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The research reported herein was motivated by the need to
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reports on low-level atmospheric flows as related to aeronautical
operations published by the Aerospace Environment Division, Space
Sciences Laboratory, NASA-Marshall Space Flight Center., The
support for this research was provided by Mr. John Enders of the
Aviation Safety Technology Branch, Office of Aeronautics and Space
Technology in NASA Headquarters, and by the MSFC Summer Faculty
Program.
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TECHNICAL MEMORANDUM X-

ROUGH-TO-SMCOTH TRANSITION OF AN
EQUILIBRIUM NEUTRAL CONSTANT STRESS LAYER

I. INTRODUCTION

The purpose of the research reported herein is to develop a
model of a low-level atmospheric flow over a terrain of changing rough-
ness length., A flow of this kind is found at the windward end of landing
strips as the wind blows onto the relatively smooth surface of the strip
from the relatively rough surface of the surrounding terrain, The work
involves use of the proposed model to derive functions which define the
extent of the region and allow the calculation of wind and shear stress
profiles at all points within the affected region.

Elliott [1] was one of the first to study the change of terrain
problem, He predicted that the thickness 6i of the region affected by

the change in roughness length increases with the 4/5-power of distance
x from the discontinuity; i.e., with fetch, Elliott refers to the region
of the flow disturbed by the discontinuity as the internal boundary layer
(IBL). Other investigators have pursued the problem using various
models for the internal boundary layer; e.g., Panofsky and Townsend
[2-5], Taylor [6], Peterson [7], and Rao, Wyngard, and Cote [8].

Plate [9] has reviewed work done prior to 1971 on the internal boundary
layer problem, The most recent studies utilize computer methods,
together with a suitable turbulence closure model, to solve the govern-
ing equations,

A few investigators have studied the problem experimentally in
wind tunnels, The earliest experimentation was done by Jacobs [10],
and the latest was accomplished by Antonia and Luxton [11]. The latest
field data were reported by Bradley [12]. Fair agreement has been
obtained between experimental data and theoretical predictions,

The technique of asymptotic matching in conjunction with assumed
scaling laws shall be used to extract as much information as possible
from the equations of motions about the flow of concern. The motiva-
tion for this is to avoid lengthy and complicated numerical solution

S hmre 4 s e Pl TR e
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methods which tend to mask the physics of the problem., The technique
of asymptotic matching permits one to capture the physics of the prob-
lem, extract basic nceded information, and avoid the negative aspects

of numerical methods.

II. PROPOSED FLOW MODEL

The present investigation deals with the transition region occur-
ring in a neutral constant stress layer due to an abrupt change in surface
roughness, the line of the discontinuity being normal to the direction of
the wind, It is assumed that the surfaces are covered with uniformly
distributed roughness elements (i, e., small obstacles or protrusions)
the height of which may be characterized by the scale z_ (roughness

length). The flow is assumed to be steady, two-dimensioral, and
incompressible, with neutral hydrostatic stability prevailing throughout
the entire layer, The approach that is used in the analysis is similar
to that of Clauser [13] in his study of the turbulent boundary layer and
of Csanady [14] and Blackadar and Tennekes [15] in their investigations
of turbulent Ekman layers,

Blackadar and Tennekes [15] and many others have shown that
the wind profile in the equilibri m surface layer upwind of the discon-
tinuity is given by

In — . (1)

This equilibrium wind profile is represented schematically in Figure 1.
Panofsky [16] states that the thickness of this surface, or logarithmic
layer of the atmosphere, is of the order of 30 meters and that the
Coriolis forces may be neglected in this layer,

Previous investigators assumed that an internal boundary layer
is formed above the smooth surface (roughness length of zo) and that it

grows with increasing distance from the discontinuity at x = 0, In
Figure 1 two regions are defined by a curve emanating from the origin;
i, e.,

z=6,(x) , (2)
1
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Figure 1. Development of an internal boundary layer
for transition of flow from rough to smooth terrain.

which forms a surface above which the wind profile is described by
equation (1) and below which the wind profile is undergoing transition to
a new equilibrium profile given by

7.

In — . (3)
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The fetch x corresponding to the achievement of this condition is repre-
sented mathematically as x » 0. Equation (3) is of the same form as
equation (1) and differs only in roughness length and velocity scale,

zo and u*o, respectively,

A deficiency of the model of the flow as depicted in Figure | is
that it does not provide for a gradual change of slope of the wind profile
across the surface 5i(x). One can easily versify that the velocity gradient

du/2 z obtained from differentiating equation (1) is not equal to that
obtained from differentiation of equation (3), Thus, although wind may
be specified as continuous at the boundary of the two regions, the
derivatives are not continuous across this boundary,

To circumvent this difficulty it is proposed that the IBL be
modeled as before but that an intermediate or matching region be



inserted between the two logarithmic regions as indicated in Figure 2.

