MCR.74-423

NASI 13300

Volume I
Final
Report
Novertiber 9974
Formulation Manual
Six-Degree-ofFreedom
Program to
Optimize Simulated
Trajectories
(6D POST)

MARTIN MARIETTA

Volume 1	Final Report
FORMULATION MANUAL November 1974	SIX-DEGREE-OF-FREEDOM
	BROGRAM TO OPTIMIZE
	SIMULATED TRANECTORIES
	(6D POST)

Prepared by
G. L. Brauer, A. R. Habeger
and R. Stevenson

Approved

A.E. Cmint
D. E. Cornick Program Manager

MARTIN MARIETTA CORPORATION
P.O. Box 179

Denver, Colorado 80201

FOREWORD

This final report describing the formulation of the Six-Degree-of-Freedom Program to Optimize Simulated Trajectories (6D POST) is provided in accordance with Part 3.0 of NASA Contract NAS1-13300. The report is presented in three volumes as follows:

Volume I - 6D POST - Formulation Manual; NASA CR-132741
Volume II - 6D Pos'T - Utilization Manual; NASA CR-132742
Volume III - 6D POST - Programmer's Manual. NASA CR-132743
This work was conducted under the direction of Mr . Howard Stone and Mr. Richard Powell of the Space Systems Division, National Aeronautics and Space Administration, Langley Research Center.

CONTENTS
Page
SUMMARY vi
I. INTRODUCTION I-1
thruI-3
II. LIST OF SYMBOLS AND ABBREVIATIONS II-1
thru
II-19
III. COORDINATE SYSTEMS III-1
Coordinate System Definitions III-1
Attitude Angles III-5
Transformations III-7
thruIII-10
IV. PLANET MODEL IV-1
Oblate Spheroid IV-1
Gravitational Model IV-3
Atmosphere Models IV-5
Winds IV-11
thruIV-15
V. VEHICLE MODEL V-1
Mass Properties Model V-1
Propulsion Calculations V-2
Aerodynamic Calculations V-5
Aeroheating Calculations V-8
Autopilot Module $\mathrm{V}-13$
Sensor Module $V-14$
Navigation Module $V-14$
Guidance Module $V-14$
Controls Model V-15
Airframe Model V-18
VI. TRAJECTORY SIMULATION VI-1
Events/Phases VI-1
Translational Equations VI-4.
Rotational Equations VI-8
Integration Variables VI-12
VII. AUXILIARY CALCULATIONS VII-1
Conic Calculations VII-1
Range Calculations VII-3

SUMMARY

This report documents the basic equations and models used in the six-degree-of-freedom version of the program to optimize simulated trajectories (GD POST).

60 POST, a direct extension of the point mass version of POST, is a general purpose rigid body six-degree-of-freedon program. The program can be used to solve a wide variety of atmospheric flight nechanics and orbital transfer problems for powered or unpowered vehicles operating near a rotating oblate planet. The principal features of 6D POST are: an easy to use WAMELIST type input procedure, an integrated set of Flight Control System (FCS) modules, and a general-purpose discrete parameter targeting and optimization capability.

60 POST is written in FORTRAN IV for the CDC 6000 series computers.

Other volumes in the final report are:
Volume II - Utilization Manual - Documents information pertinent to users of the program. It describes the input required and output available for each of the trajectory and targeting/optimization options.

Volume III - Programmers Ilanual - Documents the program structure and logic, subroutine descriptions, and other pertinent programming information.
VIII-5 Direction of Negative-Projected Gradient for $\hat{n}_{a}=1$ and $m=3$ VIII-15
VIII-6 Properties of Eatimated-Net Cost Function VIII-25 Complete PGA Iteration, Consisting of Optimization Step followed by Constraint Step for $\hat{n}_{a}=1$ VIII-27
Tables
IV-1 1962 U.S. Standard Atmosphere Profile
IV-8
IV-8
IV-2 Derived Coefficients for the 1963 Patrick AEB
IV-2 Derived Coefficients for the 1963 Patrick AEB Atmosphere Model IV-11
and
IV-3 1963 Patrick AFB Molecular Temperature Profile IV-12 IV-13

I. INTRODUCTION

The six (6)-degree-of-freedom program to optinize simulated trajectories is a genezal purpose FORTRAN program cor simulating rigid body trajectories of aerospace type vehicles. The program can be used to solve a wide variety of performance, guidance, and flight control problems for atmospheric and orbital vehicles. For example, typical applications of 6D POST include:

1) Gu!dance and flight control system simulation and analysis;
2) Loads and dispersion type analyses;
3). General-purpose 6 D simulation of controlled and uncontrolled vehicles;
3) 6D performance validation.

One of the key features of 6D POST is an easy to use NAMELISTtype input procedure. This feature significantly reduces input deck set-up time (and costs) for 6D studies that require the normal large amount of input.data. In addition, the general applicability of 6D POST is further enhanced by a general-purpose discrete parameter targeting and optimization capability. This capability can be used to solve a broad spectrum of problems related to the impact of the control system design on the performance characteristics of aerospace vehlcles.

The - ic simulation flexibility is achieved by decomposing the trajectory into a logical sequence of simulation segments. These trajectory segments, referred to as phases, enable the trajectory analyst to model both the physical and the nonphysical aspects of the simulation accurately ani efficiently. By segmenting the mission into phases, each phase can be modeled and simulated in a manner most appropriate to that particular flight regime. For example, the planet model, the vehicle model, and the simulation options can be changed in any phase to be compatible with the level of detall required in that phase.

Every computational routine in the program can be categorized according to five basic functional elements. These elements are: the planet model, the vehicle model, the trajectory simulation model, the auxiliary calculations module, and the targeting and optimisation module. The planet model is composed of an oblate spheroid model, a gravitational model, an atmosphere model, and a winds model. These models define the environment in which the vehicle operates. The vehicle model comprises mass properties, propulsion, aerodynamics and aeroheating, an airframe model, a navigation and guidance model, and a flight control syucem model. These models define the basic vehicle simulation characteristics. The trajectory simulation models are the event-sequencing module
that controls the program cycling, table interpolation routines, and several standard numerical integration techniques. These models ars, used in numerically solving the translational and rotational equations of motion. The auxiliary calculations module provides for a wide variety of output calculations. For example, conic parameters, range calculations, and tracking data are among the many output variables computed. The targeting and optimization module provides a general discrete parameter iteration capability. The user can select the optimization variable, the dependent variables, and the independent variables from a list of more than 400 program variables. An accelerated projected gradient algorithm is used as the basic optimization technique. This algorithm is a combination of Rosen's projection method for nonlinear programming and Davidon's variable metric method for unconstrained optimization. In the targeting mode, the minimum norm algorithm is used to satisfy the trajectory constraints. The cost and constraint gradients required by these algorithms are computed as first differences calculated from perturbed trajectories. To reduce the costs of calculating numerical sensitivities, only that portion of the trajectory influenced by any particular independent variable is reintegrated on the perturbed runs. This feature saves a significant amount of computer time when targeting and optimization is performed.

Basic program macrologic is outlined in figure I-1, which illustrates the linkage between the simulation and the iteration modules.

ORIGINALL PAGE IS
OF POOR QUALITY
Pigure I-1.- Program Macrologic

II. LIST OT SYMBOLS AND ABBREVIATIONS.

Math Bymbol	Internal Portran symbol	Definition
a	SEMJAX	semimajor axis, m (ft)
$A_{A B}=\left(A_{A X B}, A_{A Y B}, A_{A Z B}\right)$	---	aerodynamic acceleration in the body frame, mps ${ }^{2}$ (fps ${ }^{2}$)
[$A B]$	$A B(I)$	matrix transformation from the A-frame to the B-frame
${ }^{A_{E}}$	AR	nozele exit area of each rocket engine, $m^{2}\left(f t^{2}\right)$
$A_{1} ; a_{1}$	---	constants
$A_{M} \cdot A_{M P} \cdot A_{M X}$	ANXX, AMYB, AMZB	```total aerodynamic moment about the roll, pitch, yaw axes, N=m (ft-1b)```
$\left[A_{n}\right]$	A(I)	Davidon defiection matrix component
${ }^{A_{S}}$	ASM	total sensed acceleration, mps ${ }^{2}$ (fps ${ }^{2}$)
$A_{S B}=\left({ }^{\text {SXB }}\right.$, $A_{S Y B}, A^{\text {SZB }}$)	AXB, AYB, AZB	total sensed acceleration in the body frame, mps ${ }^{2}$ (fps ${ }^{2}$)
$\left.A_{S I}=\dot{(}_{A_{S X I}}, A_{S Y I}, A_{S Z I}\right)$	ASXI, ASYI, AS2I	total sensed acceleration in the inertial frame, $\mathrm{mps}^{2}\left(\mathrm{fps}^{2}\right)$
	---	thrust acceleration in the body frame, mps ${ }^{2}$ (fpa^{2})
A_{22}	A2L	aximuth of the ${ }_{\text {R }}$ axis, rad (deg)
$A_{2 I} \cdot A_{2 R} \cdot A_{2 A}$	AZVELI, AZVELR, AZVELA	azimuth of the inertial, relative, and atmospheric relative velocity vectore, rad (deg)

Mach symbod	Internal Portran symbol	Dafinition
$\mathrm{A}_{\mathbf{2 W}}$	AZWT	wind azimuth, rad (deg)
$\mathrm{A}_{\mathbf{Z T}}$	TKAZMI	azimuth of the slant range vector to the tracking station, rad (deg)
B_{1}	---	boundary for $1^{\text {th }}$ constraint
B_{n}	$B(I)$	Davidon deflection matrix
$B(R)$	---	boundary of region \mathbf{R}
$\mathbf{B (\underline { u })}$.	---	local boundary hypersurface
c_{A}, c_{Y}, c_{N}	CA, CX, CN	axial, side force, and normal aerodynamic force coefficients
$c_{A_{0}}, c_{Y_{0}}, c_{N_{0}}$	---	component of C_{A}, C_{Y}, C_{N} that is not multiplied by a mnemonic multipliex
C_{D}, C_{L}	CD, CL	drag and lift coefficiente
$C_{D_{0}}, C_{L_{0}}$	---	drag and lift coefficient components that are not multiplied by mnemonic variable

Math aymbol	Internal Yortran mymbol	Definition
$\mathrm{CH}_{\mathrm{H}} \mathrm{C}_{\mathrm{n}}$	CM, CW	pitch and yaw moment coefficients
${ }^{\text {c }}$	cs	speed of sound, mps (fps)
$\underline{\mathbf{C}}(\underline{\text { u }}$)	E(I)	constraint functions
D.	DRAG	aerodynamic drag, ${ }^{\text {N (}}$ (b)
E	ECCAN	eccentric anomaly
[E]	---	Euler parameter matrix
e	ECCEN	eccentricity
$\underline{e}=\left(e_{0}, e_{1}, e_{2}, e_{3}\right)$	Eø(I)	Euler parameters
$\underline{\text { e }}$	E(I)	active constraint error vector
$\underset{\sim}{\text { en }}$	WE(I)	weighted error vector
F	grtvar	optimization function
$\underline{\underline{E}}$	---	nonlinear vector-valued function
$\underline{E}_{A B}=\left({ }_{A X B}, F_{A Y B},{ }^{\text {a }}\right.$ AZB $)$	faxt, fayd, faz	aerodynamic forces in the body frame, N (lb)
	FTXB, FTXB, FTZB	thrust forces in the body frame, N (lb)
(a)]	GA(I)	matrix tranaformation from the G-frame to the A-frame
$\underline{G}_{I}=\left(G_{X I}, G_{Y I}, G_{Z I}\right)$	GXI, GYI, G2I	total gravitational acceleration in the ECIframe, mps $^{2}\left(\mathrm{fps}^{2}\right)$

Math gymbol	Intoxnal Portran aymbol	Definition
g_{n}	DG(I)	difference in the gradlent vector $V F$ between the current and previous iteration
H	---	gravitationa const. 195
h	ALTITø	oblate altitude. ، , \%)
$\underline{h}=\left({ }^{\text {XI }}\right.$, $\left.h_{Y I}, h_{Z_{I}}\right)$	ANGM@M	ara. nomei.n $\therefore \mathrm{mps}^{2}$
h_{a}, h_{p}	ALTA, ALTP	altitude of apogee and perigee, km (n mi)
$\mathrm{H}_{\text {B }}$	HB	base altitude used in atmospheric calcu! ations, m (ft)
h_{c}	P2	constraint function
H_{8}	HT	geopotential altitude, m (ft)
H_{R}	---	heating ratios
h_{T}	TRKHTI	altitude of tracker, m (ft)
h_{0}	PINET	estimated net cost function
1	INC	relative-frame orbital inclination, rad (deg)
[IB]	IB(I)	matrix transformation from the ECI-frame to the body frame
[IG]	IG(I)	matrix transformation from the ECI-frame to the geographic frame

Math symbol	Internal Fortran symbol	Definition
[II]	IL (I)	matrix transformation from the ECI-frame to the launch frame
[IP]	$\operatorname{IP}(\mathrm{I})$	matrix transformation from the ECI-frame to the planet frame
$I_{\text {ap }}$	ISPV	rocket specific impulse, s
[J]	$A C D B$ (J)	constraint Jacobian matrix
$\mathrm{J}_{2}, \mathrm{~J}_{3}, \mathrm{~J}_{4}$	J2, J3, J4	gravitational constants
$\underline{k}=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$	---	Runge-Kutta constants
K_{i}	---	constants
L	LIFT	aerodynamic lift, N (lb)
[LB]	LB(I)	matrix transformation from the launch frame to the body frame
ℓ	LREF	aerodynamic reference length, m (ft)
M	MACH	Mach number
M	MRAN	mean anomaly, riad (deg)
M	---	pitch and yaw moment equations
m	MASS	vehicle mass, kg (slug)
$M_{\mathbf{f}}$	---	mnemonic table multiplier for table f
n^{1}	NAC	number of active constraints

Math symbol	Internal Portran symbol
n_{c}	NDEPV
[P], [r]	PR®J (I)
$\mathrm{p}(\mathrm{h})$	PRES
. P_{1}	P1
P_{2}	P2
Q	tlheat
q	DYNP
$\dot{Q}_{\text {lam }}, \dot{Q}_{\text {turb }}$	heatrt, hturb
$Q(\hat{\underline{\underline{u}}}), \tilde{Q}(\underline{\underline{u}})$	-
$\mathbf{R}_{\mathbf{A}}$	RTASC
${ }^{\text {a }}$	AP@RAD
[RB]	RB (I)
R_{D}	DPRNG1
$R_{E \prime \prime} R_{P}$	RE, RP
R_{N}	RN

Definition

number of constraints
projection operators used in the projected gradient method
atmospheric pressure, $\mathrm{N} / \mathrm{m}^{2}$ (psf)
weighted optimization variable
weighted constraint error function
total heat, $J / \mathrm{m}^{2}\left(\mathrm{Btu} / \mathrm{ft}^{2}\right)$
dynamic pressure, N / m^{2} ($\mathrm{lb} / \mathrm{ft}^{2}$)
laminar and turbulent heat rate, $\mathrm{W} / \mathrm{m}^{2} / \mathrm{s}\left(\mathrm{Btu} / \mathrm{ft}^{2} / \mathrm{s}\right.$)
inear manifold and its orthogonal complement
right ascension of outgoing asymptote, rad (deg)
apogee radius, m (ft)
matrix transformation from the body reference frame to the body frame
dot-product range, km (n mi)
equatorial and polar radius, m (ft)
nose radius, m (ft)

