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6. Abstract 

Similarity solutions have been found which give the adiabatic flow of an ideal gas  
about two-dimensional and axisymnietric power-law bodies at infinite Mach number to 
second o rde r  i n  the body s lenderness  parameter .  
a sum of zero-order  and perturbation s imilar i ty  functions for  which the axial variations 
i n  the flow equations separated out. The resulting s imilar i ty  equations were integrated 
numerically. The solutions, which a r e  universal functions, are presented i n  graphic and 
tabular form.  To avoid a singularity in the calculations, the resu l t s  are limited to body 
power-law exponents grea te r  than about 0.85 for  the two-dimensional case and 0.75 for 
the rruisymmetric case.  Because of the entropy layer  induced by the nose bluntness (for 
power-law bodies other than cones and wedges), only the p re s su re  function is valid a t  the 
body surf ace.  

The flow variables  were  expressed as 

The s imilar i ty  rrsults give excellent agreement  with the exact solutions for  inviscid 
They give good agreement  flow over wedges and cones having half-angles up to about 20'. 

with experimental s ho r k - w ave shapes and surface -pr  e s s u r  e distributions fo r  3/4 -powe r 
axisymmetr ic  bodies, considering that Mach number and boundary-layer displacement 
elfects are not included in  the theory. 
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SECOND-ORDER SMALL-DISTURBANCE SOLUTIONS FOR 

HYPERSONIC FLOW OVER POWER-LAW BODIES 

James C. Townsend 
Langley Research Center 

SUMMARY 

Simil rity solutions have been found which give the adiabatic flow of an ideal gas 
about two-dimensional and axisymmetric power-law bodies at infinite Mach number to 
order-b2, where 6 is a body slenderness parameter. These solutions were obtained by 
a perturbation method wherein the flow variables are expressed as ser ies  of similarity 
functions and the axial variations in the flow equations separate out. The resulting simi- 
larity equations were numerically integrated from the shock wave, where the boundary 
conditions a r e  known from the Rankine-Hugoniot relations, toward the body. The 
order-6 solutions a re  limited to body power-law exponents greater than 0.85 for two- 
dimensional flow and 0.75 for  axisymmetric flow to avoid a singularity in the shock- 
displacement calculation. 
parameter 6 and, thus, are universal functions, are presented in tabular and graphic 
form. 
other than cones o r  wedges) the velocity and density functions are not valid a t  the body 
surface, but the pressure function is unaffected. 

2 

The solutions, which are independent of the slenderness 

Because of the entropy layer induced by the nose bluntness (for power-law bodies 

In comparisons with the exact solutions for  inviscid flow over wedges and cones, 
2 the order-6 similarity results give excellent agreement for 6 values up to 0.4, corre-  

sponding to wedge or cone angles up to about 20°. 
shock-wave shapes and surf ace-pressure distributions for  3/4-power axisymmetric 

and boundary-layer displacement effects are not included in the theory. 
ness ratios near 2, the effects of the order-6 te rms  a r e  significant only very near the 
body nose, whereas for  a fineness ratio near 1 the order-b2 te rms  have a large effect 
over almost the entire body. 

In comparisons with experimental 

bodies, the order-6 2 similarity solutions give good results, considering that Mach number 

For  body fine- 
2 

Although the order-ti2 similarity solutions are developed for  infinite Mach number, 
the derivation shows that they are compatible with shock-strength perturbation solutions, 
which introduce Mach number effects. 
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INTRODUCTION 4 
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1 

A great deal of research has gone into finding solutions to the hypersonic small- 
disturbance form of the inviscid adiabatic-flow equations. One area that has received 

refs. 1 to 6.) Since these studies have all begun with the small-disturbance equations, 
obtained by neglecting te rms  containing the body thickness ratio, their solutions also 
neglect the effects of body thickness. The purpose of the present study was to obtain 
second-order similarity solutions for  power-law bodies by retaining all second-order 
te rms  in the body-thickness ratio. 
the body thickness and, thus, no first-order solutions in  the thickness parameter.) 

particular attention is that of similarity solutions for power-law profile bodies. (See i: 
j 

I 

(As will be seen, there are no first-order terms in 

The similarity solutions referred to herein a r e  solutions for  self-similar flows, 
that is, flows f o r  which the flow field between the shock wave and the body can be 
expressed in te rms  of functions which (in suitable coordinates) a r e  independent of one of 
the coordinate directions. Inviscid axisymmetric supersonic flow over a cone with an 
attached shock wave is a classical example of a self-similar flow and represents a par- 
ticular case of the similar solutions discussed herein. 
ert ies (e.g., the pressure,  the density, and the velocity components) a r e  themselves con- 
stant along rays from the cone vertex. For the other power-law bodies, the flow-field 
properties a r e  not constant themselves, but similarity functions describing these prop- 
erties a re  constant (to the order of the solution) along curved power-law paths from the 
nose of the body. The similar-solution approach to solving the flow equations is valuable 
because it allows a reduction in the number of independent variables in the problem. In 
particular, fo r  hypersonic flow about power-law bodies, the similarity approach reduces 
a system of partial differential equations to a system of ordinary differential equations. 

Kubota (ref. 3) obtained numerical solutions for the self-similar flow fields about 
bodies having power-law profiles in the limits of infinite Mach number and very slender 
bodies (the "zero-order'' case). He also applied a perturbation in a shock strength ' 

parameter and numerically obtained first-order similar solutions for moderately strong 
shock waves. Mirels (ref. 4) computed additional and more accurate numerical results 
for  the zero-order and moderately strong shock-wave cases. He also derived approxi- 
mate analytical solutions f o r  these cases. Hayes and Probstein (ref. 5) described the 
general development of similarity solutions and emphasized the contributions of foreign 
authors. Mirels (ref. 6) treated all of the important developments in the use of hyper- 
sonic small-disturbance theory to obtain solutions for  power-law bodies in a unified way, 
and added an analysis of perturbed power-law body shapes. 

Only a few experimental investigations of the flow field over power-law bodies have 
been made. Kubota (ref. 3) compared his theoretical results to measurements of 

For the cone, the flow-field prop- 

2 



surface-pressure distributions and shock-wave shapes for  2/3- and 3/4-power bodies 
and obtained good agreement for the more slender bodies. 
pressure distributions and shock-wave shapes for  a ser ies  of power-law bodies, some of 
which fall in the similar-solution range. 
Beavers (ref. 9) also presented detailed shock-shape data for  a ser ies  of power-law 
bodies and registered some disagreement with Kubota's results. 
(ref. 10) presented aerodynamic drag and other data for  several power-law bodies over 
a wide Mach number range. Ashby (ref. 11) presented aerodynamic data for a similar 
se r ies  of bodies over a range of Reynolds numbers at a Mach number of 6, and Ashby 
and H a r r i s  (ref. 12) used a method of characteristics and boundary-layer computer pro- 
grams to show the important effect of boundary-layer transition on the total drag of those 
bodies. 

Peckham (ref. 7) measured 

Freeman, Cash, and Bedder (ref. 8) and 

Spencer and Fox 

Townsend (ref. 13) applied the zero-order solution of Kubota and Mirels, with their 
shock-strength parameter perturbation and with a boundary-layer displacement correc- 
tion, to the problem of estimating the forces and moments on a half-axisymmetric body 
under a thin, flat wing. In order to study a range of configurations at a moderately hyper- 
sonic Mach number, Townsend applied his method to configurations which are marginally 
slender (Le., to configurations for  which the e r r o r s  arising from body thickness are 
small but not negligible). This type of application points up two reasons for  seeking 
solutions which include the effect's of the second-order te rms  for body slenderness in the 
flow equations: (1) to assess  the e r r o r  caused by making the small-disturbance assump- 
tion, and (2) to improve the accuracy of calculations for marginally slender bodies. 

In the present study the second-order similarity solutions were obtained by a per- 
turbation method. This method used expansions of the variables in te rms  a f the  body 
slenderness parameter to obtain higher order solutions as perturbations from the known 
zero-order solution. This approach is very similar to that of Kubota and Mire ls  in 
obtaining their f irst-order solutions in te rms  of a small strong-shock parameter. A 
more detailed presentation of the theoretical development is given in reference 14. 

SYMBOLS 

shock-wave displacement constants (eq. (6)) al'a2 

CP 

- -  
P 'P, 

%fJ 

pressure coefficient, - 

- 
D length constant in shock-shape correlation (fig. 11) 
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f 

U 

- 
uu3 

V 

V 

X 

P 

Y 

6 

E 

4 

Length 
Maximum thickness 

body fineness ratio, 

similarity pressure function 

body length 

power -law exponent 

free-stream Mach number 

pressure 

1 2 
2 

free-stream dynamic pressure, - pu3Cu3 

lateral coordinate 

lateral coordinate of shock wave 

temperature 

longitudinal-velocity perturbation 

free-stream velocity 

lateral velocity 

velocity 

longitudinal coordinate 

2(1 - m) 
(1 + o)m 

alternate shock-shape parameter, 

ratio of specific heats 

R& 
body slenderness parameter, 

2 

-2 shock-wave strength parameter, (6M,) 



77 similarity lateral coordinate 

body surface angle 'b 

'S shock-wave angle 

similarity s t ream function '0 

V similarity longitudinal-velocity function 

5 similarity longitudinal coordinate 

P density 

U constant with value 0 for  planar flow and 1 for  axisymmetric flow 

@ similarity lateral-velocity function 

* similarity density function 

Subscripts: 

a part  of decomposed function multiplied by a2 (eqs. (22)) 

b body surface 

C part  of decomposed function independent of a2 (eqs. (22)) 

S shock wave 

t total 

0 zero order  

1 order - E 

2 order -6 

00 free s t ream 

2 

5 



A prime denotes the derivative of a function of one variable. A bar over a variable 
denotes that it has physical dimensions. Normalized variables (without a bar) a r e  given 
in equations (1). 

