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SUMMARY

The general method for analyzing steady subsonic potential
aerodynamic flow.around a lifting boay'haVihg arbitrafy shape
is'presentéd. By usihg the Green function méfﬁod,'an integral
representation for the pbtential is.ébtained. Uﬁdér Sﬁali.
perturbation assumption, the potehtiél at any point, P, in the
field depends only upon the values of the potential and its
normal derivative on the surface,ze, of the body. Hence if
the point P approaches the surface of the body, the represen-
tation reduces to an integral equation relating the potential
and its normal derivative (which is known from the boundary
conditions) on the surface Ze (two~dimensional Fredholm integral
equation of second-type). The question of uniqueness is exa-
mined and it is shown that, for thin wings, the operator be-
comes singular as the thickness approaches zero. This fact may
vield numerical problems for very thin wings. However, numeri-
cal results obtained for a rectangular wing in subsonic flow
show that these problems do not appear even for thickness ratio
T = .001. Comparison with existing results show that the
proposed method is at least as fast and accurate as the 1lifting

surface theories.
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SECTION 1
INTRODUCTION

A general method for compressible potential aero-
dynamics has been developed by one of the present authors¥*.
Presented here are applications of.the method to linearized
steady subsonic flow. The method and the associated
numerical procedure for evaluating surface pressure are
described for general complex aircraft configurations.
Numerical examples for finite-thickness wings are included.

1.1 bPefinition of Problem

The importance of an accurate evaluation of the flow
field and related pressure distribution around an aircraft
is well known to the aerospace designer. In the methods
usually employed for the evaluation of the pressure
distribution over a wing, the wing is assumed to have
zero-thickness (lifting surface theories, see for instance
Refs. 1 to 4). More recently more sophisticated technigues
have been introduced for the evaluation of wing-body
combinations. An excellent review of the state of the art
in this field is given by Ashley and Rodden (Ref. 5) and
therefore is not repeated here. It may be noted however
that, as pointed out in Ref., 5, these newly developed
technigques "are really just another evolutionary step
toward the remote goal of flow-field analysis for wholly

arbitrary configurations". On the other hand, arbitrary

* See Ref. 6



configurations have to be considered for aircraft design.
Therefore methods for completely arbitrary configurations
are becoming more and more impbrtant. A general method,
suitable for use in automated design is presented here.

- A brief summary of this method is presented in the rest
of this Subsection. The mathematical formulation of the
problem is outlined in Subsection 1.2, while an outline
of the report is given in Subsection 1.3.

A general theory of the unsteady compressible potential
flow around lifting bodies having arbitrary configurations
and motions is presented in Ref. 6. 1In particular, for
steady subsonic flow, the theory yields an integral
equation relating the potential on the surfaces of the
body to the "normal-wash". However, the integral equation
becomes singular as wing thickness goes to zero. Hence, in
order to demonstrate the feasibility of the method, the
problem of a rectangular thin wing is solved numerically
herein. The method used consists of dividing the surface
of the wing into N small elements, and approximating
each element with its tangent plane at the centroid of
the element (discrete element method). Then, assuming
(P to be constant within each element and satisfying the
integral equation at the centroid of the element, yields
a system of N linear equations with N unknowns, the
values, qk , of the potential at the centroids of the

elements. The results indicate that the method can be



used even for very small thickness (i.e., thickness ratio

T =.1%. Loss of significant figures becomes important only
when T decreases below about .0l1%. However, even for

T =.01% the final results are in agreement (to plotting

accuracy) with the existing ones.

It may be noted, however} that for thick wings and bodies,
the tangent-plane approximation may not be an accurate one.
Furthermore, the discrete element method is not necessarily
the best method. These questions are analyzed in Ref. 7
where different numerical procedures are considered. These
include a "modal method" (as an alternative to the discrete
element method) whereby the unknown function qJ is expressed
as a linear combination of prescribed functions (modes) with
unknown coefficients. The results indicate that the discrete
element method is preferable for both accuracy and computer
time. Variations of the discrete element method are also
considered in Ref. 7. These include a purely numerical co-
efficient (without tangent-plane approximation) as well as a
correction (through numerical evaluation of the difference)
of the error introduced with the tangent-plane approximation.
Results indicate that the last procedure is the most accurate
one. However, the improved accuracy does not compensate for
the increase in computer time. In other words, if the com-
parison is made with equal computer time (rather than with
equal number of unknowns) the pure tangent-plane approximation

is more accurate (for T =10%) than the corrected tangent-

-3-



plane approximation. Hence, the former one is used here

although the second one is also mentioned for the sake of

completeness.

1.2 Formulation of the Problem

In the following, the isentropic inviscid flow of a
perfect gas, initially irrotational, is considered. Under
this hypothesis, the flow can be described by the velocity
potential P . _Consider a frame of reference such that the
undisturbed flow has velocity U_, in the direction of the
positive x-axis. Then, it is convenient to introduce the

perturbation potential ¥ , such that

- (1.1)
$=-U_(x+Y)
Note that fPE 0 in the undisturbed flow. The equation for

the linearized potential subsonic aerodynamic flow is,

2 a?.
2
v = M? =L 7‘2 (1.2)

where Vais the Laplacian in x,y,z variables, and

M=Uao/aao _ (1.3)
is the Mach number.
A very general approach is considered here by assuming
that the body immersed in this flow has arbitrary shape.
Thus, the surface of the body is represented in the general

form,

% (%, 4,3)=0 (1.4)




where the subscript B stands for Body.

dition on the body is given by,

V& V5,=0

By using Eg. (1.1), Egq. (1.5) yields,

or

with

VY. VS, = - 2%/0x

\Y

’%; = %

] CNR
Pz - Y2

The boundary con-

(1.5)

(1.6)

(1.7)

(1.8)

Furthermore, as mentioned above, the boundary condition at

infinity is given by

(f 20 (1.9)
Finally, the pressure can be evaluated from the Bernoulli
Theorem,
Y
N [ 7-1 2 /§Ll
—_=]] - ( V7¢L'V(© -1d ) ]
2 (1.10)
¥, 24, =
or the linearized Bernoulli Theorem,
P-P = -p u? oF (1.11)
o0 [~} - ax
which yvields, for the pressure coefficient,
(1.12)

__ Pt s
C,P-— _.-2_3_%

z 0 U0



1.3~Outkline of-Report

The method of solution presented here is based upon
the well known Green function technique. The Green function
for the subsonic flow is used in Section 2 to derive an
integral representation of the potential q) at any point
in the field (control point) in terms of the values of (f
and a‘f/gn on a surface surrounding the body and the wake.
It is shown in Section 2 that the integral representation
can be simplified under the assumption of small perturbation.
In Section 3, the problem of a finite thickness wing
in subsonic flow is analyzed within the limits of small-
perturbation assumption, that is, linearized potential
equation, boundary condition, and Bernoulli's theorem
are used. Note that the surface of the body is not
modified in view of the fact that the method is intended
for complex configuration analysis. It is shown (Appendix A),
that if the control point is on the surface of the body, the
problem reduces to an integral equation. The question of
existence and uniqueness is also discussed in Section 3. 1In
Section 4, the numerical procedure for solving the integral
equation is presented. 1In particular, it is shown that,
for a zero-thickness flat wing, the operator becomes singular.
Hence, in order to verify the limit of applicability for
low values of the thickness ratio, the subsonic flow around
thin wings is solved numerically. The results are presented

in Section 5, where the conclusions are discussed also.