Math symbol	Internal_Portran symbol	Definition
$\mathrm{R}_{\text {NU }}$	REYND	Reynolds number
$\underline{\underline{r}}_{\mathbf{I}}=\left(x_{I}, y_{I}, z_{I}\right)$	XI, YI, 2I	inertial radius vector from center of planet to the vehicle, m (ft)
$\boldsymbol{I}_{\boldsymbol{I}}$	GCRAD	geocentric radius, m (ft)
$\mathbf{r}_{\mathbf{p}}$	PGERAD	perigee radius, m (ft)
\mathbf{R}_{8}	RS	radius to oblate surface, m (ft)
$\underline{S}_{\text {SR }}$	---	slant range vector, m ($f t$)
$\underline{S}_{\text {SRE }}$	---	slant range vector in geographic frame, m (ft)
$\underline{E}_{\text {IR }}$	---	radius vector to tracking station, m (ft)
8	S (I)	direction of search
$8^{\text {c }}$	- ---	direction of search to satisfy the constraints
$\mathrm{S}_{\text {¢O88 }}{ }_{1}$	SLDSIJ	space losses for tracking stations, dB
$S_{\text {rex }}$	SREF	aerodynamic reference area, $m^{2}\left(f t^{2}\right)$
8^{0}	--m	direction of search for optimization
T	ATEM	atmospheric temperature, ${ }^{\circ} \mathrm{K}\left({ }^{\circ} \mathrm{F}\right)$
t	TIME	time, s
$\mathrm{T}_{\boldsymbol{j} / \mathrm{S}}$	---	jet engine thrust, $N(1 b)$

Math symbol	Internal Fortran symbol	Definition
$T^{\mathbf{n}}(\mathrm{y})$	---	denotes $n^{\text {th }}$ order table interpolation on the variable y
T_{R}	thrust	total rocket thrust for all engines, N (1b)
$\mathrm{T}_{\mathrm{R}_{i}}$	---	total resultant rocket thrust for engine i, N (1b)
$\mathrm{T}_{\text {vac }}$	TVAC	vacuum thrust for rocket engines, N (1b)
$\mathrm{T}_{\text {SP }}$	TIMSP	time since perigee passage, s
$\mathrm{T}_{\text {TP }}$	TIMTP	time to next perigee passage, s
甘	---	gravitational potential function
$\underline{\underline{u}}$	$\mathbf{U}(\mathrm{I})$	independent variable

Yath symbol	Internal_Porsxan symbol	Definition
$\underline{V}_{A B}=\left(u_{B} ; v_{B}, w_{B}\right)$	UB, VB, WR	components of the atmospheric relative velocity vector expressed in the body frame, mps (fps)
${ }_{-R I}$	--	unit vector along the. radius vector
$\underline{U V I}^{\text {I }}$	---	unit vector along the velocity vector
$\Delta \underline{u}$	DU(1)	change in the independent variables
$\nabla_{\text {a }}$	APVEL	inertial velocity at apogee, mps (fpz)
$\boldsymbol{V}_{\text {AG }}$	UA, VA, WA	atmospheric relative velocity in the G-frame, mps (fps)
$V_{\text {AI }}$	VAXI, VAYI, VAZI	atmospheric relative velocity vector in the inertial frame, mps (fps)
$\underline{v}_{\mathbf{I}}=\left(\boldsymbol{v}_{X I}, v_{X I}, \boldsymbol{v}_{\mathbf{Z I}}\right)$	VAI, VYI, V2I	inertial velocity vector and its magnitude, mps (fps)
$V_{\text {I }}$	VELI	magnitude of $\underline{V}_{\mathrm{I}}$, mps (fps)
$\underline{y s}_{16}$	$v_{\text {G }} \quad \mathrm{V}$, W	inertial velocity in the G-frame, mps (fps)
$\boldsymbol{V}_{\mathbf{R}}$	VELR	relative velocity, mps (fps)
$V_{\text {RG }}$	UR, VR, WR	relative velocity in the G-frame, mps (fpa)
$\boldsymbol{v}_{R I}=\left(\boldsymbol{v}_{R X I}, \boldsymbol{v}_{R Y I}, \boldsymbol{v}_{\mathrm{RII}}\right)$	VRXI, VRYI, VR2I	relative velocity vector in the inertial frame, mps (fps)

Math symbol	Internal Fortran symliol	Definition
$\underline{v}_{W 1}=\left(v_{W X I}, v_{W Y I}, v_{W Z I}\right)$	VWXI, VWYI, VWZI	wind velocity vector in the inertial frame, mps (\{ps)
V_{W}	vw	wind velocity, mps (fps)
$\mathbf{v}_{\text {WG }}$	Uw, vw, Ww	wind velocity vector in the G-frame, mps (fps)
v_{p}	PGVEL	perigee velocity, mps (fps)
\mathbf{V}_{∞}	HYPVEL	outgoing asymptote velocity, mps (fps)
\dot{W}	WD®T	total time rate of change of vehicle weight, N / s ($1 \mathrm{~b} / \mathrm{s}$)
W_{c}	WEICøN	total weight of propellant consumed, N (lb)
W_{G}	WEIGHT	gross vehicle weight, N (lb)
$W_{\text {jett }}$	WJETTM	jettison weight, N (1b)
$W_{\text {PC }}$	---	weight of propellant consumed per phase, N (1b)
$W_{P_{i}}$. ----	initial propeliant weight, N (lb)
$\dot{W}_{P_{1}}^{\max x}$	---	maximum flowrate for the $1^{\text {th }}$ engine, $N / \mathrm{s}(\mathrm{lb} / \mathrm{s})$
$W_{\text {PR }}$	WPRØP	weight of propellant remaining, N (lb)
$W_{\text {stg }}$	WGTSG	vehicle stage weight, N (1b)
$\left[w_{u}\right],\left[w_{f}\right],\left[w_{e}\right]$	WU, WøPT, WE	weighting matrices for \underline{u}, \underline{f}, and \underline{E}.
II-10		

Math symbol	Internal Fortran gymbol	Definition
x_{B}, y_{B}, z_{B}	---	coordinate axes of the body frame
$x_{B R}, y_{B R}{ }^{\prime} z_{B R}$	---	coordinate axes of the body reference frame
$\mathrm{X}_{\text {cg }}{ }^{\prime} y_{c g}{ }^{\prime}{ }^{2} \mathbf{c g}$	XCG, YCG, 2CG	coordinates of the center of gravicy in the body reference system, m (ft)
${ }^{\prime}{ }_{G}, y_{G}, z_{G}$	---	components of a vector in the geographic frame, m (ft)
$x_{I}, y_{I},{ }^{2}$	XI, YI, 2I	components of the radius vector in the inertial frame, m (ft)
x_{1}	---	general state variable
x_{L}, y_{L}, z_{L}	---	coordinate axes of the launch frame
x_{n}	GINTJ	state vector at the $n^{\text {th }}$ event
	---	components of the radius vector in the planet frame, m (ft)
$x_{\text {ref }}, y_{\text {ref }}, z^{\text {ref }}$	XREF, YREF, ZREF	coordinates of the aerodynamic reference point in the body reference system, m (ft)
L	DGENV	general dependent variable
α, β, σ	ALPHA, BETA, BNKANG	aerodynamic angle of attack, idesilp, and bank, rad (deg)
${ }^{\text {a }}$	ALPTOT	total angle of attack, rad (deg)

Math symbol	Internal Fortran symbol	Definition
$\gamma_{I}, \gamma_{R}, \gamma_{A}$	GAMMAL, GAMMAR, gamma	inertial, relative, and atmospheric relative flight path angles, rad (deg)
${ }^{\prime}$	gaman(1)	step-size parameter on the $j^{\text {th }}$ trial step
$\Delta \mathrm{E}$	---	increment in eccentric anomaly, rad (deg)
$\Delta \mathrm{h}$	---	increment in altitude, m (ft)
Δt	DT	increment in time or integration step size, s
$\Delta \mathrm{V}$	DV	```increment in velocity, mps (fps)```
Δv^{*}	VIDEAL	ideal velocity, mps (fps)
$\Delta \mathrm{V}_{\mathrm{A}}$	DLR	atmospheric velocity loss, mps (fps)
ΔV_{c}	DVCIR	velocity required to circularize an orbit. mps (fps)
ΔV_{E}	DVEXS	excess velocity, mps (fps)
ΔV_{G}	GLR	gravity loss, mps (fps)
ΔV_{M}	DVMAR	velocity margin, mps (fps)
Δv_{p}	ATLR	atmospheric pressure loss, mps (fps)
$\Delta V_{T V}$	TVLR	thrust vector velocity 10ss, mps (fps)
δ_{A}	RTASC	right ascension, rad (deg)

Math symbol	Internal Bortran symbol	Definition
η	ETA	engline throtting parameter
θ	LONG	planet relative longitude, rad (deg)
θ^{*}	---	longitude reference, rad (deg)
θ_{I}	LONGI	inertial longitude, rad. (deg)
$\theta_{L}, \phi_{L}, A_{Z L}$	LONL, LATL, AZL	longitude, latitude, and azimuth of L-frame, rad (deg)
$\theta_{\text {max }}$	TRUNMX	maximum true anomaly for hyperbolic orbit, rad (deg)
${ }^{\theta} \boldsymbol{T}_{1}$	TRKLNI	longitude of tracker 1 , rad (deg)
λ	AZREF	azimuth reference, rad (deg)
λ	STPMAX	maximum admissible step size for the iteration algorithm
μ	MIJ	gravitational constant, $\mathrm{m}^{3} / \mathrm{s}^{2}\left(\mathrm{ft} \mathrm{t}^{3} / \mathrm{s}^{2}\right)$
v	--	Index

Math symbol	Internal Fortran symbol	Definition
p	ARGV	argument of vehicle (1.e., angular location of vehicia, measured from ascending node in orbital plane), rad (deg)
$\rho(\mathrm{h})$	---	$\begin{aligned} & \text { atmospheric density, } \mathrm{kg} / \mathrm{m}^{3} \\ & \left(\text { slug } / \mathrm{ft}^{3} \text {) }\right) \end{aligned}$
T	---	trajectory propagation
ϕ_{c}	gclat	geocentric latitude, rad (deg)
ϕ_{g}	gdLat	geodetic latitude, rad (deg)
$\phi_{I}, \psi_{I},{ }^{\theta_{I}}$	RGLI, Yawl, PITI	inertial roll, yaw, and pitch measured as positive rotations from the L-frame, rad (deg)
$\psi_{R},{ }^{\theta}{ }_{R},{ }^{\text {¢ }}$ R	YAWR, PITR, R@LR	relative yaw, pitch, and roll, measured in a positive sense from the geographic frame, rad (deg)
Ω	LAN	longitude of ascending node, rad (deg)
Ω_{p}	9MEGA	angular rotation rate of planet about the polar axis, rad/s (deg/s)
ω	---	argument of perigee, rad (deg)....
$\underline{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$	RøLBD, PITBD, YAWBD	inertial angular velocity components about the body axis, rad/s (deg/s)
떷	RهLBDD, PITBDD, YAWBDD	inertial angular acceleration components about the body axis, $\mathrm{rad} / \mathrm{s}^{2}$ (deg/s ${ }^{2}$)

Math aymbol	Internal Fortran symbol	Definition
()$_{A}$		refers to atmosphare relative variables
()$_{c g}$		refers to center of gravity
()$_{I}$		refers to inertial variables
()$_{n}$		refers to $\mathfrak{n}^{\text {th }}$ event
()$_{p}$		refers to thrust application
()$_{R}$		refers to Earth-relative variables
() ${ }_{\text {Ref }}$		refers to aerodynamic reference point
() ${ }_{\text {SL }}$		refers to sea-level conditions
() vac	.	refers to vacuum conditions
()$_{W}$		refers to wind relative variables
()*		refers to state from which downrange and crossrange are referenced; refars to optimal conditions
(1)		denotes vector quantity
()'		denotes transpose of a vector
(')		denotes total derivative with respect to time

Math symbol	Internal Fortran Bymbol	Deituition
()$^{+}$		denotes occurrence at the positive side of an event
()$^{-}$		denotes occurrence at the negative side of an event
ε		is a member of
\cap		intersection of
U		uninn of
$\{\mathrm{A}: \mathrm{B}\}$		set
3		such that
\oplus		addition operator
The following portion of the pro	have been added to the	-degree-of -f reedom
Math gymbol	Internal Fortran symbol	Definition
$\begin{aligned} & C_{A \delta a}, C_{A \delta e}, C_{A \delta R}, \\ & C_{A \delta f_{i}} \end{aligned}$	$\begin{aligned} & \mathrm{CADA}, \mathrm{CADE}, \mathrm{CADR}, \\ & \operatorname{CAF}(\mathrm{I}), \mathrm{I}=1,3 \end{aligned}$	Incremental axial force confficient per rad (deg) for the aileron, elevator, rudder, and general deflector
$\begin{aligned} & C_{D \delta a}, C_{D \delta e}, C_{D \delta R}, \\ & C_{D \delta f_{i}} \end{aligned}$	CDDA, CDDE, CDDR, $\operatorname{CDF}(\mathrm{I}), \mathrm{I}=1,3$	Incramental drag force coefficient per rad (deg) for the alleron, elevator, rudder, and general deflector
$\begin{aligned} & c_{\ell \delta a}, c_{\ell \delta e}, c_{i, \delta R}, \\ & c_{\ell \delta f_{i}} \end{aligned}$	CLLDA, CLIDE, CLLDR $\operatorname{CLLF}(\mathrm{I}), \mathrm{I}=1,3$	Incremental rolling moment force coeffictent per rad (deg) for the alleron, elevator, rudder, and general deflector

Math gymbod
$C_{m: A} \cdot:_{m: e} \cdot C_{m: K} \text {, }$
$\begin{aligned} & c_{n: a}, c_{n: 2}, c_{n \ldots:}, \\ & c_{n \delta f_{1}} \end{aligned}$
$\begin{aligned} & c_{\mathrm{N} \delta \mathrm{a}}, c_{\mathrm{N} \delta \mathrm{e}}, \mathrm{c}_{\mathrm{N} \delta \mathrm{R}^{\prime}} \\ & c_{\mathrm{N}_{\mathrm{K}}} \end{aligned}$
$\begin{aligned} & C_{Y \delta a}, C_{Y \delta e}, C_{Y \delta Y}, \\ & C_{Y \delta F_{1}} \end{aligned}$
$d_{R},{ }^{\text {d }},{ }^{\text {d }}$ Y
58
$\mathbf{I}_{\text {RCS }}$
$E_{T 2}$

Intarnal Fortran aymbol Dofinition

CLDA, CLDE, CJUR. CLF(1), 161,3

CMDA, CMDE CMDK, CMF(1), I=1,3

CWDA, CWDE, CLIDR, $\operatorname{CWF}(1), 1=1,3$

CNDA, CNDE, CNDR, $\operatorname{CNF}(\mathrm{I}), \mathrm{I}=1,3$

CYDA, CYDE, CYDR, CXF(I), I. 1,3

DREFR, DREFP, DREFY

FTTXB(I), I=1,3

RCSFXB(I), I=1,3

TTXB(I), $1=1,3$

Incremental lift turce coefilctent per rad (deg) for the alleron, devatur, ruder, and guncral deflector

Incremental pitching moment force coefficient per rad (deg) for the alleron, elevator, rudder, and general deflector

Incremental vacine moment force ."effictint per rad (deg) for the alleron, elevator, rudder, and general deflector

Incremental normal force coefficient per rad (deg) for the aileron, elevator, rudder, and general deflector

Incremental side force coefficient per rad (deg) for the alleron, elevator, rulder, and general deflector

Reference lengths for roll, pitch, and yaw cerodynamic moment coafficients m (ft)

Total of all nongravitational forces calculated in the body frame, N (1 b)

Force of the RCS engines In the body frame, N (1 b)

Total force due to the non-RCS engines calculated in the body frame, N (1b)

Math symbol

$\mathrm{I}_{\mathrm{JXX}}, \mathrm{I}_{\mathrm{YY}}, \mathrm{I}_{\mathrm{ZZ}}$
$I_{X X}, I_{Y Y}, I_{Z Z}$,
$\dot{I}_{X Y}, I_{Y Z}, \dot{I}_{X Z}$
$I_{X Y}, I_{X Z}, I_{Y Z}$
[K]
$K_{\text {Pia }}, K_{\text {Poe }}, K_{p: r}$
$K_{R \delta a}, K_{R \delta e}, K_{R j} \mathbf{r}$
$K_{Y \delta a}, K_{Y \delta e}, K_{Y \delta r}$
[M]
$M_{A B}$
${ }_{B}$
${ }^{M}$ RCS
M_{TB}

