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Experiments were conducted in the ASK Low Speed Wind Tunnel
(V/STOL). Propulsion Wind Tunnel Facility (POT), with two V/STOL
models. a het-flap and a ,)et-in-fuselage configuration, 	 to search
for a wind tunnel wall .^.onfiguration to minimize wall interference
on V/STOL models.	 Data were a:su obtained with the het-flap model
and a uniform slotted wa!l configuration to provide comparisons
between theoretical and experimental wall interference. 	 A test
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20. ABSTUCT (Continued)

section configuration was found wbich for the Je G-flap model
yields data to reasonable agreement with interference-free result
over a wide range of momentum coefficients. Ma"Wer, the config-
uration does not Meld interference-tree data for the )et-in-
fuselage model. The key to development of an interference-fret
wall configuration for ♦/310L models lies to the development of
an underatauding af tip couple: interaction between the downwash
)f the augmeotvd lift device and the tunnel boundary. It is
shown that agreement between call interference theory and expert-
meat for the V/STOL case can binge upon the theoretical represen-
tattoo of the boundary condition.
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PREFACE

The work presented herein was conducted by the A-iold knpnecnng Development
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of Sverdrup do Parcel and Associates. Inc.). contract operator of AFDC. AFSC. Arnold
Air Fade Station. Tennessee. Th; Mork %as conducted under ARO Project Nos PW5214.
PF211. and PF411. The author of this report was T. W. Binuon. Jr.. ARO. Inc. The research
was conducted from March 10. 1972 to Apnl 16. 1974. and the manuscript (ARO Ccmtrol

No. ARO-PWT-TR-75-4) was submitted for publiphon on January 20. 1975_
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1.0 INTRODUCTICIM

Aerodynamic data obtained from h4h41ll vertical or short takeoff and andinS

(V/STOL) vehrcks in wind tunnels in many instances cor!san lar0r interference effects

canted by the constraints imposed by the tunnel boundaries A practical solution for coping

with the boundary interference r^ to develop a wal! configuration whicn reduces the

interference to acreptthIc k rve6 fhe fart that tler rnicrferencr produced by sulki and

L en boundaries have oppowle wpm Ref. 1. led a:.rty investiptors. Ref '.:o explore

partsarly open boundaries as a mean % of rct1 twing wall mtMerents Numerous investigations.

summarized in Ref. 3. hart kd to the various ventdaled test sectorrs used in all parts

of the world today. The test section. whkh have evolved are. however. demi gned to tedoce

the wall interference associated with ecm4 , entorul aerodynamic rchi:k-% pndrunly in the
transonic speed range.

There seems to tw no inhere..k reason why the ventilated mall :oncept cannot he

applied to relieve wind tunnel waU trrf"r .%W t assocratnd with V`STOL models. The initial

effort toward the deytlopment of suc;s a wall .onfigeration, Ref. 4. used a high-drw-Woding
jet-i*n- fuselage model in the stream disturbing device. The results of that program indicated

the probability that a minimal-interference wall could be devised The work reported herein
is is extension of that reported dr Ref. 4 to cornsder additional waU configurations with

the jet-in-fuseatte model and to cxpkwe :ice effect of model configurations by also kiting
with a jet -flap model Cbr molop •-A ly. wall configurations were tested with the

jet-in-fusciagr model until one was found which produced reasonably mterference-fret
results for a wide ranter o: model jet to tunnel vrkk ity ratios. The jet-flap model was

then untalkd and 47 additional wall modifications were tested The minimal-interferencr
confitturation thus evolved was then tested with the jct-rn-fusetage model to determine

if the wall configuration was also suitable for testing high-disc-loading model

Force and moment data were obtained on the lei-in-fuselage model in the 7- by

10-ft test wctxm of the Ling-Tenko-Vourht II.TVI Low Speed 'kind Tunnel and on the

jet-flap mrodd a, the NASA Ames 40- by MIl Subsonic Wind Tunnel. These data.

considered to be interference free. vorre used to evaluate the wall interfere.-We by
companson with data obtained with various wall configurations in the 34- by 45-in. test

section of the AFDC Low Speed %ind Tunnel MSTOL1.