-6



SECTION 2

INTEGRAL REPRESENTATION FOR THE VELOCITY POTENTIAL
IN SUBSONIC FLOW

2.;__P;§nd§}fGlauert Transformation

In order to obtain a formally simpler expression for

Eq. (1.2), the following Prandtl—Glauert Transformation is

made,
X = g%?é j’:‘%. Z’%; (2.1)
where |
272
(9 = (1-M°) (2.2)
Using these new coordinates, Eg. (1.2) can be rewritten as,

"{72 ? =0 (2.3)
where 6 is defined as,

...__@_'——)

) K
oY J +92. (2.4)

Thus Eq. (1.2) is reduced to a Laplace equation. Eqg. (2.3)
is solved by the well known Green function technique, which

will briefly be shown in the following subsection.

2.2 Green's Theorem for the Laplace Equation

The Green's function for Eg. (2.3) is defined as a

function satisfying the following equation,

76 = S(X-X,,Y-Y,,2-2) (2.5)



where & is the Dirac delta function.
Multiplying Eq. (2.3) by G and subtracting from it Eq.

(2.5) multiplied by ¥ , one obtains,

-, —
GvY-9vig =-YS (2.
Making use of the identity,
v-(avb)=vavb+av3b (2.
one obtains,
T (GV9-9TG) =-95 2.
Defining a field function E such that,
E=1 in V (outside of body)
(2.
=0 otherwise
and multiplying Egq. (2.8) by E, then integrating it over V,
one obtains,
[f EZ-(69,9-9T7G)dv=-ff[E¥Sdy, 2.
v v
Using the following identities,
— - -
[f v. ¥d vV, = 9;6 Vo NdZ, (2.
v
[ a8x-x,,Y-Y, 2-2,)dy, = A(X,Y, 2Z) (2.
%
with
- —V_.S (2.
N & ———
[vS|

7)

8)

9)

10)

11)

12)

13)



and noting that the solution to Eg. (2.5) is,8

- (2.14)
6=~ 57

with

J/
R [(X‘X.)z“f(Y*T,)z-f(Z—Z,)z] ? (2.15)

Eg. (2.10) then becomes,

- 2 [ [ (2.16)
4TEY = 2:95 [¢ 2 (F)- & %1d= 2.16

where
N TS " .
oN 1w S
Eg. (2.16) is the desired integral representation for the

velocity potential ?’.

2.3 Small Perturbation Hypothesis

In this subsection, considerable simplification of Eq.
(2.16) is obtained by making use of the small perturbation
hypothesis. It should be noted that the small perturbation
hypothesis has been evoked by assuming that the governing

equation of motion is represented by the linearized equation

of the velocity potential as shown in Eg. (1.2). For neg-
lecting of nonlinear terms implies that the derivatives of

(F are much smaller than one, i.e., in compact form,

(2.18)
(f -
. = & )<<
L»O()l



where L 1is a characteristic length of the problem.

This hypothesis is now used to simplify Egq. (2.16) into,

|
47TEY=#[‘)°£](-I—:\,'—)—-‘JOH"F{]<IJZ (2.19)
P l

where f} is defined in Eg. (1.7).
In order to do this, consider the boundary condition

given by Eqg. (1.6). Under the assumption of small perturbation,

2 _ = (2.20)
’-;)’Zi. = O(e)<<l

or, according to Eq. (1.8),

l
BN =0 (&) << (2.21)

Iv3l 2x
This means that the x-component of the normal is small com-

pared to the other two, hence

NETESRAY (2.22)

and

¢ = vP-vS _ _vfvS M23P @S |
Y |v S| |VS| 2% 2X |73 (2.23)
~ VY:VS
= Tivsr 9

Hence, Egq. (2.16) can be approximated by Eq. (2.19).

- 10 -



SECTION 3

NUMERICAL FORMULATION

3.1 Introduction

In the preceding sections, a brief discussion of the
theory of steady subsonic flow is given. 1In Section 1, the
problem is formulated. 1In Section 2, the Green Function
technique is applied.to obtain the integral representation
for the velocity potential ¥ , i.e., { at any field point
is related to ‘f and 2—:—2 on the surface of the body and the
wake. A simplified expression is then obtained under the
hypothesis of small perturbations.

It is obvious that the general formulation presented
here has no closed-form solution except for a few very
special cases. Hence, in general, the use of high speed
computers will be required. Thus, the numerical solution of
the problem as formulated in Subsection 2.3 (small pertur-
bation flow around an arbitrary wing) is discussed here.

It should be mentioned that the numerical problems arise
especially on the treatment of a thin wing (see Subsection
4.6). Thus, in the discussion, it will be assumed that the
body under consideration is a thin wing, although the for-
mulation is valid for any body with sharp trailing edges

(see Subsection 3.3).



3.2 Integral Equation Formulation; Existence and Uniqueness

of the Solution

The integral representation of the potential for steady

compressible flow in Prandtl-Glauert variables is given by

(see Eq. 2.19),

C.

AMEY = 99550 O/Z-f# _Kl' —R—l_)dz (3.1)

In order to analyze Ehe question of uniqueness of the solution,
the surface 2. is replaced by a smooth surface Z’ surrounding
(at very small, but finite, distance; the boundary layer thick-
ness, for instance) the body and the wake (Fig. 2a). The

wake is truncated at a very large, but finite, distance from
the wing. If the control point is on the surface >/ , the

function E assumes the value 1/2 and Eg. (3.1) reduces to,*

27[50:“#50,,‘,:‘;'012/*? Yfﬁ'(%)dZ’ (3.2)
5

If the geometry of the wake is known and if y% is replaced

by the value (see Eg. 1.8 ),

()On = ;%F ::—_aS/QX'/I\ZS, (3.3)

which assumes on the body and the wake, then Eq. (3.2) is an

*
See Appendix A



integral equation relating the downwash integral to the
unknown value of (y on the surface. ©Note that Eq. (3.2)
gives the solution of the exterior Neumann problem and, in
this case, the solution of the equation exists and is
unique*; for any smooth (Lyapunov) surface (Ref. 9 , pp.
620-621).

Next, the surface Z, (surrounding the body and the
wake) is replaced by the surface X , composed of two branches,
the surface ZB of the body and the surface Zy of the wake
(Fig. 2b). Thus, Eg. (3.2), combined with Eq. (3.3), reduces

to**

2MP=-F P Adz+F @2 (L)dz
Zs Zs ' (3.4)
+ | Gu-9) 2 (4)d=
u* '

W

In Eq. (3.4), U is the upper side of the surface of the wake

and hence, the normal NT is understood to be the upper normal.

*Note that, for the interior Neumann problem, the solution of
the equation is not unique, for any arbitrary constant can

be added to the solution. Physically speaking, one might

say that, for the exterior problem, this arbitrariness is

eliminated by the condition §¥ = 0 at infinity.

* %
The source integral on the wake is equal to zero.

- 13 -



Note that only the value of 9% on the surface of the body
(not on the wake) is necessary to solve the integral Egquation
(3.4).

From physical considerations, the solution of Eq. (3.4)
is "very close" to the one of Egq. 3.2. Thus, it will be
assumed that, if the geometry of the wake is known, the
solution of Eg. (3.4) exists and is unique. It should be
emphasized however, that this conclusion is based upon phy-
sical reasoning. HoWever, this reasoning is questionable,
as shown by the remarks given in Subsection 4.6. Hence, a
rigorous mathematical proof of the existence and uniqueness
of the solution of Eg. (3.4) would be highly desirable.