Internal Fortran Bymbol
1XX, IY", I2Z

IXXD, IYYD, IZZD, I.MYD, IYZD, IXZD

IXY, IX\%, IYZ

KRDP (1), KPDP(1), KRDY(1), KYDY(I)

KPDA, KPDE, KPDR
r $M D A, K R D E, K R D R$

KYDA, KYDE, KYDR ---
$\operatorname{AIXB}(1), I=1,3$

TTMXB(I), I=1,3
$\operatorname{HCSMXH}(1), 1=1,3$
$\operatorname{TMXB}(1), \quad 1=1,3$

Dafintition

Moments of inertia abou: the body axis syatom

Time derivations of the moment : and productes of Incritia

Products of inertia about the body axis system

Roll nozzle deflection matrix

Mixing logic gains for the afleron, elevator, and rudder about the y-body (pitch) axis

Mixing lusic gains for the aiieron, elevator, and rudder about the x-body (ioll) axis

Nixing logic gains for the z-body (yaw) axis

Matrix representation of the mixing gains

Externa: moment due to the aerodynamic forces, $N-m$ (ft-1b)

Total exiernal momentduc to thrust, RCS, and aerodynamic forces, $N-m$ (ft-lb)

Net moment due to the RCS forces, $\operatorname{li} \cdot \mathrm{m}$ (ft-lb)

External moment due to thrust forces, $N \cdots$ (ft-1b)

Math gymbol	Internal Fortran symbol	Defintition
$p^{*}, q^{\circ}, r^{\prime}$	PND, QND, RND	Nondimensional roll, pitch, and yaw body rates
	ALPHL, BETAI, banki	Attitude reference angles measured in the same sense and order as the aerodynamic angles but with respect to the inertial velocity vector, rad (deg)
§, ¢0	---	General vector representing an ergine or aerodynamic control surface deflection, Ead (a3as). the subscript denotes the null value.
$\delta \mathrm{a}, \delta \mathrm{e}, \delta_{r}, \delta \mathrm{f}_{\mathrm{i}}$	DELA, DELE, DELR DELF (I), I-1, 3	Deflection angles for the aileron, elevator, rudder, and general aerodynamic control surfaces rad (deg)
$\delta e_{p_{i}} \cdot \delta e_{y_{i}}$	DEP(1) , DEY (I)	Pitch and yaw gimbal angles for the 1-th engine, rad (deg)
$\delta \theta=(S \psi, \delta \theta, \delta \phi)$	yawac, pitac, rdllac	Yaw, pitch, and roll autopilot commands, rad (deg)
$\stackrel{\sim}{\mathbf{R}_{A B}}$	$\operatorname{DXR}(1), 1=1,3$	Vector difference between the center of gravity and the reference point for the aerodynamic forcea (usually the aerodynamic center of pressure), m (ft)
$\stackrel{\Delta R}{R}_{\mathrm{R}_{1}}$	$\operatorname{DXP}(\mathrm{I}), \operatorname{DYP}(\mathrm{I}), \operatorname{DZP}(\mathrm{I})$	Vector difference between. the center of gravity and the engine gimball point for the i-th engine, m (ft)
$\mathrm{x}_{\mathrm{gp}}, y_{g p}, \mathbf{z}_{\mathrm{gp}}$	GXP, GYP, GZP	Location of engine gimbal in body reforence system

III. COORDLRATE SYSTEMS

6D POST uses numerous coordinate systems to provide the necessary reference systems for calculating required and optional data. These coordinate systems and the key transformations are described below.

Coordinate System Definitions

Earth-centered inertial (ECI) axes $\left(x_{I}, y_{I}, z_{I}\right)$.- This system is an Earth-centered Cartesian system with ${ }^{2} I$ coincident with the North Pole, x_{I} coincident with the Greenwich Keridian at time zero and in the equatorial plane, and y_{I} completing a right-hand system. The translational equations of motion are solved in this system (fig. III-1).

Earth-cencered rotating (ECR) axes $\left(X_{R}, y_{R}, z_{R}\right) \cdot$ - This system is similar to the ECI system except that it rotates with the Earth so that x_{R} is always coincident with the Greenwich Merid1an (fig. III-1).

Earth position coordinates $\left(\phi_{\mathrm{g}}, \theta, \mathrm{h}\right)$.- These are the familiar latitude, longitude, and altitude designators. Latitude is positive in the Northern Hemisphere. Longitude is measured positive East of Greenwich. Altitude is measured fositive above the surface of the planet (fig. III-1).

Geographic (G) axes $\left(x_{G}, y_{G},{ }_{G}\right)$. - This system is located at the surface of the planet at the vehicle's current geocentric latitude and longitude. The x_{G} axis is in the local horizontal plane and points North, the y_{G} axis is in the local horizontal plane and points East, and z_{G} completes a right-hand system. This system is used to calculate patameters associated with azimuth and elevation angles (fig. III-2).

Inertial launch (L) axes $\left(X_{L}, y_{L}, z_{L}\right)$, - This is an inertial Cartesian system that is used as an Inertisl raferance syatem from which the inertial attitude angles of the vehicie are measured. This coordinate system is automatically located at the

Figure III-1.- Coordinate Systems

Pigure III-2.- Launch Frame
geodetic latitude and inertial longitude of the vehicle at the beginning of the simulation unless overridden by user input of LaTL and LøNL. The azimuth, $A_{z L}$, is zero unless overidden by user input. The orientation of this system is such that x_{L} is along the positive radius vector if ϕ_{L} is input as the geocentric latitude, or along the local vertical if ϕ_{L} is not input or is input as the geodetic latitude. Z is in the local horizontal plane and is directed along the azimuth specified by AzL, and y_{L} completes a right-hand system. This system is intended for use in simulating ascent problems for launch vehicles that use either inertial platform or strapdown-type angular commands. The inertial angles, ($\left.\phi_{I}, \psi_{I}, \theta_{I}\right)$ are always measured with respect to this system and are automatically computed regardless of the steering option (IGUID) being used (fig. III-2).

Body (B) axes (x_{B}, y_{B}, z_{B}).- The body axes form a righthand Cartesian system aligned with the axes of the vehicle and centered at the vehicle's center of gravity. The x_{B} axis is directed forward along the longitudinal axis of the vehicle, y_{B} points right (out the right wing), and z_{B} points downward, completing a right-hand system. All aerodynamic and thrust forces are calculated in the body system. These forces are then transformed to the inertial (I) system where they are combined with the gravitational forces (fig. III-3)

Figure III-3.- Body Frames

Body reference (BR) axes ($x_{B R}, y_{B R},{ }^{2} B R$) -- The body reference system is a right-hand Cartesian system aligned with the body axes as follows. The $x_{B R}$ axis is directed along the negative x_{B} axis, the $y_{B R}$ axis is directed along the positive y_{B} axis, and the $z_{B R}$ is directed along the negative z_{B} axis. This system is used to locate the vehicle's center of gravity, aerodynamic reference point, and engine gimbal locations for the static trim operation (fig. III -3).

Orbital elements $\left(h_{a}, h_{p}, i, \Omega, \theta, \omega\right)$.- This is a nonrectangular coordinate system. used in describing orbital motion. The orbital elements are apogee altitude, perigee altitude, inclination, longitude of the ascending node, true anomaly, and argument of perigee. The apogee and perigee altitudes replace the standard orbital elements of semimajor axis and eccentricity (fig. III-4).

Apogee

III-4

Attitude Angles
The program contains the following standard attitude reference systems:

1) Inertial Euler angles;
2) Relative Euler angles;
3) Aerodynamic angles;
4) Inertial aerodynamic angles;

These variables are defined and illustrated below:

1) Inertial Euler angles (fig. III-5):
ϕ_{I} - Inertial roll angle. The roll angie with respect to the Lframe (first rotation),
ψ_{I} - Inertial yaw angle. The yaw angle with respect to the Lframe (second rotation),

θ_{I} - Inertial pitch angle. The pitch angle with respect to the L- Figure III-5.- Inertial. Euler Angles frame (third rotation);
2) Relative Euler angles (fig. III-6):
ψ_{R} - Relative yaw angle. This is the azimuth angle of the x_{B} axis measured clockwise from the reference direction (first rotation),
θ_{R} - Relative pitch angle. This is the elevation angle of the x_{B} axis above the local horizontal plane (second rotation).

ϕ_{R} - Relative roll angle. This is the roll angle about the x_{B} Figure III-6.- Relative Euler Angles axis (third rotation).
3) Aerodynamic angles (fig. III-7):
σ - Bank angle. Positive σ is a positive rotation about the atmosphere relative velocity vector (first rotation),
β - Sideslip. Positive β is a noseleft (negative) rotation when flying the vehicle upright (second rotation),

a - Angle of attack. Positive a is a nose-up (positive) rotation when flying the vehicle upright (third rotation);

Figure III-7.- Aerodynamic Angles
4) Inertial aerodynamic angles (fig. III-8):
σ_{I} - Bank angle, Positive u_{I} is a positive rotation about the atmosphere inertial velocity vector (first rotation),
β_{I} - Sideslip. Positive β_{I} is a noseleft (negative) rotation when flying the vehicle upright (second rotation),

α_{I} - Angle of attack. Positive α_{I} is a nose-up (positive) rotation Figure III-8.- Inertial Aerodynamic when flying the vehicle upright (third rotation);

Transformations

Numerous matrix transformations are required to transform data between the coordinate systems described in the previous section. The most important of these transformations is the [IB] matrix. The inverse (transpose) of this matrix is used to transform accelerations in the body frame to the planet-centered inertial frame. The remaining transformations are generally used to either compute [IB] or to transform auxiliary data into some convenient output coordinate system.

The [IB] matrix is functionally dependent on the attitude of the vehicle. This dependence is described by equations related to the attitude steering option selected by the user. The following matrix equations, which depend on this steering option, are used to compute the [IB] matrix.

The basic relationships between the coordinate systems defined by chese equations are illustrated in figure III-9. The inverse transformation can generally be computed by merely transposing the matrix elements because of the orthonortality of these matrices.

Figure III-9.- Matrix Tranefcirmations

A summary of these matrices is given below. The symbols c and s denote sin and cos, respectively.
 0_{L}, and $A_{2 L}$, and is given by
$[I L]=\left[\begin{array}{lll}c \phi_{L} c \theta_{L} & c \phi_{L} s \theta_{L} & s \phi_{L} \\ s \phi_{L} c \theta_{L} s A_{Z L}-c A_{Z L}{ }^{s \theta}{ }_{L} & c A_{Z L}{ }^{c \theta_{L}}+s A_{Z L} s \phi_{L} s \theta_{L} & -s A_{Z L} c \phi_{L} \\ -s A_{Z L}{ }^{s \theta} L_{L}-c A_{Z L} s \phi_{L} c^{\prime \prime}{ }_{L} & s A_{Z L}{ }^{c \theta_{L}}-c A_{Z L} s \phi_{L} s \theta_{L} & c A_{Z L} c \phi_{L}\end{array}\right]$
[LB], launch to body. - The [LB] matrix is computed indrectly from the body rates by integrating the quaternion equaltics, or directly from inertial Euler angles. When the body rate option is used, the quaternion rate equation

$$
\left[\begin{array}{l}
\dot{e}_{0} \\
\dot{e}_{1} \\
\dot{e}_{2} \\
\dot{e}_{3}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrr}
-e_{1} & e_{2} & e_{3} \\
e_{0} & e_{2} & -e_{3} \\
e_{0} & -e_{1} & e_{3} \\
e_{0} & e_{1} & -e_{0}
\end{array}\right]\left[\begin{array}{c}
\omega_{x} \\
u_{y} \\
{ }_{2}
\end{array}\right]
$$

(II I-3)
is integrated to compute the [LB] matrix, which is then given ty
$[L B]=\left[\begin{array}{lll}e_{0}^{2}+e_{1}^{2}-e_{2}^{2}-e_{3}^{2} & 2\left(e_{1} e_{2}+e_{0} e_{3}\right) & 2\left(e_{1} e_{3}-e_{0} e_{2}\right) \\ 2\left(e_{1} e_{2}-e_{0} e_{3}\right) & e_{0}^{2}-e_{1}^{2}+e_{2}^{2}-e_{3}^{2} & 2\left(e_{0} e_{1}+e_{2} e_{3}\right) \\ 2\left(e_{1} e_{3}+e_{0} e_{2}\right) & 2\left(e_{2} e_{3}-e_{0} e_{1}\right) & e_{0}^{2}-e_{1}^{2}-e_{2}^{2}+e_{3}^{2}\end{array}\right]($ III -4)

When the inertial Euler angle option is used, [LB] is computed directly as

[IG], inertial to geographic.- The [IG] matrix depends on the geocentric latitude and the inertial longitude, and is given by

$$
[I G]=\left[\begin{array}{ccc}
-s \phi_{c}{ }^{c \theta_{I}} I & -s \phi_{c}{ }^{s \theta_{I}} I & c \phi_{c} \tag{1II-6}\\
-s \theta_{I} & c \theta_{I} & 0 \\
-c \phi_{c} c_{I}{ }^{\theta} & -c \phi_{c} s \theta_{I} & -s \phi_{c}
\end{array}\right]
$$

[GB], geographic to body.- The [GB] matrix depends on the relative Euler angles, and is given by
[GB]

$$
\left[\begin{array}{lll}
c \theta_{R} c \psi_{R} & c \theta_{R} s \psi_{R} & -s \theta_{R} \\
s \phi_{R} s \theta_{R} c \psi_{R}-c{\phi_{R}}^{s \psi_{R}} & s \phi_{R} s \theta_{R} s \psi_{R}+c \phi_{R} c \psi_{R} & s \phi_{R} c \theta_{R} \\
c \phi_{R} s \theta_{R} c \psi_{R}+s \phi_{R} s \psi_{R} & c \phi_{R} s \theta_{R} s \psi_{R} \cdots s \phi_{R} c \psi_{R} & c \phi_{R} c \theta_{R}
\end{array}\right]
$$

[GA] geographic to atmospheric relative valocity system (ARVS). - The [GA] matrix depends on the atmospheric relative Elight asimuth and Elightpath anglea, and is givan by

$$
[G A]=\left[\begin{array}{lll}
c \gamma_{A} c \lambda_{A} & c \gamma_{A} s \lambda_{A} & -\Delta \gamma_{A} \tag{III-8}\\
-8 \lambda_{A} & c \lambda_{A} & 0 \\
s \gamma_{A} c \lambda_{A} & s \gamma_{A} 8 \lambda_{A} & c \gamma_{A}
\end{array}\right]
$$

[AB]. ARVS to body. - The [AB] matrix depends on the aerodynamic angles, and is given by

Other transformat luns, which are not related to the calculation of the [IP] matrix, are presented below.
[IP], inertial to planet relative.- The [IP] matrix transforms between the Earth-centered inertial frame and the Earthcentered rotating frame. This matrix depends on the rotation rate of the planet and the total elapsed time of flight, and is given by

$$
[I P]=\left[\begin{array}{ccc}
c \Omega_{P} t & s \Omega_{P} t & 0 \\
-a \Omega_{p} t & c \Omega_{P} t & 0 \\
0 & 0 & 1
\end{array}\right]
$$

[RB], body reference to body. - The [RB] matrix transforms data in the body reference system to the body frame. This matrix has a constant value and is given by

$$
[R B]=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \text {. }
$$

(III-11)

IV. PLANET MODEL

The planet model is composed of three types of data and equatione. These are: (1) oblate planet geometry and constante, (2) an atmosphere model that computan atmospheric pressure, density, temperature, and epeed of sound, and (3) a gravitational model that computes the gravitational accelerations. The user selects the appropriate models and inputs the corresponding data. The input data and the equations used in these models are described below.