THEORY 

1 

I 

Transformation of Basic Flow Equations 
1 
i Normalization.- The initial treatment of the basic flow equations follows that of 

Kubota (ref. 3) (also covered by Mirels in ref. 6), except that no t e rms  are dropped. 
They showed that for slender bodies in hypersonic flow the variables can be normalized 
by using the expressions 

- .‘I P P =  
62/5 ,iim 

- -  I 

The symbol 6 is a body slenderness parameter (to be discussed later)  introduced so as 
to make the dimensionless variables of order unity. These variables are substituted 
into the complete inviscid adiabatic -flow equations to obtain the following normalized 
flow equations: 

1 Continuity : 

I Longitudinal momentum: 

1 Lateral momentum: 

Energy: 

6 

-- .... -- .. . . . . . . .dl 



The constant u in the continuity equation has the value 0 for  planar flow (Cartesian 
coordinates) or the value 1 for  axisymmetric flow (cylindrical coordinates). Note that 
each of these equations contains a leading term in 1 5 ~ .  If the body were  sufficiently 
slender, the order-62 t e rms  could be dropped, thus leaving the hypersonic small- 
disturbance equations used by other workers. For the present study, however, the equa- 
tions are retained in the complete form. 

Similarity variables.- The next step is to put the flow variables into similarity 
forms. Following Kubota's method, these forms will  be selected so as to agree with the 
flow through the oblique bow shock wave. The normalized flow variables just behind an 
oblique shock are (ref. 15) 

. 

l r ( M 2  sin 2 e, - 11 
vs = - cot 8, 

( Y +  ww2 

If the shock-wave shape is given by R(x), i t s  slope is 

shock-wave angle 8, is related to the slope by tan O s  = 6R', from which 

(2) = - d g  = 6% = 6R'. The 
d z d x  

Putting these results into the oblique-shock relations gives the 2 &j2R'2 sin O s  = 
1 + G2Rf2' 

pressure (for R' of order  unity): 

L 



Similarly, the other flow variables at the shock are 

ti2RV4 +---E 2 + O(64) R' +- 
Y + l  y.+ 1 = --- Y + l  

- 
where E =- is a shock-strength parameter; and as E - 0, ps - - Y + l  the 

y - 1' 62Mm2 Po3 
limiting value for  shock-wave strength. 

At this point, in order  to get an expression fo r  the shock-wave shape, consideration 
is narrowed to flows about power-law bodies. Under the hypersonic small-disturbance 
assumptions, a power-law body (rb - x") produces a power-law shock wave (R - x") 

2 
3 + u  

for  - c m 2 1. (See ref. 2.) Specifically, for 62 -c 0 and E - 0, a body 

1 rb = =xm produces the zero-order shock shape Ro = xm. (See figs. l(a) and l(b).) 

Note that for  m = 1 the body is a wedge (for a = 0) o r  a cone (for u = l), both of which 
are known to have straight shock waves and therefore satisfy the aforementioned relations. 

The expression for  the zero-order shock-wave shape serves  to define the slender- 

ness parameter 6. That is, %(f) = 6l' = evaluated at  : = 1' gives the relation 

. Thus, 6 is the tangent of an angle defined by the shock-wave position 6 = -  

(fig. l(a)) and is, in fact, a "mean shock-wave angle" parameter. However, the shock 
lies near the body so that the shock-wave angle and body slenderness a r e  closely related. 

6)" 
RO(1') 

1' 

To aid in the separation of variables, a shock-oriented coordinate system is now 
introduced (fig. l(c)). This system has 

r [ = X  q = -  
RO 

so that r = qRO = qxm = ~ 5 " .  The body surface is then rb = qbtm, where q = - 1 
b 26f' 

a 
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0 
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W 
0 
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._  
2 
0 
0 u 
- z 
W 

0 
-1 

c 

L,ongitudinal distance, f 

(a) Physical coordinate system (shown with 6 = 0.4). 

Longitudinal coordinate, x 

(b) Normalized coordinate system. 

Shock. 7)=1 

-- _ _  
1 

Longitudinal coordinate. E 
(c) Similarity coordinate system. 

Figure 1. - Power -law body and .zero-order shock in physical 
and transformed coordinate systems (shown with m = 0.85 
and 0 = 0). 
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The shock-wave shape to be used in equations (4) is the zero-order shock with ‘t 

I 
1 Kubota’s shock-strength perturbation (ref. 3) and a separate perturbation for the body 

slenderness. It is taken to be 

where the exponents are of the form required for  similarity and the constants 
and a2 a r e  to be determined as part of the solution. 

al 

Substituting the shock-wave slope (derivative of eq. (6)) into the expanded oblique- 
shock relations (eqs. (4)) and ordering the te rms  by powers of 6 and E suggest 
expressions for the flow variables in the following form (neglecting te rms  of order 64 
and of order  €2): 

\ 

p(5,q) = FO(q)m25-2(1-m) + EFl(q)m2 + tj2F2(q)m 4 5 -4(1-m) 

Here, functions of q = r/Ro replace the constant coefficients of the shock relations. 

Transformed flow equations. - Equations (7) are substituted into the normalized ~- 

flow equations (2), noting that 

10 



Then, the flow equations (2) become (away from the nose 5 = 0): 

Continuity: 

Longitudinal momentum: 

11 



1 i 

Lateral momentum: 

i 

Energy: 

1-2m 

These a r e  ordinary first-order differential equations that are linear in the derivatives of 
the functions defining the pressure,  density, and velocity fields. It is noteworthy that 
although 6 appears to the first power in the normalization of variables (eqs. (l)), only 
the even powers of 6 appear in the final form of the flow equations. Thus, although the 
solutions to be found are of second order in the body slenderness parameter 6, they 

2 could be considered of first order  in 6 . To avoid any ambiguity they will generally be 
referred to as order-6 solutions. 2 

12 



Similarity equations.- Since the general similarity solutions being sought do not 
depend on the particular values of 6 or  E, each of the three major terms in each of 
the four conservation equations (9) must be separately equal to zero. Therefore, the 
te rms  can be separated into 12 equations in  the 12 unknown functians Fg, $bo, "0, 
Go, F1, $bl, vl, $1, F2, $b2, 4, and $2. Eight of these equations form the zero- 
order and order-€ systems of equations found by Kubota (ref. 3). 

The zero-order equations are as follows: 

Continuity: . 

Longitudinal momentum: 

(7 - @o) vo' + 7 - FO' + 2(*) (. + 2) = 0 

GO 

Lateral momentum: 

Energy: 

These equations are the same. as the case first studied by Kubota, except that he omitted 
the longitudinal-momentum equation, which is uncoupled from the others. These equa- 
tions contain only one parameter, the power-law exponent m. Thus, for  two-dimensional 
flow (a = 0) o r  axisymmetric flow (a = 1) of a given gas, the similar solutions F o ( ~ ) ,  
qO(??), v0(q), and $o(q) each form two families of "universal functions" depending only 
on the power law of the body. 

13 



The order+ system of equations is given as follows: 

Continuity: 

Longitudinal momentum: 

Lateral momentum: 

Energy: 

- 2(1 - m) ( Y - - -  +I '1) - ( y - - -$ l=o  GO' F ~ ' )  

+o Fo +o Fo 

These equations a re  the same as Kubota's (ref. 3) first-order perturbation for shock- 
wave strength, except that (again) he omitted the longitudinal-momentum equation since 
it is uncoupled from the rest. They can be solved numerically by using the results 
of the zero-order solutions. The resulting similarity functions F1(q), +l(q), vl(q), 
.and $ l (q )  are also universal, like the zero-order functions,, in that they depend only 
on m as a parameter. References 3, 4,  and 13 contain the results of numerical solutions 
of the zero-order and the order-€ equations. 

The remaining four equations form the order-6 2 system, which has not been deter- 

mined previously, and are given as follows: 

14 
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Continuity: 

- 77vo*o' - Eva' + 2 ( - 4 q 0  1 - m  = 0 

Longitudinal momentum: 

- V0'G2 + vopo' + 2 ( + p j  = 0 

Lateral momentum: 

Energy: 

Except for additional te rms  corresponding to the order-6 2 t e rms  retained in the normal- 

ized flow equations (2), these equations are very similar to the order-€ equations; many 
of the coefficients are the same, and the only body shape parameter that appears is m. 
The similarity functions F2(77), q2(77), v2(77), and @2(77), which form the solutions to 
these equations, will, therefore, be families of universal functions in the same sense as 

15 



the other solutions are. Furthermore, just as the order-€ equations are independent of 
the body slenderness perturbation (in 62), these equations are independent of the shock- 
wave strength perturbation (in E). Thus, application of these equations to determine the 
body slenderness perturbation of the 'zero-order small-disturbance similar solutions 
neither requires nor excludes application of the equations for  the shock-strength pertur- 
bation at the same time. 

Since the order-€ solutions have been found previously and a r e  not needed to get 
the order-6 solutions, they will not be considered further. (Ref. 14 shows that the 
order-b2 and order-€ boundary conditions a r e  also mutually independent.) All subse- 
quent development will assume E << 62 so that E = 0(64) << 1; all te rms  of order-64 
or smaller will  be neglected. 

2 

Boundary Conditions 

Shock wave.- The boundary conditions at the shock wave are determined by the 
oblique-shock relations (eqs. (3)). By using the expression fo r  R(5) (eq. (6)), these 
equations in their expanded form (eqs. (4)) become (omitting the order-€ terms): 

Comparing these equations term-by-term with equations (7) determines the boundary 
conditions for  the similarity functions at the shock wave (q = qs) :  

2 v (q ) = -- 
0 y + l  I 

16 



Note that the shock-wave displacement constant a2 initially is unknown. It depends on 
the parameter m and is to be found in satisfying the boundary condition at the body sur-  
face as part  of the solution of the flow equations. 

Body surface.- The boundary conditions at the body surface a re  determined by 
requiring zero mass flow through the surface. Thus, the mass  flow normal to the sur-  
face (fig. 2) is given by 

Figure 2.- Vector diagram of flow at the body surface. 