However, there are still two important questions to be
considered: first, the geometry of the wake and second, the
special behaviour of Eq. (3.4) when the thickness of the wing
goes to zero. These two questions are discussed in Subsection

3.3 and 4.6, respectively.

3.3 The Wake

As mentioned in the preceding subsection, the surface
of the wake in Eg. (3.4) is not known. Thus, Eg. (3.4),
which is satisfied on the body, must be completed by the
equation on the wake, which says that the velocity on the
wake is tangent to the surface of the wake. Thus, one ob-
tains two coﬁpled integral equations, one on thé body and one

on the wake, with 33 unknown on the body and %% unknown on



the wake, whereas ‘fn is known on the body and Atf:: qu—‘f.@
is constant along the x-direction on the wake, since no

pressure discontinuity can exist across the wake:

Acpz_za_ax_ASO___o (3.5)
According to the Kutta condition, this constant value
is equal to the value of AY at the trailing edge. Given the
velocity on the wake, the geometry of the wake is obtained
by the condition that the velocity is tangent to the wake.
This approach has been successfully used in Ref.l0 to study
the transient incompressible flow around a wing after a
sudden start. However, from a practical point of view, this
approach is too lengthy and a simplified treatment of the
contribution of the wake is presented in the following.
Note first that

ﬂg%((—,;.',—)dzz—[[fg—‘:fdz:—[/ Cf’;‘fnz-[[dn (3.6)

where

dz, = dz cea (N, R ) (3.7)

._>
is the projected area (along the direction K ) and

dZp (3.8)
RZ

is the solid angle (see Fig. 3).

do

Next, consider the wake integral as a sum of M strips

in the x direction (see Fig. 4). Applying the mean value



theorem, one obtains (note that Aff is only the function of

Y‘)’

I, = 1/:[’ AP(Y) (5 )d= =~ [ af(x)da
UW
(3.9)

M
=- 3 A‘)O(Ym)ffdﬂ = - z Ay)(y,mmm
mz=| Um

where A‘)O(Y,m) are the mean values of 4Y for each strip
Un ., and Q,,are the solid angles of the strip uh, . Eq.
(3.9) shows that any changes of the wake such that solid
angles l?,nare not altered, do not have any influence on the
value of the wake integral T, .

This suggests that a "reasonable" geometry for the wake
can be assumed, provided that the values of the associated
solid angles are not excessively different from the true ones.
Hence, it is possible (and convenient) to approximate thé wake
by straight vortex-lines, parallel to the direction of the
flow, emanating from the trailing edge of the wingt For,
geometrical considerations show that the solid angles,_(lm,
are changed only slightly. With this assumption, the wake
integral simplifies considerably and its contribution reduces

to a line integral. For if the trailing edge is given by

X = Xze (Y)
Z-= Z‘T.E.(Y) (3.10)
then the equation of the surface of the wake is given by
S=Z - ZT_E,(Y.> =0 (3.11)

¥This is consistent with the small-perturbation assumptlon.
The llmltlng behaviour as the thickness of the wing approaches

zero is discussed in Ref. 6, Appendix G (See also Subsection
4,7 of this report).
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and

b/2
Tu=-1/ de AW(V,S'R) 3c!xd)'
b X1, 7 R (3.12)
b
=), 4934y,
where b is the span of the wing and
T, =0 dZn. N
2-2)- SZR v ] [ 2k dx,
X P (3.13)
dZre - | X X
=|(Z- - | - (L€
[(z-2) dy, (. ”Lr—rfwz,—zﬁf (R )]

with Z, = ZTEH:)' In particular, if the trailing edge is
in the plane Z, = 0 (i.e., ZIéXJHD, Eq. (3.13) reduces to
Z Xgg. = X
w:hzh—z{'~ 3 5 2,/} (3.14)
(Y-Y)+ 2 (X=X )+ (Y-Y)+(2-2)"]

In conclusion, .under the reasonable assumption of cylindrical
wake (straight vortex-lines) the effect of the wake sim-

plifies considerably and Eg. (3.4) reduces to,

My =P g dt P PR (RIIZ
(3.15)

+_£/ Aﬁo'rﬁ JWdT

with J given by Eq. (3.13).
Finally, an important remark about bodies without sharp

trailing edges, must be made. In the discussion presented in
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this subsection, it was assumed that the wing had a sharp

trailing edge. Note that the results can be easily genera-

lized to the case of general bodies with sharp trailing edges.

However, for bodies without sharp trailing edges, the inviscid

flow theory is incapable, in general, of predicting the lo-
cation of the stagnation point from which the wake emanates.
This can be easily seen in the case of rotating cylinder of
finite length. From the experiments the location of the
stagnation point depénds upon the angular velocity, (0 . On
the other hand, the equation of the geometry of the cylinder
does not depend upon W and thus W does not even appear in
the equation of the inviscid flow.

In the following, it is assumed that the body under
consideration has a sharp trailing edge. However, a viscous
theory which predicts the location of the stagnation point
from which the wake emanates, is necessary in order to extend
this method to bodies without sharp trailing edges. Similar

consideration holds for the case of detached flow (when this

can be approximated by a wake emanating from a point different

from the sharp trailing edge).




SECTION 4

NUMERICAL PROCEDURE

4.1 Discrete Element Formulation

The governing equation for the velocity potential, after
Prandtl-Glauert transformation, for steady subsonic flow, is.

shown in Egq. (2.19) and is rewritten here,
I 2 l
4JTE‘f=—#‘)0,,—§'dZ+ #gﬁ,(ﬁ)?dz (4.1)
= P

where %) on the left hand side, represents the velocity
potential at a field point P and Y on the right hand side

represents the potential at a point P. on the boundaries

1
(body surfaces and wake). E is defined as,
E=0 if P is inside the body
= 1/2 if P is on the surface (4.2)
=1 if P is outside of the body

From Eg. (4.1), it can be seen that if (? on the boundaries
is known, the velocity potential at any field point can be
obtained immediately. So the first step is to find gD on

the boundaries. With E = 1/2, Egq. (4.1) becomes,
_ L o (L
2;73:-—2_95 P mdZ + P P (FIAZ
B Zg

+ff A2 (m)dx
UW i

w
where 2&3 is the surface of the 1lifting body, U is the

(4. 3)

upper surface of the wake and,



A ‘f) = ((P“PP"' - L,olmnur) (4.4)

on the wake. Eg. (4.3) cannot be solved analytically except
for some special cases. Hence, numerical scheme has to be
employed. The procedure used in this study is as follows.

