  in the  

space environment of Skylab was expected* t o  produce c rys t a l s  of s i g n i f i -  

cant ly higher qua l i ty  than a t t a inab le  through the  same growing processes 

on ear th.  A s  the semiconductor c rys t a l s  become more perfect  i f  undoped 

o r  more uniform i f  doped, t he  emphasis in any measurement of them s h i f t s  

inczeasingly toward care  i n  avoiding damage t o  t he  c r y s t a l  by the  measurement. 

A. Need f o r  Nondestructive Method fo r  E lec t r i ca l  Characterization 

E lec t r i ca l  character izat ion of a s ing le  c rys t a l  of semiconductor usual ly 

involves "soldering" ohmic contacts  in severa l  loca t ions  i n  order t o  obtain 

some average bulk property (e.g. bulk r e s i s t i v i t y )  f o r  the  sample piece. 

Whenever t he  c rys t a l  is t o  be evaluated f o r  use in la rge  sca l e  integrated 

(LSI) c i r cu i t ry ,  the  character izat ion should include a search fo r  l o c a l  

var ia t ions  in  e l e c t r i c a l  propert ies .  Such a search should use a nondestruc- 

t i v e  method of mapping the  surface of the  semiconductor. 

Clearly,  the  mapping of e l e c t r i c a l  cha rac t e r i s t i c s  of high qua l i ty  

c rys t a l s ,  such a s  those grown on Skylab f l i g h t s ,  should be done without 

i n f l i c t i n g  any damage. To t h i s  end, noncontactj.ng methods of mapping were 

sought - avoiding the  formation of "solder" contacts  and avoiding t h e  high 

l o c a l  pressure of point contacts.  In addi t ion t o  valuable monitoring of 

NASA's space processed mater ials ,  the successful  development of s u i t a b l e  

noncontacting methods of e l e c t r i c a l  measurement would be of considerable 

spinoff value t o  U. S. semiconductor manufacturers or  a t  l e a s t  t o  U. S. semi- 

conductor c i r c u i t  manufacturers. 

*This expectation was real ized many times in  ' high qua l i t y  semicon- 
ductor c r y s t a l s  grown on the  Skylab missions (I . ing 1973 and 1974. 



B. Noncontacting Techniques fo r  High Quality Single Crys ta l s  

The c l a s s  of techniques by which the  e l e c t r i c a l  p roper t ies  of 

a semiconductor s ing l e  c r y s t a l  can be observed without contac ts  is l imi ted  

t o  coupling t o  t h e  c r y s t a l  by electromagnetic r ad i a i i on  a t  frequencies 

from r f  t o  the  near uv. The o p t i c a l  frequencieshave been used t o  probe 

the uniformity of ce r t a in  types of impur i t i es  in semiconductor ~ r ~ s t a 1 s . l  

A wide range of rad ia t ion  frequencies can be used t o  observe the  mobi l i t i es  

and the concentrations of t he  var ious types of charge c a r r i e r s  present 

near the surface of t h e  semiconductor c y r s t a l  being examined. For survey- 

ing  c a r r i e r  concentrat  ions and mobi l i t i es  of t h i n  semiconductor shee ts ,  

usefu l  measureinents of o p t i c a l  transmission and r e f l e c t i o n  with commercial 

instruments have been reported2 with 1.5 mm diameter resolut ion.  In 

addi t ion,  t he  impurit ies within t h e  semiconductor can of ten  be  i den t i f i ed  

by X-radiation. 

Coupling to  a semiconductor a t  high frequencies implies4 t he  react ion 

of the  semiconductor w i l l  take place near t he  surface,  i .e . ,  wi thin t he  "skin 

depth," 6,. The "c lass ica l"  appl ica t ion  of Maxwell's equations fo r  the 

case of a f i e l d  E, applied t o  a plane surface of semi- inf ini te  conductor 

extending from x = 0 gives  t he  current  densi ty  varying with t he  depth x 

where t h e  normal sk in  depth, 6,, is defined a s  
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for  p in ohm-meters and f in  Hz. The r e s i s t i v i t y ,  f o r  a semicon- 

ductor whose dominant charge c a r r i e r  has an e f f ec t i ve  mass m* and mean- 

f r e e  time between c o l l i s i o n s  of T ,  can be expreseed6 by the product of T 

and t h e  c a r r i e r  concentration n a s  

Usually T and n are each s ign i f i can t  i n  charac te r iz ing  the  c rys t a l .  

It might be noted in passing tha t  t h i s  normal sk in  depth is small 

i n  our bes t  me ta l l i c  conductors even a t  power l i n e  frequencies.  For example, 

Equation 2 ind ica tes ,  as is found i n  prac t ice ,  t h a t  6 2 7 mm in copper and 

i n  aluminum a t  60 Hz and a t  room temperature. 

1. Use of h i i o  Frequencies t o  Microwaves 

Returning t o  the  choice of method t o  charac te r ize  a f l a t  semicon- 

ductor c r y s t a l  by its r e s i s t i v i t y  i n  t h e  volume encompased by the depth 

CC 

of x = 6 below the  surface,  w e  can choose t he  frequency t o  use i n  order  

t o  probe the  predetermined depth, 6. Likewise, we can choose t he  frequency 

t o  obtain a -easonable reso lu t ion  of t h e  mapping s ince  t h e  minimum sur face  

a r ea  (= resolut ion element) t ha t  can be probed measures approximately one- 

half  wavelength across.  In any case, an instrumental measurement of a 

value for  the sk in  depth a t  a given frequency w i l l  give,  by Equation 2, 

t he  e f f ec t i ve  r e s i s t i v i t y  near t he  c r y s t a l  surface,  averaged over t h e  a r ea  

exposed t o  t he  rad ia t ion ,  

For conducting c rys t a l s ,  the  normal skin e f f e c t  app l i e s  t o  within a 

few percent7 with t h e  mean-free path of t h e  charge c a r r i e r s  equal t o  one 

sk in  depth a s  given by Equation 2. Values f o r  the  normal sk in  depth a r e ,  

by Eq. 2: 



For r e s i s t i v i t y  of 10 ohm-cm, 6, = 16 amp at 100 MHz, 

6, = 1.6 nm a t  10 GHz, and 

6 = 0.8 nrm a t  35 GH2. s 

For r e s i s t i v i t y  of 0.001 ohm-cm, = 0.16 m a t  100 MHz, and 

bs = 0.008 mm a t  35 GHz. 

Values t o  60 GHz a r e  given f o r  s i l i c o n  i n  a recent book by H. F. Matare. 8 

Comparison t o  c a r r i e r  mean-free path,  a, can be made by t h e  "free electron" 

model6 fo r  our semiconductor c r y s t a l  by est imat ing the  Fermi ve loc i ty ,  vp, 

t o  be l ( l o 7 )  cm/sec fo r  m* = me. The expression f o r  mean-free path 

is 

Values of T = m*wH/e depend on t h e  Hal l  mobili ty,  u ~ .  So the  values  

of mean-free path, 9.. expected f o r  "free" e lec t rons  i n  our semiconductor 

a t  room temperature a r e  estimated t o  range from R = 0.4 micron fo r  

4 2 yl = 10 cm /Volt s ec  t o  = 0.04 micron f o r  - 1 0 ~ c m ~ / ~ o l t  see.  

Clearly,  we expect a cc 6,. 

Therefore, t he  c l a s s i c a l  expression fo r  the sk in  depth (6, by Eq. 2) 

should be an accurate  way of ca lcu la t ing  t he  r e s i s t i v i t y  of f l a t  sernicon- 

ductor samples from measurement of sk in  depth, 6, even a t  frequencies 

higher than 35 GHz. 

Cyclotron resonance and e lec t ron  sp in  resonance can give useful  
I 

charac te r iza t ion  wi th in  t h e  sk in  depth region too. For example, t h e  con- 1 
i 

cent r a t i ons  of impuri t ies  in G e  were recent ly  measured9 by cyclotron resonance. 
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2. Use of Optical Radiation 

Coupling t o  a semiconductor a t  o p t i c a l  frequencies can y i e ld  elec- 

t r i c a l  charac te r i s t  ica.  lo For t h i n  semiconductor waf e r e ,  standard o p t i c a l  

( infrared)  measurements of r e f l ec t ion  and transmission have been used t o  

map c a r r i e r  concentration and mobility; t he  report  by Black, e t  a1.* indi- 

ca tes  precision b e t t e r  than 10% over a wide range of values f o r  GaAs wafers 

scanned with a 1.5 mm diameter beam on a Perkin Elmer Model 621 recording 

spectrophotometer. 

NASA's needs include the  a b i l i t y  t o  character ize t he  surface of 

more massive semiconductor c rys t a l s  - possibly too  th i ck  t o  obta in  inf ra red  

transmd.ssion values as above. For ce r t a in  semiconductors, l ike S i  and Ge, 

edge contacts w i l l  serve t o  obtain a map of photovoltaic (PV) response from a 

spot of l i gh t  impinging on the c r y s t a l  surface,  reveal ing nonuniformity of 

c a r r i e r  concentratlon and/or mobil i t ies .  Meaningful PV response has 

apparently not ye t  been a t ta ined  on other  semiconducror c rys t a l s ,  such a s  

GaAs. For large band gap semiconductors l i k e  SIC and G a h ,  the  l i g h t  

emitted by electron-hole recombination processes has been used l l s l2  t o  i den t i fy  

the  e l e c t r i c a l l y  ac t ive  impurity s i t e s  present. Our success a t  obtaining 

impurity concentration i n  volumes of GaAs less than a cubic mil l imeter  is 

mentioned in the Results Section. 