17 



Or, in the normalized variables, 

Now, 

Putting this into equation (16) along with the expressions for  u and v in t e rms  of the 
similarity functions from equations (7) gives the relation 

conditions at the body surface are 

= o  I 
SOLUTION O F  EQUATIONS 

The similarity forms  of the flow equations (10) and (12) with the boundary conditions 
at the shock wave (eqs. (14)) and at the body surface (eqs. (17)) are sufficient to determine 
completely an order-b solution for the flow field. Although there is no general analytic 
form, solutions can be found by integrating numerically for each value of the power-law 
exponent m (with 0 set equal to either 0 or  1). This section first puts the equations 
into the form required for the numerical integration; then, it develops methods for over- 
coming certain difficulties in applying the boundary conditions; and, finally, it describes 
the numerical -integration method . 

2 

General Scheme of Solution 

The general scheme fo r  obtaining the solution is to begin at the shock q = qs,  where 
the boundary conditions are known, and to integrate the similarity functions numerically 
toward the body, which is known to be reached when the zero-order boundary condition is 
satisfied; that is, q = qb when @o(q) = q .  The derivatives of the similarity functions, 
used for the integration, are found by solving the flow equations for  them algebraically. 

18 



Thus, from the zero-order equations (lo), the derivatives a r e  

. 

2 The derivatives of the order-6 functions, from equations (12), are 

(3 7 - 77 - '"I Fo - Y - - - 
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1 - m  '@ - -F2'  11 - 4 ( ~ ) V 2  
O *o v2' = - 11 - $0 

Two major difficulties must be overcome in order  to apply the scheme of inte- 
grating these equations from the shock to the body. One difficulty is the singularity at the 
body surface apparent from the fact that the denominators of some of the te rms  of these 
equations approach zero as the independent variable 11 approaches the surface value r]b. 
(From eqs. (17), @o - r ]  - 0 as r ]  - r]b.) It is overcome for  the zero-order functions 
by using an approximate analytic solution 
at the body surface can be expressed as 

developed by Mirels (ref. 4).  Mirels '  results 

These relations are correct to the order of eo2, where O o  = q0+0(q - @o) is a 
stream-function similarity variable. Since eo - 0 as 77 - qb, they apply near the body 

20 



2 surface. The order-6 similarity functions F2, q2, G2, and v2 are calculated at 
the body by extrapolation. The extrapolation curve (chosen for  convenience) is the cubic 
in q passing through three of the computed points of the function and having its second 
derivative equalto zero at tlie body surface. The points used to define the cubic were the 
computed point nearest the body surface and two previous points chosen so as to make 
the distance between points larger  than the distance between the last point and the body. 

The second of the two major difficulties is associated with the fact that the problem 
is a two-point boundary-value problem. This difficulty is manifest in the need to choose 
the correct value of the shock-wave displacement parameter a2 (eq. (6)) at  the beginning 
of the integration in order  to satisfy the o r d e r 4  boundary condition at the body surface 
at the end of the integration. The measures taken to deal with this difficulty are described 
in the following section. 

2 

Methods for  Determining the Constant a2 
Since the constant a2 is initially undetermined, the value of the order-62 shock- 

wave similarity ordinate 77, = 1 + 6 a2m 5 -2(1-m) is unknown and cannot be used to 
begin the integration toward the body surface. Also, using the shock ordinate would 
reintroduce the longitudinal distance 5 ,  which is undesirable. The use of the zero- 
order shock ordinate r] = 1 as the starting point for the integration avoids these two 
problems but requires that the boundary conditions be transferred from r] = qs, where 
they are known, to 77 = 1. This transfer is made by using the Taylor ser ies  expansions 
of the similarity flow variables about the point 
expansion to equations (7) (with t e rms  of order  E neglected) and evaluating at q = 1 
gives to order 62: 

= qs.  Applying the Taylor se r ies  
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Comparing the resul ts  of evaluating these equations (by using eqs. (18) for the deriva- 
tives and eqs. (14) for the boundary conditions at qS)  with the results of evaluating 
equations (7) at r ]  = 1 directly gives the transferred boundary conditions at r] 3: 1: 

F2(l) =Lf[e) 3m 2 - (%)(+) 1 m 2y +P?i3a2 - '> 
Y + l  Y + l  

Iteration method. - These transferred boundary conditions provide a definite 

The more obvious one is to guess the value of 
starting position for the integration toward the body, but the constant 
determined by one of two methods. 
integrate toward the body (using the method given in the previous section to reach the 
surface), test  the o r d e r 4  boundary condition at the surface, and repeat using improved 
guesses until the surface boundary condition is satisfied closely enough. Improved 
guesses for  this iteration method were made by using the method of chords, a finite dif- 
ference approximation to the well-known Newton-Raphson method. 

a2 must still be 

a2, 

2 

Decomposition method.- The other method for  determining a2 takes advantage of 
the linearity of the equations in the o r d e r 4  2 functions, which allows superposition of 

solutions. It w a s  used by Kubota (ref. 3) and Mire ls  (ref. 4) in obtaining their results and 
is applied in a similar manner here. Each of the order-$ similarity functions is 
decomposed into a linear combination in the parameter a2; for example, 
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(22) 

2 

F2(77) = F2,a(77)a2 + F2,$(77) 

rc/2(77) = *2,a(~)a2 + Q2 

These decomposed variables are then substituted into the order-6 flow equations so that 
the continuity equation (12a), for example, .becomes 

= o  

Splitting each of the equations obtained in this way into two separate equations (by setting 
the term containing a2 and the othel' t e rm each equal to zero) produces a system of 
equations in the subscript-c functions and a system in the subscript-a functions. The 
system in the subscript-c functions is identical to the original system of equations (12). 
The system in the subscript-a functions is the same except that the inhomogeneous 
te rms  (i.e., the terms that do not contain an order-62 function o r  its derivative) do not 
appear. These two systems of equations have different sets of boundary conditions. In 
order to obtain them, the boundary conditions at 77 = 1 (eqs. (21)) a r e  decomposed by 
comparisons with equations (22), thus giving 

2 F (1) = -- 
2,c Y + l  
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Beginning at q = 1 with these bound'ary conditions, the decomposed system of equations 
(which is now 12 linear differential equations in 12 unknowns) is integrated toward the 
body. The boundary condition at the surface, expressed in t e rms  of the surface values 
of the decomposed functions, is (from eqs. (17)) 

Solvingfor a2 gives 

This value of a2 is now used to recombine the decomposed similarity functions by using 
relations such as equations (22). 

Once these functions have been computed for  any value of the body power-law 
exponent m (with (T = 0 or l ) ,  they can be used to calculate the complete flow field 
about any such body as long as it is slender enough that &i4 << 1 and the Mach number 

1 is large enough that E = - << 1. The appendix shows how to apply the solutions to 

a given power-law body. 

M p  

Description of the Numerical Method 

Two separate computer programs were written to integrate equations (18) and (19); 
one uses the iterative method and the other uses the decomposition method for obtaining 
the value of a2. These computer programs use a standard integration subroutine 
employing the fourth-order Runge-Kutta formula supplemented by a Richardson's 
extrapolation. This subroutine halves o r  doubles the integration step size automatically 
in order to meet specified local truncation-error criteria. 

For the preqent computations the initial step size (in q ) ,  which w a s  also the chosen 
maximum step size, was 2'? (0.0078125). 
than r 1 5  near the body. At each step, estimates of 7jj, and Fo(qb) were computed 
by use of equations (20). When both estimates agreed to within 1.0 X 

steps, the estimates were accepted as the actual values of 7b and Fo(qb) and the 
values of the other functions at the body were computed by the cubic extrapolation. The 

Generally, the step size decreased to less  

on successive 
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maximum extrapolation distance for  m # 1 was 0.000174 in q.  The iteration for  a2 
was considered to have converged when the order-62 boundary condition at the surface 
(eqs. (17)) w a s  satisfied to within 0.5 x 

DISCUSSION O F  RESULTS 

Zero -Order Functions 

The methods given in the previous section have been used to compute the zero- 
(All are for  y = 1.4, 2 order and order-6 

representing an ideal diatomic gas.) The figures presenting the functions were generated 
by plotting machines directly f rom the computed results. The slight waviness which may 
be noticeable in some of the figures is a result of this computer-aided plotting process; 
however, the curves at all points on the plots are accurate to within *O.l percent of the 
full-scale values. 

similarity functions for  a number of cases. 

The zero-order similarity functions Fo, @o, and vo a re  shown for several 
values of the power-law exponent m in figure 3 for  two-dimensional flow (a = 0) and in 
figure 4 for axially symmetric flow (a = 1). Numerical values of the functions a r e  given 
in tables I and II. 
(ref. 3), Mire ls  (refs. 4 and 6), and Townsend (ref. 13). 

These functions agree with the same functions calculated by Kubota 

The pressure function Fo and the lateral-velocity function @o a re  seen to be 
smooth and well behaved from the zero-order shock location (q = 1) to the body surface. 
Note that the body-surface values of @o lie on the line @o = q in accordance with the 
zero-order boundary condition (eqs. (17)). However, the density function Go and the 
longitudinal-velocity function exhibit different types of singular behavior at the body 
surface for m # 1: Go goes to zero, and vo goes toward minus infinity. This singu- 
larity at the body surface is an entropy-layer effect caused by the blunt nose of the body 
for m < 1. Van Dyke (ref. 16, page 186) notes the same singular behavior at the surface 
in a small-disturbance solution for  hypersonic flow over a blunted wedge and observes 
that it occurs because the zero-order solution "is not a valid first approximation in the 
entropy layer." For  the power-law body the effect is confined to a narrow region since 
the very high curvature in the nose area (infinite at x = 0) reduces the body slope 
rapidly. For example, when m = 0.80 and 6 = 0.5, the slope decreases from infinite 
to less than 1.0 before j?/? = 0.006. 

vo 

Van Dyke (ref. 16) uses the method of matched asymptotic expansions to obtain a 
uniformly valid analytic solution for  the blunted wedge. Adaptation of that method to the 
similarity-solution problem for  power -law bodies probably would extend the solutions to 
the body surface; but, the application is complicated by the similar solutions being in 
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numerical form. Mirels (ref. 4) recognized the singularity at the body surface even 
though he did not calculate the longitudinal velocity function, which exhibits the singular 
behavior. He avoided the singularity by developing an approximate analytic solution and 
using it to obtain surface values of the zero-order functions (eqs. (20)). 