Tests wiih the jet-rn-fuselage model in the V'STOL tunnel were lir-uted to a

jet-ro-free-stream velocity ratio of 4.5 which is just below the condition of complete now

breakdown as defined in Ref. 5. Tests with the jet fap were bmited to a momentum

coefficnnt of 3.3 which corresponds to a sonic jet at a tunnel dynamic pressure of

psf

.y 5
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20 APPARATUS

11 WIND TUNNELS

Data on the jet-flap model. which are considered dntcrferrnce free. were obtained

in the NASA/Ames 40- by 8441 Subwni- Wind Tunnel. The 40- by W(t tunnel is a
continuous flow. atmospheric pressure, closed-throat, ciosed-tircurt facility. The speed rwW

is continuously variable from zero to 200 knots A description of the fanlity inlay be

found in Ref. 6.

Data on the jet-m-fuselaot model wtuch arc considered interference free were obtained

on the LTV Low Speed Wind Tunnel. The LTV tunnel n a continuous flow, atmospheric

presort, ungk return. closed-throat system. The rectangular 15- by 2D-ft test section is

followed by a 7- by 10-ft test section with speed ranpes of I: to 60 It se= and 80 to

320 Gisett. respectively. A complete description of the tunnel. its uperatdng characteristics.

and associated equipment are contained in Ref_ 7.

Tlit will interference study was conducted in the AEDC Low Speed Wind Tunnel

(V'STOL). The V/STOL tunnel is a continuous flow. closedarcuit, atmosphenc pressure

test imt in which speeds from 5 to 2_'0 ft!sec an be obtained. The test section his

a 30- by 45-dn. cross w-.ion and is 72 in long The test section walls may be independently
modified to allow a a-de :suety of wra p configurations to be used The test section is

enclosed in is 9- by 9-ft sealed plenum which allows a constant freestream static yresure

ennronriver+t to be maintained around the test section A complete description of the

tunnel. its operatint characteristics, and associated equipment are pnesented in Ref. 8-

22 MCOELS

221 Jot Flap

The jet-flap model. shown installed in the VISTOL tunnel in Fig. la. consists of

a hollow, rectangular. planform wring and a horizontal tail. The sting also se. as a model

centerbody. air line. and instrumentation lead shield The pertinent model dimensions are

peen in Fig. 2a_

Erich win= contains a plenum clamber wpnlwJ with high-pressure nitro$", which

eithausu through a 0.020-in slit near the trailing edpr to form the het flap. The wing

has an NACA 0012 airfoil truncated at 95-percent of the chord with a constant radius

trading edge. The left wing contains a specially designed five-component balance. The

nitrogen supply passes symrxtncally through the balance to eliminate the nr-d to

compensate for internal momentum changes. It was found necessary. however. to correct

6
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ALL DIMENSIONS IN INCME3

b. Jet-imfuselage mold
Figure 2. Condmied.

ZZ2 Jet-ov-Fuselave Model

The jet -in-fuselage model. shown installed in the V/STOL tunnel in Fig. 1b. consists

of an air ejector uirrounded by a minimum cross-sectional area fuselage. a mid-luselapr

+.intt_ and a removable hontontal tail. The air c*tor and its inlei are mechanically

separated from .hr fuselage by a labynnlh seal. Nigh -pressure nitrogen was supplied to

the etles-lor through thr sling. The fuselage has a square cross section with corners rounded

of a 0.25 in. radius. Both the wing and tail have an yACA 0012 airfoil section. The

pertincnl model dimensions are pven in Fig- 2b-

10
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The mudel contains two strain-gales lvlan.es. Orr measures the normal fimx of the

ejector and its inlet. The other measures the normal force. axial force, and pitching moment

of the wins-fuselage-tail assembly. Thus. the ejector forces are measured separately from

the aerc: ynamic forces on the model.

23 WALL CA)KFIGURATIONS

Data were obtameJ with two basic wall configurations. The tint. whwh was tested 	 1

►o obtain data for Lamparm n with theory, had ten equally !,paced. constant width slot5

in each horizontal wall and solid udewalls. The slot width was varied from zero to I

in. resulting in a wall porosity variation from zero to 22.: percent.