Another c l a s s  of o p t i c a l  techniques which has promise fo r  

e l ec t  r i ce1  character izat ion involves photo-induced changes. We looked 

b r i e f l y  for  photo-induced conductivity a t  room temperature, l3 but our search 

was inconclusive. Photo-induced microwave conductivity is s t i l l  a poten- 

t i a l l y  usefu l  technique f o r  mapping high qua l i ty  semiconductor c rys t a l e  

without contacts.  



C. Crys ta l  Select ion f o r  t h i s  Study 

The c r y s t a l s  of semiconductors used i n  t h i s  study of nondastruc- 

t ive  techniquss fo r  observing e l e c t r i c a l  c h a r a c t e r i s t i c s  were supplied 

through the  good of f  i c e s  of t h e  NASA Space Sciences Laborator ies, MSFC. 

The emphasis during the  e a r l i e r  port ion was on charac te r iz ing  f l a t  sur- 

feces of G a A s  i n  preparation f o r  t he  MS55 Fl igh t  Experiment. The emphasis 

during t h e  l a s t  s i x  months was on small  s i ng l e  c r y s t a l l i n e  f lakes  of vapor- 

grown germanium selenide.  The comparison of 35 GHz sk in  depths w e  observed 

i n  GeSe f lakes  grownla on Skylab t o  GeSe f lakes  grown a t  RPI is tabulated 

below. 

D. Purpose 

It was, therefore ,  t he  general purpose of t h i s  contract  t o  demon- 

s t r a t e  t h e  s e n s i t i v i t y  of one or  more noncontacting methods of e l e c t r i c a l  

charac te r iza t ion  of s i n g l e  c r y s t a l s  of t h e  semiconductors t o  be  grown on 

Skylab. Spec i f ic  goals dea l t  a t  f i r s t  with charac te r iz ing  surfcces  oC gallium 

arsenide s l a b s  and dea l t  in t h e  l a s t  ha l f  year with small  f l akes  of germanium 

selenide s ing l e  c rys ta l s .  

Single c r y s t a l  samples t o  be  s tud ied  were supplied through the  

Space Sciences Lab of NASAIMSFC. The s p e c i f i c  approaches t h a t  w e  inves t i -  

gated Included miciowave sk in  depth and e-h recombination luminescence. Two L 

1 

microwave techniques were developed t o  t h e  point  of co l l ec t i ng  s t a t i s t i c a l  

evidence of sene it i v  i t y  m d  reproducib i l i ty  The GaAs lumines cence scanning 

technique was developed by an i n t e r e s t ed  graduate s tudent  J. M. Rare, l a rge ly  , 
! 

on h i s  o m  tine. 
1 
I 
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11. APPROACH TAKEN 

A. Noncontact ing Techniques Considered 

RF Resistartce by Coil  Loading 1. -- 

The eddy currents  induced i n  a semiconductor specimen a r e  a spec if!^ I 
I 

i 
but complicated geometric function of shape of c o i l s  and semiconductor and 1 

of the uniformity of r e s i s t i v i t y .  An example of successful  noncontacting 1 

measurements of bulk r e s i s t i v i t y  by eddy cur ren ts  a t  10 MHz was reported 

by J. C. Brice and P. Moore i n  J. Sci.  I n s t .  38 (1961) on page 307. Mapping i 
i 

could be accomplished with s u f f i c i e n t l y  small c o i l s  but consis tent  coupling I 
is  a d i f f i c u l t  mechanical problem. 

2. Surface Ef fec t s  a t  9 GHz and 35 GHz 

Preference was given t o  35 GHz because t h e  area of t h e  mappin8 resolu- 

t i on  element can be smeller by xl6.  We considered the  sur face  res i s tance  

by waveguide termination15 and by cav i ty  loading, p r e f e r r ing  the  l a t t e r  f o r  

f l a t s  wi th  high r e s i s t i v i t y  and f o r  t h e  small f lakes .  We considered t h e  

microwave Hal l  e f f ec t .  After  severa l  tries with biomadal c a v i t i e s ,  we 

became more f u l l y  appreciat ive of t h e  c r i t i c a l  need f o r  equivalence in t h e  

degenerate modes as  ca l led  f o r  by A. M. P o r t i s  i n  h i s  Phys. Rev. pager, a 

t r u l y  severe mechanical challenge and, therefore ,  not s u i t a b l e  f o r  rapid 

surveying of f l a t  sruaples. 

Cyclotron resonance remains a promising prospect9 f o r  meamring t h e  

l i f e t ime  of each type of c a r r i e r  provided t h e  mapping can be arranged a t  

low temperatures. 
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Phot o-induced changes In microwave conductivity (PC) s imi l a r ly  

s tands ar a promising non-contacting way13 of mapping seve ra l  e l e c t r i c a l  

cha rac t e r i s t i c s  with a resolut ion element approaching t h e  s i z e  of t he  

m i n i m u m  l i g h t  beam. Photo-induced microwave conductivity should be 

espec ia l ly  useful  i n  semiconductor samples of very high r e s i s t i v i t y  fo r  

which the s e n s i t i v i t y  of sur face  res i s tance  measurements is decl ining.  

3. Optical  Means 

Fluorescence from electron-hole recombination is frequent ly  a d i r e c t  

indicator  of the  donor impurity d e n s ~ t ~ . l ~ - ~ *  The l i t e r a t u r e  is l i t e r a l l y  

crowded with publ icat ions of such observati.ons f o r  semiconductors a t  low 

temperatures. We found l i t t l e  evidence of successful  fluorescence a t  room 

temperature s o  we took up t h a t  challenge. 

Raman s c a t t e r i n g  from defect  modes a t  t he  impuri t ies  .?f i n t e r e s t  

is weak a t  room temperature being usual ly  not s ens i t i ve  enough t o  revveal  t he  

impurity concentrations of i n t e r e s t  even a t  very low temperatures. 

B. Noncontnct ing Techniques I!sed 

Each technique fo r  noncontacting e l e c t r i c a l  cha rac t e r i za t i o r~  of 

eemiconductor sur faces  was chosen t o  demonstrate its r e l i a b i l i t y  f o r  tibso- 

l u t e  values in a sample sequence represen ta t ive  of t h e  sho r t  term needs of 

NASA's program f o r  space c rys t a l l i z a t i on .  Repeated subs t i t u t i on  of samples 

uae employed t o  a t t a i n  preliminary s t a t i s t i c a l  evidence of r e l i a b i l i t y .  

It should be noted t h a t  t n  any sequent ia l  subs t i t u t i on  method 

there  a r e  sources of dc noise  which can be reduced o r  eliminated by 

properly engineered modulation techniques. Therefore, t he  r e l i a b i l i t y  or 

signa 1-to-noise reported here  represent  conservative values  - euscept i b l e  of 

improvement by one o r  more orders  of magnttude with the  appropriate  engineering. 
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1. Skin k p t h  a t  35 GHz_ 

Resist ivi ty near a semiconductor surface is related t o  the  

skin depth, 6,. observed a t  the  frequency f by Eq. (2) above. The 

sens i t iv i ty  of the measuring c i r c u i t  to  small changes in 6, pepends on 

the way the semiconductor surface is coupled t o  the  c i r cu i t .  Two s t y l e s  

of coupling - cavity loading and waveguide termination - were chosen in 

order t o  cover a broader range of r e s i s t i v i t y  values. 

a. Cavity loading, especial ly fo r  small s ingle  crystals .  

The loss  introduced in to  the c i r cu i t  by a sample of semicondu, *tor  sur- 

face w i l l  be a small fract ion of the "no-sample" c i r c u i t  losses when 

the product1( of the surface area times the skin depth 6, is snall .  

This occurs both for  small c rys ta ls  of normal r e s i s t i v i t y  and for  

larger  sections of large f l a t  surfaces of high res i s t iv i ty .  Cavity loading 

is preferred because i t  ra i ses  the  strength of the  electromagnetic f i e l d  

a t  the  semiconductor surface re l a t ive  t o  its strength i n  most other pa r t s  

of the detecting c i r cu i t  and t h i s  leads t o  greater sens i t iv i ty  t o  losses i n  

the semiconductor surface than without the cavity. 

This sec t  ion describes : 1.) the  microwave c i r c u i t  which 

was arranged and cal ibrated t o  yield signals  r e l i ab ly  corresponding t o  

absolute cavity parameters and 2.) the  type of subs t i tu t ional  cavity loading 

used. Our analyses fo r  converting cavity parameters into value9 of skin 

depth of the  semiconductor sample a r e  given i n  the  appendices. 

1. ) The double-arm 35 GHz c i r c u i t  used. In Fig. 1, the  

35 GHz double arm ref lectometer is shown schematically with a r e f l ec t ive  
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TABLE 1 

COMPONENTS USED I N  35 GHz DEMONSTRATION DOUBLE ARM REFLECTOMETER 

Label on 
Ftgure 1 Item - Function 

DC Power Supply 

Specif'c Type 
Mfg. - Model No. 