Shock-Displacement Constant 
2 The variation of the calculated order -6 shock-wave displacement constant a2 

with the power-law exponent m is shown in figure 5 for  both two-dimensional and axi- 
symmetric bodies. The calculations made by using the iterative method for obtaining a2 
gave essentially the same values as were obtained by the decomposition method (eq. (23)). 
However, the results from both methods are characterized by a singular discontinuity 

in a2 
This singularity, which occurs near m = 0.817 for  u = 0 and near m = 0.653 for  
u = 1 (two-dimensional and axially symmetric flow, respectively), represents a sudden 
decrease in the distance from the shock to the body as the power-law decreases, followed 
by a jump to a large distance across the discontinuity. Since this behavior is physically 
unrealistic , it must be produced by the mathematical processes (analytical and numerical) 
used to obtain the solutions. 

which has no physical counterpart in the actual flow about power-law bodies. 

The upper part  of figure 5 shows that the singularity is associated with a zero in 
the denominator of equation (23). Since there is a nearby zero in the numerator of this 
equation, it appears possible that the singularity in the quotient 
zeros in the numerator and denominator a re  displaced relative to one another by accu- 
mulated e r r o r s  in the numerical solution. 
mathematically indeterminate at that point but could allow a continuous variation of a2 
with m, from which the value at the indeterminate point could be inferred.) To test this 
possibility, additional calculations were made by reducing the step size, reducing the 
range of the extrapolation, and, finally, extrapolating the whole of equation (23) rather 
than just the separate parts.  The results of these calculations indicated that the position 
of the singularity and the values of a2 f o r  m greater than that at the singularity were 
virtually unaffected by the numerical procedure. The singularity w a s  even unaffected by 
a complete reformulation of the problem in te rms  of momentum components instead of 
velocity components and by a change in extrapolation mode (ref. 14), although these 
changes did produce large changes in the computed value of a2 for m less  than that at 
the singularity (dashed line in fig. 5). Thus, removing the singularity would require a 
radical change in the mathematical process rather than simply changing parameters in 
the numerical integration and extrapolation schemes. For example, logarithmic te rms  
might be required in the shock-wave and flow-variable expansions (eqs. (6) and (7)). 

a2 occurs because the 

(Coincidence of the zeros would make a2 
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The results of the present calculations should be reasonably good for  body power- 
law exponents outside the range of significant influence from the singularity. Based on 
figure 5, the range fo r  good results is about 0.85 2 m 2 1.0 for  the two-dimensional 
flow (o = 0) and 0.75  2 m 5 1.0 for  the axisymmetric flow ((T = 1). Note that this is a 
more restricted range than that for  which similarity solutions exist - < m 5 1 2 

( 3  + ( T  

'(Y + 1) 
-4- 0)y -!- 2 

< m 5 1 or for  which entropy-layer effects are less than first order 
\ 

(ref. 17)). 

2 Order -6 Functions 
2 The order-6 similarity functions F2, G2, v2, and @2 a r e  shown in figure 6 

for  two-dimensional flow (cr = 0) and in figure 7 for  axisymmetric flow ((3. = 1). The 
results shown were  obtained by using the decomposition technique for  calculating the 
shock-displacement constant a2 (eq. (23)), but essentially identical results were also 
obtained by using iteration. Numerical values of the functions are given in tables I and II. 
These order-€j2 functions are seen to have some differences in behavior from the zero- 
order functions described previously. One obvious difference is that the curves describing 
these functions do not all emanate from a single point at q = 1. The variation at q = 1 
is due to the variation of the order-b2 boundary conditions a t  the shock with the body 
power law m and to the transfer of the boundary conditions from q = qs to q = 1. 

All of the order-6' functions except the pressure function F2 show singular 
behavior at the body surface for  m < 1. These singularities in the order-b2 functions 
a re  a result of the entropy layer, just as in the case of the zero-order function vo. In 
effect, the order-6 functions try to compensate for the large deviation of the zero-order 
longitudinal-velocity function at the surface, and so they become singular there also. The 
effect of the singularity is to make the order-b2 solution inapplicable at the body surface 
(except for the particular case of m = 1, for  which the body does not have a blunt nose). 
However, the singularity should not affect the solution away from the surface, where the 
similarity functions a r e  of order unity, so long as the constant is correctly deter- 
mined. Furthermore, the behavior of the order-b2 similarity function for the pres-  
sure is quite regular all the way to the surface. Thus, the body surface pressure 
can be calculated to order-6 by using this function; however, the results must be sus- 
pect until checked against experiment o r  more exact results. 

. 2  

a2 

F2 2 

It is because of the singular behavior of the similarity functions that the numerical 
integmdon cannot proceed all the way to the body surface. Neither do the extrapolations 
follow the singular functions in giving values at the surface; so, the calculated surface 
values of these functions do not represent the actual values of the singular functions, 
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which go to either plus o r  minus infinity at the surface. 
for determining the value of a2, the extrapolations can be considered as providing a 
limiting process for  this constant. 

To the extent that they are useful 

Region of Validity of the Solutions 

Three basic assumptions were required in order to obtain the hypersonic similarity 
4 solutions for power-law bodies: 

are negligible compared to unity; (2) the shock wave about the body is strong enough that 
te rms  of order E = l/b2Mm2 are negligible compared to unity; and (3) the Mach number 
is large compared to unity. e2 << 1 if the first- 
order solution in E is applied.) However, even when these three assumptions are met 
overall for  a particular power-law body, they generally a re  not all met in particular 
local regions. 

(1) The body is slender enough that te rms  of order-6 

(The second of these can be relaxed to 

4 The first assumption, 6 << 1, is obviously violated in the nose region of all blunt 
bodies, such as the power-law bodies for  m < 1. 
be expected to apply at the nose of these bodies. But, the order-b2 solutions should be 
particularly useful in providing an improved solution a moderate distance behind the nose. 
A s  mentioned in the previous section, the violation of the slender-body assumption by the 
blunt nose is also the cause of the singularities in the order4j2 functions at the body sur-  
face. 
tion does not apply at the body surface. 

Thus, the similarity solutions cannot 

Therefore, because the first assumption is violated at the nose, the order-6 2 solu- 

The strong shock assumption, E << 1, is violated wherever the shock-wave angle 
approaches the Mach angle, 
the shock wave will become weak far downstream from the nose df the body, and the simi- 
larity solutions will  not apply in that region. 

sinm1(1/Mm). Unless the Mach number is extremely large, 

The similarity solutions apply, then, in an intermediate region from behind the nose 
to somewhere in the vicinity of the base of the body, and, in the case of the order-6 2 

solution, only outside of the singularity at the body surface. The boundaries of this region 
depend on the Mach number and on the power-law exponent and slenderness of the body. 
Decreasing the Mach number or increasing the slenderness of the body tends to weaken 
the shock; decreasing the power-law exponent increases the nose bluntness but weakens 
the shock at the rear of the body. In any case, the boundaries of the region in which the 
solutions apply a re  not sharply defined but depend on the accuracy required in the results. 

Comparison With Other Solutions 

The only exact solutions available for  comparison with the similarity solutions a re  
those for  flow over cones and wedges, corresponding to a power-law exponent of m = 1. 
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(A finite-difference calculation for  m = 0.75 will be discussed in the next section.) 
Since the zero-order and order-G2 similarity solutions do not contain any Mach number 
dependence, the most appropriate comparison is at the hypersonic limit, 
Results from the similarity solutions, in te rms  of the physical flow variables, are com- 
pared in figure 8 with the exact solutions for  flow over a range of wedge angles at infi- 
nite Mach number. 
wave, as indicated by the solutions for m = 1 In figure 9, results 
f rom the similarity solutions are compared with the exact solutions for flow over circular 
cones. Figures 8(a) and 9(a) show the variation of shock-wave angle with the body surface 
angle and include exact results from several Mach numbers in addition to M, = 03. The 
other parts of figures 8 and 9 show the variations with the body surface angle of the pres- 

sure coefficient G/ijm, the velocity V/iiw = / m / G m ,  and the velocity components 
ii/C, and f/iim in the uniform flow behind the shock wave (fig. 8) and at the body sur-  
face (fig. 9). The similarity results are found from equations (6) and (7) with m = 1 as 
described in the appendix. The exact results a r e  found from the oblique-shock relations 
in the two-dimensional case and from the charts of reference 15  and tables of reference 18 
in the axisymmetric case. 

M, - m. 

This flow, of course, is uniform behind the straight oblique shock 
in figures 3 and 6. 

Figures 8 and 9 show that for m = 1 the zero-order similarity solution agrees 
well with the exact solution for body surface angles up to about 8b = 1 2 O ,  whereas the 
order-6 solution agrees well up to body angles of about Ob = 20°. A s  can be seen at the 
bottom of the figures, these cone or  wedge angles correspond to slenderness-parameter 
values of about 6 = 0.2 and 6 = 0.4. The shock-wave angles calculated by similarity 
theory agree especially well with the exact solutions for infinite Mach number. In fact, 
over a substantial range of body angles the agreement i s  very good with the exact results 
for Mach numbers down to twelve. The similarity results for  the magnitude of the veloc- 
ity also show good agreement for relatively large body angles (figs. 8(c) and 9(c)). Since 
the e r r o r  is larger for  the velocity components (figs. 8(d) and 9(d)), it must come mainly 
from e r r o r  in predicting the direction of the velocity vector. This error in direction is 
shown in the upper part  of figures 8(c) and 9(c), where it is compared to the curves 
628b and -6 Bb. These curves represent the order of e r r o r  expected from neglecting 
terms of o r d e r 4 2  and of 0 r d e r - 6 ~ ,  respectively. The e r r o r  actually occurring is seen 
to be very close to that which was expected. It should be noted that this e r r o r  in the 
direction of the velocity vector corresponds to an e r r o r  in satisfying the boundary condi- 
tion that there is no flow through the body surface. That is, the velocity component nor- 

mal ‘-the surface V sin [ tan- lk) - 8 4  should be zero. Figures 8(c) and 9(c) show 

2 2 that this boundary condition is satisfied to order-6 by the order-6 similarity solution 
for m =  1. 
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In figures 8(b) and 9(b), the pressure coefficients a r e  compared also with the 
Newtonian prediction: fj/q, = 2 sin20b. The Newtonian prediction is much more accu- 
rate for  the conical flows (fig. 9(b)) than for  the wedge flows (fig. 8(b)); however, even in 
the conical case the order-tj2 similarity solution is closer to the exact solution for values 
of the similarity parameter 6 5 0.5. 