The second basic test section configuration. shown in Fig. 3, consisted of solid side
walls. a slotted upper wall, a louvered lower wall (Fig. 41. and independent upper and
lower plena. The following peorrtetric parameter were p aned upper and lower slo: width.
a. and at . upper and lower plenum depth. Do and D t . lower wall louver angle. @, lower

will step location, L, and the lower wall louver step height, s. In addition, with

Dt. < 8 in.. it was found necessary to supph tunnel air to the lower plenum so that
a small mass flour passed through the rearward faring step into the test region This was

accomplished by a transverse slot of width g at the nouk exit.

!il ey[nlaosf NO Mcwts

Fqum 3. Baas stopped configuratwn.
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Fiprre 4. Louvered bocum an o r 'in wai.

2A INSTRUMENTATION

Model forces and moments nett obtained from strain `apes placed on specialty
desWwd balance beams internal to dw models_ The tunnel noule-ew p:--.am. which
was used as a reference for all other pressure measurements, was meawrad with a pneimon,
srr.o-dnwn. mercury manometer. Other modd ar.d tujuwA pressures wete meted with
strain W differentud pressure transducers. Modd and tunnel temperatures were tneasurrd
with iron-constantan thermoeoupies. The uKtruawntation readmV wort recorded by an
on-tine computer system which tedueed the raw data to engweennp utits, computed
pertinent parameters. and tabulated the results.

10 PROCEDURE

11 TEST CONDITIONS AND PROCEDURES

11.1 Jat4im nodal

Data were obtained in the AFDC VIML tunnel and the NASA Ames 44 by S4dt
tunnel at the same value of the jet momentum coelfiaent. In addition, because of a enable

12
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At DC T N 7S 16

difference in the het total temperature in the two facilities. it wa, lound nc:.wr) .n

also test at the same values of het momentum rather than het total prrssure There wa•
no control of the set total temperature in either facibly. The desired %slue ul jet  momentum
was set by allowing Inc s>>tcm to operate until near thcrrtul cquihhrium :ondiIKins wrrc

esUbirshed and then adtustrng the et stagnation pre.wrc until the desired value of jet

momentum was achieved. The wrincl velocity was then adtu • tcd to obtain the desired
momentum coeffr.xnt In prneral. data wire obtained zt momentum .,wflicrcnts of 0.

0.05. 0 . 31. 0.94. 2. 1. Z.B. and 3.3 for each tunrwl wall cr,̂ fis p rat ion.

3.12 Jet•w►- FuwAW Model

Data in thr AFDC VISTOL tunnel and the LTV Low Speed Hind Tunnel were

obtained at jet -to• free-stream velocrt) ratios of 0. 2.0. 3.3. and 4.5 with the honruntrl

tail off and on. The tunnel +rlocrty was set to the desired value- Hrtth-pressure nitroprn
was supplied to the ejector until the desued jet exit total pressure was obtained T he

jet exit temperature was uncontrollable. No ad)ustment was made for its venation. howcscr.

since the acrod)namrc forces wire not siguGcantly affected b) small changes in the let
velocity for the selected free-stream conditions.

32 PRECISION OF THE DATA

The data contained herein were obtained from singe-sample meawremcnts.
Uncertainties in the measured parameter wire estimated from repeat cahbretK,1ns of the
instrumention The uncertainties wrrc combined uuntt the Taylor series of error pro?apetnon

to determine the precision of the reduced parameters presented below.

Jet-Flap Model

C p	 ACP	 OCn	 JL-. .	 Act T

0 0 0.0013 0-000b 000-15
0.05 0 0003 0.0021 0.0007 0,0021
030 0.003 0.0065 0 01 7 0.0051
0.44 0.015 0.0338 0.013 0-01 h
2.0 01)60 0.117 0.053 0 031
:_8 0.103 0.185 O.L•°8 0.04:

3.3 01-14 0.254 0.149 0 048

PA^
n I
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Jct-in-F"lap Model

V R OVR ACC I Al M I

0 0 0 011 0.005
:.0 001 0.009 0.005
3.3 0.03 0017 0008
9.5 WIWI 0.0" 0.008

The pra:twon of the angle of atlas.* is estimated to t.e 0.1 dLg.