NARDA Model 438 

Modulation Source NARDA 438 

Kylstron Source of 35 GHz Power Varian VA-9 7 

S1 I so l a to r  (20 db) TRS A110-95 

S2 Direct ional  Coupler (20 db) Microline 405A 

S2A Matched Load Par t  of S2 

S2B Frequency Meter (Tunable Cavity) H-P R532A 

52C Direct ional  Coupler (20db) Elicroline 429A 

52D Waveguide Short (Adjustable) 

52E Crys ta l  Holder (Tunable) 

S3 Attenuator (Variable) 

S 4 &ic  Tee (4  arm) 

S5 Crystal  Holder (Tunable) 

Front Arm 

F1 

F2 

F3 

S l ide  Screw Tuner 
( fo r  balancing Tee S4) 

I so l a to r  (20 db) 

I so l a to r  (20 db) 

Calibrated Attenuator of 
Rotating Vane 

Direct ional  Coupler (10 db- 
broad band) 

Demornay Bonardi 

Lieco 10V1-26 

Demorn~y 3onardi 

Demornay Bonardi DBD 919 

Uniline by Cascade Res . 
TRG A110-39 

H-P R382A 

TRG A561-1C 



Table 1 - (Contd) 

Label on 
Figure 1 I t e m  - Function --- - 
F4A Tunable Crys ta l  Holder 

(Containing MA494 c r y s t a l  
selected f o r  having power 
response (I vs. Pin) s imi l a r  
t o  t he  c r y s t a l  i n  holder R4A) 

Waveguide (connect ion between 
reference sho r t  and f ron t  
d i r ec t i ona l  coupler ) 

Reference Load - A low lo s s ,  
L g / 4  shor t  arranged by F; 
t o  be the  same paih length 
from t h e  f ron t  F4 d i r ec t i ona l  
coupler a s  t h e  sample cavi ty  
ir is is from the  r e a r  R4 
d i r ec t i ona l  coupler. 

Spec i f ic  Type 
- Model No. M f g ~ - - - - -  

Microwave Associates 
Mod. 5130 

UAH - usual ly  included 
a piece of s t a i n l e s s  steel 
waveguide 20 Xg long 
8.448 + .002 inch, 
h a ~ i n ~ 2 . 2  db round t r i p  
loss .  

UAH - Dug ava i lab le .  

Rear Arm - Each correspcnding item is the  same model a s  i n  the  
f ron t  arm, except: 

R6 Sample Cavity - usual ly  TE015 UAH - assembled copper 
mode rectangular  cav i ty  incor- pieces ,  dugs ava i lab le .  
porating: 
1. Specinl sample holder 
2. Fixed (but demountable) 

coupling iris. 



sample cavi ty  on one arm and a high qua l i t y  waveguide sho r t  on t h e  

r e f a l # n c e  arm. The list of t h e  components used i n  t h i s  c i r c u i t  is given 

i n  'liible 1 and points  t o  t he  i den t i ca l  cha rac t e r i s t i c s  of t he  two arms, 

i..icluding matching the  power response of t h e  de tec t ing  c r y s t a l s  over t h e  

Ereqrrency range of some 100 MHz width. 

Frequency modulation over one kl:.stron mode piesented 

the  wo c r y s t a l  outputs  simultaneously on a double input scope. By 

ca re fu l  ca l ib ra t ion ,  including frequent s u b s t i t u t i a ~ l s  of standard metal 

samples, t h e  desired cav i ty  r e f l ec t i on  coef f ic ien t  change was determined 

from the  change i n  t he  ca l i b r a t ed  a t tenua tor  R3 required i n  order  t o  

rematch the CRO t r aces  upon each subs t i t u t i on  of t he  sample. The formulae 

used a r e  given separa te ly  i n  an appendix for  the  d i f f e r e n t  types of cav i ty  

had ing .  

2.)  Types of cav i ty  loading used. Rectangular TEOlp 

mode c a v i t i e s  were constructed of milled s ec t ions  of copper bc l t ed  together  

with one s ec t ion  carrying a f ixed  c i r c u l a r  iris1' i n  a t h i n  (. 020 inch) 

w a l l  imd one sec t ion  mounting the  sample. With t h e  minimum mil led rad ius  of 

ins ide  corners a t  .e l6  inch, we found it necessary t o  have the  sample 

cav i ty  a t  l e a s t  f i v e  ha l f  wavelengths (p = 5) long. Greater s e n s i t i v i t y  

w i l l  a c c r u ~  t o  sample c a v i t i e s  formed t o  permit p = 2. The need for  t h e  

f ixed ris is evident i n  the  formulae i n  the  appendices, permit t ing cav i ty  

r' dnges upon subs t i t u t i on  t o  be r e l a t ed  so l e ly  t o  t h e  sample. The o r i g i n a l  

and still  usefu: reference on iris deisgn is MIT Rad Lab Report 43-22 by 

H. A. R(?the. 17 
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Loading of the cavity by a semiconductor surface was done 

i n  one of two ways: by replacing the end wall o r  by adding surface i n  

the transverse plane a t  one-half wavelength from the end wall. Flat  GaAs 

surfaces were held a t  the end of the  rectangular TEOlp mode and leakage 

losses were held t o  a sa t i s fac to r i ly  low level  by appropriate choke 

joints .  Clearly an improved design with much lo re r  coupling losses would 

involve a sample cavity in the shape of a r ight  c i rcular  cylinder4 and 

the semiconductor f l a t  a s  i t o  end wall o r  cent ra l  portion thereof. 

Thin semiconductor (GeSe) f lakes whose other two dimensions 

were under 7 and 3.5 m, respectively, were suspended between two s t r i p s  

of p las t i c  (sample holder) a t  one half wavelength up. Fig. 2 indicates 

the microwave magnetic f i e l d  pattern in  the l a s t  two half  wavelengths in  

the T E o l  mode, outlined by the cavity walls and intercepted by the  aample 

a t  one-half wavelength up where the microwave magnetic f i e l d  is pa ra l l e l  

t o  the largest  faces of the th in  flakes. Our t e s t s  indicated no appreciable 

mode dis tor t ion  by the  th in  GeSe f lakes used so the  obstrved changes in 

Q were related t o  losses on the  GeSe surfaces. We assumed these losses 

were conduction losses within the  GeSe and calculated the  appropriate 

skin depths a f t e r  integrat ing over the  f lake area. 16 

b. Waveguide termination. For mapping f l a t  semiconductor 

surfaces having low r e s i s t i v i t y  (below about 1 ohm-cm), the  simple termina- 

t ion  of a waveguide by the sample surface being held across the  guide open- 

ing w i l l  give reasonable sens i t iv i ty .  One expects, f o r  example, a factor  

of 4 in  standing wave r a t i o  a t  35 GHz for  a fac tor  of ten i n  r e s i s t i v i t y  
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Fig. 2. One wavelength of the 
pattern of microwave 
magnetic f i e ld  
i n  rectangular TEOlp 
mode sample cavity 
as viewed through a 
broad face. 

Sample Plane 

Credit: George R. Smith for this  
accurate representation 
of the H-pattern and its 
generation using an 
W 9100 Plotter. 
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according t o  Lundmayer et  a1,15 Aaain, t h e  e f f e c t s  of leakage on va r i a t i ons  

i n  the  choke coupling can be e f f ec t i ve ly  eliminated f o r  sur faces  f l a t  t o  

within one o r  two degrees over small   amp ling a reas  by using c i r c u l a r  guide. 

Our preliminary tests confirmed t h e  s u i t a b i l i t y  of choke 

coupling fo r  mapping GaAs f l a t s  with a s  cu t  sur faces  when held a s  rectangular  

waveguide terminations.  

2.  Fluorescence from Electron-Hole Recombinat ion 

The recent  surge i n  t he  semiconductor market for  l i g 5 t -  

emit t ing diodes fo r  o p t i c a l  couplers and lasers as w e l l  a s  f o r  d i sp lays  has  

placed considerable addi t iona l  premium on improving semiconductor c r y s t a l  

qua l i ty  i n  t h e  category of ga l l ium~luminum phosphide-arsenide. Of spec i a l  

i n t e r e s t  is thespectrum of luminescence and the  dens i ty  of donor sites. 

Our fluorescence method of surf  ace charac te r iza t ion  d e a l t  d i r e c t l y  with 

these  two propert ies  of a GaAs sur face  on a reso lu t ion  s c a l e  of a f r ac t i on  of 

a mm. Fluorescence measurements a r e  inherent ly  capable of charac te r iza t ion  

on a reso lu t ion  s ca l e  of t he  dimensions of e i t h e r  t he  c a r r i e r  mean-free 

path o r  the d i f f r a c t i o n  limit of t h e  o p t i c a l  system used t o  e x c i t e  t h e  

c a r r i e r s  - whichever is t h e  l a rge r  fo r  t h e  sample i n  question. 

The s t rong  market f o r  microwave generation and l i g h t  

modulation i n  Ga-Al-P-As saniconductors merits more d i r e c t  measurements of 

c a r r i e r  l i fe t imes  than by standard fluorescence. We suggest op t i ca l l y -  

pumped cyclotron resonance should do w e l l .  



FTR - NAS8-29542 

Our approach was t o  use the  photoluminescence reported 10.12 

f o r  gallium arsenide c r y s t a l s  a t  low temperatures, where the  d i f f e r en t  kinds 

of donor centers  can be resolved in the  emission spectra ,  in in t e rp re t ing  

the room temperature luminescence. We pumped a spot about 0.5 nnn diameter 

on a Gab surface with a l a s e r  beam, de l iver ing  some 20 mi l l iwat t s  a t  632.8 nm, 

and col lected the  emission over a so l id  angle of approximately 0.3 s t e r -  

radians not including the angle of specular re f lec t ion .  After passing 

through a dbuble monochromator a t  low resolut ion ( 1  mm s l i t s ) ,  a narrow band 

of t he  emitted l i g h t  is  col lected on a red sens i t i ve  photomultiplier tube 

(C3893) and t h e  output displayed on a chart  recorder a s  t h e  monochr?mator 

wavelength is scanned from 8200 % t o  8800 1 i n  about 10 minutes. 