In figure 10, the variation of the flow variables from the shock to the body is shown 
fo r  three values of the power-law exponent, m = 1.0, 0.85, and 0.75. The pressure, 
density, and velocity components, calculated f rom the axisymmetric zero-order and 
order-d2 similarity solutions, a r e  shown at Z/f = 0.5 for a similarity parameter value 
of 6 = 0.4. Note that the zero-order results begin at 7 = 1, which is the zero-order 
shock-wave location. The order-G2 results have a kink at 77 = 1 which is caused by the 
switch from the Taylor se r ies  expansion to the integrated solution. 

The exact solution for  a cone at M, = 20 with Ob = 20’ (ref. 18) is also shown 
for  comparison in figure lO(a) with the case m = 1.0. Although the conical bodies a r e  
not exactly the same (eb = 20° corresponds to 6 = 0.3978), the nondimensionalized 
order-6 similarity results agree well with the M, = 20 solution shown for  all the 
variables except the density. A s  can be seen by the symbols representing the exact 
solution for  M, - 00 at the shock wave, the density is the only one of the flow variables 
that is affected much by the differences between M, = 20 and M, - 00. The similarity 
solutions for the density agree exactly with infinite Mach number solution at the shock. 
The order-d2 solution f o r  the other variables differs from the exact, infinite Mach number 
solution at the shock by amounts which are of 0 r d e r - 6 ~ ,  as expected from the approxima- 
tion to the oblique-shock relations used (eqs. (4)). On the other hand, the zero-order 
similarity solution is not accurate f o r  a cone of this thickness; it is off by an amount of 
order-62, which is 16 percent for  6 = 0.4. 

For body power-law exponents other than m = 1 there is no exact solution avail- 
able f o r  comparison with the order-b2 solution. However, there a re  some simple empir- 
ical methods for  estimating the pressure on general bodies. Two of these methods will 
be used for comparisons. One is the Newtonian law Cp = 2 sin20b. As discussed by 
Hayes and Probstein (ref. 5), the Newtonian law corresponds to the limits y - 1.0 and 
M, - “0; but, it is widely used fo r  more general hypersonic flows in this or modified 
form. The other empirical prediction is the tangent-cone method, which takes as the 
pressure at any point on a body the pressure on the cone having the same surface angle 
as the body point. This method also is most accurate for  M, - 00, since then the shock 
layer is very thin with little pressure change across  it. Hayes and Probstein (ref. 5) 
give a thorough discussion of these two methods and their limitations. Only one limita- 
tion will be mentioned here: these methods give only the body surface pressure and are 
not complete flow-field solutions, as are the similarity solutions. 

2 
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The calculated flow fields for  bodies having m = 0.85 and m = 0.75 are shown 
in figures 1O(b) and (c), respectively. 
major correction to the zero-order solution. However, the singularities in some of the 
order-6 Because of the singular- 
ities, the order-b2 values of the density and the velocity components are probably unreal- 
istic close to the surface. 
body surface, so that surface-pressure coefficients can be calculated. 

In these cases the order-b2 solution is again a 

2 similarity functions show up here at the body surface. 

Fortunately, the pressure is well behaved all the way to the 

The surface pressures  calculated from the similar solutions are seen in fig- 
ures  lO(a), (b), and (c) to agree fairly well with the empirical predictions of the Newtonian 
and tangent-cone methods. However, as m goes from 1.0 to 0.85 to 0.75, the order-b2 
similarity solution pressure drops faster than the tangent-cone and Newtonian pressures,  
so that the agreement becomes progressively worse. Whether the similarity solution o r  
the empirical methods give a better representation of the actual pressure changes with 
body power law must be determined by comparison with experiment, a s  in the following 
section. 

Comparison With Experimental Results 

Only a limited amount of useful experimental data exist on the hypersonic flow fields 
about power-law bodies. These data consist mainly of measured shock-wave shapes and 
surface-pressure distributions for  3/4- and 2/3-power bodies of a few different fineness 
ratios. In this section the similarity-solution predictions fo r  shock-wave shape and sur-  
face pressure for  axisymmetric bodies with power-law exponent of m = 0.75 will be 
compared with the experimental results of Kubota (ref. 3) and Peckham (ref. 7). 
comparison is made with resul ts  for smaller power-law exponents since valid order-b2 
similarity solutions were not obtained in those cases. 
with experimental total-drag measurements (e.g., those of ref. 10) because of the uncer- 
tainty in calculating the skin-friction contribution. 

No 

Also, no comparisons are made 

Shock shape.- Because the shock displacement constant a2 

6 = 0.4). 

is so small, the 

The zero-order and 
order-62 shock-wave shape is only slightly different f rom the zero-order shape, an 
example of which is shown in figure 1 (m = 0.85; 

2 order-6 shock-wave shape predictions are compared to the shock-shape data for  
m = 0.75 from references 3 and 7 in figure 11. These data are presented in the corre-  
lation form discussed in the appendix to reference 7. The additional shock-wave-shape 
data f rom hypersonic flows over power-law bodies (refs. 8 and 9) are not presented here 
because they fall in ranges of very large X/E values, fo r  which the order-b2 te rm of 
the shock-wave-shape equation is negligible. Also shown in figure 11 is the shock-wave 
shape, calculated by an asymptotic time-dependent finite-difference method (ref. 19, 
page 305), for  kin 0.75-power body having a paraboloidal nose at Mw = w. 

o = 0; 
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Figure 11. - Shock-wave shape correlation for axisymmetric 3/4-power bodies. 
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The order-6 2 similarity solution agrees very well with the finite-difference calcu- 

lation except at small  x/D values where the latter is affected by its paraboloidal nose 
shape. The experimental data for  the shock shapes are seen to correlate well with one 
another but to f a l l  somewhat above the similarity solution and finite-difference predic- 
tions. This disagreement between experiment and theory is due in  par t  to the disagree- 
ment in Mach numbers (M, = 6.85 and 7.7 for  experiment, M, = 00 for  theory). It is 
comparable to the shift in shock location with Mach number for  cones (fig. 9(a)). An 
additional cause fo r  the disagreement between the experiment and theory is the outward 
displacement of the flow by the growth of the viscous boundary layer on the experimental 
bodies. 

2 The effect of the order-6 te rm in the similarity solution fo r  the shock-wave shape 
is seen in figure 11 to increase as E/b decreases. 
of E/n correspond either to small values of E/ i  o r  to large values of D/Z, that is, 
either to points near the nose of the body (where the slope is large) o r  to bodies which 
are less slender (and thus have larger &values). Note that the agreement of experiment 
with theory is better in this region of smaller Z/fi values, as would be expected since 
the shock location is closer to that for  infinite Mach number for  larger body slopes. The 
slope of the order-b2 similarity solution agrees very well with the slope of Kubota's data 
for  6/1' = 0.0555 (see circles  in fig. 11); this agreement in the slope on a log-log plot 
indicates good agreement with the power-law exponent of the physical shock-wave shape. 

Pressure  distribution. - The experimental pressure distributions obtained by 

This is expected since small values - -  

Kubota (ref. 3) and Peckham (ref. 7) are shown in figure 12 for  the same power-law 
bodies (m = 0.75) as used for  the shock-wave shapes. 

pressure distributions. F o r  the three bodies having fineness ratios f = 1' 2rb(r) of 
about 2, the similarity solutions, as well as the two empirical methods, give pressure 
distributions in good agreement with the experimental data. 

For  comparison, the zero-order 
and order-6 2 similarity-solution predictions are also shown, along with the two empirical 

I 
2 For these cases the order-6 similarity solution is very nearly the same as the 

zero-order solution except at the front of the body. 
slightly higher than the similarity solutions behind the nose region, but curves repre- 
senting these three methods are below the data points. Since at hypersonic speeds the 
viscous boundary layer tends to displace the flow outward, raising the pressure above 
that which would occur for  inviscid flow, the theoretical inviscid pressure levels are 
expected to f a l l  slightly below those actually measured. For example, by applying a 
boundary-layer displacement correction to the zero-order similarity solution for  the 
pressure on his fineness-ratio-2.13 body, Kubota (ref. 3) obtained excellent agreement 
with his experimental data. Since the tangent-cone pressure 

The Newtonian prediction falls 

(See squares in fig. 12.) 

, 
' ., 
I 

I '  
1 ,  
! ' 
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distribution falls slightly above the experimental data fo r  the three higher f ineness-ratio 
bodies, the other methods are somewhat preferable. 

'Only in the case of the body having a fineness ratio of nearly 1, however, does a 
real  difference between the methods appear in figure 12. In particular, the difference 
between the zero-order and order-6 pressure distributions becomes substantial. The 
zero-order result lies above the experimental data by an amount which increases rapidly 
toward the front of the body. On the other hand, the order-b2 result l ies below the data 
by an amount which, for most of the body, is only moderately larger than that for the 
finer bodies. This amount is on the order of the expected boundary-layer displacement 
effect. It is only at the front of the body that the order-b2 result begins to diverge 
markedly from the experimental pressure distribution. Since the value of the slender- 
ness  parameter is 6 = 0.555 for  this case, i t  is not surprising that the order-6 simi- 
larity solution should begin to fail as the body surface angle increases at the front of the 
body. (Kubota's value 6 = 0.485 shown with his data corresponds to 6q, = 0.485 as 
used herein.) This is about the same value of 6 as the limit for  good results in the 
wedge and cone cases  (figs. 8 and 9). The Newtonian method gives excellent agreement 
with the experimental data in this case, but this must be somewhat fortuitous in that no 
correction was made to account for the boundary-layer displacement or body-curvature 
effects. The tangent-cone method again lies somewhat above the experimental data. 