LOGARITHMIC REGION

ROUGHNESS = zq

)
®  REGION

ROUGHNESS = 294

REGION |

e

Figure 2, Sublavers of the internal boundary layer
of proposed model,

The layer denoted as region I is the logarithmic layer in contact with
the smooth surface, In region I the profile conforms to equation (3),
with u:,:o a function of x. The thickrness of this layer is denoted by ),

with ) < 6.1- Region II is the new intermediate layer of thickness 50 - A

in which a gradual transition from one logarithmic wind profile to the
other is accomplished. A velocity defect law is hypothesized for
region II. Along the surface defined by z = 6y it is assumed that com-

plete matching to the external flow, governed by equation (1), has been
accomplished, including wind, stress, and the.r derivatives,
The thickness éi of the internal boundary layer as previously

defined and as depicted in Figure 1 is intermediate between the outer
layer defined by the surface z = 6O(x) and the sublayer defined by the

surface z = 3 (x). Along the surface z = 6i(x) the wind velocity u is
given by

[
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This means that 6i defines the surface below which the flow has accele-

rated relative to the original equilibrium profile given by equation (1),
Continuity requires that the region defined by 6i< z< 60 contain a flow

which has decelerated relative to the original equilibrium profile,

Thus, the proposed model includes three length scales; viz,,
A, 6i' and 60, and three velocity scales; viz,, u*o‘, u,, and uz,:o.

These scales will be utilized in the next section to develop suitahle
similarity functions for wind and shear stress,

III, PROPOSED SIMILARITY FUNCTIONS

Townsend [3] found that similarity is possible in disturbed
boundary layers if the disturbed layer is thin compared with the thick-
ness of the boundary layer and if the roughness length is small compared
with the thickness of the disturbed layer, Similarity may be assumed
in the present problem if it is required that 6i << h (where h is the

thickness of the atmospheric bourdary layer) and 2, << 6i' which are

clearly valid except verv close to and far from the origin.

Two functions are defined: the velocity defect function F(n),
which applies only to the intermediate layer (region II in Figure 2), and
the shear stress function G(n), which applies to the lower logarithmic
layer (region I) as well as the intermediate layer., The velocity defect
function is defined as

u - ul
F(T\) = ‘*.:z ’ (5)

with the dimensionless height above the surface defined as

n . (6)

- =
%
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The velocity uiis the velocity on the surface defined by z = 5i(x) and is
calculated from equation (4). Friction velocity u, in equation (5) is not
the value at the surface but is a variable function of height z and fetch x.
It is dependent on surface stress ui , a function of fetch only, and the

shear stress function G(n), which is defined as

2 2
G(n) “ie” Tol 7
n = u? u ? (7
2,<0 5,:01

and which clearly indicates the relationship between u,_ and G(n).

The nature of the similarity functions defined in equations (5)
and (7) can be determined from a consideration of the boundary and
matching conditions to which they must conform., The most obvious
of these conditions are written first; i.e., those for which the function
is zero or unity.

The function F(n) is zero when the velocity u equals the velncity
u, on the surface defined by z = 6i(x). The height of this surface is

expressed nondimensionally as

O

i

i N (8)
6O

B:

Thus, the condition at this surface can be written as
F(p=0 . (9)

The function G(n) is zero at the outer portion of region Il where
the shear stress must approach the upstream value Tox' which is the

value of shear stress found at all heights in the equilibrium layer
upstream of the discontinuity. This condition occurs at the height
zZ = 60 and is written as

G(ly=0 . (10)
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In the region above region Il the shear stress is constant; therefore,

ar
oz

=0 for z =§ . (11)
o
The resulting condition for the shear stress functio. is

G'(l)=0 |, (12)

Similarly, in the lower part of the internal boundary layer; i, e., in
region [,

G'n)=0 forn= 1> , (13)
where

b

A
S
Conditions at the extremities of region I may be written as

G'(b) = 0 (15)
and

G'{0) -0 . (16)

In the region I the stress function is unity since 7 = T, throvghout the

layer, Thus
G(n =1 form= b ., (17)

Thus, all the boundary and matching conditions on the stress function
are included in equations (10) through (17), Additional conditions on the




B S —
5

velocity defect function F'(n) will be sought next.