The pr inc ipa l  fea tures  of a chart  record of the  room tempera- 

t u r e  fluorescence from a s ingle  spot on GaAs are:  t he  t o t a l  i n t ens i ty ,  t h e  

wavelength of t he  maximum in t ens i ty  and the  widths of the  low energy t a i l  

and of the high energy s ide .  A t yp ica l  spectrum from GaAs is  displayed in 

Fig. 3. Mapping is done e f f ec t ive ly  by reposi t ioning the  GaAs surface f o r  

each spot of i n t e r e s t ,  with micrometer dr ives .  

Credit  goes t o  Mr. James M. Rowe f o r  arranging, ca l ib ra t ing  

and tuning up the  apparatus t o  the  s t a t e  where w e  could scan a s e t  of spots  

and then get reproducib i l i ty  i n  t o t a l  i n t ens i ty  t o  within ten  percent. The 

wavelength fo r  t he  peak indica tes  t he  kind of e-h recombination center  a c t i v e  

(usually a donor s i t e ) .  When t h e  t a i l s  on e i t h e r  s i d e  a r e  narrow, t he  t o t a l  

i n t ens i ty  is r e l a t ed  d i r e c t l y  t o  t h e  number of these  donor centers  being 

excited by the  pump l i g h t .  With the  focus and power of t h e  pump l i g h t  held 

constant,  the  t o t a l  emitted in t ens i ty  is  proport ional  t o  t he  loca!. concentra- 

t ion of donors. 



Iden t i f i ca t i on  of the  type of donor s i te by co r r e l a t i on  

with the  value of the  wavelength at t he  peak of each spectrum w i l l  r equi re  

correct ion of t he  PMT output t o  one proport ional  t o  t he  number of photons 

col lected.  J. M. Rowe used a standard lamp t o  c a l i b r a t e  t h e  PMT output 

and with the  a id  of Karla Dalton prepared an e f f e c t i v e  computer program f o r  

carrying out t h i s  cor rec t ion  procedure. The program's flow char t  is given 

i n  t h e  l a s t  appendix. The output of t h e  program i n  i t s  present form is 

automatic graphing of: t he  input spec t r a l  da ta ,  t he  corrected PMT output vs. 
wavelength, and the  corrected PKT outprlt vs. energy of t he  emitted photons. 

Examples of these  automatic graphs f o r  t h e  emission spectrum of one spot 

on a GaAs as-cut surface a t  room temperature a r e  displayed i n  Figures 3, 4 

and 5. 
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COPFECTED PMT OUTPUT, 6MPLITUDE US U6VELENGTH 

j i- I I L C  C, DATA SOURCE 

Fig.  3. Phot olumineecence Observed from GaAs . 
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PMT QUTPUT, AMPLITUDE US WAUELEPCTH 

736//.<~; DATA SOURCE 

Fig. 4. PL C r ~ m  GaAe. 



COPPECTEG PVt OUTPUT, AmPLZTUDE US ENERCV(EU2 

' I  j' &. / I RG ' DATA SOURCE 

Fig. 5. PL from GaAe 
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111. RESULTS - DEMONSTRATION OF SENSITIVITY OF YONCONTACTING TECHNIQUES 

In d i r e c t  ass i s tance  t o  the FASA space processing program, t h i s  study 

has developed three  noncontacting technique& in to  succe i s fu l  laboratory 

procedures fo r  the  nondestructive e l e c t r i c a l  charac te r iza t ion  of s ing l e  

c r y s t a l  ~eniconduct ing  surfaces .  Time permitted only preliminary meamre- 

ments with each of the t h r ee  procedures, but an ind ica t ion  of t h e i r  sensi-  

t i v i t y  is given i n  t k -  precis ion s t a t e d  below f o r  t h e  measured cha rac t e r i s t i c s .  

Valuea obtained f o r  t he  sk in  depth a t  35 GHz and 300 O K  i n  selected PaAe 

sur faces  a r e  l i s t e d ,  following a descr ip t ion  of t he  sk in  e f f e c t  found i n  c. 

few of t h e  GeSe f lakes  grown on S ~ y l a b  missions. 

A. Skin Depths i n  GeSe Flakes a t  35 GHz 

The high qua l i ty  s ing l e  c r y s t a l  f l akes  protluced by vapor t ransport  

in ampules i n  Skylab's multipurpose furnace were t h i n  p l a t e l e t s  a few square 

mi l l i ne t e s s  i n  area.  We developed the  procedure described above f o r  load 1r.g 

a room temperature 35 GHz copper cav i ty  with one CeSe f l ake  a t  a time so  

t ha t  t he  cav i ty  r e f l ec t i ons  could be in te rpre ted  t o  y i e ld  t he  r a t i o  of t h e  

sk in  depth averaged over each f l ake  t o  the  skin depth of t he  copper wal l s  of 

the cavi ty .  A precis ion measurement of cav i ty  Q would then y ie ld  a prec ise  

value of t h e  average 6 in each f lake.  

In  our preliminary laboratory operat ion,  we obtained introductory 

information on seve ra l  spec i f i c  quest ions about t h e  use of 35 GHz r ad i a t i on  

t o  charac te r ize  small  semiconducting c rys t a l s .  F i r s t ,  our proced;lres a r e  

capable of character iz ing without damage the skin depth of each of a la rga  

rider ef  c r y s t a l s  per day. Secondly, center ing of t he  sample was judged 

v isua l ly  and remained one of the p r inc ipa l  sources of f l uc tua t ion  i n  our 
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observed values. Except f o r  more d i f f i c u l t  sample handling, the  sanre cavi ty  

loading procedures work a t  l i qu id  ni t rogen temperature with the  expectation 

of even b z t t e r  s ens i t i v i ty .  Some care  must be exercised in the  choice of 

mater ials  fo r  holding the sample f lakes  in place within the  copper cavi ty,  

but polyethylene f i lm appears t o  serve we l l  a t  our present s e n s i t i v i t y .  

It should a l s o  be noted tha t  t he  sur face  cur ren ts  induced i n  t he  f l a t  plate- 

l e t  when properly mounted i n  cavi ty are a l l  in one d i rec t ion ,  t he  same on 

both s ides  of the  p l a t e l e t ,  permitting thereby a search f o r  anisotropy in 

the r e s i s t i v i t y  of each semiconductor c rys ta l .  

h e  operat ional  aspect was tes ted  - namely the  s k i l l  l e v e l  required 

fo r  carrying out the  cavity loading observations on GeSe a t  35 GHz. After 

the selected CeSe f lakes  had been measured by a highly experienced operator 

(#I )  t o  be  cer ta in  t ha t  the loading procedure functioned s a t i s f a c t o r i l y ,  in  

the re r lec t ion  cavi ty (A), verbal ins t ruc t ions  were given t o  a new tech- 

nician (operator 2) who had experience with ham radio but  none with microwaves. 

Operator 2 then surveyed the  same samples i n  cavi ty A and again in a modified 

cavity (B) i n  which the  end of t he  cavi ty had been modified t o  permit trans- 

miss ion measurements. 

The room temperature r e s u l t s  a r e  summarized i n  Tab1.e 2. The r e l a t i v e  

Q fac tors  (Qs) of each sample t o  t h a t  (Q,) of the  cavi ty  wal l s  a r e  l i s t e d  

as  an a id  t o  l a t e r  evaluation of t h i s  cavi ty loading technique. Pert inent  

d e t a i l s  a r e  l i s t e d  i n  the  appendices. 

Inspection of Table 2 shows how the  GeSe skin depths vary betweer 

these f i v e  c rys t a l s  by a fac tor  of 6. ' h e  cor~esponding ra?ge of equivalent 



TABLE 2 

YaLATIVE Q AND SKIN DBPTHS FOR GeSe RAKES 
AT 35 CHz AND WOOM TEWERATURE 

* Number of ind-yndent substitutions of sauple into cavity. 

** Fir& set for operator 2 

Calculated with 6,, = 0 . 3  micron 

@O Combinations used were Cavity A by operator 1, Cavity A by op?rator 2 ,  
and Cavity B by operator 2.  



bulk r e s i s t i v i t i e s  is a f ac to r  of 36. The unce r t a in t i e s  observed would 

have been reduced - probably t o  - + .003 in %/Qs - by using ten  o r  s o  

independent subst i t u t  i-ons of the  sample during each run. 

The da ta  represented i n  Table 2 a l s o  confirm t h e  soundness of our 

t heo re t i ca l  ana lys i s  i n  regard t o  sample configuration. The absolute  

values of t he  sk in  depth, 6,, l i s t e d  in t h e  last column of Table 2 con- 

firm the  v a l i d i t y  of t h e  f l akes  being th i ck  compared t o  t h e i r  own sk in  

depth so  t h a t  t he  power l o s s  in a f lake  is the  same kind of product16 of 

surface in tegra l s  of nT2 a s  f o r  t he  copper wal ls .  Secondly, t he  f l a k e s  were 

t h i n  enough t o  permit using t h e  undis tor ted mode values f o r  HT across  t he  

sample. 

A f i n a l  note  about s e n s i t i v i t y  of t h i s  cav i ty  loading subs t i t u t i on  

procedure is t h a t  when a f l a k e  of u l t r a  high pur i ty  aluminum f o i l  was t h e  

2 subs t i tu ted  load, t he  minimum detec tab le  a rea  was about 3 mm of A l .  A s  

k 
. , 

7 ,  

the  r e s i s t i v i t y  of the semiconductor f l ake  is increased, our cav i ty  loading 
; 
: , .  s igna l s  become la rger ,  ind ica t ing  t h e  capab i l i t y  of charac te r iz ing  smaller 

: 

..- f l akes  o r  of obtaining more precision. For example, t h e  observed standard 

deviat ions l i s t e d  i n  Table 2 give: - + 3% f o r  a 712 mm2 f l ake  having 6, = 1 

2 and - + 10% f o r  a 1.912 m f l ake  having 6, = 6 micron. 