Oblate Spheroid

The 1960 Fisher Earth model is preloaded into the program. This model is defined by the equatorial radius R_{E}, the polar radius R_{P}, the rotation rate Ω_{P}, the gravitational constant μ, and the second, third, and fourth gravitational harmonicy, J_{2}, J_{3}, and J_{4}, respectively. The stored values for these conetants are:

$$
\begin{aligned}
& R_{E}=2.0925741 \times 10^{7} \mathrm{ft} \\
& R_{P}=2.0855590 \times 10^{7} \mathrm{ft} \\
& \Omega_{P}=7.29211 \times 10^{-5} \mathrm{rad} / \mathrm{s}, \\
& \mu=1.4076539 \times 10^{16} \mathrm{ft}^{3} / \mathrm{s}^{2} \\
& J_{2}=1.0823 \times 10^{-3} \\
& J_{3}=0 \\
& J_{4}=0
\end{aligned}
$$

The constants J_{3} and J_{4} are preloaded as $2 e r o$, but can be initialized by input. For example, if the Smithsonian Earth model is degired, then these conetancs would be input as

$$
\begin{aligned}
J_{2} & =1.082639 \times 10^{-3} \\
J_{3} & =-2.565 \times 10^{-6} \\
J_{4} & =-1.608 \times 10^{-6} \\
\mu & =1.407645794 \times 10^{16} \mathrm{ft}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{P}=7.29211515 \times 10^{-5} \mathrm{rad} / \mathrm{e}, \\
& R_{E}=2.092566273 \times 10^{7} \mathrm{ft} \\
& R_{P}=2.08550242 \times 10^{7} \mathrm{ft}
\end{aligned}
$$

The geometry of this spheroid is illustrated in figure iV -1. The pertinent equations related to this model are

$$
\begin{align*}
& \phi_{c}=\sin ^{-1}\left(z_{I} / r_{I}\right) \\
& \phi_{g}=\tan ^{-1}\left(k \tan \phi_{c}\right), \quad k=\left(R_{E} / R_{P}\right)^{2} \\
& R_{B}=R_{E}\left(1+(k-1) 8 i n^{3} \phi_{c}\right)^{-1} \tag{IV-1}\\
& h=r_{I}-R_{B}
\end{align*}
$$

where ϕ_{c} is the geocentric latitude, ${ }_{g}$ is the geodetic latirude, θ_{I} is the inertial longitude, u is the relative longtide with respect to the planet, r_{I} is the distance from the center of the planet to the vehicle, R_{s} is the distance from the center of the planet to the planet surface, and h is the distance from the planet surface to the vehicle.

Figure IV-1.- Oblate Planet

Gravitational Model

The gravitational model includes optionally second, third, and fourth hermonic terms. The potential function for this model 18.

$$
\begin{align*}
v=-\mu\left[\frac{1}{r}-\frac{J_{2}}{2} R_{E}^{2}\left(\frac{3 z^{?}}{r^{5}}-\frac{1}{r^{3}}\right)\right. & -\frac{J_{3}}{2} R_{E}^{3}\left(5 \frac{z^{3}}{r^{7}}-\frac{3 z}{r^{5}}\right) \\
& \left.=\frac{J_{4}}{8} R_{E}^{4}\left(35 \frac{z^{4}}{r^{9}}-30 \frac{z^{2}}{r^{7}}+\frac{3}{r^{5}}\right)\right] \tag{IV-.2}
\end{align*}
$$

The gravitational accelerations calculated from this potential function are:

$$
\begin{aligned}
G_{X I} & =-\frac{\partial U}{\partial x_{I}} \\
& =-\mu \frac{x}{r^{3}} P(z, r) \\
G_{Y I} & =-\frac{\partial U}{\partial y_{I}} \\
\therefore & =-\mu \frac{y}{r^{3}} P(z, r) \\
G_{Z I} & =-\frac{\partial U}{\partial z_{I}} \\
& =-\frac{\mu}{r^{3}}\left[\left(1+J R^{2}\left(3-5 z^{\circ}\right)\right) z+k \frac{R^{3}}{r}\left(6 z^{2}-7 z^{2} z^{2}-\frac{3}{5} r^{2}\right)\right.
\end{aligned}
$$

where $x=x_{I}, y=y_{I}, z=z_{I}, r=r_{I}$, and

$$
R=R_{E} / r_{I}
$$

$$
2 \cdots{ }^{2} I I_{I}
$$

$$
J=\frac{3}{2} J_{2}
$$

$$
\begin{equation*}
H=\frac{5}{2} J_{3} \tag{IV-4}
\end{equation*}
$$

$$
D=-\frac{35}{8} J_{4}
$$

$$
P(z, r)=\left[1+J R^{2}\left(1-5 z^{2}\right)+H \frac{R^{3}}{r}\left(3-7 Z^{2}\right) z\right.
$$

$$
\left.+\operatorname{DR}^{4}\left(9 z^{4}-6 z^{2}+\frac{3}{7}\right)\right]
$$

IV -4

Atmosphere Models

POST has the optional capability of three atmospheric modelsthe gereral table lookup, the 1962 U.S. standard atmosphere, and the 1963 Patrick AFB atmosphere using polynominals. The general table lookup model gives the user the flexibility of inputing his own atmospheric model if none of the preloaded models is adequate. This is particularly useful in performing trajectory analysis for planets other than Earth. The parameters required to define the atmospheric effects are the atmospheric pressure p, atmospheric density p, speed of sound C_{s}, and atmospheric temperature
T. These parameters are functions of the oblate altitude h.

Table lookup atmosphere model.- The table lookup atmosphere model can be defined entirely by using tables that show pressure, temperature, speed of sound, and density as functions of altitude. The speed of sound and density tables can be omitted if desired; in this case, the speed of sound and density are computed_as.

$$
\begin{align*}
C_{8} & =\sqrt{K_{1} T} \\
\rho & =K_{2} \frac{P}{T} \tag{IV-5}
\end{align*}
$$

where

$$
\begin{aligned}
K_{1} & =\frac{r^{\star}}{M_{0}} \\
K_{2} & =\frac{M_{0}}{R^{\star}} \\
\gamma & =\text { ratio of specific heats } \\
M_{0} & =\text { molecular weight } \\
R^{*} & =\text { universal gas constant. }
\end{aligned}
$$

1962 U.S. standard atmosphere model.- The 1962 U.S. atandard atmosphere model is given as a function of geopotential altitude $\left(\mathrm{H}_{\mathrm{g}}\right)$, which is computed as

$$
\begin{equation*}
H_{g}=\frac{R_{A} h}{R_{A}+h} \tag{IV-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{A}=\text { average Earth radius }=\frac{1}{2}\left(R_{E}+R_{P}\right) \\
& h=\text { oblate altitude. }
\end{aligned}
$$

The molecular scale temperature, T_{M}, is defined by a series of linear segments $\left(L_{M}\right)$ as a function of geopotential altitude $\left(\mathrm{H}_{8}\right)$.

The corner points connecting the straight-line segments are referred to as base altitudes $\left(\mathrm{H}_{B}\right)$, base temperatures $\left(T_{M_{B}}\right)$, etc. From a table of base altitudes, base temperatures, and $d T_{M} / \mathrm{dt}\left(I_{M}\right)$ (the slope within the linear segments), the temperacure at any desired altitude can be calculated from the following equation:

$$
\begin{equation*}
T_{M}=T_{M_{B}}+L_{M_{B}}\left(H_{g}-H_{B}\right) \tag{IV-7}
\end{equation*}
$$

Values of $P_{B}, T_{M_{B}}$, and $L_{M_{B}}$ versus H_{B} ara presented in
table IV -1.
The atmospheric pressure is determined as follows:

$$
\begin{aligned}
& P=P_{B}\left[\frac{T_{M_{B}}}{T_{M}}\right] \exp \left[\left(\frac{g_{0} M_{0}}{R^{*}}\right) / L_{M_{B}}\right] \text { for segments with } L_{M_{M_{B}}} \neq 0, \text { and } \\
& P=P_{B} \exp \left[-\frac{g_{0} M_{0}}{R^{*}} \frac{\left(H-H_{B}\right)}{T_{M_{B}}}\right] \text { for segments with } L_{M_{B}}=0,
\end{aligned}
$$

where P_{B} is the base pressure corresponding to the given base altitude H_{8}. These base pressures can be calculated once the sea-level pressure, P_{0}, and the temperature profile have been specified.

IV-6

Having calculated the temperature and preseure, the density, P. epeed of sound, C_{s}, and atmospheric viscosity, μ_{A}, are determined as follows:

$$
\begin{align*}
& \rho=\left(\frac{M_{0}}{R^{\star}}\right) \frac{P}{T_{M}} \\
& C_{S}=\left(\frac{Y R^{*}}{M_{0}}\right)^{\frac{1}{2}} T_{M}^{\frac{1}{2}} \tag{IV-9}\\
& \mu_{A}=\frac{\beta T_{M}^{3 / 2}}{T_{M}+S}
\end{align*}
$$

where g_{0} is the acceleration of gravity at sea level, M_{0} is the molecular weight of air at sea level, \mathbb{R}^{*} is the gas constant, γ is the ratio of specific heats, and B and S are Sutherland's constants.

$$
\begin{aligned}
\mathrm{M}_{0} & =28.9644 \\
\mathrm{R}^{\hbar} & =8.31432 \times 10^{3} \frac{\mathrm{~J}}{\left({ }^{\circ} \mathrm{K}\right)(\mathrm{kg}-\mathrm{mol})} \\
\gamma & =1.40 \\
\beta & =1.458 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{sec} \mathrm{~m}\left({ }^{\circ} \mathrm{K}\right) \frac{1}{2}} \\
\mathrm{~S} & =110.4^{\circ} \mathrm{K}=198.72^{\circ} \mathrm{R} \\
\mathrm{~g}_{0} & =9.80665 \mathrm{~m} / \mathrm{sec}^{2}=32.174 \mathrm{ft} / \mathrm{sec}^{2} .
\end{aligned}
$$

TABLE IV-1.- 1962 U. S. STANDARD ATMOSPHERE PROFILE

H_{B}, ft	F_{B}, psf	$\mathrm{T}_{\mathrm{M}_{\mathrm{B}}}{ }{ }^{\circ} \mathrm{R}$	$\mathrm{L}_{\mathrm{M}_{\mathrm{B}}},{ }^{\circ} \mathrm{R} / \mathrm{ft}$
0.0	$0.21162166+4$	518.67	-0.35661600-2
36089.239	$0.47268050+3$	389.97	0.0
$65 \quad 616.797$	$0.11434543+3$	389.97	0.54863995-3
104986.87	$0.18128948+2$	411.57	0.15361920-2
154199.48	$0.23163263+1$	$48 \% .17$	0.0
170603.68	$0.12322603+1$	487.17	-0.10972801 - 2
200131.23	$0.38032532+0$	454.77	-0.21945600-2
259 1.80.35	0.21673064-1	325.17	0.0
291151.57	0.34333824-2	325.17	0.16953850-2
323002.74	0.626i4785-3	379.17	$0.28345707-2$
354753.59	0.15361.33-3	469.17	0.56867005-2
396406.39	0.52676024 .4	649.17	0.11443751-1
480781.04	0.10566108-4	1729.17	0.86358208-2
512046.16	0.77263469-5	1999.17	0.57749093-2
543215.48	$0.58405376-5$	2179.17	0.40610461-2
605268.45	0.35.?46030-5	2431.17	0.29274135-2
728243.91	0.14559124-5	2791.17	0.23812804-2
939894.74	0.39418091-6	3295.17	0.20152600-2
1234645.7	0.84380249-7	3889.17	0.16354849-2
1520799.4	0.22945543-7	4357.17	0.11010085-2
1798726.4	0.72259271-8	4663.17	$0.73319725-3$
2068776.5	0.24958752-8	4861.17	0.0

1963 Patrick AFB atmosphere using polynominals.- In this model, pressure and temperature are calculated as functions of geometric altitude (h). These parameters are calculated in metric units and converted to English units if required.

Pressure:

1) Altitude region $=0$ to 28000 meters:
$p=P_{1} \exp \left(A+A_{1} h+A_{2} h^{2}+A_{3} h^{3}+A_{4} h^{4}+A_{5} h^{5}\right)$
where $P_{1}=10.0$ Newtons $/ \mathrm{cm}^{2}$;
2) Aititude region $=28000$ to 83004 meters:
$P=g_{0} \times 10^{-4} \exp \left(A+A_{1} h+A_{2} h^{2}+A_{3} h^{3}+A_{4} h^{4}+A_{5} h^{5}\right):$
3) Altitude region $=83004$ to 90000 meters:
$\mathrm{P}=\mathrm{P}_{\mathrm{B}} \exp \left(\frac{-1.373301523 \times 10^{12} \mathrm{~h}-\mathrm{h}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{B}}(6344860+\mathrm{h})\left(6344860+\mathrm{h}_{\mathrm{B}}\right)}\right) ;$
4) Altitude region $=90000$ to 700000 meters:
$\left.L_{n}(P)=L_{n}\left(P_{B}\right)+\frac{1.373301523 \times 10^{12}}{L_{m}(6344860+h)\left(6344860+h_{B}\right)}\right)$

$$
L_{n}\left(\frac{T_{M_{B}}}{T_{M_{B}}+L_{m}\left(h-h_{B}\right)}\right)
$$

Temperatura:

1) Altitude region $=0$ to 10832.1 meters:

$$
T=T *=A+A_{1} h+A_{2} h^{2}+A_{3} h^{3}+A_{4} h^{4}+A_{!} h^{5} ;
$$

2) Altitude region $=10832.1$ to 83004 meters:* $T=A+A_{1} h+A_{\cdot} \cdot h^{+}+A_{3} h^{j}+A_{4} h^{4}+A_{5} h^{5} ;$
3) Altitude region $=83004$ to 90000 meters: $T=T_{B}+L_{k}\left(h-h_{B}\right)$.

However, in this region $L_{k}=0$, and thus $T=T_{B}=180.65^{\circ} \mathrm{K} ;$
4) Altitude region $=90000$ to 700000 meters:

$$
T=T_{M}=T_{M_{B}}+L_{m}\left(n-h_{B}\right)
$$

Density:

1) Altitude region $=0$ to 28000 meters:
$0=\rho_{1} \exp \left(A+A_{1} h+A_{2} h^{\prime}+A_{3} h^{3}+A_{4} h^{4}+A_{5} h^{5}\right) ;$
2) Altitude region $=28000$ to 700000 meters:
$\rho=(34.83676) \frac{\mathrm{P}}{\mathrm{T}}$.
table iv-2.- derived corfficients for tie 1963 patrick afb atmospaere model

Parameter	Geometric altitude, h, m	Derived coefficient		
		A	A_{1}	A_{2}
Pressure		1.6871582×10^{-2}	$-1.1425176 \times 10_{-3}^{-4}$	$-1.3612327 \times 10_{-7}^{-9}$
Temperature	to	299.37265	-7.7176284×10	$9.4867202 \times 10^{\circ}$
Density	10832.1	1.3302117×10	-8.8502064 $\times 10$	-4.2143056 $\times 10$
Pressure		$-7.9910777 \times 10^{-2}$	$-8.1046438 \times 10^{-5}$	-5.5522383 $\times 10^{-9}$
Temperature	10832.1 to	258.92151	4.3075352×10^{-3}	-8.9159672 $\times 10_{-9}^{-7}$
Density	17853.3	0.12667122	-1.3373147×10	2.0667371×10
Pressure	17853.3	0.98414277	$-2.6976917 \times 10^{-4}$	8.5227541×10^{-9}
Temperature	$\begin{aligned} & 853 \\ & \text { to } \end{aligned}$	370.64557	$-3.2858965 \times 10^{-2}$	2.0645636×10^{-6}
Density	28.000	0.92751266	$-1.4349679 \times 10^{-4}$	$-2.8271736 \times 10^{-9}$
Pressure	28000	11.4118495	$-4.11497477 \times 10^{-4}$	$1.33664855 \times 10^{-8}$
Temperature	$49 \begin{gathered} \text { to } \\ 000 \end{gathered}$	20.44798	$2.07698384 \times 10^{-2}$	-8.63038789×10
Pressure	49000	9.99324461	$-2.58298177 \times 10^{-4}$	$3.76139346 \times 10^{-9}$
Temperature	$\begin{gathered} \text { to } \\ 83004 \end{gathered}$	-498.865953	3.92137281×10	-4.95180601×10