2 

2 

CONCLUSIONS 

By beginning with the equations fo r  conservation of mass, conservation of momentum, 
and conservation of energy for  the inviscid, two-dimensional or axisymmetric adiabatic 
flow of an ideal gas, similarity solutions have been found which give the flow field to 

slenderness parameter and M, is the free-stream Mach number. On the basis of this 
investigation the following conclusions can be made: 

1. Order-tj2 solutions were obtained which are independent of the slenderness 

order-6 2 about power-law bodies in the hypersonic limit M, - m, where 6 is a body 

parameter 6. Thus, the functions expressing the solutions are universal in that they 
apply for  all values of 6 for  which << 1. The relations between those similarity 
functions and the physical flow variables a re  relatively simple. 

2. In the present formulations the value of a2, the shock displacement constant in 
the order-g2 solution, goes through plus and minus infinity at about m = 0.817 in the 
two-dimensional case and about m = 0.653 in the axisymmetric case, where m is the 
body power-law exponent. Because the singularity does not correspond to actual flow 
conditions, it must arise through the mathematical development. Since the singularity 
was not removed by any of the variations in solution procedure tried, the present results 

i 

i I  
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are limited to a range judged relatively f ree  of effects f rom the singularity 
(0.85 2 m 5 1.0 for two-dimensional flow; 

lar cones, the order-b2 similarity r e h t s  give excellent agreement for  6 less than 
about 0.4, corresponding to wedge or cone angles up to about 20'. Over an even larger 
range, the order-b2 surface-pressure predictions were superior to the Newtonian pres-  
sure law. 
results for body angles greater  than about 12'. 

4. In comparisons with experimental shock-wave shapes and surface -pressure dis- 
tributions for  3/4-power axisymmetric bodies, the order4j2 similarity solutions gave 
good results, considering that Mach number and boundary-layer displacement effects are 
not included in the theory. For body fineness ratios near 2, the effects of the order-ti2 
te rms  are significant only very near the body nose; whereas for  a fineness ratio near 1, 
the order4j2 te rms  had a large effect over almost the entire body. These good results 
for the surface pressure were obtained despite the singular behavior of some other vari- 
ables at the surface. 

0.75 2 m 2 1.0 for  axisymmetric flow). 

3. In comparisons with the exact solutions for  inviscid flow over wedges and circu- 

The order-6 2 results were a significant improvement over the zero-order 

5. Although the order4j2 similarity solutions were developed for  the hypersonic 
limit M, -. 00, the derivation shows that they a re  compatible with order-€ solutions, 
where 

. 
2 E E 1 (M,6) , which introduce Mach number effects. I 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
July 1, 1975 
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APPENDIX 

APPLICATION OF THE ORDER-$ SOLUTIONS 

i 

In order  to facilitate application of the order-62 similarity solutions, the equations 
relating the similarity functions to the physical-flow variables are presented here. It is 
assumed that the body fineness ratio f and power-law exponent m are known, so that 
the body shape is 

The value of a is 0 for  a two-dimensional body and is 1 fo r  an axisymmetric body. 
Then, the values of qb, the body-surface similarity coordinate, and of a2, the shock 
displacement constant, are found in table III for the given m. 
slenderness parameter, is calculated from 

The value of 6, the 

The order-g2 shock-wave shape is 

The similarity coordinates of any point (Z,F) in the flow field between the body and the 
shock. wave are 

By taking the values of the similarity functions from table I (for two-dimensional flow) 
or table I1 (for axisymmetric flow), the pressure, density, and velocity components at 
any point (5,q) a re  given to order-6 by 2 
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APPENDIX 

ii 2 2 -2(1-m) =-- = 1 + 6 vO(q)m 5 
u, 

Because the entropy layer makes the similarity solutions fo r  the velocity and density 
inapplicable at the body surface for  m < 1, these flow variables must be found by other 
means. The similarity solution for the pressure,  on the other hand, does give a reason- 
able result at  the surface, which can be used to help in calculating the density and 
velocity. The basis of the method for  calculating the density and velocity at the surface 
is the fact that the streamline along the surface must have passed through the normal 
shock wave at the blunt nose of the body. After passing through the shock, the flow is 
isentropic along streamlines. Thus, by letting the subscript n denote conditions just 
behind the normal shock, and by using isentropic and normal shock relations (e.g., ref. 14), 
the density at  the surface is 

Similarly, the magnitude of the velocity at the surface is given by 
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t 

or I 

In the limit as Mm -. 03, the density and velocity become 

= (-) y + l  (T y + l  6 2 %)l’Y 

i jm  

and 

P(zyrb) is the normalized surface pressure given by the similarity solutions. Here p,, = 

Since the flow at the body is parallel to the surface, the velocity components are 

2 62pmiim 
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TABLE I.- SIMILARITY FUNCTIONS FOR TWO-DIMENSIONAL FLOW (0 = 0) 

I 

.ooooo 
992 1 9 

-97656 
~96875 
m96094 
e9531 3 
-94531 
-93750 
-92969 
92 1 88 
-91406 
-90625 
.E9844 

.9a43a 

.a9063 

.a8281 

.a6719 

.a4375 

-87500 

.85938 
e85156 

.a3594 

.a3333 
.- ~~ 

1 .ooooo 
992 1 9 
.98438 
e97656 

a96094 
e95313 
e94531 
-93750 
-92969 

-91406 
-90625 
e89844 
a89063 

.87500 

.96a75 

.92 1 a8 

.882a1 

.a6719 

.a5938 

.€I5156 
-84375 
.a3594 
,82813 
-82031 
e81507 

e83333 
.a3333 
,83333 
.a3333 
.a3333 

,83333 

.a3333 

.a3333 

.83333 

.a3333 
-03333 
,03333 
03333 
.a3333 
,83333 
.a3333 

.a3333 

.a3333 
83333 

. a3333 

.a3333 

. a3333 

.a3333 

_ _  . a3333 
.a2735 
.a2448 

.ai899 

.a 1380 

.ai131 

83030 

82 1 70 

e 8 1 636 

80888 
.E0652 
a80422 
-80199 
.7998 1 
-79769 
79542 
-7936 1 
e79166 
78977 

a78616 
.78445 

781 30 
78040 

.7a793 

.7a282 

6.0000 
6.0000 
6.0000 
6.0000 
680000 
6.0000 
6.0000 
6.0000 
6.0000 
6.0000 
6.0000 
6.0300 
6.0000 
6.0000 
6.0000 
6.0000 
6.OLJOO 
6.0000 
6.0000 
6 0000 
6.0000 
6.0000 
6.0000 - 
- 
6.0000 
5.9629 
5 9254 
5.8876 
5 .a493 
5.8103 
5.7706 
5 7300 
5.6aa4 
5 6454 
5.6010 
5.5548 
5.5064 
5.4554 
5.4013 
5.3433 
5.2805 
5.21 13 
5.1338 
5.0448 
4 e9387 
4.8049 
4.6180 
4.2817 

- 
! 83333 
,83333 
,83333 
,83333 
,83333 
b 83333 
,83333 
,83333 
,83333 
,83333 
,03333 
,83333 
,83333 
,83333 

.a3333 

,83333 

~ 0 3 3 3 3  
,83333 

,83333 

.a3333 

.a3333 
03333 
.a3333 

.a3333 

.a3373 

.a3489 

.a3764 

.a3887 

-83425 

e83566 
83658 

e84029 
-84191 
84375 
84586 
84826 
.85101 

-85786 
062 1 6 
-86727 

.a54 I a 

.a7346 
-881 16 
e89113 
a90489 
-92629 
e97116 

,83333 

,83333 
a83333 
.a3333 

.a3333 

.a3333 

.a3333 

.a3333 
,83333 

.a3333 

.a3333 

.a3333 

.a3333 
03333 

.a3333 

.a3333 

.a3333 

.a3333 
-83333 
.a3333 
e03333 
.a3333 
.a3333 

n = 0.95 

.a3333 
,83232 
m83133 

-82944 
e82854 
e02765 
-82679 
a82595 
-82513 

a82356 

.a3038 

.a2434 

,82280 
.a2205 

.ai 993 

.ai925 

.ai 858 

.ai 668 

-82 133 
-82062 

-81  793 
-81 730 

e81 607 
e81547 
e81507 

-. 5556 
-e5556 -. 5556 
- e  5556 -. 5556 
-e 5556 
-e5556 -. 5556 
-e5556 
-e5556 -. 5556 
- e  5556 
- e  5556 
-.5556 
-e5556 
- e  5556 - 5556 
- 5556 -. 5556 
-.5556 
- e  5556 
-e 5556 
- e  5556 

~ . .  

- 

-e6414 
-e6307 
-a6205 
-e6107 
-e6014 
-e5924 
-.5a39 
-a5757 
- e 5 6 7 8  
-e5602 -. 5529 
-e5460 -. 5392 
-.532a 
-e5266 
-e5206 
-e5148 
- 5093 
-e5039 
-.4988 
-.4939 
-.4a92 
-.4a47 
-.4805 
- e 4 7 8 0  

.oooo 
J.0000 
J.0000 
).OOOO 
J.0000 
J.0000 
J.0000 
3.0000 
3.0000 
3.0000 
3.0000 
3.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0 .oooo 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

- 8290 - 7645 
-.lo18 
-*6409 
-.5a13 
-a5231 
- a 4 6 5 8  
-a4094 
- e3536 
- 2982 
-e2430 

-e1316 
-e0749 
-.0167 
-0434 
1 Ob2 
1730 
82453 
-3257 
-4185 
e5324 
6879 
-9657 

-.la75 

~ 

- 5556 
- -5556 - 5556 -. 5556 
- -5556 
- 5556 - 5556 
-a5556 
- ,5556 
- 5556 
- 5556 
-a5556 
-.a5556 
- 5556 
- 5556 
- 5556 
- 5556 
- 5556 
- 5556 - -5556 
- 5556 
- -5556 - 5556 
. . .  ~ 

__ 

-e6107 
- e 6 0 8 6  
- 6068 
-e6054 -. 6042 
-a6034 
-e6029 
- 6028 
-.bo31 
-.bo38 

-.boa7 

- -6049 
- 6065 
-.6115 
-.6151 
-a6196 
-.6251 
- 6322 
-e641 1 
-.6528 
- 6686 
-e6916 - 7293 
-e8157 