B. Skin Depths i n  GaAs F l a t s  a t  35 GHz 

High qua l i t y  boules of GaAs glown by M. Rubinstein of Westinghouse 

Research snd Development Center i n  preparation f o r  the  M555 Experiment on 

Skylab had bee11 s l i c e d  fo r  character izat ion.  Several cu t  faces ,  termed 

f l a t s ,  were mapped f o r  sk in  depth a t  35 GHz using a reso lu t ion  element of 

4 x 7 mm as t he  rectangular TEOlp cav i ty  end wal l  i n  t he  procedure mentioned 



above. Cavity r e f l e c t i o n s  were interpreted i n  accord with t h e  ana lys i s  out- 

l ined i n  the  appendices i n  terms of t h e  sk in  depth (ts in  the  GaAs.  Some of 

t h e  average values found f o r  bs a r e  l i s t e d  i n  Table 3, taking 6CU 0.35 

micron. 

TABLE 3 

CLASSICAL SKIN DETTH 

*A value f o r  6, was not obtainable  from t h e  data .  

Sample 

The uncertainty i n  the measured v l u e s  was much l a r g e r  than the  l i m i t -  

ing  uncertainty due s o l e l y  t o  t he  a b i l i t y  t o  read t h e  equipment accurately.  

Evidently t he  var ia t ions  i n  r e s i s t i v i t y  between t h e  a r ea s  being sampled a r e  

comparable t o  but r. )t much l a r g e r  than the  v a r i a t ~ o n s  i n  coupling a s  an end 

wal l  i n  one posi t ioning of t h e  sample. Precis ion improvement of almost one 

order of magnitude is expected i n  t he  same procedure w h e ~  the  shape of t he  

sample cav i ty  is a r i gh t  c i r cu l a r  cyl inder  and the  reso lu t ion  element of t h e  

semiconductor f l a t  is t h e  c i r cu l a r  end wal l  o r  a concentr ic  c i r c u l a r  port ion.  

1 2 The ac tua l  values obtained, however, from the  two c a v i t i e s ,  C s  and C s  , 

fo r  the c l a s s i c a l  skin depth of t he  samples, a r e  i n  good agreement. Clear ly  

the  shor te r  cavi ty  produces higher precis ion a s  expected. Again, when 

csl (p=13) 6, (am) cs2 (p-7) 6, (mm) 
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machining o r  e tching techniques a r e  used t h a t  permit sharper i n s ide  

corners (than r = 0.016 inches),  then p = 2 c a v i t i e s  can be used and 

precis ion w i l l  be improved over the  p = 7 cavi ty .  

C. Mapping-of CaAs Single --- Cg-stals by Fluorescence -. - 

Photo-induced luminescence of t h e  electron-hole recombination radia- 

t i on  has Laea observed by J. H. Rowe from cut faces  ( fLats)  of .s.?vercll 

high qua l i t y  GaAs c r y s t a l s .  The technique out l ined  above permits mapping 

by reposi t ioning the  f l a t  i n  the plane of i t s  i r r ad i a t ed  face  by micrometer 

dr ives .  A spectrt.m is scanned f o r  each posi t ion of t he  l a s e r  beam spot .  

Fig. 3 shows, with t he  a i d  of automatic graphing on the  UNIVAC 1108 computer, 

t he  t yp i ca l  spectrum emitted from a spot on the  face  of a c r y s t a l  doped with 

-+1017 donors/cm3. The t o t a l  i n t ens i t y  (proport ional  t c  t h e  donor concentrb- 

10 t i on  ) was found t o  be reproducible t o  + 10% f o r  10 minute s p e c t r a l  scans 

of the  same spot loca t ion  and relocat ions.  Observed va r i a t i ons  across  a 

sample were occasional ly  50% and were, therefore ,  a t t r i b u t a b l e  t o  donor 

concentration va r i a t i ons ,  but no d i r e c t  corroboration of t he  same surface 

p r o f i l e  was ava i lab le  a t  t he  t i m e  of t h e  fluorescence scans. The automatic 

correct ion r f  Pm output v i a  standard lamp ca l ib r a t i on  is discussed i n  an 

appendix and the  corrected r e s u l t s  p lo t ted  i n  Fig. 4 and 5 of t h e  spectrum 

of Fig. 3. 

Uniformity of surface roughness probably represen ts  t h e  u l t imate  l i m i t  

t c  the  p r x i s i o n  of t h i s  high reso lu t ion  method of charac te r iz ing  t h e  donor 

concentration. Changes i n  t he  type of donor w i l l  s h i f t  t h e  peak of t h e  

spectrum. For example, ni t rogen donors a r e  a few mi l l i e l ec t ron  v o l t s  below 

the  band edge a t  Eg -1.43 eV. No attempt was made t o  c o r r e l a t e  peak pos i t ion  
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with active donor types, but i t  is cleat12 that lower temperatures permit 

comklete resolution of each type of donor traps. 



IV .  SUMMARY AND PROGNOSIS 

The r e s u l t s  of t h i s  study of nondestructive methods of e l e c t r i c a l  

charac te r iza t ion  of t he  higher qua l i t y  s i n g l e  c r y s t a l s  of semiconductor 

grown i n  t he  microgravity of space environment include both t h e  demon- 

s t r a t i o n  of successful  methods - two microwave and one o p t i c a l  - and t h e  

measurement of t he  r e s i s t i v i t y  of a few of t h e  small  GeSe c r y s t a l s  grown 

by vapor deposition on Skylab f l i g h t s .  The observed s e n s i t i v i t y  of t h e  

two microwave methods - one f o r  mapping l a rge  f l a t  semiconductor sur faces  

and one f o r  observing the  whole sur face  of small  t h i n  f l a t  c r y s t a l s  - is 

reported f o r  a l imited range of r e s i s t i v i t y .  The r e l a t i v e  skin depth 

values f o r  the  GeSe f l akes  s tudied by a sample subs t i t u t i on  procedure were 

found t o  have standard deviat ions around 10% f o r  r a the r  small c ry s t a l s .  The 

absolute sk in  depth values could r ead i ly  have had t h e  same precis ion i f  

we had made the  frequency measurements which lead t o  t h e  absolute  % values.  

Our prognosis is opt imis t ic ,  namely t h a t  these  room temperature micro- 

wave techniques can be car r ied  out nondestruct ively using l i g h t  weight 

apparatus with adequate precis ion f o r  weasuring uniformity of r e s i s t i v i t y  

of high qua l i t y  semiconductor surfaces .  Furthermore, r e l a t ed  noncontacting 

techniques such a s  cyclotron resonance and photoinduced wicrowave conduct ivi ty  

show promise of being usefu l  sources of e l e c t r i c a l  c h a r a c t e r i s t i c s  of t h e  

high qua l i t y  semiconductors t o  be grown i n  space. 

The observed reproducib i l i ty  of t he  fluorescence of room temperature 

GaAs under i r r a d i a t i o n  a t  632.8 mn of some 10% i n  donor dens i ty  f o r  our 

slow scan technique a l so  shows promise f o r  NASA appl icat ions.  Actually,  

with the l a rge  expansion in  t he  l i g h t  a l u ~ t t i n g  diode productian in t h e  
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past several years, the LED manufacturers very l ikely  have a similar 

optical scanning technique in regular use by now. 
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APPENDIX A 

ASSUWTIONS FOR EQUATIONS I N  APPENDICES B AND C 

I f  a l l  of the microwave energy is stored i n  the rectangular 

cavity i n  only one TE resonant mode, i t  is possible t o  find a point, 
O ~ P  

E , such tha t  the e l e c t r i c  f i e l d  is 0, independent of the x and y poei- 
0 

t ions and time. Thue, w e  can inse r t  a very th in  conducting sample a d  

a sample holder, made of a d ie l ec t r i c ,  a t  tha t  point,  with its th in  

dimension pa ra l l e l  to  the z-axis without changing the e l e c t r i c  f ie ld .  

If ' uH - po, where is the permeability of the  s w g i e  and 

" H is the permeability of the holder, then w e  do not change the 

magnetic f i e l d  and thus the energy stored i n  the  empty cavity is the 

same a s  that of the cavity with sample holder with or without the sample. 

I f  the e l e c t r i c  crnd magnetic f i e l d s  a r e  not a l t e r &  within the 

cavity by the addition of the sample holder and sample, theu ,ne i n t r i n s i c  

Impedance of the  cavity has not changed. Thus, the energy r d i a t e d  out 

the coupling iris, back d m  the  waveguide should not change. This meane 

tha t ,  fo r  case8 (A) through (C) the value of should be the -e. 