4.0 RESULTS AND DISCUSSION

4.1 COMPARISON OF EXPERIMENT AND THEORY

Although the primary objective ol the investigation reported herein was to search

for a minimal-interference wall configuration. data vbcre taken with the let-nap model

and a series of ten constant widah sluts which could he described by theory. Theoretical

solutions fox the first order wall interference corrections are obtained by solving the field

equation of an inviscid fluid in terms of the perturbation velocity potential 0. i.e.

C^ +^ + T-2 	i l l

subject to the generalized homogeneous boundary condition

f.+ 1 3 + k 3_	 ,

Two expressions have been derived for the geometric slot parameters k. the earl".

originally derived by Gurdley. Rcf. 9.

k 1 -*lncoc Ia 	13 ►

and the second by Chen and Nears. Ref 10. which neglecting the contribution of pate

thickness can he wTittcn

	

k2 • ^ a tan 119 (2.- 2N	 (4)

Kraft. Ref. 11. denved a quasi-linear %lolled wall boundary condition for the walls normal

to the lift rector given by

i

a	
V^	

a	 2,♦ 	 V7c	 f •	 0 151
s +	 coo a	 s 

+k^1+ 
a. coo 	 3s) : s^0	 0

•

14
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wh:re V, is the crosstlow velocity at the boundary and a o is the model incidence at

Hero lift. For the classical caw. VC : 0. Eq. (5) reduces to the common form of Eq. (2). For

lame valves of V, Kraft shows that the se:ond coefficient of Eq. (5) becomes a
pseudogo;osily parameter

V
U• U. CCW So tan %	 161

and the third coefficient becomes an effective slot parameter

k0 • 2k	 (7 )

where It is taken to be Vven by Eq. 441.

As shown in Ref. 4. the ciasucal blockage and upwash interterences for a V S1OL
model in a wind tunnel are coupled through the equations

Q/Ow Ri + 6v C 
CJ _ ♦ l 6v C C J 1,
	

181

to

Aes w	
6M 

u CI:	 ♦ 0a
♦ 

n 
a/c CLJ	 (Q ►

where U_ is the tunnel empty test section velocity. 6. and 6. are the interference factors
denved from the axial and vertical perturbation v"-ihes. respectively, and Aa, is an
angle-of attack increment which is hypothesized to he required by Nall induced :hanres

in the het trWclor^ The team .sa, can he evaluated exprnmentally at C t = 0 by :ompanng
interference and interference free C L versus a data. however. no theoreti:al prediction
of its existence. much Icss its behavior. is presently available. The interference factors

6. and 6. an be calculated by several available theoretical solutions. Refs. I I through

13. for example. The experimental dctcrmination of 6. and 6.. however, requires either

a third independent equation or a 'Ist-Lt measurement of the velocity U. JEq. (8)1 Which

was not available dunng the present expenments_ A theoretical estimate of the blockage

effect for the jet-flap mr^Jel in the V STOL tunnel with sAid walls chows the maximum

value of U l'_ vanes from 1 005 at Ct - 1 0 to 1 03 at C t = 6.0 Thus. the error i.,

assumrnt than the tunnel velocity is equal to the calibration velocity can he appreciable

at hi;% value: of C t . but the blockage effects can he reasonably ncgle:tcd at vaiucs of

Ct less than about two which corresponds to C V of about 09.

By assuming b. to he zero. expenmental values of the upwash interference facton

6. and Aat can be evaluated in the least squares sense by the method derived in Ref. 4.
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The vakm of d. Was .*4asned are oompared with theory in H& S for the three
values of the .rag boundary condition described above. The theoretical solution were
obtained by the method described in Ref. 14 using an elliptical vring loading and the

boundary condition given by Eq. (5). The theoretical value of the upaash interference
factor indudes both the interference at the air+` quarter chord position and the streamline
alrvature cffect and is given by

o 

.9`y	
(10)

EXPCRIM NTAL MIT" GEOMETRIC
CLOT FMItAMETFR FROM
EOYAT IOIi

O	 3
O	 4
O	 !