At the outer limit of region Il u = u and equation (7) becomes
1
F(l) = -ElnB R (18)

where [ is obtained from equation (b), ui from equation (4), and uo froi.1

uo 1 6o
” = E ln'z—- . (19)
o1 ol

In order that the flow be self-preserving; i.e., that the function F(n)
not depend on fetch %, it is required that F(l) = constant. This require-
ment imposed on equation (18) implies that 8 is at most a function of
z /zm, which must be determined through experiments. The parameter

B will be determined later for a particular example., A condition on the
derivative F'(l) may be obtained by matching derivatives at the juncture
of region II and the upper logarithmic region, Egquating expressions for
du/ 0z obtained from differentiation of equations (1) and (5) results in
the condition

Fi(l) = (20)

.

ol Lol

Next the interfacial conditions as z = A (n =~ b) are considered.
Again, the derivatives are matched, with the following result:

F'b) = — . (21)

Similarity requires that b, like 3, is at most a function of zo/z0 ,
1

which must be determined by experiment. Its value is to be determined
later for a particular case.
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At this point a tentative velocity defect function is constructed
which satisfies all of the necessary conditions for matching at the upper
and lower bounds of region II; these conditions were given previously
as equations (9), (18), (20), and (21). A suitable function for the region
of velocity defect is

Fin) = ¢ 1n(§) , (22)

anc this function can be utilized to determine velocity distribution in
region II after the growth law governing 6i and the constant 3 are

determined., The function given by equation (22) can be established via
asymptotic considerations by demanding that the vertical gradient of u
given by equation (3) as z -+ % and the vertical gradient of u given by
equation (5) as z - 0 merge together in an overlap region in which both
formulations given by equations (3) and (5) are valid. This procedure
assumes that zau*/az becomes small in comparison to ndF/9m as

z -0

Equation (22) may be utilized to derive a relationship between
surface friction and internal boundary layer thickness. At the outer
interface of region I

F(b) = b1 . (23)

Substitution for ui from equation (4) and for u, from equation (3) with

b
z = A leads to

5.
1n 1 - ____M_ , (24)
Zo1 Yoy
-1
u.v,
%0

where



The utility of equation (24) will be demonstrated later,

The required stress function must satisfy the matching condi-
tions given by equations (10), (12), (15), (16), and (17). Figure 3
depicts the shape of the required function as determined from the condi-
tions listed above. An error function satisfies all matching conditions
and is used to construct the stress function as is described below., The
general form of the function is taken to be

G(n) =N erf(§) +C (26)

where the argument § is a function of 7.

Gin)

Figure 3, Schematic of properties of the
nondimensional stress function G(n).

Let n = 3 be chosen to be the point of inflection; i.e., the maxi-
mum absolute value of slope G'(n). This choice follows from a con-
sideration of the terms of the equation of motion which governs flow in
region II; i. e.,

= or . (27)

z z

|e)
[«
~‘

u% + w

(e} ]
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It can be shown from equation (7) that the stress gradient is proportional
to G'(n). Equation (27) shows a direct dependence of stress gradient
upon convective acceleration. Since the surface z = 5i(x) separates

regions of net positive and negative acceleration, it is plausible that
fluid in the vicinity of that surface experiences the largest accelerations
and, hence, the largest stress gradients., Since maximum stress

gradient implies maximum absolute value of G'(n), then n = 3 corresponds

to the maximum value of the derivative of the error function; i.e.,
£ =0atn=8.

To construct the argument of §, cognizance is taken of the re-
quirements stated in equations (12) and (15). The derivative of the
error function is approximately zero when || > 2, where the error
function itself is approximately unity. Choosing |£]| = 4 for n = b and
n = 1 and substituting these values in equation (26) enables a determina-
tion of the constants C and A, To satisfy the conditions § =4 atm=>b
and £ = 0 at = 3, the argument

£ - (28)

is selected, Substituting £ = -4 at n = 1 into equation (28) gives the
relation between 8 and b; viz.,

N |-

Substituting the above results into equation (26) yields the following
expression for the shear stress function:

1 4(1+b- 1
G(n):é-erf[—(-fr—z—'l’-] £ (30)

The constant b remains undetermined, and experimental data
must be utilized to determine its value. Only one point of data is
required, as will be demonstrated in the next section.

11



I[V. DISTRIBUTION OF IBL THICKNESS AND
SURFACE SHEAR STRESS

In this suction a relationship between the thickness 61 of the IBL

and the fetch x, i.e., the IBL growth law, is derived. This is obtained
by integrating an asymptotic form of equation (27), the equation of
motion, The terms are simplified by letting = 8 and x = 0. This
results ir an ecasily integrated differential equation since F(8), F'(B)
and U, 2re eas ly inferred from equations (22) and (21) for the limiting

values conside1 :d. The surface friction velocity approaches zero in
the limit as x + 0, which is consistent with equation (24)., In view of
this, it 1s plaus'ble that u  atn = f will approach zero as the discon-

tinuity is approached; however, equation (7) indicates that a minimum
value of u, is ayproached but not a zero value, because equation (7) is

not valid at the roughness discontinuity, Nevertheless, in reducing the
equation of motion it is assumed that u,~ 0 as x = 0. A physical justi-

fication for this assumption is that the velocity gradient,

1, F (B u,

B

du _ ¥ Tk
TR T (31)

o 1

is expected to b: small initially at n = 3; i.e., in the vicinity of the
juncture of the new a2nd old velocity profiles. This is expected because
of the acceleration of the fluid inside the IBL relative to that above the
IBL. Egquation (31) requires a small value of u, as 6i shrinks near the
origin,