TABLE IV-2.- DERIVED CORFFICIENTS FOR THE 1963 PATRICK AFB ATMOSPHERE MODRL - CONCLUDED

Parameter	Geometric altitude, h, m	Derived coefficient		
		A_{3}	A_{4}	A_{5}
Pressure Temperature Density	$\begin{gathered} 0 \\ \text { to } \\ 10832.1 \end{gathered}$	$\begin{array}{r} 7.3624145 \times 10^{-14} \\ -1.7136592 \times 10^{-10} \\ 5.9517557 \times 10^{-13} \\ -13 \end{array}$	$\begin{array}{r} -1.0800315 \times 10^{-17} \\ 1.1074297 \times 10^{-14} \\ -3.9744789 \times 10^{-17} \end{array}$ -17	$\begin{array}{r} 3.3046432 \times 10^{-22} \\ -2.3294094 \times 10^{-19} \\ 7.8771273 \times 10^{-22} \\ -22 \end{array}$
Pressure	10832.1	$3.1116969 \times 10^{-11}$	$-1.6687827 \times 10{ }^{-15}$	3.8319351×10
Temperature		$-2.8929791 \times 10^{-13}$	$5.0724856 \times 10{ }_{-17}$	-1.1490372 $\times 10{ }^{-22}$
Density		$2.3396109 \times 10^{-13}$	$-3.2562503 \times 10^{-17}$	7.9035209×10
Pressure	17853.3	$-3.9620263 \times 10^{-15}$	$1.0146471 \times 10_{-17}^{-17}$	$-1.0264318 \times 10_{-21}$
Temperature		$-4.3283944 \times 10_{-14}$	$-5.7507242 \times 10-18$	$8.2924583 \times 10{ }^{-23}$
Density	28000	4.7480092×10	$1.8863246 \times 10^{-18}$	$-4.2702411 \times 10^{-23}$
Pressure Temperature	$\begin{gathered} 28000 \\ \text { to } \\ 49000 \end{gathered}$	$\begin{array}{r} -3.59518975 \times 10^{-13} \\ 1.66392417 . \times 10^{-11} \end{array}$	$\begin{array}{r} 5.10097254 \times 10^{-18} \\ -9.30076185 \times 10^{-17} \end{array}$	$\begin{aligned} & -2.89055894 \times 10^{-23} \\ & -4.09005108 \times 10^{-22} \end{aligned}$
Pressure Temperature		$\begin{aligned} & -4.20887236 \times 10^{-14} \\ & -3.26219854 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 1.60182148 \times 10^{-19} \\ & 9.66650364 \times 10^{-17} \end{aligned}$	$\begin{aligned} & -1.92508927 \times 10^{-25} \\ & -4.78844279 \times 10^{-22} \end{aligned}$

TABLE IV-3.- 1963 PATRICK AFB MOLECULAR TEMPERATURE PROFILE AND GRADIENT PROFILE

h_{B}, knn ${ }^{\text {m }}$	$\mathrm{T}_{\mathrm{M}_{\mathrm{B}}}$, oX .	$L_{m}, 0 \mathrm{~K} / \mathrm{km}$
90	180.65	
		3.0
100	210.65	
		5.0
110	260.65	
		10.0
120	360.65	
		20.0
150	960.65	
		15.0
160	1110.65	
		20.0
: 170	1210.65	
		7.0
190	1350.65	5.0
230	1550.65	
		4.0
300	1. 830.65	
		3.3
400	2160.65	
		2.6
500	2420.65	
600	2590.65	1.7
		1.1
700	2700.65	
由Altitude range: 90000 to 700000 meters.		

Pressure and density ratios:

Altitude region $=0$ to 700000 meters:

$$
\left.\begin{array}{l}
\rho_{R}=\frac{\rho}{\rho_{0}} \tag{IV-14}\\
P_{R}=\frac{p}{P_{0}}
\end{array}\right\}
$$

Velocity of suund:

$$
\begin{equation*}
V_{S}=(20.046707)(T)^{\frac{1}{2}} \tag{LV-15}
\end{equation*}
$$

The atmosphere model-derived coefficients are presented in able LV-2. The: molecular temperature gradient is documented in table IV-3 for geometric altitudes from 90 to 700 km .

Winds

The atmospheric wind velocity components are input in tables using either meteorological or vector notation. If these tables, which are normally functions of oblate altitude, are not input, then the atmosphere is assumed to rotate uniformly with the planet.

The wind velocity components can be input directly in the geographi: frame by definiug u_{w}, v_{W}, and w^{W}, or by defining the wind speed $\left(V_{W}\right)$, the wind azimuth $\left(A_{Z W}\right)$, and the wind azimuth bias $\left(A_{Z W B}\right)$. The resulting wind velocity components in the G-frame are:

$$
\underline{V}_{W G}=\left[\begin{array}{l}
V_{W}(h) \cos \left(A_{Z W}(h)+A_{Z W B}\right) \tag{IV-16}\\
V_{W}(h) \sin \left(A_{Z W}(h)+A_{Z W B}\right) \\
W_{W}(h)
\end{array}\right]
$$

It is clear from the above equation thet in order to input vector wind data $A_{\text {zWB }}$ must be input as zero, whereas for meteorologic data the preloaded value of 180° should be used.

The wind velocity in the ECI frame is then given by

$$
\begin{equation*}
\underline{v}_{W I}=[10]^{-1} \underline{v}_{W C} \tag{IV-17}
\end{equation*}
$$

Thus, the atmospheric relative velocity vector in the ECI frame is

$$
\begin{equation*}
\underline{v}_{A I}=\underline{v}_{I}-\underline{a}_{p} \times \underline{r}_{I}-\underline{V}_{W I} \tag{IV-18}
\end{equation*}
$$

and its magnitude is given by

$$
\begin{equation*}
V_{A}=\sqrt{V_{A I} \cdot \underline{V}_{A I}} \tag{IV-19}
\end{equation*}
$$

V. VEHICLE MODEL

The various physical propercies of the vahtcle are modeled by the user when ha selecte the pertinent optione from the sat of vehicle simulation modules. The equations used in these modules are presented below.

Mass Properties Model

The gross weight of the vehicle at the beginning of each phase is given by

$$
\begin{equation*}
W_{G}=W_{s t g}+W_{p l d} \tag{V-1}
\end{equation*}
$$

where $W_{s t g}$ is gross weight without payload and $H_{\text {pld }}$ is the payload weight. For phases other than the first, the gross weight can optionally be computed as

$$
\begin{equation*}
W_{G}^{+}=W_{G}^{-}-W_{\text {jett }}-W_{P R} \tag{V-2}
\end{equation*}
$$

where W_{G}^{+}is the gross weight on the positive side of the current event, W_{G}^{-}is the gross, weight on the negative side of the current event, $W_{\text {jetc }}$ is the jettison weight, and $W_{P R}$ is the weight of propellant remaining. These options are obtained automatically, based on user input.

The propellant remaining is given by

$$
\begin{equation*}
W_{P R}=W_{P_{1}}-W_{P C} \tag{v-3}
\end{equation*}
$$

where $W_{P_{1}}$ is the initial weight of propellant and $W_{P C}$ is the amount of propellant consumed. This latter term is given by

$$
\begin{equation*}
W_{P C}=\int \dot{W} d t+W_{C_{0}} \tag{v-4}
\end{equation*}
$$

where $\dot{\dot{W}}$ is the cotal rate of change of the vehicle's weight.

The composita inartin matrix in input with raapect io the body axis ayptem which 1 a located at the inetantaneous comporite center of gravity of the valifglo." In 6D POST, the momenta and producta of inercla are dofined an the integrala

$$
\begin{array}{ll}
I_{x x}-\int y^{\prime \prime}+z^{\prime} d v & I_{x y}-\int x y d v \\
I_{y y}=\int x^{\prime \prime}+z \cdot d v & I_{x z}-\int x z d v \\
I_{z z}=\int x^{\prime}+y^{\prime \prime} d v & I_{y z}-\int y z d v \tag{V-5}
\end{array}
$$

The inortia matrix is then given by

$$
[I]=\left[\begin{array}{ccc}
1 & -1 & -I_{x y} \tag{v-i}\\
-1^{1} x y & 1^{1} y y & -1_{y z} \\
-1 x z & -1 y z & 1_{z z}
\end{array}\right] \text {, }
$$

and is generally input as a function of the weight of the vehicle.
The composite center of pravity is referenced with respect to the vehicle referenca 1 :ame, ard the comporents $\left(x_{c g}, y_{c g},{ }^{2}{ }_{c g}\right)$

Propulsion Calculations

61) PoST can simulate hoth rocket and jet engines. The prourum can simulate up to 15 engilies in either mode.

Rocket engines. - There are two input options for engine data in the rocket mode. In the first option, tables for vacuum thrust and maximum waight flowrate are input for each engine. In the second option, tables for vacuum thrust are input, along with the vacuum specific impulse for each engine. The vacuum specific inm pulsc is then used to calculate the mass flowrate.

The rocket thrust par angine is given by

$$
\begin{equation*}
T_{R_{1}}=T_{\text {vac }}-A_{E_{i}} P(h) \tag{V-7}
\end{equation*}
$$

[^0]$v-2$
where η is the throttle setting, $T_{v a c_{1}}$ is the vacuum thrust of the $1^{\text {th }}$ engine, A_{F} is the nozzle exit area, and $p(h)$ is the atmospheric pressure. Summing over all engines yields. the total. rocket thrust
\[

$$
\begin{equation*}
T_{R}=\sum_{i=1}^{N_{\text {eng }}} T_{R_{i}} \tag{V-8}
\end{equation*}
$$

\]

where $\mathbb{N}_{\text {eng }}$ is the number of thrusting engines, and $N_{e n g} \leq 15$.
The weight flowtate in the rocket mode is given by

$$
\dot{W}=\left\{\begin{array}{ll}
-n \sum_{i=1}^{N_{\text {eng }}} & \left(\dot{w}_{p}^{\max }\right. \tag{v-9}\\
1
\end{array}\right)
$$

Jet engines.- In the jet engine raode the net jet thrust per engine is given by

$$
\begin{equation*}
\left(\frac{T_{J}}{\delta}\right)_{i}=f(M, n) \tag{v-10}
\end{equation*}
$$

whare

$$
\delta=p(h) / P_{S L}
$$

and $\frac{T_{J}}{\delta}$ (M) is a monovariant table. The total jet thrust is then given by

$$
\begin{equation*}
T_{J}=\sum_{i=1}^{N_{\text {eng }}} p(h) /\left(p_{S L}\right)\left(T_{J} / s_{i}\right) \tag{v-11}
\end{equation*}
$$

The weight flowrate in the fet engine mode is

$$
\begin{equation*}
\dot{\mathrm{w}}=-\sum_{i=1}^{N_{\text {eng }}} \sqrt{\frac{\mathrm{T}(h)}{\mathrm{T}_{S L}}}\left(\frac{\mathrm{P}(h)}{\mathrm{P}_{S L}}\right)\left(\frac{\mathrm{SFC}}{\sqrt{\theta}}\right)_{1}\left(\frac{T_{J}}{\delta}\right)_{i} \delta . \tag{v-12}
\end{equation*}
$$

The thrust equation for each engine is given by

$$
E_{T B_{i}}=T_{B_{i}}\left[\begin{array}{l}
\cos \delta e_{p_{i}} \cos \delta e_{y_{i}} \tag{v-1.3}\\
\sin \delta e_{y_{i}} \\
-\cos \delta e_{y_{i}} \\
\end{array}\right] \text { sin } \delta e_{p_{i}}[\text {, }
$$

where the pitch and yaw engine deflection angles δe_{p} and δe_{y}
are defined in Figure $V-1$.

Figure V-1.- Engine Gimbal Angles

Aerodynamic Calculaticr.d

The aerodynamic force coefficients can be expressed in terms of the lift, drag, and side-force coefficients C_{L}, C_{D}, and C_{Y} (fig. V-2), where-_ C_{L} and C_{D} are directed normal to, and along the velocity projection in, the $x_{B}{ }^{-2_{B}}$ plane. Note that C_{Y} produces a side-force, $F_{A_{Y B}}$, acting in the direction of y_{B}.

Lift and drag force coefficients are transformed to axiel and normal force coefficients as follows:

$$
\left[\begin{array}{l}
C_{A} \tag{V-14}\\
C_{N}
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
C_{D} \\
C_{L}
\end{array}\right]
$$

where α is the angle-of-attack.

Figure V-2.- Aerodynamic Angles
The aerodynamic coefficients can also be expressed in terms of the axial force, normal force, and side force, C_{A}, C_{N}, and C_{Y}, respectively. Here C_{A} and C_{N} produce forces that act in the $-x_{B}$ and $-z_{B}$ directions, and C_{Y} produces a force acting along y_{B}.

Each aerodynamic coefficient is computed by interpolating the values in the table. In general, eight tables are allocated to each coefficient. These tables can be-monovariant, bivariant, or trivariant, and seven tables per coefficient can have arbitrary hollerith mnemonic multipliers. This generality enables all standard forms of aerodynamic data to be directly input into the program.

The aerodynamic force coefficients are obtained by summing the individual contributions as follows:

$$
\begin{aligned}
& C_{A}=C_{A_{0}}+C_{A}(x, M)+C_{A_{\delta a}} \delta a+C_{A_{\delta e}} \delta e+C_{A_{\delta r}} \delta_{r}+\sum_{i=1}^{3}{ }^{3} C_{A_{\delta f}} \quad \delta f_{i},(V-15) \\
& C_{N}=C_{N_{0}}+C_{N}(x, M)+C_{N_{i j}} \quad \alpha a+C_{N_{j e}} \delta e+C_{N} \delta r+\sum_{i=1}^{3} C_{N_{\delta f}} \delta f_{i},(V-16)
\end{aligned}
$$

or optionally
$C_{D}=C_{D_{0}}+C_{D}\left(\alpha_{,} M\right)+C_{D D_{i i}} \delta a+C_{D_{\delta e}} \delta e+C_{D_{\delta r}} \delta r+\sum_{i=1}^{3} C_{D_{\delta f_{i}}} \delta f_{i}$,
$C_{L}=C_{L_{0}}+C_{L}(\alpha, M)+C_{L_{\lambda_{a}}} s a+C_{L_{\delta e}} \delta e+C_{L_{\delta r}} \delta r+\sum_{i=1}^{3} C_{L_{\delta f_{i}}} \delta f_{i},(V-18)$
and
$C_{Y}=C_{Y_{0}}+C_{Y}(E, M)+C_{Y_{i, a}} \delta a+C_{Y_{\delta e}} \delta a+C_{Y_{\delta r}} \delta r+\sum_{i=1}^{3} C_{Y_{\delta f_{i}}} \delta f_{ \pm}$.
The aerodynamic moment coefficients are given by:

$$
\begin{align*}
& C_{\ell}=C_{\ell_{0}}+C_{\ell}\left(F^{2}, H\right)+C_{\ell_{\delta a}} \delta a+C_{\ell_{\delta a}} \delta e+C_{\ell \delta r} \delta r \\
& +\sum_{i=1}^{3} c_{\ell}{ }_{\delta f_{1}} \delta f_{1}+c_{\ell r^{\prime}} r^{\prime}+c_{\ell_{p^{\prime}}} p^{\prime} \tag{V-20}
\end{align*}
$$

$$
\begin{align*}
c_{m} & =c_{m_{0}}+c_{m}(\alpha, M)+c_{m_{\delta a}} \delta a+c_{m_{\delta e}} \delta e+c_{m_{\delta x}} \delta r \\
& +\sum_{i=1}^{3} c_{m_{\delta f_{i}}} \delta f_{i}+c_{m_{q^{\prime}}} q^{\prime} \tag{V-21}\\
c_{n} & =c_{n_{0}}+c_{n}(\beta, M)+c_{n_{\delta a}} \delta a+c_{n_{\delta e}} \delta e+c_{n_{\delta x}} \delta r \\
& +\sum_{i=1}^{3} c_{n_{\delta f_{i}}} \delta f_{i}+c_{n_{p^{\prime}}} p^{\prime}+c_{n_{r^{\prime}}} r^{\prime} \tag{V-22}
\end{align*}
$$

where $8 f_{i}, i=1,2,3$, are arbitraxy user defined deflection angles; and

$$
\begin{aligned}
& p^{\prime}=p d_{R} / 2 V_{A}=\omega_{X} d_{R} / 2 V_{A} \\
& q^{\prime}=q d_{P} / 2 V_{A}=\omega_{Y} d_{P} / 2 V_{A} \\
& r^{\prime}=r d_{Y} / 2 V_{A}=\omega_{Z} d_{Y} / 2 V_{A} .
\end{aligned}
$$

The Mach number and dynamic pressure are given by:

$$
\left.\begin{array}{l}
M=\frac{v_{A}}{C_{S}} \tag{V-23}\\
q=\frac{1}{2} \rho v_{A^{\prime}}^{2}
\end{array}\right\}
$$

where ρ is the atmospheric density, ∇_{A} is the velocity of the vehicle with respect to the atmosphere, and C_{3} is the speed of sound. These atmospheric parameters are determined from the atmoapheric models as a function of the altitude h above the oblate epheroid; 1.e.,

$$
\begin{align*}
& \rho=p(h) \\
& c_{s}=C_{s}(h) \\
& p=p(h) \tag{v-24}\\
& T=T(h) .
\end{align*}
$$

The angle of attack in pitch (α) and the angle of sidesilp (B) required to determine the aerodynamic coefficients are calculated as follows:

$$
\begin{align*}
& \alpha=\tan ^{-1}\left[\frac{\sin \alpha}{\cos \alpha}\right] \\
& \beta=\tan ^{-1}\left[\frac{\sin B}{\cos B}\right], \\
& \sin \alpha=\frac{w_{B}}{\sqrt{u_{B}^{2}+w_{B}^{2}}} \tag{V-25}\\
& \cos x=\frac{u_{B}}{\sqrt{u_{B}^{2}+w_{B}^{2}}} \\
& \sin B=\frac{v_{B}}{V_{A}} \\
& \cos B=\frac{\sqrt{u_{B}^{2}+w_{B}^{2}}}{V_{A}}
\end{align*}
$$

The total angle of attack is

$$
\begin{equation*}
a_{T}=\cos \left(V_{A B}\left(V_{A}\right)\right. \tag{V-2.6}
\end{equation*}
$$

The aerodynamic forces in the body frame are

$$
\underline{F}_{A B}=q S\left[\begin{array}{c}
-C_{A} \tag{v-27}\\
c_{Y} \\
-c_{V N}
\end{array}\right]
$$

there q is the dynamic presisure and S is the reference area.