As mentioned in Section 3, the wake is approximated by a
plane parallel to the direction of flow, and 45? on the

wake is equal to AP at the trailing edge and integration

in the x-direction from x = X e to x—>9o0 is carried out as
outlined in Section 3.3. Secondly, the surface of the body
is divided into discrete surface elements (see Fig. 4). 1In
each element, y’ is approximated by its value at the centroid

of the element, then the integration is carried out within

each element. The resulting equation can be written as

N N

- .. (4.5)
Tr=batZ o $it 2 Yai e |
with
]
by = — dz (4.6)
-& f‘)on 27]'[.?&

=] (4.7)

cae = P 53 (5 V3¢

AL ZgaN' 2rﬁk
where

(%) 2 8 _ 2 (»6)

Re=L(X =X )+ (Y=Y )+(Z z)] (4.8)
is the distance between the dummy point of integration P, to
the center point P(k) of the element k, and

Wee = W"-|P=}_>HS) =J Jy 4% (4.9)

Ay, _p®
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for the boxes in contact with the trailing edge and

’w_&‘: =0 (4.10)

otherwise. Eg. (4.5) can be rewritten as

N
%\ ? b& (4.11)
with |

= - — U - 4.12
Q—ki_" 2. c&d 7"{& ( )

where Ski is the Kronecker delta. Solving Eq. (4.11), one
obtains the solution of the problem. So the guestion which
and w

remains now is how to evaluate b c

k? ki’ ki~
For a wing symmetric about the plane Y = 0, Egq. (4.10)

can be rewritten as

N A _’:l A A
.Z q*_%-f' (%L—Cﬁ—%i)%:b& (4.13)

L= ¢
where N = N/2 is the total number of elements on the right
hand part of the wing and Cri is the influence of two elements
(in symmetric position with respect to the plane Y = 0) on

an element on the right hand part of the wing,

a —————

(R) (L)

with

2 (1 _y7-_-) _
T ] = o [ (X045 (Y0453 (22)]

|v,S (4.15a)

( )
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o (T = [ X0 + 3 A+ (2-2)]

v Ng 198 Yi (4.15b)
| 3
“(Re)
where A
(R) V2
- 2 2 . 2
Rg = [(XF‘X) + (Y, -Y)"+(2,-2) ] (4.16)
(L) 2 2 2472
Re = [x~x)+ (Y +Y) +(2,-2)" ]
Similar expression holds for Wy
Evaluation of Cri’ Wij and b, is shown as follows.
i ki k
4.2 The Geometry of the Wing
The planform of the wing is defined as
- (5
Fre” TE‘ ¢ (4.17)
6= Xz §) (4.18)

for ()<Ig<iky§

where b is the span of the wing. The chord of the wing at

any point is then defined as
CY) = Zog(4) -T2 (F) (4.19)

This planform can be transformed into a rectangular one by

the following transformation

X~ XLk
/XTE'_%'L_E_ _ (4.20)

LW
}
o
N
AN
IN

[ (4.21)

IN

1=24/b -1 €1
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The thickness, h, of the wing is defined as

£=Zcm¢3—2—f§-ﬁu—§)h—7z

is the maximum chord length and ¥ is the thickness

(4.22)

where c
: max

ratio of the wing, i.e.,
> = ﬁenna. . (4.23)
C,n““.

Summing up, the geometry of the wing is represented by

X= (Xep-Xe)i+  Kor
%= bl (4.24)
F= T Coag iz?‘f?(/—i)flf_?z

for 0£3¥g -1 ST <

If the angle of attack A is different from zero, then

1}

x k‘cwo(—rgmo(
$=9 _
3= ~xAnK T3 ot

For small Z and < , Eg. (4.25) can be approximated by

(4.25)

T
y g Wy

x
¢ (4.26)
3= 3 -A
As mentioned before, in the process of solving Eg. (4.4),
the wing is divided into elements and the mean value of 9’ in-

side each element is approximated by that at the centroid of

the element. Because y’ and the slopes of the wing vary more
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rapidly near the leading edge and the tips, smaller elements
are required at these regions.

Using the following trans-
formation,
=2
j=X
- 2
h= 1~ (I-})

(4.27)

then, dividing the transformed planform into even mesh (i.e.,
the mesh size is

AX =1 /NX
AY = I/NY

(4.28)
where NX and NY gre the numbers of elements in the x and y
directions, respectively),

the n

the boundary of the element on
row and n
X

column is
(M -1) X £ X £ NgAX

(ng—-l) AY £ 7 < Ny AY

(4.29)
The centroid of this element is defined as
Y(‘_: (nx—'j-) 4)?
_ — (4.30)
YC = { Yly—-b-)AY
Note that Egs.

(4.28) and (4.29) yield smaller elements near
the leading edge and tips.

4.3 Calculation of c, .

ki

The evaluation of c, .

i consists of two parts.

The first
part is to approximate the wing by replacing each element by

a plane tangent to the wing at the centroid of the element
defined in Eg. (4.30).

The boundary of the tangent plane is

- 24 -



defined by Eq. (4.29). The equation of the tangent plane can

be written as

33 = (22) (X7 ) + (52 )o (4-Yc) (8.1

where the subscript "c" indicates the value at the centroid

mentioned before.

The integration of Eg. (4.14) on these tangent planes
can be carried out analytically as shown in Appendix B.

This tangent plane approximation yields good results for
thin wing (thickness ratio varying from .1% to 1.%). The
computer time required for this tangent plane approximation
ranges from 13 sec. for NX = NY = 4 to 128 sec. for NX =

NY = 7, on the IBM 360/50 of the Boston University computing
center.

For a thick wing, the tangent plane approximation may
not yield good results. Then the solution can be improved in
the following manner. The most severe error comes from two
sources. First, the curvature of the surface changes very
rapidly near the leading edge and the tips. So, the tangent
plane is not a good representation of-the true surface. Se-

}f_R) 20 when k =

condly, as can be seen from Eg. (4.16), R
i (i.e., field point coincides with source point), so l/Rk
in Eqg. (4.14) varies rapidly, hence again making the tangent
plane a poor approximation. Thus, it is necessary to inte-
grate numerically the difference between the actual surface

of the element and the tangent plane; and add this correction

value to that of the tangent plane approximation.
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The numerical integration scheme used here is the Gaussian
quadrature. For integration over the leading edge and the
tips (but i# j), a four point Gaussian quadrature is used.
For i = j, a polar Guassian quadrature (see Appendix C) is
used. The results obtained in Ref. 7 indicate that no correction
is needed for the elements which are not on the leading edge nor

on tips and are such that i # j.

4.4 Calculation of w, .
ki

As mentioned before, the surface of the wake is approxi-
mated by a surface parallel to the direction of the flow,
emanating from the trailing edge of the wing. Based on this

assumption, it is shown that Eq. (3.12),
bs
2 (L — (4.32)
# a9 (75 )dz = _/%Ayﬁjwdr

with

T=[(Zre-2)- j?&w.—w])[ L dx,
TE,

(4.33)

. ) dzE X=X
"[(ZT-E. Z) —T (Y- Y)](Y R (Z"Z) [’ ( R )K.-‘-Xr.r:].

and AT%E:(%§EL(‘(81522. Then, integrate Eq. (4.32) and
lumpAAﬂiEto the last row of elements in contact with the
trailing edge. It should be noted that if dZ/dY =0, or if
this term is negligible compared to the other term in the

same bracket, Egq. (4.32) can be integrated exactly.
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4.5 Calculation of bk

The process of evaluating bk' i.e., Eq. (4.6), is similar
to that for evaluating Cri- For thin and moderately thin wing,
bk is evaluated analytically on the tangent plane approximation.
Integration for bk on these planes is shown in Appendix B. For
a thick wing, the solution is improved, as for Cri’ by numeri-
cally integrating the difference between the real surface and .
the tangent plane and adding this difference to the value ob-
tained by the tangent plane approximation.

It is worth noting that, for a wing with a plane mid-
surface (symmetric about this plane), ?% consists of the
symmetric part (value on upper surface is same as that on

lower surface) and the antisymmetric part. The symmetric part

A

(4.34)

(a)
and the antisymmetric part 9% is,
(a)

()oh :io( (4.35)
where the upper sign stands for upper surface and the lower
sign for lower surface. Since bk is linearly proportional to
?& ’ bk can be separated into symmetric part and antisymmetric

part. Eg. (4.11) can be rewritten in two equations,

(s) (s)

a££ Lfd = % (4.36)
(@ - ,(a)

Qg 50.: = bg (4.37)



() (a)
where ?& stands for the symmetric solution and 9% for anti-

symmetric solution. Separation of 91‘ into these two parts
avoids elimination of significant figure due to the presence
of the other, hence greatly improves the accuracy of the so-

Jution.