O.!
	 THEORY

0.1

-0 	 0.2	 0.4	 0.6	 0.9	 la	 0	 02	 0.4	 0.6	 0.6	 1.0

	

SLOT ►ARAa1ETER, P - 11 • K/61	 sLoT PMRAMET[R, ► - • It/h)

C. Cp - 029	 d. Cy - 0-97
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The data in UqL 5 show Food agtermerrt between throe) and esprnmcrtt at low value.

of Cid when either kq. 141 or 151. which are idenlitrcs at IoM valor. of Cp. rs u%cd AlIhough

the dal.: obtained at higher values of CIs for the closed and open Mall. tP = U end 1.

rc%pr.ttvclyl indicate posait+k Mockapr effects. which were thought to tk mimnul. the

tkwndar) condition pvcn by tq. 151 provides the hest agreement tktMcen Ihcor) and

experiment.

The variation of the jet interference parameter. Aa,, pre nted in Fig h. i-. quite

different from that obtained with the jet-tn-fusclag+r mtxkl in Ref. 4. At i givrn value

of lhr slot parameter. the value of Ja, for the jet-m-fuselap model increased with in.rr.runtc

jet-t.> fret -stream velocity ratio_ lfowrver. dt, for the jet- (Up model. in general. dccrca.e•

with increasing jet strength lintreasrng Cpi. Further. the data sutler is much greater milli
the yet-flap than with the )et-in-fuselage model. In both instances. ho%cvcr. for a co,rsl2nt

value of jet strength. Aa, decreases with increasing wall porosity. Also. the data Mith

both modek indicate a parameter of the form of da, in Eq. ( 9 1 n required to .orrea

the angk of attack to the free-air value. A very cntical review of le%t procedure% and

techniques failed to reveal any item which could surreptitiously intr#-du.c ilk • term lhu..

dn4x A&, n a function of both jet strength and wall configuration. it i% felt that .1a,

n the result of an interference phenomena whose nature remains to Ile n':-ntilied
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42 EVALUATION OF WALL CONFIGURATIONS WITH THE JET-FLAP MODEL

Dw foul test scama configuration evolved from a somewlur unsystematic parameter

variation. If a even parameter had little effect upon the model torcrs and moments.

particularly on C. . . the tunnel was not restored to its onpnA configuration before the

next pararroter varialion began. Thus. the parameter varutions are not sufficiently detailed

to allow the establishment of multidimenssonal influence .wffi vents. The data do.
however, allow a number of cifects to he shown over a limited range of parameter

variations. It should be recognized that the data from the WSTOL tunnel contain the
simultaneous influences of ciassical bloihapr and upwash inlcrfercn.v. jet; boundary
interactions. and in sumo instances powhic intermittent test section flour wF -ations. While
these effects are not separahle. they were in most cases very repeatable.

Seven forvc and moments were measured on the let-flap model. The axial-force data

obtained in the Ames 40- by 80-ft tunnel were apparently Influenced h) model support

vibration in the axial direction causing erratic reading:. Two moments. wing root bending
caused by the normal and axW force. respectively. were not appreciably affected by the
various wall conlrigurations indicating that the spanwise "ding is essentially unaffected

by the Interference phenomena. Thus. wall configuration evaluation is made on the basis

of three aerod) namic coefficients. Q . - C,.. and U, T' It is assumed that if all model

foran and wiments obtained in the V:STOL tunnel arc simultaneously in agreement with
the Irrge tunnel result%. the flow full about the model approximates an mterferrmv-free

fold_ The jet-flap  model data are presented for two slues of the momentum coe(ficient.
v►hich arc representative of the results obtained it low and high values of CM.