Aerohcating Calculations.

6D POST provides for a wide variety of aeroheating calculations. Some of these options are specific in nature and apply only to particular vehicles, whereas others are quite general. The general heat rate option is based on trivariant table interpolation and provides complete flexibility with regards to vehicle shape and heat-transfer methodology. The various heat rate equations are described below.

Heat rate equations.-

1) Chapman's equations. In this calculation the heat rate is given by

$$
\begin{equation*}
\dot{Q}=\frac{17600}{\sqrt{R_{\mathrm{N}}}}\left(\frac{\rho}{\rho_{\mathrm{SL}}}\right)^{\frac{1}{2}}\left(\frac{v_{\mathrm{R}}}{v_{\mathrm{C}}}\right)^{3.15 \ldots \ldots} \tag{v-28}
\end{equation*}
$$

where R_{N} is the nose radius, ρ is the atmospheric density, and V_{C} is the reference circular orbital velocity.
2) General table lookup. This heat rate is given by

$$
\begin{equation*}
\dot{Q}=Q_{t}\left(x_{1}, x_{2}, x_{3}\right), \tag{v-29}
\end{equation*}
$$

where x_{1}, x_{2}, and x_{3} can be any internally computed variables. For example, the values that would normally be selected are $x_{1}=a$, $x_{2}=h$, and $x_{3}=V_{R}$.
3) Modified Chapman's equation. Here the heat rate is given

$$
\begin{equation*}
\dot{Q}=Q_{t}\left(x_{1}, x_{2}, x_{3}\right) Q_{c}, \tag{v-30}
\end{equation*}
$$

where Q_{t} is an arbitary table and \dot{Q}_{c} is the standard Chapman's equation.
4) Turbulent-flow heat rate. The turbulent-flow heat rate is given by

$$
\begin{equation*}
\dot{Q}=\dot{Q}_{t}\left(x_{1}, x_{2}, x_{3}\right)\left[1500\left(\frac{\rho}{\rho_{S L}}\right)^{0.8}\left(\frac{V_{A}}{10^{4}}\right)^{3.18}\right] . \tag{v-31}
\end{equation*}
$$

5) Maximum conterifine heating. The equations for this method are 'given below in sequence.
a) Altitude-velocity correction:

$$
\begin{align*}
\Delta h & =10^{5}\left[1.06112-6.16586 \nabla_{A} / 10^{4}\right] \\
& \left.+51.12090\left(v_{A} / 10^{4}\right)^{4}-20.66258\left(v_{A} / 10^{4}\right)^{5}\right] \tag{v-32}\\
& +22.52598\left(v_{A} / 10^{4}\right)^{2}-48.28080\left(v_{A} / 10^{4}\right)^{3} \\
h_{\text {raf }} & =h+\Delta h .
\end{align*}
$$

b) Maximum centerline heat rate at reference conditions:

$$
\begin{aligned}
& \text {-- if } h_{\text {ref }} \geq 103600 \mathrm{~m} \text { : } \\
& \dot{q}_{\text {ref }}=10^{2}\left[277.93332+134.55760 h_{r e f} / 10^{5}-807.75941\left(h_{r e f} / 10^{5}\right)^{2}\right. \\
& +2.90536\left(h_{\text {ref }} / 10^{5}\right)^{3}+722.36896\left(h_{\text {ref }} / 10^{5}\right)^{4}-311.40176 \\
& \left.\left(h_{\text {reff }} / 10^{5}\right)^{5}\right] \text {; } \\
& \text {-- if } h_{\text {ref }} \leq 103600 \mathrm{~m} \text {; } \\
& \dot{q}_{\text {ref }}=10^{4}\left[7115.39692-34881.13588 h_{r e f} / 10^{5}+69844.23141\right. \\
& \left(h_{\text {ref }} / 10^{5}\right)^{2} \\
& -71534.98453\left(h_{\text {ref }} / 10^{5}\right)^{3}+37506.13054\left(h_{\text {ref }} / 10^{5}\right)^{4}- \\
& \left.-8048.55112\left(h_{\text {ref }} / 10^{5}\right)^{5}\right] \text {. }
\end{aligned}
$$

c) Angle of attack correction:

$$
\dot{q}_{\operatorname{tax}, \alpha} \int \dot{q}_{\max , \alpha=50^{\circ}}=[\ln (x)]^{2}
$$

where

$$
\begin{aligned}
& x=10^{2}\left[0.01136+0.01343 \alpha / 10^{2}+1.42672\left(\alpha / 10^{2}\right)^{4}-0.75623\right. \\
& \left.\quad\left(\alpha / 10^{2}\right)^{5}\right]+0.30535\left(\alpha / 10^{2}\right)^{2}-1.06269\left(\alpha / 10^{2}\right)^{3} . \\
& \text { d) Maximum centerline heat rate: }
\end{aligned}
$$

$$
\begin{equation*}
\dot{q}_{\operatorname{miax}}=\left(\dot{q}_{\max , a}\right) /\left(\dot{q}_{\max , \alpha=50^{\circ}}\right) \quad\left(\dot{q}_{\text {ref }}\right) \tag{v-35}
\end{equation*}
$$

In addition to the heat rate calculations, the program also provides the capability to calculate other aeroheating indicators that can be used for trajectory shaping purposes.

Aerodynamic heating indicators,- The heating rate for zero total angle of attack a_{r} is

$$
\begin{equation*}
\dot{Q}=q V_{A} . \tag{V-36}
\end{equation*}
$$

The aerodynamic heating_indicator for sero total angle of attack is

$$
\begin{equation*}
Q=\int_{0}^{t} \dot{Q} d t . \tag{V-37}
\end{equation*}
$$

The heating indicator for non-zero angles of attack is given by

$$
\begin{equation*}
Q^{-}=\int_{0}^{t} f\left(\alpha^{\circ}, M\right) \dot{Q} d t \tag{V-38}
\end{equation*}
$$

where

$$
\begin{gathered}
f\left(\alpha^{\circ}, M\right)=\left(1+\frac{7}{5} M^{2} \sin ^{2} \alpha^{\prime}\right)^{5 / 7} K \\
K=\left\{1+\frac{5}{M^{2}}\left[1-\left(1+\frac{7}{5} M^{2} \sin ^{2} \alpha^{-}\right)^{2 / 7}\right]\right\} \frac{1}{2}
\end{gathered}
$$

and

$$
\left.\begin{array}{l}
a^{\prime}=\alpha \\
Q_{T}^{-}=Q^{-} \tag{V-39}
\end{array}\right\} \text {for } \alpha<0^{\circ}
$$

The-heating indicator for laminar flow is calculated as

$$
\begin{equation*}
Q_{1 a m}=\int_{0}^{t} 17600 K_{\alpha_{T}}\left(\frac{p}{R_{0}}\right)^{\frac{1}{2}}\left(\frac{V_{A}}{26000}\right)^{3.15} \mathrm{dt} \tag{V-40}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{\alpha_{T}}=f\left(\alpha_{T}\right) \tag{V-41}
\end{equation*}
$$

The heating indicator for turbulent flow is calculated as

$$
\begin{equation*}
Q_{t u r b}=\int 1500 K_{c_{T}}\left(\frac{Q_{-}}{\rho_{0}}\right)^{0.8}\left(\frac{v_{A}}{10000}\right)^{3.18} \mathrm{dt} \tag{V-42}
\end{equation*}
$$

Ten-Panel Vehicle Heating Model.- Special aeroheating calculations are available for a ten-panel vehicle model. The heating ratios are referenced to the heat rate calculation. The total heat for each panel is given by

$$
\begin{equation*}
Q_{i}=H_{R_{i}} Q_{1} \tag{V-43}
\end{equation*}
$$

where Q is the total heat and $H_{R_{1}}$ is the heat ratio for panel 1. The weight for each panel is the product of the weight per unit area and the area of the panel. The total weight is the sum of the individual weights for each panel:

$$
W_{P}=\sum_{i=1}^{10} N_{u A_{i}} A_{i}
$$

where $W_{u A_{1}}$ is the weight per unit area and A_{i} is the area of the $1^{\text {th }}$ panel.

Sensor Module

The sensor module computes information that describes the behavior of the sensing elements of the vehicle's navigation sys-tem.- Thus, the primary functional responsibility of the module is that of simulating hardware characteristics of sensors. For example, the behavior of an inertial measurement unit (IMU) can be described by a mathematical model of the platform and the accelerometers. Frequently this module is used for error analysis purposes.

Sensor models called by this module are necessarily vehicle and subsystem dependent. As a consequence, the sensor model must te designed and implemented for each particular application.

There are many applications of the program that do not require a specific simulation of the seissors. Therefore, for convenience, a "perfect" sensor model is coded into this routine. This "perfect" sensor model sets-the sensed program variables equal to their actual values as calculated in the simulation models.

Navigation Module-

The function of the navigation model is to estimate the state (position, velocity, etc) of the vehicle based on the sensor outputs. Clearly, this module is also vehicle and subsystem dependent and must be designed and implemented for each specific application. This version of the program contains no navigation models. As a consequence, the estimated state is set equal to the actual state. This is equivalent to simulation of perfect navigation.

Guidance Module

The guidence module takes the output of the navigation model and computes a guidance command. Typically, the guidance command represents a desired change in the current attitude of the vehicle. This command is computed on the basis of meeting some spacified trajactory condition, such as, inject conditions or landing conditions. The autopilot is designed to remove the arrors between the commanded values of the guidance variables and their actual (or sensed) values. This is accomplished by deflecting engines, control surfaces, and/or firing RCS jets.

The current version of 6D POST contains three pieloaded guidance options: (1) an open-loop profile steering; (2) a closed loop v-h profile ascent algorithm; and (3) the constant drag Spacu Shuttle reentry scheme (ref. H-1). If theoe methods are inadequate, the user may imp?ement his own guidance algorithm into this module.

Autopilot Module

The function of the autopilot module is the generation of a command, which, when implemented through the deflection equations contained in the controls module, causes the velicle to respond as prescribed by the guidance module. This functional responsibility is depicted in Figure V-3.

The autopilot modula calculaten only autopilot commands based on the input guidance commands, and does not calculate angine or control surface deflections. The angina and control aurface deflections are computed in the controls modula as a linear function of the autopilot commands. The autopllot commands $\delta \theta$, $\delta\{$. $\delta \psi$ represent changes in vehicle attitude. The mixing equations determine the engine and control surface deflections that create the control forcos and moments.

Currently, there are two Space Shuttle autopilot models available in 6D POST. One autopiliot is for ascent and the other fur reentry. The ascent autopilot is somewhat standard and could be used on most ascent protiens with little or no modification. The basic inputs to this model are: attitude commands from the guidance, inertial attitude angles, body rotational rates, translational accelerations, and preloaded engine deflection commands. The outputs are pitch, yaw, and roll autopilot coinmands, which are sent to the controls module to determine the engine deflection angles. The reentry autopilot is Space Shuttle oriented and is probably not applicable to other vahicle configurations. This model is intendec to provide attitude control for Space Shuttle beginning at approximately $400,000-\mathrm{ft}$ altitude and ending in the high subsonic filght regime. The control logic makes use of both aerodynamic control surface torques and reaction control jets. A complete description of this model is presented in ref. H-2.

Controls Model

The controls model converts pitch, yaw, and roll autopilot commands into aerodynamic control surface deflection angles and/ or engine gimbal angles. The conversion of the autopiloc commands into deflection angles is implemented through the matrix mixing logic given by the equation

$$
\begin{equation*}
\underline{\delta}=\underline{\delta} 0+[M] \delta \underline{\theta} \tag{v-45}
\end{equation*}
$$

where δ denotes a general deflection angle with a null position of 80 , [M] the mixing gains, and δ O the autopilot commande. The gaine contained in the mixing matrix, [M], and the null daflections, $\underline{\delta}_{0}$, are apecified by usar input.

The standard aerodynamic aurface daflection mixing aquations used in tha program are

$$
\begin{align*}
& \delta \dot{a}=\delta \dot{a}_{o}+K R_{\delta a} \delta \dot{\phi}+K P_{\delta \dot{a}} \delta \dot{\theta}+K Y_{\delta a} \delta \dot{\psi}, \tag{V-46}\\
& \delta \dot{\theta}=\delta \dot{\mathbf{a}}_{0}+K R_{\delta 0} \delta \dot{\phi}+K P_{\delta a} \delta \dot{\theta}+K Y_{\delta 0} \delta \dot{\psi} \tag{V-47}\\
& \delta \dot{R}=\delta \dot{R}_{0}+K R_{\delta x} \delta \dot{\phi}+K P_{\delta r} \delta \dot{\theta}+K Y_{\delta r} \delta \dot{\psi}, \tag{v-48}
\end{align*}
$$

and the standard engine deflection angle mixing equations are similarly

$$
\begin{align*}
& \delta a_{P_{1}}=\delta e_{p_{10}}+K P_{\delta p} \delta \theta+K R_{\delta p} \delta \phi, \tag{V-49}\\
& \delta e_{y_{1}}=\delta e_{y_{10}}+K Y_{\delta y} \delta \psi+K R_{\delta y} \delta \phi . \tag{V-50}
\end{align*}
$$

where $\delta \dot{\theta}$, s壮, and $\delta \dot{q}$ are the pitch, yaw, and roll autopilot commands.

Airframe Model

The airframe model computes the total thrust and moments acting on the vehicle. The forces and moments are computed from the engine and aerodynamic deflection angles and the RCS thrust and moments.