4.6 Calculation of the Pressure Coefficient Cp

As shown in Eq. (1.12), the pressure coefficient can be

written as
| CP=—2 2% /ox (4.38)

As a first approximation, Cp is evaluated by finite difference

method, i.e.,

(C‘P)i=—2(ﬁ+l—§fé):_2 Yirr = ! (4,39)
AX, A X ZZC
where (Cp)i is the Cp at the rear end of the element on the

ith row, y% is the value of y’ at the centroid of the element
on the ith row and A:ZL is the distance, in the x-direction,
between the centroids of the ith and i + lst rows of elements.
A better approximation for Cp is to combine Egs. (4.1)
and (4.38) and calculate Cp by integration. For the present

purpose, however, Eg. (4.39) is a good approximation.

4,7 Limiting Behavior for Zero Thickness

As mentioned above, the formulation described thus far

becomes .singular in the case of zero thickness. This is
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i

shown clearly by the fact that, for lifting surface (in the

plane z, = 0), Egq. (4.1) reduces to
1 -

dx,dYu ' (4.40)

219, —)fgﬁug Fu- 9@) s (&),

and

i

an Y, gw(‘fu-(fg) %.(%)Zuzodx.d‘r. (4.41)

w
where Z ~is the portion of the plane zl = 0 (upper side) which
contains the wing and the wake. By adding and subtracting Egs.

(4.40) and (4.41), one obtains

%z.+ %2 =0 (4.42)

and

7TA‘5’+U 3092 —R’_ dx,dy, =0 (4.43)

=0

This implies that (since, as well known, there exists a non-
trivial solution Aﬂ?iO) the operator shown in Eg. (4.43) is
singular.

Hence, one can expect that the numerical procedure also
has a singular behavior. In order to show that this is indeed

the case, consider a symmetric wing with angle of attack o
and thickness ratio T , and let T go to zero. In this case,

Egq. (4.6) shows that

lim -
P E,Q-O (4.44)
since (T;)u =—($%%. In order to simplify the discussion,
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the numbering of the elements is assumed to be such that the
odd (even) numbers correspond to elements in the upper (lower)
surface and that the element in opposite position to the
upper element i, has the number i + 1 (see Fig. 4). As
before, upper element i and lower element i + 1 will be
called "opposite elements".

With this numbering, it is easy to showéthat, according

to Eq- (4.7),

0 -(}o ol 1o o]
[
-t _0_1_0_0_:_ _1e_9
o o :o -!; fo ©
- |
_E_iL_3+ _JLQ_
I !
liwm [cg ] = (4.45)
T—o
I I I I
o o: 0 o{ lo -
0 0| o O! |--l (s}
L ! -

In other words, all the coefficients Cyy are equal to zero
except for the ones relating opposite elements, which assume

the value -1. Furthermore, the coefficients Wy, are equal

i
to zero. Hence, Egq. (4.11) in the limit, as & goes to zero,

reduces to

N e o; loo
|
Lo oo _Lee
oot 1 | 0o
ool ¢! I 00
A ) 4=
{#:]-
4
(4.46)
|
rtak
o o0 IO (o] 1 |I |
© Q@ 19 0 ! :
L 1 ! L



This equation can have a nontrivial solution since the deter-
minant is equal to zero.

Note that this result implies that zero thickness wings
(lifting surface theory) are more difficult to deal with
than finite thickness wings.

However, this shows also that, by using the method pro-
posed here, one may encounter numerical complication due to
the fact that, for very thin wings, the determinant is close
to zero and hence, one may encounter strong elimination of
significant figures. This implies that one has to be very
ki and bk'

In order to establish the practical limits of the

careful in the evaluation of the coefficients c¢

applicability of the method, Eg. (4.11) has been solved

numerically for very small values of & . The results are

presented in Section 5.
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SECTION 5

NUMERICAL RESULTS

5.1 Introduction

Some numerical results showing the validity and flexibility
of the present method are shown in this section. The con-
vergence of the present method is analyzed in Subsection 5.2.1.
The effect of the numerical correction for a thick wing (as
discussed in Subsections 4.2 and 4.4) is discussed in Subsection
5.2.2. The effect of thickness is described in Subsection
5.2.3. Finally, comparison with existing results is given
in Subsection 5.3.

To give an idea about the functional type of the solution,
the value of ? and Qe are shown in three-dimensional forms

in Figs. 5 and 6, where

Q¢=-ACP:CQ— b (5.1)
is the 1lift coefficient. The thickness ratio is < = .001,
angle of attack K = 5°, aspect ratio b/c = 3 and the mesh
NX = NY = 7 (that is N = 98). It may be noted that the diagram

of qz is flat in the neighborhood of the root (more precisely
'aQe /ay =( at root). Hence, in the following discussion
of convergence, the value of Cy at the centroid of the elements

in contact with the root (root elements) is used.

5.2 General Characteristics of the Method

As mentioned above, in this subsection the convergence,
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the effects of the numerical correction and of the thickness
are analyzed.

5.2.1 Convefgence

In order to study the convergence of the solutions, the
case T = .001 was solved for NX = NY = 4, 5, 6 and 7, res-
pectivelf. The values of the lift distribution Cp = - A-Cp
at the root elements are shown in Fig. 7.

The results show that the solution is convergent very
fast and that the caée 4 x 4 is sufficient for an accurate
analysis. The computer time employed on the IBM 360/50,

available at the Boston University Computing Center, is

given in Table 5.1.%*

TABLE 5.1
Number of Elements Computing Time (Sec.)
4 x 4 x 2 13
5 x5 x 2 30
6 x 6 x 2 64
7 x 7 x 2 128

5.2.2 Effect of Numerical Correction on Thick Wing

Table 5.2 shows the comparison between the results of
the tangent plane approximation and that with numerical
correction for a wing with thickness ratio & = .2. The other

data are the same as those for Fig. 5. The computer time

= : :
Advantage of symmetry with respect to Z was taken.
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required for both solutions are also shown. It is seen that
even for this thick wing, the tangent plané approximation
yields good results and considerable computer time is saved.
So all the discussion given in the following subsections is

based on results from this tangent plane approximation.

TABLE 5.2
T.P.A. T.P.A. + N.I.

Cl‘ 8.09 7.91

at 2.60 2.59

root .975 .200
Computer; 22 136
Time
{sec)

5.2.3 Thickness Effect

In order to analyze the thickness effect, the problem
has been solved for four values of the thickness ratio,

T = .1, .01, .001 and .0001, respectively. 1In all these
cases, the number of elements in both x and y directions is
NX = NY = 4. Hence, the total number of elements (for upper
and lower side of the right half of the wing) is N = 32

(i.e., Eg. 4.13 is a system of 32 equations and 32 unknowns).



For the value Z = .001, no message indicating strong
elimination of figures was given, whereas, for the value

T = .0001, a message indicating an elimination of signi-
ficant figures higher than the prescribed tolerance at the
19th step was obtained.*

Hence, only the cases T = .1, .01, and .001 are pre-
sented here. The lift distribution (, = -ZﬁCp at the root
elements, is shown in Fig. 8. The results indicate that the
solution converges t6 a zero-thickness solution and that the
solution for T = .001 is a good approximation for the zero
thickness solution. It may be noted that the results here
showed that a thinner wing vields a higher 1lift.