The data obtained on the het-flap model with solid test woicin walls and with the
uniform .lotted configuratnori arc presented In Fig ' as a frame of reference for the
.uh,eituent steppal bottom wall configuration. At low CO . increavng the wall porosity
dccrca%C% the %:-)pc of the C t versus a data as expected. The wing pitching moment is

on1% lightly affected_ At high valor% of CM . howevev not only is M' t 3a decreawd unth

in.rcavng porosity but there is a large decrease m ( - t fcr a given "vnmctnc angle of
attack_ Pitching moment I% also suh%tant,all) reduced It was found Inat placing a step

in the bottom wall favorahl% affected twth the lift and pitching moment variation at
high CM . a% shown in Fig. 8. without apprec-iahly affecting tha data it low CO . It was
Avi found that. " might he exprard. the location of the step t% an important parameter

a, shown in Fig_ 9.
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i he effect of riots in the top and bottomstepprd wall is presented in FWs. 12 owl

13. respectively. Tvft stua.0 show that skAs about an inch wide are -eeded to pre+rnt

sepmtwn on the top 
wall 

at hush values of CM . Voss in the top wall have nwr influence
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an CL . and CL t than those in the stepped bottom waU. AM arently, the thick boundary 	 !
layer "S the bottom mall rvndcrs the slots somewhat ineffective. Although. as shown. 	 j

the win= pitching moment tends to approach the interference free value as the slot width

is increased, the daa from the V/STiOL tunnel are not quite rrs apeement with the Ames

results.
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While the slotted bottom wall was being tested, three conf4wetions with reduced
p1mum depth wrm also investipted. as shorn in Fig. 14. As might be expected, reducing

the plenum depth caused the bottom wall to act more dosed on the baUs of CL ,. It

is ciuious that the wing pitchmE moment at Cu = 3.3 is about the same for D L of 4
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in. and infinity. The out-,- effect of redicins the top wall plenum depth fran infinity
to 2 in. (FW 15) is to induce an apparent flow angularity into the tunnel. The flow
angularity, however. is a function of Cµ (note the Cr . rersas a curves shift in opposite
directions for Cyr of zero and 3 . 3). While the effect of the top plenum depth is rather
small. a depth somewhat greater than 2 in. (in the W !STOL tunnel sale) seems warranted.
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AU of the configurtbons discussed heretofore were structured such that flow from
the infinite plenum could past through the step in the bottom wa q. 11 was found to
be essential that flow past through the step io produce new interference-free data. The
anaunt of flow is controlled by the ejector action of the tunnel /model stream. Ratbes
than construct a plenum in the bottom wall to provide the required flow by
leakage/recirculation, a transverse slot was introduced in the bottom wall at tht nozzle

exit to provide the required bleed flow. The effect of the small but unknown flow through
the step. which is proportional to the transverse slot width. is shown in Fig. 16. At low
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values of Cp. the flow through the step introduces an apparent flow angle of 0.6 deg
at both the wing and tail positions. Houvwr, 3CL, /aa and CL , versus C. are in very

good agreement with the Ames data. At higher vaiuw of Co the proper flow through
the step rewlts in masonable agreement of all three force coefficients with the
interfemrice4ree data. It should be noted that the 1-in. transverse slot width apparently

provides the same flow through the step as the infinite plenum. Therefore, there is no
need to make the slot larger. Further, the configurations with ap = 1.0, al. = 0. D. =

2, L - 2.75, s - 2, g - 0 and either g - 1, DL - 2 or g - 0. DL - - were the only
configu=tions which were found to provide matonable agreement between the V/STOL
tunnel and Ames tunnel data for all values of Cp. Although the data obtained in the
V/STOL tunnel are not in perfect agreement with the interference-free results, comparison
of the data of Figs. 16b and 7b indicates that the best stepped configuration produces much
better rmdts than a conventional test section configuration for the V/STOL care.