The nongravitational force acting on the vehicle is computed in the body frame as

$$
\begin{equation*}
\underline{F}_{\mathrm{B}}=\underline{E}_{\mathrm{TB}}+\underline{F}_{\mathrm{AB}}+\underline{E}_{\mathrm{RCS}} \tag{V-51}
\end{equation*}
$$

 total force due to aerodynamic effects, and $F_{\text {RCS }}$ is the total force resulting from the reaction-control system. Similarly, the total moment acting on the vehicle is computed as

$$
\begin{equation*}
\underline{M}_{B}=\underline{M}_{T B}+\underline{M}_{A B}+\underline{M}_{R C S} \tag{V-52}
\end{equation*}
$$

The thrust vector components for both rocket and jet engines are determined from the thrust magnitude $T_{R_{1}}$ or $T_{J_{1}}$ and the engine gimbal angles $\delta e_{P_{1}}$ and $\delta e_{y_{1}}$. The total thrust force in the body frame is given by:

$$
\begin{equation*}
\underline{E}_{T B}=\sum_{i=1}^{N_{\text {eng }}} \underline{E}_{\mathrm{TB}_{i}} \tag{v-53}
\end{equation*}
$$

where the individual engine components, $\mathrm{F}_{\mathrm{TB}}^{1}$, are given by

$$
\underline{F}_{\mathrm{TB}_{1}}=\quad \mathrm{T}_{\mathrm{R}_{i}}\left[\begin{array}{l}
\cos \delta e_{p_{i}} \tag{V-54}\\
\cos \delta e_{y_{i}} \\
\sin \delta e_{y_{i}} \\
-\cos \delta c_{y_{i}} \\
\\
\\
\end{array}\right]
$$

For roll nozzles, the thrust vector is given by

$$
E_{T B_{i}}=[k] T_{R_{i}}\left[\begin{array}{cc}
\cos \delta e_{p_{i}} & \cos \delta e_{y_{i}} \tag{V-55}\\
\sin \delta e_{y_{i}} & \\
-\cos \delta e_{y_{1}} & \sin \delta e_{p_{i}}
\end{array}\right]
$$

where for a roll nozzle the deflection matrix
[K] is given by

$$
K=\left[\begin{array}{lll}
1 & 0 & 0 \tag{V-56}\\
0 & c \phi_{i} & s \phi_{i} \\
0 & -s \phi_{1} & c \phi_{i}
\end{array}\right]
$$

where

$$
\Phi_{1}=\text { input value }
$$

07

$$
\phi_{1}=\tan ^{-1}\left(z_{g p_{1}} / y_{g p_{1}}\right) \text { if not input. }
$$

The thrust moments are obtained by summing the thrust moments for each engine as follows:
where

The aerodynamic forces and moments are given by:

$$
\underline{F}_{A B}=\left[\begin{array}{c}
F_{A X B} \tag{v-59}\\
F_{A Y B} \\
F_{A Z B}
\end{array}\right]=q S\left[\begin{array}{c}
-C_{A} \\
C_{Y} \\
-C_{N}
\end{array}\right],
$$

and

$$
\underline{M}_{A B}=q S\left[\begin{array}{ll}
d_{R} & c_{\hat{i}} \tag{v-60}\\
d_{P} & c_{m} \\
d_{Y} & c_{n}
\end{array}\right]-\underline{F}_{A B} \times \stackrel{\Delta R}{A B}
$$

where

$$
\Delta \mathbb{R}_{A B}=\left[\begin{array}{c}
-\left(x_{\text {ref }}-x_{c g}\right) \tag{v-61}\\
\left(y_{\text {ref }}-y_{c g}\right) \\
-\left(z_{r e f}-z_{c g}\right)
\end{array}\right] \cdot
$$

The aerodynamic reference point $\quad\left(x_{r e f}, y_{\text {ref }}, z_{r e f}\right)$ is calculated from tabular input.

The RCS forces and moments are computed in the autopilot model and are merely added to obtain the resultant force and moment vectors.
v-18

VI. TRAJECTORY SIMULATION

The following sections present the equations used in the trajectory simulation subroutines. These equations sumnarize the principal computations performed by the program, and motivate many of the program input procedures.

Events/Phases

Simulation data are input according to phase, where the phases are defined by a user-specified sequence of events. The simulation equations are then solved sequentially by phase. Therefore, the user is required to input a sequence of trajectory segments that define the problem being simulated from beginning to end. These trajectory segments, or phases, are defined by two events-a beginning event and an ending event. An event is an interruption of the trajectory simulation that occurs when a user-specified variable reaches a user-specified value. An event must be created whenever the user wishes to change any input data for the problem or to cause any change in the method of simulating the problem. For example, the sequence of events for a typical ascent problem could result in a simulation setup similar to that shown in figure VI-1.

Fisure VI-1.- Event Sequence Setup

The event numbers for a given problem must be spectfied as real numbers by the user in monotonic increasing order. These event numbers are then used by the program to determine the order in which the events are to occur. The program requires that each problem have a minimum of two events-an initial event and a final event. Since a phase is initiated by the corresponding event, the event criterion for a given event specifies the conditions at the beginning of the corresponding phase. A problem is terminated by specifying the last event that is to occur. The problem can also be terminated in a psuedo-abort mode by specifying the maximum trajectory time, maximum altitude, or minimum altitude.

Although event numbers must be monotonic increasing, they need not be consecutive. This allows the user to easily add or delete events from an input deck.

Three types of events have been defined to provide flexibility in setting up a given problem:

1) Primary events - These describe the main sequential events of the trajectory being simulated. These events must occur, and must occur in ascending order according to the event number. Most problems will usually be simulated by a series of primary events;
2) Secondary events - These are events that may or may not occur during the specified trajectory segment. Secondary events must occur in ascending order during the interval bounded by the primary events. The occurrence of a primary event will nullify the secondary events associated with the previous primary event if they have not already occurred;
3) Roving primary events - These events can occur any time after the sccurrence of all primary events with smaller event numbers. They can be used to interrupt the trajectery on the specified criterion regardless of the state of the trajectory or vehicle.

The program monitors as many as ten events at a time, depending on the types of events to determine which event is to occur next. This gives the user a powerful tool for simulating complex problems.

Multiple events are monitored in the following sequence:

1) The next primary event is monitored;
2) As many as nine primary roving events are then monitored, firovided there are no secondary events. A roving primary event is added to the list of those being monitored as soon as the primary event immediately preceding that roving event has occurred;
3) Next, as many as nine secondary events are monitored, provided there are no primary roving events. (Note that caution must be exercised when using secondary events because of their nature. Since as many as nine secondary events are monitored at a time, any one of those nine will occur as soon as its criterion has been met. Because they are secondary events, the event that occurs will cancel all secondary events with smaller event numbers.);
4) Finally, a total of nine primary roving and secondary events are monitored.

Since the program can only monitor nine events (in addition to the next primary event), the sum of the primary roving events and the secondary events must be less than or equal to nine or a fatal error will result.

The time-to-go model (TG $\emptyset M$) determines when the events occur during the trajectory simulation. Basically, TGめM checks the values of the critsrion being monitored at each integration step. If none of the iriterion values has bracketed the desired cutoff value, then another integration step is taken. If a criterion variable is bracketed with the input step size, then TG $\varnothing M$ computes a new stepsize equal to the predicted time-to-go.

The predicted time-to-go for each event is computed from the equation

$$
\begin{equation*}
\Delta t^{*}=-y^{2}(t) /(y(t+\Delta t)-y(t)) \tag{VI-1}
\end{equation*}
$$

where $y(t)$ is the difference between the actual and the desired value of the event criterion. If more than one event is bracketed, then the minimum predicted time-to-go is used as the integration stapsize. This process is repeated until the criterion value is
within the specified tolerance of the desired value. If the desired condition cannot be achieved in 20 iterations,., an error message is printed and the program stops. Cenerally this situation is caused by an input.error. The fundamental features of the time-to-go logic are shown in figure V.Im......

Figure VI-2.- Illustration of Tine-to-Go Logic

Translational Equations

The translational equations of motion are solved in the planet-centered inertial coordinate system. These equations are

$$
\begin{align*}
& \dot{\underline{r}}_{I}=\underline{V}_{I} \tag{VI-2}\\
& \dot{\dot{V}}_{I}=[I B]^{-1}\left[\underline{A}_{T B}+\underline{A}_{A B}\right]+\underline{G}_{I} \tag{VI-3}
\end{align*}
$$

where $A_{T B}$ ia the thrust acceleration in the body frame, $A_{A B}$ is the aerodynamic acceleration in the body frame, and G is the gravitational acceleration in the ECI frame.

Initialization. - There are five options for initializing the velocity vector and two options for initializing the position vector-....These options are described below.

Inertial position components $\left(x_{I}, y_{I}, z_{I}\right)^{-}$- The inertial. position components can be input directly since no transformation is required.

Earth-relative position (θ_{I} or $\theta_{,} \phi_{c}$ or ϕ_{g}, h or r).- In this option the equations vary and the sequence of calculation varies accoriing to the choice of input. However, the basic equations used are:

$$
\begin{array}{ll}
\theta_{I}=\theta+\Omega_{p}\left(t-t_{0}\right) & \text { if } \theta \text { is input, } \\
\phi_{c}=\tan ^{-1}\left(k^{2} \tan \phi_{g}\right) & \text { if } \phi_{g} \text { is input, } \tag{VI-4}\\
r_{I}=h+R_{s}\left(\phi_{c}\right) & \text { if } h \text { is input, }
\end{array}
$$

and

$$
\underline{r}_{I}=r_{I}\left[\begin{array}{l}
\cos -\phi_{c} \cos \theta_{I} \\
\cos \phi_{c} \sin \theta_{I} \\
\sin \phi_{c}
\end{array}\right]
$$

Inertial velocity components $\left(V_{X I}, V_{X I}, V_{Z I}\right)$-- These variables can be input directly.

Inertial local horizontal $\left(V_{I}, \gamma_{I}, A_{Z I}\right)^{\text {- }}$ The inertial components in the horizontal frame are first transformed to the geographic frame as

$$
\nabla_{I G}=V_{I}\left[\begin{array}{lll}
\cos & \gamma_{I} & \operatorname{cr}- \\
A_{Z I} \\
\cos & \gamma_{I} & \sin A_{Z I} \\
-\sin & \gamma_{I}
\end{array}\right]
$$

and then transformed to the ECI frame by

$$
\begin{equation*}
\underline{v}_{I}=[I G]^{-1} \underline{v}_{I G} . \tag{VI-7}
\end{equation*}
$$

Earth-relative local horizontal ($\left.V_{R}, \gamma_{R}, A_{Z R}\right)^{\text {,- The Earth- }}$ relative velocity components are first transformed to the geographic frame as

$$
\underline{V}_{R G}=V_{R}\left[\begin{array}{cccc}
\cos & \gamma_{R} & \cos & A_{Z R} \tag{VI-8}\\
\cos & \gamma_{R} & & \sin \\
& & A_{Z R} \\
-\sin & \gamma_{R} & &
\end{array}\right]
$$

and then Eransformed to the ECI frame by

$$
\begin{equation*}
\underline{v}_{I}=[I G]^{-1} \underline{v}_{R G}+\underline{\Omega}_{p} \times \underline{\underline{r}}_{I} \tag{VI-9}
\end{equation*}
$$

Atmospheric relative local horizontal ($\left.V_{A}, \gamma_{A}, A_{Z A}\right)^{\text {- }}$ The atmospheric relative velocity components are first transformed to the geographic frame as

$$
\underline{v}_{A G}=v_{A}\left[\begin{array}{lll}
\cos & \gamma_{A} & \cos A_{Z A} \tag{VI-10}\\
\cos & \gamma_{A} & \sin A_{Z A} \\
-\sin & \gamma_{A} &
\end{array}\right]+\left[\begin{array}{c}
v_{W X G} \\
v_{W Y G} \\
v_{W Z G}
\end{array}\right] \text {. }
$$

and then transformed to the ECI frame by

$$
\begin{equation*}
\underline{v}_{I}=[I G]^{-1} \underline{v}_{A G}+{\underset{\sim}{p}}^{x} \underline{\underline{r}}_{I} \tag{VI-11}
\end{equation*}
$$

Orbital parameters $\left(h_{p}, h_{a}, 1, \Omega_{0} \omega_{p}, \theta\right)$.- This option initializes both position and velocity. The equations used to transform the orbital parameter to the ECI position and velocity are:

$$
\left.\begin{array}{l}
r_{p}=h_{p}+R_{E} \\
r_{a}=h_{a}+R_{E} \\
a=\left(r_{a}+r_{p}\right) / 2 \\
e=\left(r_{a}-r_{p}\right) /\left(r_{a}+r_{p}\right) \\
\rho=\theta+\omega \\
p=a\left(1-a^{2}\right) \\
\mathbf{H}=\mu p \\
r=p /(1+e \cos \theta) \\
\underline{u}_{r}=\left[\begin{array}{lll}
\cos \Omega & -s i n \Omega & 0 \\
\sin \Omega & \cos \Omega & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{llc}
1 & 0 & 0 \\
0 & \cos 1 & -\sin 1 \\
1 & \sin 1 & \cos 1
\end{array}\right]\left[\begin{array}{l}
\cos \rho \\
\sin \rho \\
0
\end{array}\right]
\end{array}\right\}
$$

and

$$
\begin{aligned}
& \underline{r}=r \underline{u}_{r} \\
& v=\mu\left[\frac{2}{r}-\frac{1}{a}\right] \\
& r=\sin ^{-1}(H / r V)
\end{aligned}
$$

$$
\forall v=\left[\begin{array}{lcl}
\cos \rho & -\sin \rho & 0 \\
\sin \rho & \cos \rho & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos 1 & -\sin i \\
0 & \sin i & \cos 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\cos \Omega & -\sin \Omega & 0 \\
\sin \Omega & \cos \Omega & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\cos \gamma \\
\sin \gamma \\
0
\end{array}\right]
$$

Rotational Equations

The rotational equations of mution are solved in the bodycentered coordinate system. These equations are

$$
\begin{aligned}
& \dot{\dot{e}}=\frac{1}{2}[E] \underline{\omega}_{B} \\
& \left.\underline{\underline{\dot{w}}}_{B}=[I]^{-1} \underline{M}_{B}-[i] \underline{\omega}_{B}-\underline{w}_{B} x[I] \underline{\omega}_{B}\right], \\
& \underline{M}_{B}=\underline{M}_{T B}+\underline{M}_{A B}+\underline{M}_{R C S}
\end{aligned}
$$

where e is a four dimensional vector of quaternion parameters, $[E]$ is the quaternion matrix, \underline{w}_{B} is the inertial angular velocity expressed in the body frame; M_{B} is the total external moment acting in the vehicle as a result of the thrust, the RCS, and the aerodynamic forces, and [I] is the inertia matrix for the composite vehicle. The [I] and [E] matrices are given by
$[I]=\left[\begin{array}{cc}I_{X X}-I_{X Y}-I_{X Z} \\ -I_{X Y} & I_{Y Y}-I_{Y Z} \\ -I_{X Z} & -I_{Y Z} \\ I_{U Z}\end{array}\right]$
(VI-16)
$[E]=\left[\begin{array}{ccc}-e_{1} & e_{2} & e \\ e_{0} & e_{2} & -e_{1} \\ e_{0} & -e_{1} & e_{2} \\ e_{0} & e_{1} & -e^{\prime}\end{array}\right]$
The body rates are defaned below and illustrated in Figure VI-3.
ω_{x} - Roll body rate. The angular rate about the x_{B}-axis in dag/sec,
ω_{y} - Pitch body rate. The angular rate about the y_{B}-axis in deg/ sec,
ω_{z} - Yaw body rate. The angular rate about the z_{B}-axis in deg/sec.

Figure VI-3.- Body Rates

VI-8

Initialization. - The rotational equations of motion are inicialized by defining both the ettitude angles and the attitude rates. There are three options for initializing the attitude: (1) inertial Euler angles; (2) relative Euler anglea; and (3) aurodynamic angles. There are three options for initializing the attitude rates: (1) body rates; (2) Inertial Euler angle...rates and (3) relative Euler angles rates. The attitude angles are used to compute initial values of the quaternions in order to initialize equation VI-14. The rates are used to initialize the moment equations. The equations for these options are presentec below.