Similarly, i f ,  by adding the sample and sample holder t o  the  empty cavity, 

we do not change the  current density i n  the  cavity walle, then the  ohlaic 

losses due t o  the walls is the  same i n  cases (A) through (C). This can 

be done, f o r  example, by making the sample holder out of 8 loselees di- 

e l e c t r i c  so tha t  the conducting sample is isolated f r m  the walls of the  

cavity. A problem can a r i se ,  however, i n  the manner i n  which the  sample 

holder and sample a r e  inrerted in to  the cavity. I n  t h i s  par t icular  proems, 

a s l o t  wae cu t  in to  the r i d e  of the cavity. This war that some paver warn 
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radiated out of the cavity. This l o s s  is usual ly  neglected in the  t o t a l  

l o s s  of power due t o  the wal ls  of t he  cav i t )~ .  We assinnc t h a t  adding 

the s l o t  d id  not change the  e l e c t r i c  and magnetic f i e l d  configurat ion 

In t h e c a v i t y ,  and, a s w e a r e i n a T E  mode, t h i s m e a m  t h a t a t Z o ,  
O ~ P  

where t he  s l o t  was made, the tangent ia l  e l e c t r i c  and tangent ia l  magnetic 

f i e l d s  a r e  both zero. Thus the  amount of energy rad ia ted  out  of t h e  

cav i ty  is only a small p a r t  of the t o t a l  wal l  losses .  Thus, a l t e r i n g  

t h i s  amount of radiated energy, such a s  is cawed by inee r t i ng  the  

d i e l e c t r i c  sample holder i n t o  the s l o t ,  does not s i g n i f i c a n t l y  a l t e r  t he  

t o t a l  energy l o s s  dueto the  wal ls  of the  cavi ty .  Hence the  value of 

& doesnot change f o r  cases  (A) through (C). A slmFlar a r g w e n t  shows 

tha t  the value of Q is a l s o  a constant f o r  cases  (D) rhrough (F).  W 

I f  w e  assume t h a t  the addi t ion  of t he  second coupling iris does not  

change the resonant mode e l e c t r i c  and magnetic f i e l d  

of t h e  s ingle- l ine cavity-coupling system, then QW docs not  change from ( )  
case  (A) through (F) a s  the  t o t a l  energy s tored w i l l  be  t he  same, and the  

change i n  the  energy l o s t  due t o  the  wal l s  is not g r e a t l y  changed by the  

l o s s  of t he  aurface area,  due t o  the  second coupling iris, from js%2ds, 

which is proport ional  t o  the ohmic energy lo s s  per cycle due t o  t he  wal l s  

of t h e  cavity,") where HT is the  amplitude of the  magnetic f i e l d  tangent 

t o  the  wal l s  of the cav i ty  and the i n t e g r a l  is taken over t he  t o t a l  su r f ace  

of cavi ty  walls.  The assumption tha t  the  addi t ion  of the  second coupling 

i r is  does not change the  resonant mode is j u s t i f i e d  i n  the  equipment and 

c a v i t i e s  ueed, by the  f a c t  t h a t  the  resonant frequency sh i f t ed  by less than 

0.1% from the s ingle- l ine cavity-coupling system t o  t he  two-line cavity- 

coupling system. 

(1) See E. U. Condon, Rev. Mod. Phyo. 14, P-341 (1942). 



Fina l ly ,  i f  the  addi t ion of a second coupling iris doe& not  change 

the e l e c t r i c  and magnetic f i e l d s  i n  the  cav i ty ,  then the  value n 
Qc, 1 is 

the  same i n  cases (A) throu: ' r  (C) and caees (D) through (F). Thus, the  

values of Qw, Qc, I s  9,. and Qil a r e  t he  same for  cases (A) through (F). 

Hence, equation (18) is ju s t i f i ed .  It ~ l s o  means t ha t  t he  values  of 

B1, and B 
2 ,  

a r e  the same i n  both t h e  s ing le - l ine  and two-line cavity- 

coupling system, s o  t ha t  w e  can measure bath values by using the  s ing le - l ine  

cavity-coupling system and use these values  i n  an  equation t h a t  is t r u e  

fo r  a two-line cavity-coupling system. Thus we cen obtain a j u s t i f i a b l e  

value fo r  Qs using equatiofis (19). (20). and (17) or (17A). 

I f  w e  s t i l l  assume t h a t  a l l  the  microwave energy of the  rectanaular  

cav i ty  is s tored  i n  only one TEOlp mode'and tha t  t he  e l e c t r i c  and magnetic 

f i e l d s  i n  t h i s  mode a r e  t h e  same for  t h e  coupled cav i ty  a s  fo r  t h e  uncoupled 

cavity: then the t o t a l  energy s tored i n  t he  empty cav i ty  is 1 ly pOH2dv 
2 

where H is the  magnitude of the magnetic f i e l d  and the  i n t e g r a l  i e  talcen 

over the  t o t a l  volume of the  c a v i t . ~ .  I f  we i n s e r t  our sample and 

ohmple holder i n  the cavi ty  a t  the point 2 such t h a t  t he  e l e c t r i c  f i e l d  is 

zero, then the  energy s tored i n  the  cav i ty  with the  sample and sample 

holder i s  the  same a s  the empty cavity.  

A s  the  sample is  conducting, it w i l l  c r ea t e  an ohmic power l o s s  t h a t  

w i l l  increase the  energy lo s s  per cycle  i n  t he  cavi ty .  The energy l o s s  

6 nv per cycle  i n  the  sample is given by . s l8HT2ds where 6, is t h e  
2 

sk in  depth of the sample and H is the magnitude of t he  amgnetic f i e l d  
T 

tangent t o  t he  surface of the sample A and the  i n t e g r a l  is taken over 

the t o t a l  surface of the sample. - 
2. See Fig .  2 of t h i s  report  f o r  t he  shape of the  H pa t te rn .  



A 8  Qs rn 211(Energy Stored i n  t he  Cavity) 
(Energy Lost i n  t he  sample I n  one cycle) 

and we have already assumed pa = we  ge t ,  

Using the so lu t ione  fo r  the e l e c t r i c  and magnetic f i e l d s  i n  the  

TE mode and assuming tha t  the  *ample i e  a rectangular  para l le le -  
O ~ P  

piped, we  can perform the  volume and sur face  i n t e g r a l s  above, remembering 

t h a t  t he  sample is a t  z we ge t ,  
0' 

Where A is  the length of the cav i ty  along the  x-axis, B is the  length 

along the  y-axis, C is the  length along the  z-axir ,  Ax i r  the  length of t h e  

sample along the  y-axis iy is j t s  length along t h e  y-axis and y l  and 

y2 a r e  the  y posi t ions of the  sample i n  t h e  cavi ty .  This r e s u l t  a l s o  

assumes tha t  Az of the  sample is s o  small that w e  cal ignore t h e  surface 

i n t eg ra l  over those port ions of the  sur face  of the sample t h a t  involve Az. 

This is j u s t i f i e d  i n  a l l  the GeSe f lakes  measured. 

Other shapes w i l l  ~ r o d u c e  other  solut ions,  however, most shapes can 

be approximated by a rectangular  paral le lepiped o r  a sum of such ehapee, 

i n  which case,  the above equation w i l l  s t i l l  hold. Otherwi~e ,  other  

4. See Technique of Hicrowave Measurements, Vol 11, edi ted by C. G. 
Montgmery, P. 295, McGraw-Hill (1947). 



coordinate s y s t e m  and techniques of in tegra t ion  w i l l  have t o  be  used. 

Also, note t ha t  the Factor of 4 appears i n  equation (28), r a t h e r  than a 

fac tor  of 2, t o  account for  the l o s s  2n t o t h  s ides  of t he  sample, so  t?at, 

i f  a sum of rectangular paral le lepipeds is t o  be  used as the  approxiFa- 

t ion,  t h i s  fac tor  can be changed t o  2 and the  stm car r ied  over both s ides  

independently. 

Final ly ,  i f  we again have a rectangular paral le lepiped i n  which w e  

can ignore the  Az terms and fur ther ,  t h a t  Ay is s o  s m a l l  t h a t  

s in2  ( i(yl + T)) = sin2(: , then we a r r i v e  a t  a good approximatior. f o r  

Q by assuming tha t  Ii2* is a constant over t he  t o t a l  sur face  a rea  of t he  
s 

sample; t ha t  is 

The basic  assmpt ion  Fn the choke j o i n t  cav i ty  system is t h a t  the  

resonant e l e c t r i c  and magnetic f i e l d s  a r e  the same i n  a l l  four types of 

cavi t ies .  The same reasoning appl ies  i n  these s e t s  of c a v i t i e s  i n  

t ransferr ing from the s ing le  l i n e  cavity-coupling system (cav i t i e s  X, Y, 

and Z )  t o  the two-line cavity-ceupling system (cavi ty T) . Any d i f fe rence  

i n  microwave energy losses ,  due t o  the choke jo in t ,  between the  2 cavi ty  

and the  X cavi ty is taken i n t o  account by the  Q term. Finally,  
R, C, H 

the same reasoning is  used i n  ca lcu la t ing  the  c l a s s i c a l  sk in  depth, &s' 

of the scmple from 
dw,s, 

a s  was used i n  the  proceeding cav i ty  system, keeping 

i n  mind tha t  now the sample makes up one c m p l e t e  end wal l  of the  cavity.  
? 