Note that, according to Eg. (3.6),
N 3 ! /
Ty tm Z o5 ) = fd_Q=—/ (5.2)

since the point from which the solid angle is evaluated is
on the surface 2, . This equation is poorly satisfied on
the leading edge and the tip where the approximation of

the surface element with its tangent plane is poorer. The

*

For the solution of Eq. (4.13), the standard IBM SUBROUTINE
GELG has been used. The value of the tolerance (which is
compared to the ratio between the pivot at the nth step and

the initial step) was chosen to be TOL = .001.



N
poorest values of ‘chki at tip or leading-edge elements",

are given in Table 5.3, column 1, whereas the poorer value
for the "internal element" (not at the leading edge nor at

the tip) are given in column 2.

TABLE 5.3
T 1 2
.1 .76946 .98986
.01 .96247 .99899
.001 .99625 99990
.0001 .99960 .99999
Table 5.3 indicates that, for the case & = .1, the approxi-

mation of the surface elements with its tangent plane is not

satisfactory for the "non-internal elements".

5.3 Comparison with Existing Results

In oxder to evaluate the accuracy, comparisons with
existing results are given in Figs. 9 to 14. Different
values of Mach number, aspect ratio and different planforms

are tested to show the flexibility of the program. Thickness
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ratio shown in the figures are chosen arbitrarily. § and a
are defined as
£ - x/c)
n=23/k
Figure 9 shows the comparison of the value C
11

(5.3)

! between the

present solution and Cunningham's Theory and experiment12

on three cross sections of a rectangular wing. As can be seen,
agreement between the two theories is very good and agreement
between theory and experiment is very good except when near the

leading edge. Figure 10 compares the results obtained with the

present method and those obtained by Hsu (Ref. 13), Kulakowski

and Haskell (Ref. 14) and Cunningham (Ref. 11), for a rectangular

wing of aspect ratio AR = 1, thickness ratio T= .00l and Mach
number M = .2. It may be noted the excellent agreement between
the present method and the ones of Refs., 11 and 14, which are
generally considered to be very accurate.

The results for a delta wing ( AR = 2.5, T= .005 and

M = 0) are compared in Figure 11 with the Widnall results (see
Fig. 7.7 in Ref. 15). The results for a tapered swept wing

( R = 3.0, taper ratio = .5, /\# = 45°, M = 0.8, and & =
4.13°) are compared in Fig. 12 with Cunningham's results (Ref.
11).

Finally, it should be noted that the comparison of the
integrated values of the pressure is generally more signifi-
cant than the comparison of the pressure distribution because
small (relative) errors on the pressure distribution near

the leading edge can yield large errors on the integrated

- 37 -



values. Hence, the values of the section lift coefficients

!
CLO( :_/ACfo( ﬂ/§ (5.4)

are compared in Figs. 13, 14 and 15 to the ones obtained by
Yates (Ref. 16) for a rectangular wing with aspect ratio
AR = 4,4,8, thickness ratio 7T = .001 and Mach number
M= 0, .507, 0, respectively. It may be noted that the
Figs. 13 and 14 (incompressible and compressible flow, res-
pectively) show an excellent agreement, whereas in Fig. 15,
the agreement is less satisfactory.

In conclusion, the agreement is excellent for the cases
presented in Figs. 9, 10, 13, and 14, but less satisfactory
in Figs. 11, 12 and 15. The reasons for the small disagree-

ments shown in Figs. 11, 12 and 15 are now being analyzed.
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SECTION 6

CONCLUDING REMARKS

A general method for analyzing steady subsonic flow
around lifting bodies of arbitrary configuration is presented
in the preceeding Sections. The method is then applied to thin
wings in steady compressible flow, which is the most challenging
problem for this method. The results indicate that the method
is accurate and does not require excessive computer time. The
rate of convergence is surprisingly high. Similar results
were obtained for oscillating wings in subsonic flow (Ref. 18).

Since the problem of elimination of significant figures
is not encountered even for very thin wings (thickness ratio
T = .1%) it is expected that no such problems will be
encountered in applying the method to realistic complex
configurations. Extensions of the method to complex configura-

tions are now under consideration.
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APPENDIX A

THE VALUE OF THE FUNCTION E ON THE SURFACE

A.l Introduction

Equation (2.19) gives a representation of the potential
anywhere in the volume, in terms of the values of agvén and %’
on the surface of the body. The values of 3(]0/9)'2_ on the
surface of the body are given by the boundary conditions, but
the values of %’ are not known. In order to solve the pro-
blem, it is thus necessary to obtain first the values of %’
on the surface. This can be done by letting the point P of
the volume V approach a point P, of the surface.

In this Appendix, it is shown that, in the limit, Eg.
(2.19) is still valid if the definition of the function E is

generalized as follows

E=1 outside Zi
E= 1/2 on 2 (A.1)
E=0 inside Z.

By letting P —» P_, the integrands become singular in the
neighborhood of P,. Thus, it is convenient to separate the
contribution of a small neighborhood* of P,, which will be
indicated as Zg¢ .

For steady compressible flow, Egq. (2.19) can be rewritten

*
The neighborhood 2Zge is a small circular surface element,

with center P, and radius €& .
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as

47TE§0=-ff :A?DRQIZ //(j)s_g(ﬁ,)dz-réc (A.2)
Z-Z¢ z-Z¢

where 56 is the contribution of the neighborhood of P,, given

by

f[an‘ Rdz+// 503,\, (&)d= (a.3)

The analysis of Se is highly 51mp11f1ed by using local

A A A
coordinate X, Y, ﬁ, with Z normal to the tangent plane
(directed from E = 0 to E = 1). Then, separating terms of

order € , Egq. (A.3) reduces to*

= '(a(P [ IA — cfQ,ci?
Z| *x‘2+\rlzsc2 x'_t T‘Z_fZZ
(A.4)
/ P
e ff 2 dxdY, +0(€)

Az A2 2 OZ 22, 02, 52
xiz-r]’.ée X, ‘f’Y“‘"Z
where the subscript * indicates evaluation at P,. By using

polar coordinate
A _ Az D2
R=J% 2+Y (A.5)
A
6 = Lan Y/x

one obtains

)
o
N
I
o
]
3
Q
v
N
N>
N~
}
o
1
I
y
™
N

* A
Note that X =Y
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92, jaz_'_é\z
e (A.6)
c A A
_zw*j 2 _1_RdR +0¢(e)
o °Z [R%Z?
Noting that
_3/2
- I : A2 A2 ] 2 /
=== | )=—-(R+Z =~A—A(A ) (A.7)
Z °zZ R24 32 R OR /Rz_réxz'
Eq. (A.6) becomes
2% e
se =21 () [T |
(A.8)

A |
-~y Z | = ]o + 0 (€)

N
Finally, by letting P go to P,, (that is, Z-> 0), one obtains

lim & = im [‘27(9—2%)*( e%22~121)

PP Z-0 2z,
i} _Z_ _ .z
Mlmm —Ehoe

A (A.9)

= [—217(-5%)*6 + 27, —I—;—’]w(e)

=127 % + 0 (e)
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g

where the upper (lower) sign holds for 2>0 (2<0), that is,
when P originates outside (inside) the surface F , corres-
pondingly, the function E assumes the value E = 1 (E = 0).