- 6944 
- -6944 - 6944 
-.6944 - -6944 - 6944 
-e6944 - e6944 
- 6944 
- 6944 
- 6944 
- 6944 
- 6944 - 6944 
-e6944 
- 6944 - 6944 -. 6944 
- 6944 
-e6944 
- 6944 
- 4944 
- 6944 

-. 7259 
-e7232 
- 7207 
-.7185 
-e7165 
-a7148 
-e7132 
-m7119 
-e7109 
-.7101 
-e7095 
- 7093 
-e7094 
-e7098 
-07106 
-.7119 

-a7164 
-07199 
-e7247 
-.7314 
-e7412 
-e7573 
- 7925 

-.7i3a 
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TABLE I.- Concluded 

. _ _ _  

-e7681 - 7624 
-07572 - 7525 
-a7481 
-e7442 
- 7408 -. 7378 -. 7352 
-e7331 
-.7315 
- 7304 
- 7299 
-e7300 
-a7307 
- 7322 
-.7345 
-.7377 
- 7422 
- 0 748 1 
-.7558 
-e7658 -. 7793 -. 7977 
- -8244 
- 8674 
- 9565 

__... . 

.ooooo 
992 19 

.98438 
97656 

e96875 
e96094 
953 13 

a94531 
e93750 
92969 
92 1 88 

-91406 
-90625 
.a9844 
-89063 
.88281 
e87500 
-86719 
.El5938 
-85156 
.a4375 
.a3594 
.E2813 
-82031 
8 1 250 

-80469 
79688 

.78988 

.ooooo 

.99219 

.98438 
e97656 
96875 

e96094 
,95313 
-94531 
-93750 
-92969 
92 1 88 

e91406 
-90625 
.a9844 
-89063 
.BE281 
~ 8 7 5 0 0  
,86719 
.85938 
85 1 56 

.a4375 
-83594 
e82813 
-82031 
- 8 1  250 
,83469 
79688 

s 78906 
,78125 
,77344 
w 76563 
,75781 
,753 1 1 -_ 

- .  

.a3333 
-82693 
82075 

.a1478 

.80900 
80342 
79802 
7928 1 
78776 

.78280 
778 16 
77360 

-76919 
76493 
76082 
75685 
75302 

.74933 

.74578 
74237 

-73910 
.73598 
7330 1 
73020 
72757 

-72515 
7230 1 

-72154 

.a3333 
82320 

.SI345 
e80409 

79509 
-78644 
.778 13 
,770 14 
76246 
75509 
74800 

.74119 
73466 

.72e38 
,72237 
-71660 
e71107 
70577 

-70071 
69588 

-69127 
e68688 
e68271 
67877 
67504 
67 155 

-66829 
-66527 
66252 

-66005 
65794 
65627 

-65566 

6.0000 
5.9221 
5.8444 
5.7668 
5.6893 
5.61 15 
5.5335 
5.4548 

5.2952 
5.2137 
5.1307 
5.0456 
4.9588 
4.8691 
4.776 1 
4.6792 
4.5776 
4 4700 
4.355 1 
4.2308 
4.0941 
3.9406 
3.7631 
3.5483 
3.2672 
2 8296 

5 8 3755 

.. .. . 

- 

6.000C 
5.877C 
5.7555 
5 e6367 
5.519C 
5.402t! 
5.2875 
5.1735 
5 0609 
4.9484 

4.7247 
4.6128 
4.5007 
4.3880 
4.2745 
4 - 1596 
4.0432 
3.9246 
3.8034 
3 6789 
3.5504 
3.4168 
3.2770 
3.1292 
2.9714 
2 .e002 
2.61 10 
2.3959 
2 - 1407 
1.8131 
1.3010 

4 .8364 

.e3333 
a83417 
.El3523 
-83652 
-83807 
.E3989 
e84200 
e84441 
-84716 
e85028 
85380 

.a5777 
e86225 
.8673 1 
-87303 
.87953 
e88693 
.89543 
-90527 
-91681 
-93053 
.94718 
96798 

-99502 
-03251 
-09065 
.20714 

.a3333 
e83464 
-83627 
.a3823 
e84055 
.84325 
-84634 
-84986 
,85383 
85829 

-86328 
86886 

,87507 
88 199 

-88970 
89829 

-90789 
9 1 864 

-93071 
.94435 
.95984 
.97757 
99805 

I .02200 
I e05040 
1.08478 
I 12745 
I 18236 
1.25684 
I 36660 
1.55607 
2.04995 

= 0.90 

.a3333 

.a31 19 
e82910 
a82707 
e82508 
-82315 
-82126 
-81941 
e81 761 
e 8 1 5 8 5  
.a1414 
8 1246 

.a1081 
-80921 
-80764 
806 1 0 

e80459 
-8031 1 
-80167 
-80025 
79886 

.79749 
796 15 

.79483 

.79353 
e79226 
,79100 
,78988 

m = 0.85 

.a3332 

.82992 
e8266C 
-82334 
-82016 
-81 704 
-814OC 
.81102 
.8081 1 
-80526 
-80247 
.79974 
79706 

.79444 

.79 1 87 

.78935 
e78687 
.78445 
e78207 
.77973 
,77743 
.775 17 
-77295 
e77076 
-76861 
-76649 
,76440 
76233 

-76029 
-75827 
75628 
75429 

.75311 

- e  751 8 
-a7281 -. 7057 
-a6844 
-e6642 
-e6449 
- 6266 
-.6091 
-e5926 -. 5767 
'-.5617 
-.5473 
-.5337 
-.5206 -. 5082 -. 4964 
-e4851 
-.4744 
-e4641 
-.4544 -. 4452 
-e4365 
-e4282 
-e4205 
-.4133 
-e4066 
-e4007 
-e3966 
- . .  

- 

- e  8590 
-.8221 
-.7872 
-.7544 
-.7234 
-e6942 
-e6667 
-.6407 
-e6162 -. 5932 
-e5714 
-.5509 
-a5316 
-.5134 
-.4963 -. 480 1 
-.4650 
-e4507 
-.4373 
-.4248 
-.4131 
-.4021 
-.3919 -. 3825 -. 3737 -. 3658 -. 3585 
-e3520 -. 3463 
-93416 
-.3379 
-.3358 
-.3364 

~ .. 

-1 -7618 
- 1 -6059 
- 1.4558 
-1.31 12 
-1.1716 
- 1  -0365 
-.go56 -. 7783 
- 6543 
- .533 1 
-.4143 
-a2974 
-.I820 
- Ob75 

-0466 
e1612 
e2768 
m3946 
e5157 
-64 18 
e7750 
-9184 

1.0769 
1.2587 
1.4788 
1.7720 
2.2552 

. -  

- _. ._ 

- 1.665: 
- 1 3962 
-1.14OC - .a955 

-.662C 
-.438€ 
- 2244 
- . O l 8 i  

.1792 
-3702 
5552 

.7345 
e9092 

1.0799 
1.2473 
1.4124 
1.5759 
1 - 7389 
1.9023 
2.0674 
2.2355 
2.4385 
2.5885 
2.7781 
2.9812 
3.2029 
3.4510 
3.7377 
4.0845 
4.5347 
5.1985 
6 5593 

-. 

- a 6 8 6 5  
-a6836 
-.681'4 - -6799 
-e6792 
-e6793 
-a6802 
- e 6 8 2 0  - -6846 
- .ma3  
-.6931 
-e6991 
- 7064 
-e7153 
-.7260 - .7388 - .754 1 
-e7725 
- -7948 
-.a220 -. 8559 
-.a991 
- -9560 

- I  -0347 
- 1  1526 
. I  -3558 
-1 -8408 

~ _ _  

- 7965 
- 796E -. 7984 
-.a014 

-a81 1 7  
-.81 92 
- .8285 
-.a397 -. 8530 
- 8686 
- e8867 
-.go78 
-e9322 
-e9605 
- 9932 

-1  -031 1 
-1  -0754 
- 1  1274 
-1.1889 
- 1  -2624 
-1  -3514 
- 1  -4610 
- 1  .5988 
-1  -7770 
-2.0159 
-2 3529 
-2 -8652 
-3 742 7 
-5.6225 
13.0166 

-.805e 

-e8145 
-08066 
- 7992 
-a7925 
- 7863 
- 7808 -. 7758 
-.7715 
- 7678 
- 7647 
- 7623 
-.7606 -. 7597 -. 7595 
-.7603 
-e7619 
-e7645 
- 7684 -. 7735 
-a7802 
- -7886 -. 7993 
-e8126 
- 8294 
-e8507 
- 8783 
-e9151 
- 9666 

- 1 e0446 
-1.1824 
- 1 .5489 

._ 



TABLE II.- SIMIJLARITY FUNCTIONS FOR AXISYMMETIUC FLOW (0 = 1) 

1 = 1.00 
~~ 

083333 
64055 
04705 
85204 

0 65796 
066240 
0 666 17 
0 06927 
067169 
67342 
-07445 
0 87407 

063333 
004005 
084023 
65550 

0 66269 
0698 1 
087669 
080394 
069090 
0 89604 
0 905 12 
091 142 

063333 
004008 
84635 
085576 
006315 
007053 
087793 
80536 
089204 
090040 
090804 
091966 

-06091 
-06306 
-0 6495 
-06660 
-06604 
-0 6927 
-0 7030 
-071 15 
-07180 
- 0  7226 -. 7254 
-0 7270 

1000000 
099219 
0 90430 
97656 

0 96075 
96094 

0 953 1 3 
-94531 
93750 
092969 
092108 
-91494 

I 
1.00000 
992 1 9 
98436 

0 97656 
96675 
096094 
095313 
-94531 
93750 
92969 

0 92 1 88 
e91406 
091 034 

600000 
600371 
600704 
601000 
601261 
601407 
601679 
601637 
6 1960 
6.2046 
6.2100 
602131 

0 424B 
03445 
02746 
02142 
1622 

0 1  160 
00012 
-0513 
00203 
00120 
00025 

-00032 

-06091 - 0 6250 
-06401 
-06546 
- 0 6665 
-06820 
-06951 
-0 7060 
-07206 - 0 7332 
- 7457 
- 0 7567 