APPENDIX B 

BASIS FOR LOSS CALCULATIONS FOR Cu TE RECTANGULAR CAVITIES 
O ~ F  

FOR f LARGE ENOUGH TC SUSTAIN NORMAL, MID?. CONFIG~TIONS 

Terms f o r  Single  Line Cavlty-Coupling Spstesn: 

P = 2 c / s  

c = Cavity dimension along z a x i s  

33 
= Wave length i n  the cavi ty  at resonance 

Q = 2n (energ] stored/energy d iss ipa ted  per cycle) 

= Loaded Q of empty cav i ty  
Q L , ~  

Q ~ , ~  

= Loaded Q of cav i ty  with sample holder but without sample 

QL, s 
= Loaded Q of cav i ty  with sample holder containing sample 

QW = Q of Cu w a l l s  of cav i ty  

Qc , l  
= Q of 1st coupling iris 

QH 
= Q of sample holder 

Qs = Q of sample 

QU.0 
= Q of Cu wal ls  and sample holder 

Qu,s 
= Q of walls,  sample holder and sample 

B = Geometrical coupling parameter which is a constant  f o r  a 
given iris and cav i ty  mode. Each value of B is obtained 
from a measured r e f l ec t ed  power r a t i o  r. 

r = Power r a t i o  (Power r e f  lccted/Power incident  a t  plane of cav i ty  i r i s )  

6 = Coupling parameter of 1st coupling iris with empty sample 
1,o holder 

B = Coupling parameter of 1st coupling iris with sample 
1,s 

6 = Coupling parameter of 1st coupling iris with empty cav i ty  
1,MT 



Terms fo r  Two-Line Cavity Coupling System: 

Q L . ~ , T  
= Loaded Q of empty transmission cav i ty  

QL,O,T 
= Loaded Q of cav i ty  with empty sample holder 

QL..,T 
= Loaded Q of cav i ty  with sample holder containing sample 

Qc* 2 = Q of 2nd coupling iris 

Qs 
= Q of sample 

QH 
= Q of sample holder 

'U,O,T 
5 Q of CU wal ls  and sample holder 

= Q of wal ls ,  sample holder and sample 
Qu,o,s 

Qc,2 
= Q of 2nd coupling iris 

'2,m 
= Coupling parameter of 2nd coupling iris wi th  empty 

cav i ty  

$2,0 
= Coupling parameter of 2nd coupling iris with empty 

sample holder 

B2,s 
= Coupling parameter of 2nd coupling iris with sample 

holder 

F = Resonant frequency of empty cav i ty  
0 

Af(3db) = Width of power resonance curve a t  half-peak values 
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The follawing equations are appl icab le  when the  lose  mechanisms 

a r e  independent and the  microwave energy is s tored  i n  only one mode. 

Basic Equations f o r  Single-Line Cavity Coupling System: 

A. For the  Empty Cavity 

B. For Cavity with Bnpty Sample Holder 

3. 1 1 - = -  + - 1 + -  
Q1., 0 Qc. 1 Q~ Q~ 

C. For Cavity with Sample Holder and Sample 

7. 
1 1 - t - 1 + - 1 + - 
Qu, s Q~ Q~ Qs 
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Basic Equations fo r  Single-Line Cavity Coupling System (contd) 

For t he  Empty Cavity 

9. 
1 

I - 1 + -  1 + - 
Q L , ~ , T  Qc, 1 Qw Qc,2 

E. For cav i ty  with empty sample holder 

1 1 = - + -  + -- 1 
"- QL,O,T 

+ -  
Qc, 1 Qw Qc,2 QH 

F. For cav i ty  with sample 

1 1 
14. - = - 1 + - + - 1 + -  1 + - 

Q L , ~ , T  Qc,1 Qw QH Qs QC, 2 

G. Equations fo r  ca l cu l a t i ng  B 



1 . ., 1 *.,, , ." . ,  
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fi can be chosen t o  be overcoupled (Eq. 17A) (or undercoupled (Eq. 17)) 

by convenience of mach in i~a  and de tec tor  s ens i t i v i t y .  

6 calculated using equation 17 or  17A is t h e  6 of t he  s ingle-  

l i n e  cav i ty  coupling system. However, a s  w e  do not  change the  normal 

mode nor t he  shape of t he  iris, it, therefore ,  has  t he  same value as 

i n  t he  two-line cav i ty  coupling system. 

The f a c t  that the coupling parameter, B , f o r  each case  can be cal-  

culated from experimental data  leads  t o  s eve ra l  important r e s u l t s .  F i r s t ,  

by using equations (1) through (8),  w e  can r e l a t e  the  sample l o s se s  t o  

the  cav i ty  wal l  losses  by equation 

A s  a l l  the  values on the  r i g h t  can be calculated from experimental 

Qw measuresments, a value can thus be assigned t o  - . From t h i s ,  a compari- 
Qs 

son of the Q values of d i f f e r e n t  samples can be made i n  a given cavi ty ,  
s 

provided the  value of QW does not change. Experimental confirmation t h a t  

had not changed was obtained by f inding the  value of B I , ~ ( =  Qw/Qc, l )  

[Eq. 21) t o  be t h e  same t o  within 9 . 4 %  each time the  empty cav i ty  was 

measured. 

Secondly, using equations (2)  and (10) w e  can rep lace  t he  Q values 

i n  Equation (9) with 6 values t o  ge t  equation 



As we can ca lcu la te  a value f o r  
($1 ,nr + 1 + ~  ) , w e c a n t h u s g e t  

2 , m  
a value of Q from a known value of w QL,MT,T . Fina l ly ,  w e  measure t he  

value of QL , bfl, T experimentally by using equation 

We can a r r i v e  a t  a value of Q t ha t  is W 

Thus, using Equatiom (18) and (21), we a r r i v e  a t  an equation f o r  Qs, 

dependent t o t a l l y  on measurable quant i t i es .  

By using the  previously mentioned equations,  w e  can a l s o  make measure- 

ments on the  uncertainty of the quan t i t i e s  ~ ~ 1 9 ,  and Qs 

F i r s t ,  by using Equation (15) w e  f ind  t h e  uncer ta in ty  A (Q~IQ,)  is 

given by 
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Secondly, using Equation (191, w e  f i nd  t he  uncertainty of Qs is 

given by 

For t he  case  i n  which the  sample is  placed i n  a two-line cav i ty  coupling 

system, an equation s imi la r  t o  (18) can be  developed. I n  f a c t ,  we get  

Then, by using Equations (191, (20), and ( 2 5 ) ,  we can develop equations similar 

t o  (21) through (24) which r e l a t e  Qs 
t o  t he  second coupling i r i e  parame- 

t e r s ,  fo  and A f  (3db). 



Qs 
is defined as, 

2n(Energy Stored i n .  t he  Cavity) 
( ~ n e r ~ T D i s s i p a t e d  i n  t h e  Sample i n  One Cycle) 

The energy s tored  i n  t he  cav i ty  is equal t o  16 

where H is the  amplitude of t he  magnetic f i e l d .  The energy d i s s ipa t ed  

i n  the  sample is due t o  ohmic l o s se s  and i n  one cycle  is equal t o  

where 6s is the  sk in  depth of t he  sample, us is t h e  permeabili ty of 

the  sample, HT is the  amplitude of t h e  magnetic f i e l d  p a r a l l e l  t o  the  

sample's surface and the  i n t e g r a l  is taken w e r  t he  t o t a l  sur face  a r ea  

of t he  sample. Thus 

lJ 0 
A s  the samples a r e  only weakly paramagnetic - 1 t o  within 0.1% 

P s 
Hence w e  use t he  following equation f o r  Q 

8 ' 

Using the TE mode numbers, we can f i nd  t h e  magnetic f i e l d  configu- 

r a t i o n  within t he  cavity.  Thus, Equation (27) can be  solved t o  a good 

approximation. a s  follows : 



( -- . .. . . - . - . -  ,, , 3. & .,;uCvn-v -,. 
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Our coordinate system is t h a t  uaed i n  'lkchnique of Hicrawave 

Measurements, Vol. 11 of t he  M.I.T. Radiation Laboratory Series ,  - 
edi ted by C. G. Montgomery, McGraw-Hill, Inc. 1947, page 295. The 

dimensions of our cav i ty  are A,  p a r a l l e l  t o  the  x ax i s ,  B p a r a l l e l  

to  the y ax is ,  and C, p a r a l l e l  t o  the  2 a x i s  

With the t h in  sample placed i n  t h e  cav i ty  such tha t  its corners  

a r e  located a t  (xl ,  ~ 1 ,  z0) ,  (x l ,  ~ p ,  z0) ,  (x2, ~ 1 ,  20) and (xp, ~ 2 ,  zO) 

where z0 = Q&/2, 0 an integer ,  we a r r i v e  a t  the  following so lu t ions  

t o  Equation (27) a s  discussed Ln Appendix A: 

A. I f  (x2 - x l )  (y2 - yl)  which is the  c ross  s ec t i ona l  area of 

t he  sample is comparable i n  s i z e  t o  (A B) which is the  c ross  s ec t i ona l  

area of t he  cavity,  then 

B. I f  (x2 - x l )  (y2 - yl )  = 6 << (A B) and (yl  + y2)/2 = yo. 

Qs = A C [ B ~ ~ ~  + ~ ~ ] / 6 ~ ( 4 ~ ~ ~ )  s i n y i  yo)  6 (29) 

Thus w e  can write 6 a s  a funct ion of Q t he  cav i ty  geometry, 
f 

S 8 ' 
t h e  sample posi t ion,  and t h e  normal mode, a l l  of which can be  found from 

experimental values. Equations 28 o r  29 were uaed t o  ca l cu l a t e  t he  values 

of 6s presented i n  Tables 2 and 3 of t h i s  report .  



Final ly ,  the  uncertaint:? i n  is given f o r  l a rge  samples by 

and f o r  small  samples by 

where ~y is the uncertainty of the  pos i t ion  of the  sample along the  y 

ax i s  i n  the  cavi ty .  

Equation (31) can be used t o  es t imate  t he  dependence of t h e  s e n s i t i v i t y  

of subs t i t u t i on  techniques on f lake  s i z e  and sk in  depth. We ca l cu l a t e  t h e  

the  values of t he  second term ( in  the  brackets)  t o  pass through the  10% 

value fo r  combinations such a s  : 

6 = 25.0micrms with Ax - Ay - 0.5 nun 

and 6 = 2.5 microns with Ax - Ay - 2 m 

and 6 = 0.25 microns with Ax .- Ay - 5 mm 

This uncertainty (by Eq. 31) rises s teep ly  f o r  smaller  semiconductor f l akes  

and is only a few percent, f o r  l a rger  ones. 