Finally, using this result in Eq. (A.4), one obtains

AM(EL 5 )ﬁ--[/ o Rdz+/[ & Rdz+o<e—) A.10)
Z‘Ze

Note that, in both cases (P inside or outside 2, ),
_ - 1L _ /
Ec=Ei7 =1-5 = (A.11)

:0+‘2—=
Furthermore, R, is the distance between the dummy point,
Pl’ and the control point (on the surface 2 ), P,. Hence, by
letting € go to zero, Eq. (A.1l0) yields

47 Ex fic = #aN Ry dz+5§5 5oaf\/ F\’x)dz (A.12)

It should be emphasized that the limit € -> 0 is now per-
formed with P on the surface J, . This implies that the con-
tribution of Ze is now of order €& . In order to clarify

this point, consider the quantity

€

T =/ =~ ( =5 =3 )?RdR
& 2 2,52
) €, Z R+Z (A.13)
_ [ Ei IS A ‘2
J§%22] [€2 52 62+z2

=)

3




and note that

(A.14)

b Iim I' =Ir -
z_::; {e—e»o } Q—:?) {JE’+22 IZI} /0%(2)

whereas

lim {hm I } lim 0 =0 (A.15)

e, >0 Z->0 €;>0
The difference between these two limits is due to the fact
that, in the limit (as Z —>0), the integrand of :Ig;behaves
like a Dirac delta function and hence, its contribution for
a domain which excludes the singular point is zero.

It may be worth noting that, in Eq. (A.9), the sequence
of limits indicated in Eq. (A.1l4) must be performed, whereas
in Egq. (A.12), the one indicated in Eg. (A.l5) must be used.

Finally, it is shown that the results obtained here are
equivalent to the definition of E given by Eq. (A.1l).

Note that Eq. (2.19) must be used if P is'outside or
inside the surface, whereas Eg. (A.12) must be used if P is
on the surface. However, by comparing Egs. (A.12) and (2.19),
it is easily seen that Eq. (2.19) is valid everywhere (outside,
inside and on the surface 2 ), if the convention is made

that E is given by Eg. (A.1l).
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APPENDIX B

SOURCES AND DOUBLETS ON A TRAPEZOIDAL ELEMENT

B.l Trapezoidal Element

In this Appendix, the effect of the sources and doublets
distributed on a trapezoidal planar element, are obtained in
analytic form. As mentioned in Section 4, it is of interest

to consider planar elements described by the equation

Zl—Zlc_:_oT(XI—X|C)+P(Y|-YIC) (B.1)

where the subscript c stands for centroid of the element,
defined in Eq. (4.30). The boundary of the projection of

this element on the plane 4 = 0 is given by

Xm TAm(Y=Y) 2 X, € X;p tdp(Y-Y) (B.2)
in1‘ 7] \nP

Equation (B.2) represents a trapezoid and the element defined
by Egs. (B.l) and (B.2) is called trapezoidal planar element

(see Fig. B.1l).

B.2 Doublet Distribution

Consider first the integral of a doublet distribution

of unit density over a trapezoidal planar element, given

by



== (&) d= &
‘[nv‘/)ﬁ +df(h‘ﬂ -
=- ! (x-x) ( 23 (z-2)dX,
Yim X, it A Y-, R3lazv' s, ( )J
Yip er‘id (%- Y)
=sf dy[ (X (x-x)+ F (y-1)- (z- 2)] g5 X,

T it dmlY-Y)

where
S = _Efiéﬁé_ = | on upper surface
4 (B.4)
|25/57 |
= -l on lower surface
and use has been made of the fact that, according to Eg. (B.l),
A =93 335
24, CYd (B.5)
=__/'az,
It should be noted that, for a trapezoidal planar element,
;z and ﬁ; are constants and that, according to Eq. (B.1l),
6=1(2-2)-K (X-X) =B (YY) (
B.6)

=(2,2) ~ K X,=X) =B (Y.~ Y)
Thus, Eg. (B.3) reduces to

N Yip Xt dpl%-Y)
o) = |
ID:ﬂSS[ dY’/ R3 dxl (B.7)
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with
2 = - ~ 2) 2
R={(X,\=x)+ (Y,-Y)+[ (54X (X-X) + (Y,-Y)] }

- {[(|+;2)}/"(X|_x)+;(ﬁ(7vK)+ )T +8 1) (136 (5.6
-2, =2 Vs 2 ~2./272 Z
+ [+ 2B )07, =4S /142 +B )'/ ]/(/+a<2)} -
= { 357 371"
where

L,/ - L
2= (142 (X-X) 1R [BlY-y) +8 ]/ (+&)
=L BHE(N-Y) + 8 /(14a%BY %] /(14252 B9
T= 8 /a+aip)"

Integrating Eq. (B.7), one obtains

Yo 3 2
A :-SS P ] _ }m | dY (B.10)
iarf [ FRYErO LN EN S gl

where

t o . "
§?= (1+ 0—(2)/2 [ X,3X+dp (Y-y) 1+l P(K—YHS]/[H« (

B.11)
A

= 3019‘1' §|»p'Z

and

§ = 32 [0, T+ LB (v + s 43" (o )

=3,.t3.7
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with

3i;:(|+&z)Vh[th4K 4—02-0C>E)<S//( ]+_§z+i§9J

g'P: [‘;(ﬁ-+(l+&2)df,] /[I Ve *f_szll/z

" (B.13)

3, = () ?x, -X+ (a- d.B)&/(1+a+5)]

Eim = [&fﬂ(l + %2) do| /[, 4o +/§.,_Jvz

A
Substituting Egs. (B.l1l) and (B.12) into (B.10) for §r and

A
gn‘ and changing the variable of integration from ﬁﬂ to q

one obtains

T

Al A
é\: =55 30731-3‘7"2 30m'1' §,m7
b (H‘a—(z‘fﬁz)%‘ ('\2 Az)[( A2 Ay A5 '/2—("1’\2 [( + A A2 B, ‘/]C{{
7 HI. 30P+§m7)f7+3] 7+3°%) 3°M§]Mq)+z+§] 2
(B.14)
where
; 7,72 //2 —2 =2 -2 'Z
1.= [t ) <\):M_Y)+@g/(/+o( +6 )sz/(/+o( )/
(B.15)
A —2, 2/ -2 —2v/s —a\ /i
27,,‘[('*“ t37) (Y,(Y)Jrﬁé/(h‘d +B )/J/(H'o( )/
Consider the indefinite integral
2 é\;*i{?\ A AN As DA (B.16)
I,zf'—%—i—gq—[(ngr?l’l) + 1437 d’z -
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This can be integrated by standard methods of integration;

using the transformation

3 L-%°E /5

A':-. = L (B.17)
[ Y
and integrating,.yields
A f SR E [ Ir%rE /3 } |
J" T4 an 2 Az A A, a Agy N2l 2/A2 (B.18)
I 31 | 31 + +3%3/5+ ;'dﬂ 3/%)

and, returning to the original variable, 7 '

2/ A
/3"2] } (B.19)

Finally, by using Eq. (B.19), Eg. (B.14) reduces to

ﬁi=_ s § § (B.20)
T (XHEDE |
with
2 - = j; A ? 2 2 /
T - {—I—_S,\-lﬂ(@-—,\w’—s)T}
P Pr
o [ Ee 3o 22y L
Tau {22 (4, P .
- tar! { e (f,- 2= $) L
{13! W3 s ﬁw}
{ _jéﬁ ( Sim 92 N
il { g g $) )
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where

A2 V
A A2 A2 2
= + +
p=03,+70, *3 ]V

A2 A2z A2z
;);mz [ EP’“ '(M +—S ]
~ A 2 2 y
ﬂmr - [-3nf'+?p 4’§2j]2
A A |/
Pon = [ Bt Ty #3717
with
A A AN A
L
A N N A
Spm = Sop + Eipllm
A N A A
SIM?: = Eom-{—}l%\’(r
A A A A
}'mw\ = ?ow\ + E,Mq%\
B.3 Source Distribution

(B.22)

(B.23)

Finally, consider the integral of a source distribution

of density asl/rzglover a trapezoidal planar element, given
’oX,

by

where R is as shown in Eqg.