- 6799 - 0 6959 
-071 12 - 0 7259 
-07402 - 0 7542 - 0 7679 
-07014 - 0 7949 
-06064 
-00210 - 0 6330 

8 03333 
ma4131 
004939 
065765 
066615 
007500 
066433 
089437 
0 90549 
0 9 1844 
093522 
9654 1 

-a6542 
-06651 
-06742 
-.6615 
-06670 
-0691 1 
-06935 
-06945 - 0 694 1 
-0 6922 
- 6889 
-06643 
-0801 7 

- 6390 
- 0 6530 
-06669 
-06006 
-06949 
- 0 7095 - 7246 
-07413 - 0 7597 
-.7a15 
-061 05 - 8658 

- 0 6959 - 0 7093 - 0 7224 - 0 7354 
-07485 
-07610 - 0 7755 - 0 7098 
-08051 - 0 0222 
- 0429 - 0 8760 

6.0000 
5 09994 
5 e 9935 
509619 
509640 
509392 
5 9060 
506624 
5.8047 
5 0 7255 
5 06056 
5 0 3556 

~~ 

s 03333 
0 03754 
0041 13 
-04415 
04659 
~64846 
0 64976 
05053 
85073 
05036 

e 84943 
0 64796 
00471 1 

00220 
00013 

-00103 
-00125 
- 0 0054 
001 15 
00300 
0078 1 
0 1324 
02064 
3232 

0 556 I 

- 

-04384 
-e3849 
-03240 
-02553 
-01703 
-00921 
00050 
1154 
-2434 
3970 
5932 
0881 3 
1-6166 

007262 
067929 
m06604 
0 892m 
e 89983 
-90692 
091 034 

m = 0.90 

083333 
-63077 
64424 
004974 
a 0553 1 
ma6094 
0 66666 
-67246 
07637 
-00440 
069056 
89686 
-90331 
e 90465 

i f 

I 

- 

0 83333 
63420 
63462 

0 83462 
8342 1 

0 83336 
0 632 1 5 
063051 
0 62848 
82606 

0 82328 
620 16 
061691 
0 0 1 630 

~ 

600000 
509561 
509101 
5 0-0554 
507931 
507220 
506403 
5 5452 
5.4321 
502928 
501101 
4 06352 
4 0 1357 

~~ 

0 63333 
064161 
0 65064 
05992 

0 06976 
068036 
-89192 
.90479 
091957 
e93733 
096043 
.99587 

1 m09932 

-.7156 - 7260 - 7366 
- 0 7< 77 
- .7593 
-07716 - 0 7849 
- .7995 
-00159 
-08353 - 0 8597 
- 6956 - 0 9935 

-0 7075 
7063 

-0 7040 
-07008 
-06966 
-06914 
-e6854 -. 6766 
-.6709 
- 6624 
- e  6532 
- 0  6434 
- 0  6334 
-e6315 

-06750 
-06876 
-.7009 
-07151 -. 7303 
-07471 
- e 7660 
- m7677 
- -61 37 
- 6464 
-.E916 
- s 9676 

-1 02321 

lo00000 
0 992 1 9 
96436 
97656 

0 96675 
096094 
095313 
9453 I 
093750 
0 92969 
0 92 1 66 
091406 
090625 
90465 

. .. .. . - .. . . .L. . . 
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TABLE II.- Concluded 

I--- 
m = 0.85 

083333 
0 83752 
004180 
084617 
085064 
8552 1 
e85991 
864 72 
086967 
874.76 
087999 
088539 

89668 
089743 

.a9095 

m = 0.80 

.- - -. . . 

600000 
509124 
508191 
5.7195 
506125 
5 4968 
5 3705 
502312 
5-0746 
4 0 8944 
4.6790 
484035 
309979 
2.90a7 

. . - ._ 

- . _ _  

-09473 
- 0 7969 
-06442 - 4082 - -3270 
-01615 
00128 
0 1980 
03984 
06214 
8802 

102035 
1.6771 
3-0601 

* 83333 
84235 
05 1 98 

0 862 33 
87357 
68590 

0 8996 1 
091515 
0 933 19 
0 95489 
-98241 
Io02070 
10’38536 
I034315 

- e 7 1 8 8  
-0731 0 
-07447 
-e7603 
--7702 
-.79511 
- 0 0236 
-00531 
- 8896 
-09367 
-1.0014 
-1 1007 
- 1  -2928 
-2 3746 

I -07402 
i -07472 
-m7551 - 7638 - 7735 
- 0 7845 - 7969 
-001 12 
-a8281 
-08485 
- 0745 
-091 05 
- 9706 

- 1  02040 

-0 7700 
- e  7546 
-07392 -. 7239 
-0 7086 
- 6934 - 6782 
-0 6630 
- 6478 
- 6326 
-06176 
-06027 
- e  5883 
-.5754 
-e5742 

1000080 
0 992 19 
904 38 
97656 
096875 
096094 
e95313 
-94531 
93750 

0 92969 
92 1 88 
-91406 
090625 
0 89844 
.a9743 

0 83333 
s 83048 
0 02742 
0 824 15 
082067 
0 8 1698 
81 309 
8090 1 
080474 
0 80030 
79572 
079105 
78640 
078214 
e78174 

I 

___.. 

1 .00000 
992 1 9 
98438 
-97656 
96875 

0 96094 
0 953 1 3 
9453 1 
-93750 
a 92969 
092108 
-91 406 
90625 
-89844 
089063 
88790 

... 

083333 
-83612 
883904 
0 842 1 1 
084533 
084869 
085220 
085587 
0 85970 
-88370 
0 86786 
0 872 1 9  
8767 1 
088140 
0 88628 
006798 

- _. - 

- 0390 
-0 8067 
-.7762 
-0 7472 
-07197 
- 6934 
-e6683 
-.6443 
-m6214 
- e  5996 -. 5708 
-05591 
-05407 
-0 5240 
-e5102 

8 83333 
82633 
-81941 
-81256 
0 80578 

0 79239 
w 78579 
77925 

0 77279 
76644 

0 76023 
75426 

0 74865 
74380 

0 74265 

8 79906 

- ..- . 

600000 
5.8617 
5.7196 
5.5731 
5.4212 
5.2627 
500960 
409192 
4 7292 
405216 
4 02904 
4.0232 
3.6971 
3 2526 
2.3985 

0 83333 
-84295 . 8534 1 
8775 1 
089156 
90735 
092535 
094626 
.97114 
1000183 
1.04173 
1 09836 
1 19402 
lo47814 

8 86487 

~~ 

-07712 
- 7842 
-.a000 
-08190 
-08419 
- 0 8695 - 09029 
-e9441 
-.9957 

-1 -0623 
-1 0 1520 
-1 02812 
- 1  04890 
-1 -9067 
-306055 

- 1 04237 
-1.1475 
- e 0785 
-06149 
-03547 
- 0957 
1647 
-4295 
-7030 
-9913 

1.3041 
106582 
2 0890 
2 0 6922 
400109 

- lo4529 
- lo0224 
-06147 
- 0 2265 

1456 
05048 
08546 

l o 1 9 8 9  
1.5421 
1.0896 
2.2491 
206315 
3.0546 
3.5515 
401965 
502307 

-07712 
- 0 7746 
- 7792 
.- 0 7852 
- 7926 
-08018 
-08129 
- 8264 
-00429 - 0 8632 - 8892 
-09238 
- 0 9736 

- 1 0587 
- 1  e31 18 

m = 0.75 

083333 
-83452 
083590 
m03 747 
83923 
e841 19 
084333 
084566 
084817 
085088 
85377 
85686 
860 13 
86360 
086726 
0071 10 
a87507 

000000 
992 19 
98438 

0 97656 
96875 
096094 
-95313 
9453 1 
-93750 
92969 
092188 
091406 
090625 
089844 
089063 
0 8828 1 
087507 

600000 
5.8050 
506103 
5.4150 
502183 
500190 
4.8161 
406082 
4 0 3932 
401688 
309316 
3 0 6765 
3.3956 
3.0747 
2 06846 
201423 

- 8253 
-0840% 
-e0609 
- .a857 
-e9162 
-.9536 
-.9997 

- 1 e 0566 
-1 0 1280 
-1 -2193 
-1 03391 
-1 e5030 
-1 7407 
-201186 
-2.8255 
-4 0 7293 

-08091 
-08087 - 8099 
-08129 
-08178 
- 0 8249 
-08342 
- 0 8463 
-08617 
-0881 1 
-09057 - 0 9377 
- 9805 

- 1  00414 
- 1  01381 
- 1 0 3359 

83333 
82 i 65 
.8 1044 
79967 
78932 

0 77937 
0 76979 
.7505a 
75.1 72 
74322 

0 73509 
0 72735 
0 72003 
0 7 1 322 
0 70702 
e 70 168 
e69806 

. 

0 83333 
84360 
.a5495 
0 86755 
88-1 57 
89729 
091502 
0 93524 
0 95858 
0 90598 
1001886 
1005952 
1.11208 
1 0 18477 
1029784 
1 0 52579 

- 0 8090 
-08391 
-0 7922 
- e  7487 -. 7085 
-0671 1 
- 0  6365 
- 0 6044 -. 5746 
- e 5 4 7 0  
-05217 -. 4984 -. 4773 
- 0 4586 
- e  4426 
-04301 
- 4253 
- - ~  

.. ... 



TABLE III. - SHOCK DISPLACEMENT CONSTANT AND 

PIUESSURE FUNCTIONS AT THE BODY SURFACE 

1.00 . 95 
90 . 85 

1.00 . 95 . 90 . 85 . 80 . 75 

NASA-Langley, 1975 L-10154 

083333 
-01507 

. 753 1 1 
78998 

-91494 
091034 
-90465 
.a9743 
80798 

087507 

o = o  

. 83333 
078040 
72 154 

0 65566 

o = l  

07487 
08471 1 
8 1630 
78 174 
74265 
69806 

- 55556 
- 47804 
- 39659 
- 3364 1 

~~~ 

- 7270 1 
-068169 
- 631 54 
- 57424 
- 50734 
- 42532 

~ 

16667 
17500 
17618 . 10485 

08496 
0866 1 
38768 
08705 . 08 135 . 058 12 
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