APPENDIX C 

CAVITY LOADING BY SEMICONDUCTOR END WALL 

X = The r e f l ec t ive  cavi ty with choke and the  sample a s  an 
end wa 11 

Y = The r e f l e c t i v e  cavi ty  with choke and a  f l a t  piece of Cu 
as an end wall  

Z = The r e f l e c t i v e  cAvi ty  with equal dimensions to  X and Y 
but without a choke 

T = The transmission cavi ty  

Q c , l  
= The Q of the f i r s t  coupling iris 

Qc, 2 
= The Q of the second coupling i r is  

QR, CH 
= The Q of the choke jo in t  d u e  t o  microwave energy being 

radiated out of the s l o t s  of the choke 

%,. = The Q of the sample end wall  

%. x 
= The Q of the X cavi ty due t o  ohmic losses  i n  the walls of 

the cavi ty except for  the sample which a c t s  a s  an end wall  

QW.Y 
= The Q of the Y cav i ty  due t o  ohmic losses  i n  the walls  of 

the cavi ty  except fo r  the  Cu f l a t ,  which a c t s  a s  an end 
wall  

%.z 
= The Q of the Cu f l a t  act ing a s  an end wall  i n  the Y cav i ty  

%, end 
= The Q of the end wall  of the  Z cav i ty  

B = The coupling parameter of the f i r s t  coupling i r i s  a s  1.u measured i n  the cavi ty 

= The coupling parameter of the  second coupling ir is a s  ,e measured i n  the cavi ty  
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H .  Equations for cavity X 

3Bw %,x Qc,l P Qu, x 

1 
I - 

Qu, x 

I.  Equations for cavity Y 

3.  Equations for cavity Z 

K .  Equations for cavity T 
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In a rec tangu la r  mode QR,cH is smal l  nrlough t h a t  i t  cannut be ignored 

i n  t h e  above equa::ons. Therefore,  a f i n a l  s o l u t j o n  t o  must 

take i n t o  account t h e  value  of QR,CH 

If we assume t b t  Qw,Z is  equal  t o  Qw then,  us ing equat ions  
,T' 

88. and 11B.  we ge t  

a l s o ,  a i n c e  

and thus ,  

1 1 1 1 - = -  + + -  
QU,X Q ~ ,  CH Qw, s Q, 

and 

1 1 1 + - = -  thutl, 
%I. end Q W , ~  %,z 

14B. 1 1 1 1 
I -  

1 + - + - - - -  
Qu,x QR, ~h Qw, 8 Qw, z Qw, end 

As (K)QWvZ is equal to Qw,ecd, where K i e  a constar  t determined 

by t h e  geometry of t h e  cav i ty ,  we  g e t  

15B. 
1 1 1 1 - = -  1 + -  - + - 

Qu, x QR,CH 9w.s (K)%,z %,z 

To so lve  f o r  - , we assume t h a t  t h e  l o s s e s  i n  t h e  Cu end w a l l  
QR,CH 

p iece  of c a v i t y  Y a r e  equal  t o  t h e  l o s s e s  i n  t h e  end w a l l  of c a v i t y  Z, 

s o  t h a t  ssCu is equal  t o  Qw,end, then 
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16B. 
1 1 - = -  1 + - using equat ions  5B, 6B, 12B, 

QW.2 QW.ct1 9Y.x 

and IbB., we g e t  

S u b s t i t u t i n g  17B. i n t o  1SB. and using equat ions  11B.  and 13B y i e l d s  

i n d i c a t e s  t h a t  t h e  i n t e g r a l  i c  taken over a l l  t h e  s u r f a c e  a rea  of t h e  

cav i ty ,  se i n d i c a t e s  t h a t  the  i n t e g r a l  is taken over  t h e  end w a l l  only, 

and H i s  t h e  magnitude of the  t a n g e n t i a l  magnetic f i e l d .  I n  f a c t ,  
T 

3  2 3  
K = [ ~ c ~ A  + c B + P B C + 2Ap2B33] where A, B, and C a r e  

A B ~ P ~  

2C 
the  dimensions ok t h e  Z cav i ty ,  and P = - 

Xg 

Finally, a s  
f /V H* dv 

%,s = 
we g e t  
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19B. 6s I 
b2$ + c21 C and 

[ s ~ , ~  + c21c 6 - - s 
2 2  )2 A(%,s) - - Qw, s * (Qw,s 



APPENDIX D 

GaAs PL DATA REDUCTION 

(by J .  M. Rowe) 

A computer program has  been used t o  a i d  i n  c o r r e c t i n g  photolumines- 

cence d a t a  f o r  t h e  response of t h e  o p t i c a l  system, pho tomul t ip l i e r  tube 

and associa ted e l e c t r o n i c s .  Ca l ib ra t ion  f a c t o r s  obta ined by running a 

tungsten ribbon lamp and us ing t h e  known emiss iv i ty  of tungsten had been 

t abu la ted  by wavelength every 5 bstween 8010 and 8920 % and were read 

i n  by t h e  computer. The remainder of t h e  input  cons i s ted  of c h a r t  r e fe rence  

marks and d a t a  po in t s  i n  char t  coordinates ,  a l l  taken from t h e  record pro- 

duced dur ing a d a t a  run. Since t h e  computer used d a t a  i n  c h a r t  paper 

coordinates,  much work was saved. 

0 

During da ta  taking,  t h e  wavelength i n  Angstroms was noted at  t h e  

beginning and end of a run and these  po in t s  were marked on t h e  c h a r t  paper. 

These wavelengths and t h e i r  corresponding coordinates  were read i n t o  t h e  
0 

computer and using t h i s  t h e  computer determined t h e  wavelengths i n  Angstroms 

of d a t a  po in t s .  This coordinate  was taken a s  an i n t e g e r  f o r  convenience. 

PL amplitude coordinates  were taken as f l o a t i n g  point  numbers and were 

a r b i t r a r y  t o  wi thin  a s c a l e  f a c t o r  w r i t t e n  down dur ing d a t a  taking i n  c a s e  it 

would be needed l a t e r .  

Each d a t a  wavelength was found i n  t h e  t a b l e  us ing  l i n e a r  i n t e r p o l a t i o n  

and the  i n t e r p o l a t e d  cor rec t ion  f a c t o r  appl ied.  Corrected amplitudes were 

each divided by t h e  maximum uncorrected amplitude f o r  t h e  d a t a  set t o  y i e l d  

comparable s c a l e s .  This was done f o r  convenience. The s c a l e  f a c t o r  appears 

i n  t h e  p r in tou t  and no information was l o s t .  The e l e c t r o n  v o l t  equ iva len t  of k 

each wavelength was a l s o  computed. 
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The output appears i n  tabulated form with f i v e  columns. These are:  

(1) corrected and scaled amplitude, (2) energy i n  e lec t ron  v o l t s ,  (3) wave- 
a 

length i n  Angstroms, (4) uncorrected amplitude, and (5) char t  coordinate 

of wavelength. The l i s t i n g  was made i n  order of increasing energy, o r  

a l t e rna t ive ly  fed t o  Karla Dalton's program f o r  d i sp lay  and fo r  automatic 

graphlng a t  t he  Tektronix terminal of t he  UNIVAC 1108 computer. 

The flow chart  f o r  the  PL DATA REDUCTION program is given on the  next 

page. A l i s t i n g  of the  program dnd one output t a b l e  is at tached,  too. 
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PI, Data Reduction Flow Chart 

!Red ca l ibra t ion  table  (cN!B(I  ) ,FAC(I ) ) I 
I 

I 

ead char t  reference points (FIRST,AFFS T, XLhS T,ALAST) I 

d number of d a b s i n t s  (NDLITA) 1 \ 1 

OF RUN" (STOP 

IRead char t  coordinates of data points ( ~ ~ P ~ ( I ) , I ~ B ( I ) )  I 
I 

L - - . - . - - -- ---. - - - . -4 

(convert coordinates t o  hgstrorn u n i t s  ( ~ I B ( I ) )  and ( 
(save maximum - - amplitude ( M ~ x )  1 

I 
1 s o r t  data by wavelength i n t o  increasing order i 

I 

In terpola te  i n t o  the  table  t o  f i n d  the correc t ion  factor .  
Compute corrected amplitude and divide by AMAX- 
Call  the  r e s u l t  LU,!P2('L) 
Compte EHER(I), the electron v o l t  equivalent o f  -(I). 
r 

Rint "THE SCALE FACTOR ISw A W X  

R i n t  r e s u l t s  ordered by increasing J ~ ~ E R ( I ) .  

I Print column h e a d i ~ g s  : AMP;!, ENER,XLA:llB,MrP1 , N W .  
, . - . - -- - - - - -- 

I 

END OF D A U  SET"  END^ 
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CLAMB ( 1) 

FAC( I )  

FIRST 

AFRST 

.!UAST 

U S T  

NDATA 

AMPl(I) 

NLAMB (1) 

GLOSSARY (By order  of appearance) 

wavelength i n  the ca l ibra t ion  t ab l e  

ca l ibra t ion  fac tor  a t  wavelength CLAMB(1) 
0 

wavelength (A) of i n i t i a l  chart  reference mark 

chart  coordinate of i n i t i a l  chart  reference mark 

0 

wavelength (A) of f i n a l  chart  reference mark 

chart  coordinate of f i n a l  chart  reference mark 

number of da ta  points  f o r  the  chart 

chart  coordinate of the  PL amplitude 

chart  coordinate of wavelength ( in teger )  corresponding 
t o  AMPl(1) 

wavelength (i) corresponding t o  NLAMB(1) 

maximum uncorrected amplitude found i n  the  da t a  
s e t  

corrected amplitude divided by AlWT 

energy (eV) corresponding t o  XLAMB(1) 
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