=
[€))

AI\Szf [ 28 dZ

R aX, |vs]
, x,,,+d¢,(}’ ¥) (B.24)
28//3,\/, de
S
leshzl g, dn (Y- Y)

(lh(ﬁ‘@'z

(B 8). Integrating Eq. (B.24) yields,

e T %; A A A AN B
S [ [y 0 VAT

/ ’&4[( é\\m‘z)* \/(%w‘gx{\)-’-%\ﬁ%zjd 7 } (B.25)

QW\ A N A A

"Z\ frlm' §°1nf g:rfiomj—g\w\ J S

A
are defined in Egs. (B.15),
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(B.13) and (B.9). Consider the indefinite integral

Iz'”'[f/“(?‘f‘(g)d? | . (B.26)
with § :.§;+'A;€ Integrating by parts yields (note that
A A ' - N ; §.+€ A
Iz = ’é“ Af'A 'ij’A {A +—= >
T(8+P)-[ 8 75 AL _—
. o A2 , .
- A A Ay _[rdF (. -l:d" '
= A In(5+P) f(i,’l’“é\f(f;)@ 1
Note that
Qa n _ 92 ?_?::~ %z (.g —4)
3+P ¢ gtﬁz 2 ’/Z\%*?L ? (B.28)
: A A B.
B A S AU S SO SR
Az D2 N A2 2 ~ 200 A +/\z,\
n+3" p 'zrf ¢ Q«f?) g 7+32 .
Combining Egs. B.27 and B.,28 vyields (note that 3 f—j9=—§o)
A
A A KA
bn(5+p) + -%—d’ o df - [ (B.29)
7(2/9)50()([41(,7/#,_01
Note that
| ~ A A 2 Az Ve
f‘?’d'? = JL(5, +§0) "+ 32 ) ]
(B.30)

: 2% p
1+8" h(? l+§ +Vl+'§\,7“>

Combining Egs. (B.25), (B.29) and (B,30) yields
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-

Fig. B.1 The projection of the trapezoidal element in the
plane Xl’ Y1

- 71 -



APPENDIX C

GAUSSIAN QUADRATURE AROUND A SINGULAR POINT

C.l1 Introduction

As mentioned in Subsection 4.3, the coefficients

o /
C*“‘é/_au, TRy )4 E c.1

are evaluated by approximating the surface element Z; with

its tangent plane at the centroid of the element. This value
can eventually be corrected by adding the integral of difference
between the original integrand and the (tangent-element)
approximated integrand. This integration can be evaluated
numerically by using standard Gaussian quadrature formulas.
However, in the case of k = i (effect of the element on itself),
the tangent plane contribution is equal to zero. Furthermore,
the integrand becomes infinite when Rk = 0. Hence, a special
integration scheme must be used. In this Appendix, an analysis
of the type of singularity of the integrand of Egqg. C.1 (when

k = i) is given (Subsection C.2). Then a transformation that

eliminates the singularity is presented (Subsection C.3).

c.2 Behavior of Doublets in the Neighborhood of Singularity

For simplicity, the analysis of the behavior of the
doublet in the neighborhood R = 0 is performed with a frame
of reference such that the origin is at the centroid of the

element and the Z-axis is directed as the normal Eﬁ
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Then, the equation of the element can be written as

zZ- F(X,Y)=0 c.2
with Z = 0 for X = Y = O (Fig. C¢.1l) and Eq. C.1l for K = i,

reduces to

Cu"‘//—é dx,dr, | c.3

Zg
where
__9F oF _

h = 2 X, (XI“X) —arl (Y."Y)+(Z: Z) Cc.4
is the distance along the normal Nl of the origin from the
point Xl’ Yl' Z1 (Fig. C.2). 1If R goes to zero, the distance
h goes also to zero.

2
h ~ R C.5

where C = l/(z is the curvature of the cross section indi-
cated in the figure ( Q, is the radius of curvature). Thus,

in a neighborhood of R = 0, Eq. C.3 reduces to

4t = f] & dx, dv, c.6

It should be noted that C is the curvature of the cross section
and thus C depends upon the angle ¥ of the cross section. - Thus,
in order to evaluate Egq. C.3, it is convenient to use polar
coordinates since this eliminates the singularity 1/R as well

as the sharp variations (in the plane X Yl) of the integrand,

ll
due to the dependence of C upon V’ .
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£.3 1Integration Scheme

As shown above, the integration of Eq. C.l (with k = i)
in the neighborhood of the centroid of the elément can be
performed using standard quadrature techniqueé (Géussiah qua-
drature in particular) in polar coordinates. However, with
these variables, the definition of domain of integration is
not given by coordinate lines. Hence, a more suitable tech-
nique (fully correspondent to integration in polar coordinate)
is described here.

As shown in Egs. 4.29 and 4.30, the boundary of the

element in the plane are given by

X.~4&X/e $ X S X +AX/2

Yo - aV/a €7 €Y +4Y/2

Note that the use of

E:Yz 7:[’_“_?)1_] C.8
has the advantage of eliminating the square root singularity
at the leading edge and the tip.* On the other hand, a
singularity of the type R-l in the plane Xyr Yq yields a
singularity of the type , RL in the plane X, ¥. Thus, the

integral to be evaluated is of the type

Io{XdY

' i dZ=
This singularity is due to the factor YVS, in BS aZ
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~_‘A_r — ol + : .

Y. z.-aX VX*+Y c.9
where £ (X, ¥) is a finite but discontinuous function of X, Y
(the discontinuity being due to the "cross-section-curvature

effect") although continuous in polar coordinate. In order to

analyze Eq. C.7 it is convenient to separate the contributions

of Dy + Dy and D, + D, (see Fig. €.3) as
_ / " c.1l0
Cat ™ Cak T Cue
with
= ) /(75 7k dxd?
Cé,é D‘/'l-/D_;-,C(J )/{X+Y)
. — = —2 ok — c.12
0421// E(R V) (X4 Y% dR dY
D, 1D,
Using the transformation
X=X+ 55 u ~lsu gl
R AY c.13
Y=Y £ 5 uv ~| V<]

Equation C.llreduces to

¢/ = Axay //’/{(u,v}/u/a’u dv _ AXA\//'/’.??U,W' fign

Vixe +4X WV + 4 un) 4L c.14
Note that f(u, v) is a regular function of u and v since the
o2 =2,=1/2

factor |u| compensates for the (X© + Y") singularity and
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the "cross-section-curvature effect" disappears in thé_u, v
plane (which is similar to polarjcqordipatg_plane). Hence,
Eg. C.14 can be evaluated by théXééﬁésién?qﬁ;draﬁure.;wSimilar
transformation can be used in Eq.}ﬁC.l?. o

This procedure waé_qééd tpievéluaﬁe noﬁ'ahiy the effect
Cprx of the element on itsélf, buf also for éffect'of an ele-

ment on the opposite element. Similar technique is used also

for the evaluation of

> b > / >
by P T ¢ Fn ?Z y c.15

- 76 -



N

Fig. C.1 Surface 2. in neighborhood of R = 0
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Fig. C.2 Curvature of cross section
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NASA-Langley, 1675 CR—2616

Fig. C.3

Domain of Integration
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