43 EVALUATION OF THE STEPPED WALL OONFIGURATKM WffH THE
JET-IN-FUSELAGE MODEL

Tests were also conducted with the jet{n-fuselage model and the test section
configuration which produced the best results with the jet-flap model. The lift data from
the configuration presented in Fig. 17 (square symbols) indicate an apparent flow angularity
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sir kar to that experienced by the jet-flap. aC L /da is essentiafiy the same as the
interference-ftae results. However, the pitching moment, Fig. 18, is si Oficantly im than
the interferencafree results. Tufts indicated tunnel flow breakdown had occurred at VR
= 4.5 with flow moving upstream along the floor ahead of the jet/wall intersection and
rerticaUy along the sidewalk. It could be inferred from the C. r data that flow breakdown
was also present to some extent at the lower velocity ratios.
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Additional tests were conducted with the louvers open and the bottom wall plenum

removed. The data. also presented in Figs. 17 and 18 (diamond symbols), show the same

effects observed with the jet-flap model. The apparent flow ansk is less at all values of

Va . CL rlaa increased u`dicating an effectively lower wall porosity than with the louvers

closed. However. the pitching moment o-as appreciably affected. except at V it - 4.5. in

contrast to the jel-flap configuration.

5.0 CONCLUDING REMARKS

The investiption of wind tunnel wall interference for VISTOL models reported herein

and in Ref. 4 has shown that agreement between theory and experiment hinges upon

the theoretical representation of the boundary condition. Kraft's heuristic modification

to the boundary condition. while producing better agreement with experiment. is not

sufficiently descriptive of the physical process to lead to an understanding of the mcchanism

of the jet (downwash)(boundary intrraction.

It has been demonstrated in the present imrestiption that at least one test section

confituration exists for a jet-flao model which will reasonably represent fire-air flow

conditions over a wide range of let momentum coeffnient. The configuration n not suitable
for a high-disc-loading model. houcrer. The possibility certainly exists that the results

l with the jet-flap model are fortuitous. The results of Ref. 4 and the present study indicate

many wall co! •r=ata ru will result in free-air Ct versus a data. but few will produce

free-sir pitching moment with augmented lift. The primary difficulty in atu inina are

interference-free field is apparently associated with the model downwash.1unnel boundary

interaction. The effect of •anom wall geometries, however simple or compli: =vied, cannot

be undersiood until a better understanding of the boundary phenomena is attained. Until

that time, there seems little likelihood that any interference-free tunnel configuration could

be used with "fidence. It is felt, therefore, that future wort :)n V(S'TOL wind tunnel

wall interference (both theoretical and experimental) should be directed toward

understanding the tunnel boundary condition.
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M )NEW ATME

a	 Skit width. itt-

t	 Test sectme sett. as.

C	 Tunsel aas-sectwnal area, q in.

Ct f	 Aerodynaaac lift coefRoeat of j t-m4urelar model

Ct T	 Tail lift coefric:mt

Ct a	 Wing Wt caefrkwat of jet4lap model

C, r	 Aerodynamic pAciant motion of ;et4wfu&dw model

C,	 Mim pitching moment of jet4lap model

C*	Jet momentum coefrummt. my V,/mss

Z	 /Ivan aerodynamic dxwd. me.

D	 Pfr_num deph, in_

d	 Sist width, in.

ER	 Tunnel enetU r.:;c,. dynamic pressure divided by the pressure nse across the
fan

I	 Trarvetse slot width. in.

h	 Test wctm setnheght, in-

k	 Geometric riot parameter

L	 Divance from nozzle alit to bottom wall step. m.

e	 Slot sprang. in. (see Eq. (3))

M,	 Model jet mm flow. ShICUMC

a	 Normal detection

P	 Slot parametef, (I + WhO

q	 Dynamic
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All oc-Ta -Mm

R	 Hor+aity Pam ter

S	 Step 3rs*t. ia.

s	 Win1 area. stn a.

u	 Axial seimty

Ve	 Effective crowdlow Rdodty at the hoo peneous test sect oo boundary

Vi	Model jet exit we	 ty.  t`thec

Va	 let to free-stream Moat;r ratio. Vl/V

x, Y. a Cartesan coorduuttes

a	 Model ayk of attack. &Z

46	 Angie of attack at zero Wt. rad

Jet interference aotk, deg
	 1

b.	 Up ash interference [actor at the wmg qunur chord

a. taterferecnx Factor far the axial interiereaoe .010 ty

b. Intesfeveme bctar for the vm---al interference weMdI ►

1	 amtom van loum avk. den

Velocity potential

suesmi s

u	 Upper wall

L	 bottom wan

Free-stream conditim
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