The above ssumpt ~is reduce equation (27) to the simplified
differential equation

A
M

8. \
' L . ke t
6, 1n< } = -k EBGHB) . (32)

Integrati- a of equation (32) results in the growth law,

12
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2 1
rlnr-(1+M]+eM=KBEBIx

z
(o]

’ (33)

where

6
< (34)
z

(0]

r

M
The boundary condition that r = e" at x = o was used to derive
eguation (33).

Equation (33) can be used tu predict the growth of the internal
boundary layer if the constant 8G'(3) is determined from experimental
data, From Bradley's data [12], valid for M = 4,83, as plotted in
Figure 12 of Rao, Wyngaard, and Cote [8],

BG'(B) = - 1.918 . (35

It should be kept in mind that this numerical result is only valid for a
particular value of zo/z01 or rather M = 4, 83,

The resulting value from aquation (36) may be used with equation
(33) to predict internal boundary layer thickness at other fetches, A
curve depicting the results of this calculation is shown in Figure 4 with
Bradley's data for M = 4,83,

© EXPERIMENT
== PRESENT PREDICTION

65 {cm)

10 A T E A WY | N PR
1 10 50

x (m)

Figure 4. Growth of the internal boundary layer with fetch.
The experimental data are those of Bradley [12].
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Values of 5 calculated from equation (33) can be utilized with

equation (24) to determine surface stress as a function of fetch, The
curve in Figure 5 shows the comparison of predicted surface stresses
with experimental data from Bradley [12] and numerical predictions
from Rao, Wyngaard, and Cote [8].

05
——"---- (-]
o ——— o ° °
- 0, (-]
03 -7 %o R
5
2 o2

0 EXPERIMENT
- == NUMERICAL PREDICTION
- PRESENT PREDICTION

x (m)

Figure 5. Nondimensional surface shear stress as a function of
fetch, The experimental data are those of Bradley [12].
The numerical prediction of Rao, Wyngaard, and
Cote [8] is indicated with the dashed curve.

The prediction of the theory herein is
indicated with the solid curve.

The results shown in Figures 4 and 5 indicate the degree of
success achieved in the prediction of internal boundary layer growth
and of surface shear stress variation with fetch, Agreement betwzen
theoretical prediction and experiment is achieved at all statione for
which experimental data are available,

14

Ch mecn e

PR £

R L T




PSR

V. PREDICTION OF WIND AND SHEAR STRESS
PROFILES IN IBL

The prediction of wind and shear stress profiles in the internal
boundary layer following a discontinuity in surface roughness can be
achieved through the use of the equations developed in previous sections.
To achieve this, use is made of equations (22) and (30) in the form

F(n) = 2.5 1n (85J> (36)
and
4(5-8 1
G(n) = %— erf[—(—;—ﬂl] + > (37)

in which the values b = 0,25 and 3 = 0, 625 have been substituted., The
approximate value of b is obtained by differentiation of equation (26) and
substitution of equation (35). The parameter 3 is evaluated with
equation (29).

To calculate a wind profile in the internal boundary layer it is
necessary to know the two roughness lengths and the surface stress

-upwind of the discontinuity. With this information 61’. is calculated from

equation (33), Yo from equation (24), and u, from equation (4}, With

these values calculated as indicated above, a set of quantities is calcu-
lated at each height z; for region II this procedure is carried out as
follows: i) m is calculated from equation (6); ii) G(n) is calculated from

equation (37); iii) u:: (u: = 7) is calculated from equation (7); iv) F(n)

is calculated from equation (36); and v) u is calculated from equation
(5). This completes the method of calculating wind and shear stress
profiles in region II; i.e., u - 7 and T - z profiles, respectively.
OQOutside region II the wind profile is determined from equation (1) for
z> 60 and from equation (3) for z < ). Some results of this calculation

are shown graphically in Figure 6 and are compared with the corre-~
sponding experimental data of Bradley [12].

15
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100 +

z (cm)

0

O EXPERIMENT
— PRESCNT PREDICTION

Figure 6. Nondimensional wind profile uw atx=6.1m
for M = 4,83, The quantity ut = u(z)/u(z = 112,5 cm),
The experimental data are those of Bradley [12].

It is evident from Figure 6 that the calculation method based on
the proposed model is capable of producing reasonable predictions of
wind profiles in the internal boundary layer associated with modification
of the surface layer, Since the calculation of a wind profile requires
use of the corresponding shear stress profile, the model is assumed to
be valid for shear stress prediction as well,

16
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