When inertial Eul.er angles are input the initial quaternion vector is given

$$
\begin{equation*}
e_{0}=e\left(\phi_{I}\right) * e\left(\psi_{I}\right) * e\left({ }^{\theta} I\right) \tag{VI-18}
\end{equation*}
$$

where the asterisk denotes quaternion multiplication and where

$$
\begin{align*}
& e\left(\phi_{I}\right)=\cos \left(0.5 \phi_{I}\right)+\sin \left(0.5 \phi_{I}\right) 1 \\
& e\left(\psi_{I}\right)=\cos \left(0.5 \psi_{I}\right)+\sin \left(0.5 \psi_{I}\right) k \tag{VI-19}\\
& e\left(\theta_{I}\right)=\cos \left(0.5 \theta_{I}\right)+\sin \left(0.5 \theta_{I}\right) \mathrm{j}
\end{align*}
$$

When aerodynamic angles are input, then the initial quaternion vector is given by

$$
\begin{align*}
& \underline{e}_{0}= \underline{e}\left(A_{Z L}\right) * \underline{e}(90) * e\left(\phi_{L}\right) * e\left(-\theta_{L}\right) * e\left(\theta_{I}\right) * e\left(-\phi_{c}\right) * e(-90) * \\
& e\left(\lambda_{A}\right) * \underline{e}\left(\gamma_{A}\right) * e(\sigma) * e(-\beta) * \underline{e}(\alpha) \tag{VI-20}
\end{align*}
$$

where

$$
\begin{aligned}
& \underline{e}\left(A_{Z L}\right)=\cos \left(0.5 A_{Z L}\right)-\sin \left(0.5 A_{Z L}\right) k \\
& \underline{e}(90)=\cos (45)+\sin (45) \quad j \\
& \underline{e}\left(\phi_{L}\right)=\cos \left(0.5 \phi_{L}\right)+\sin \left(0.5 \phi_{L}\right) j \\
& \underline{e}\left(-\theta_{L}\right)=\cos \left(0.5 \theta_{L}\right)-\sin \left(0.5 \theta_{L}\right) k \\
& \underline{e}\left(\theta_{I}\right)=\cos \left(0.5 \theta_{I}\right)+\sin \left(0.5 \theta_{L}\right) k \\
& \underline{e}\left(\phi_{C}\right)=\cos \left(0.5 \phi_{C}\right)-\sin \left(0.5 \phi_{C}\right) j \\
& \underline{e}(\sigma)=\cos 0.5(1+(\sin 0.5 \sigma) 1 \\
& \underline{e}(-\beta)=\cos 0.5 K-(\sin 0.5 \beta) k \\
& \underline{e}(\alpha)=\cos 0.5 a+(\sin 0.5 \alpha) j .
\end{aligned}
$$

(VI-21)

When relative Euler angles are input, then the initial quateranion vector is given

$$
\begin{align*}
\underline{e}_{0}= & \underline{e}\left(A_{2 L}\right)^{*} \underline{e}(90) * \underline{e}\left(\hat{D}_{L}\right) * \underline{e}\left(-\theta_{L}\right) * \underline{e}\left({ }_{I}\right)^{*} \underline{e}\left(-\phi_{c}\right) * \underline{e}(-90) * \\
& * \underline{e}(\psi) * \underline{e}(e) * \underline{e}(t) \tag{VI-22}
\end{align*}
$$

where

$$
\begin{align*}
& \underline{e}\left(A_{Z L}\right)=\cos \left(0.5 A_{Z L}\right)-\sin \left(0.5 A_{Z L}\right) k \\
& \underline{e}(90)=\cos (45)+\sin (45) \\
& \underline{e}\left(\phi_{L}\right)=\cos \left(0.5 \phi_{L}\right)+\sin \left(0.5 \phi_{L}\right) j \\
& \underline{e}\left(-\theta_{L}\right)=\cos \left(0.5 \theta_{L}\right)-\sin \left(0.5 \theta_{L}\right) k \tag{VI-23}\\
& \underline{e}\left(\theta_{I}\right)=\cos \left(0.5 \theta_{I}\right)+\sin \left(0.5 \theta_{I}\right) k \\
& \underline{e}\left(\phi_{C}\right)=\cos \left(0.5 \phi_{C}\right)-\sin \left(0.5 \phi_{C}\right) j \\
& \underline{e}(\psi)=\cos 0.5 \psi+(\sin 0.5 \psi) k \\
& \underline{e}(\theta)=\cos 0.5 \theta+(\sin 0.5 \theta) j \\
& \underline{e}(\phi)=\cos 0.5 \phi+(\sin 0.5 \phi) 1
\end{align*}
$$

VI -10

The available options for initializing the moment equation are:

1) Input $\omega_{x} 0{ }^{\omega} y^{\prime}, \omega_{z}$ directly
2) Input the inertial Euler angle rates $\dot{\phi}_{I}, \dot{\psi}_{I}, \dot{\delta}_{I}$ and calculate " x, ω_{y}, ω_{2} via

$$
\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]=\left[\begin{array}{l}
\dot{\phi}_{I} \cos \psi_{I} \cos \theta_{I}-\dot{\psi}_{I} \sin \theta_{I} \\
\dot{\theta}_{I}-\dot{\phi}_{I} \sin \psi_{I} \\
\dot{\phi}_{I} \cos \psi_{I} \sin \theta_{I}+\dot{\psi}_{I} \cos \theta_{I}
\end{array}\right]
$$

3) Input the relative Euler angle rates $\dot{\psi}_{R}, \dot{\theta}_{R}, \dot{\phi}_{R}$ and calculate ω_{x}, ω_{y}, wa via

$$
\left[\begin{array}{l}
\omega_{x} \tag{VI-25}\\
\omega_{y} \\
\omega_{z}
\end{array}\right]=a+\left[\begin{array}{l}
\dot{\phi}_{R}-\sin \theta_{R} \dot{\psi}_{R} \\
\cos \phi_{R} \dot{\theta}_{R}+\sin \phi_{R} \cos \theta_{R} \psi_{R} \\
\cos \phi_{R} \cos \theta_{R} \psi_{R}-\sin \phi_{R} \theta_{R}
\end{array}\right] \text {, }
$$

where

$$
a=[G B]\left[\begin{array}{l}
\frac{v}{r_{I}} \\
\frac{-u}{r_{I}} \\
\frac{-v}{r_{I}} \tan \phi_{c}
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=[I G] v_{I},
$$

Intagration Variablew

The numbar of integrals computed during any particular phase in detarmined from the optionn requestad by the uaer. As a minimum, the cranslational equations of motion ara integrated to give the poaition and velucity of the conter of masa of the ve= hicle. The user may also felact additional variablea to be integrated. The only rontriction la that no more than 40 incegrals can be computed por phase.

VII. AUXILIARY CALCULATIONS

In addition to computing the basic variablea, POST also computes numerous auxiliary variables that are related to: (1) conic parameters, (2) range calculations, (3) tracking data, (4) analytic impact calculations, (5) velocity losses, and (6) velocity margins. The equations used to calculate these variables are presented below.

Conic Calculations

The following Keplerian conic variables are computed.

6
a
h
p semilatus rectum, $h^{2 / \mu}$
e eccentricity, $\sqrt{|1-p / a|}$
ΔV
velocity required to circularize orbit, $\sqrt{\Delta \underline{V} \cdot \Delta \underline{V}}$, where $\underline{u}_{h}=\underline{h} / h$
$H_{R I}=r_{I} / r_{I}$

$\underline{v}_{c}=\left(\mu / r_{I}\right)^{\frac{1}{2}} \underline{u}_{v}$
$\Delta \underline{V}=\underline{V}_{C}-\underline{V}_{I}$
1 Inclination, cos ${ }^{-1} \cdot\left(h_{\varepsilon} / h\right)$
$\Omega \quad$ longitude of escending node, $\cos ^{-1}\left(\underline{\underline{x}}_{I} \cdot \underline{u}_{\Omega}\right)$, where

$$
\underline{\underline{u}}_{\Omega}=\hat{\underline{z}}_{\mathbf{I}} \times \underline{\boldsymbol{y}} / \underline{\underline{\underline{z}}} \mathbf{I} \times \underline{\underline{i}} \mid
$$

$$
\rho \quad \text { argument of vehicle, } \rho=\cos ^{-1}\left(\underline{u}_{r} \cdot u_{\Omega}\right)
$$

$$
T_{S P} \quad \text { time since perigee, } \frac{\mathrm{P}}{2 \pi} \mathrm{M}
$$

$T_{T P} \quad$ time to perigee, $P-T_{S P}$
${ }^{*}{ }_{p} \quad$ latitude of perigee, $\tan ^{-1}\left(u_{3} / \sqrt{u_{1}^{2}+u_{2}^{2}}\right)$, where
$\underline{u}=\cos (\omega) \underline{u}_{\Omega}+\sin (\omega)\left(\underline{u}_{\underline{R}} \times \underline{u}_{\Omega}\right)$
$\theta_{p} \quad$ longitude of perigee, $\tan ^{-1}\left(u_{2} / u_{1}\right)$
$h_{p} \quad$ altitude of perigee, $r_{p}-R_{s}\left(\phi_{p}\right)$
h_{a} altitude of apogee, $r_{a}-R_{s}\left(\phi_{p}\right)$
$V_{p} \quad$ velocity at perigee, $\sqrt{\frac{\mu}{a}\left(\frac{1+e}{1-e}\right)}$
$V_{a} \quad$ velocity at apogee, $\sqrt{\frac{\mu}{a}\left(\frac{1-e}{1+e}\right)}$
$V_{n} \quad$ hyperbolic excess velocity, $\sqrt{26}$
$H_{\text {max }}$ maximum true anomaly for hyperbolic orbit, cos ${ }^{-1}(-1 / e)$
${ }^{{ }^{R}}$ RA \quad declination of outgoing asymptote, $\sin ^{-1}\left[u_{r_{\omega}}(3)\right]$, where
$\underline{u}_{\mathbf{T}}=\underline{u}_{\mathbf{h}} \times \underline{u}_{R I}$
$u_{r_{\infty}}=\cos \left(\theta_{\max }-\theta\right) \operatorname{ur}_{T I}+\sin \left(\theta_{\max }-\theta\right) \underline{u}_{T}$
$R_{A} \quad$ right ascension of outgoing asymptote, $\tan ^{-1}\left(\frac{u_{r_{\infty}}(2)}{u_{r_{\infty}}}(3)\right.$
$\theta \quad$ true anomaly, $\cos ^{-1}\left(\frac{1}{e}\left(\frac{p}{x}-1\right)\right)$
E eccentric anomaly, $2 \tan ^{-1}\left(\sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2}\right)$
M mean anomaly, © - e sin E
$\omega \quad$ argument of perigee, $\rho-\theta$
r_{p} perigee radius, $a(1-e)$
r_{a} apogee radius; $a(1+e)$
$P \quad$ period, $2 \pi \sqrt{\frac{a^{3}}{\mu}}$

Range Calculations

The progam provides for various types of range calculations. The equations for these calculations se given below.

Dot product downrange.- The relative range angle, measured from the vehicle's initial position to its current position, is given by

$$
\begin{equation*}
\phi_{R}=\cos ^{-1}\left(\underline{u}_{\mathbf{r}_{80}} \cdot \underline{u}_{\mathbf{r}}\right) \tag{VII-1}
\end{equation*}
$$

where \underline{H}_{80} is a unit vector along the initial position vector In Earth-centered rotating coordinates and ${ }_{H_{r}}$ is a unit vector
along the current position vector in Earth-centered rotating coordinates. The range over an oblate spheroid is calculated from the average radius to the surface, and is given by

$$
\begin{equation*}
R_{D}=\left[\frac{r_{80}+r_{B}}{2}\right] \phi_{R} \tag{VII-2}
\end{equation*}
$$

Crossrange and downrange via orbital plane reference.- Referring to figure VII-1, identify the vehicle's position at time t^{*} by 0 , and at a later time t by P. At time t^{*}, the vehicle has a latitude of ϕ^{*}, a longitude of θ^{*}, and a velacity

Note:
0 - position at initial time,
p - position at subsequent time.
Figure VII-1.- Downrange and Crossrange Angles
heading of λ^{*}. At time t the vehicle -is at latitude ϕ and longitude θ. The downrange angle (μ) and the crosstange angle (v) shown in the illustration are measured along, and normal to, the great circle through 0 , and are inclined to the meridian by λ^{*}. From analytical geometry, v and μ can be expressed as
$\sin v=-\sin \lambda^{*} \sin \phi^{*} \cos \phi_{c} \cos \theta^{\circ}-\cos \lambda^{*} \cos \phi_{c} \sin \theta$

$$
+\sin \lambda^{*} \cos \phi^{*} \sin \phi_{2}
$$

$\sin \mu=\left(-\cos \lambda^{*} \sin \phi^{*} \cos \phi \cos \theta^{\prime}+\sin \lambda^{*} \cos \phi_{c} \sin \theta^{\circ}\right.$

$$
\left.+\cos \lambda^{*} \cos \phi^{*} \sin \phi_{c}\right)^{/ \cos v}
$$

$\cos \mu=\left(\cos \phi^{*} \cos \phi \cos \theta^{\circ}+\sin \phi^{*} \sin \phi_{\mathrm{c}}\right) / \cos \nu$,
where θ^{*} and λ^{*} can be defined in either of two ways:

1) The great circle to which ν and μ are referenced is fixed and rotating with the Earth. Then

$$
\left.\begin{array}{l}
\lambda^{*}=\text { Earth's relative heading }=\sin ^{-1} \frac{v_{R}}{\sqrt{u_{R}^{2}+v_{R}^{2}}} \\
\theta^{*}=\theta-\theta^{*} ;
\end{array}\right\} \text { (VII-4) }
$$

2) The great circle to which μ and v are referenced is inertially fixed, having the Earth rotating below it. Then

$$
\begin{align*}
& \lambda^{*}=\text { inertial heading }=\sin ^{-1} \frac{v}{\sqrt{u^{2}+v^{2}}} \tag{VII-5}\\
& \theta^{\prime}=\theta-\theta^{\star}+\Omega_{p}\left(t-t^{*}\right) .
\end{align*}
$$

$$
\begin{aligned}
\begin{aligned}
\text { Knowing } \\
\text { distances are }
\end{aligned} & \text { and } \mu, \\
C_{R} & =R_{\text {ave }} \nu \\
D_{R} & =R_{\text {ave }} \mu,
\end{aligned}
$$

(VII-6)
where $R_{\text {ave }}$ is the average Earth radius between the initial and final points.

Auxiliary Position and Velocity Calculations

The solution from the translational equations is then used to calculate numerous output variables. The key variables directly computed from $\left(x_{I}, y_{I}, z_{I}\right)$ and $\left(V_{X I}, V_{Y I}, V_{Z I}\right)$ summarized below.

$$
r_{I}=\text { geocentric radius }
$$

$=\left(\underline{r}_{I} \cdot \underline{r}_{I}\right)^{\frac{1}{2}}$
$V_{I}=$ magnitude of the inertial velocity
$=\left(\underline{V}_{I} \cdot \underline{V}_{I}\right)^{\frac{1}{2}}$
$V_{R}=r e l a t i v e ~ v e l o c i t y$
$=\underline{V}_{I}-\Omega_{P} \times \underline{r}_{I}$
$\underline{V}_{A}=$ atmospheric relative velocity
$=\underline{V}_{R}+V_{W}$
$V_{R}=$ magnitude of the relative velocity
$=\left(\underline{V}_{R} \cdot \underline{V}_{R}\right)^{\frac{1}{2}}$
$\mathbf{V}_{A}=$ magnitude of the atmospheric relative velocity
$=\left(\underline{V}_{A} \cdot \underline{\boldsymbol{V}}_{\mathrm{A}}\right)^{\frac{1}{2}}$
$\underline{u}_{R I}=$ unit vector along radius vector
$=E_{I} / r_{I}$

$-V_{I} / V_{I}$
$Y_{I}=$ Inertial flight path angle
$-\sin ^{-1}\left[\underline{u}_{\mathrm{RI}} \cdot \underline{u}_{\mathrm{VI}}\right]$

$$
\begin{aligned}
& \gamma_{R}=\text { relative-flight path angle } \\
& =\sin ^{-1}\left[\underline{u}_{R I} \cdot \underline{u}_{V R}\right] \\
& \gamma_{A}=\text { atmospheric relative flight path angle } \\
& =\sin ^{-1}\left[\underline{u}_{\mathrm{RI}} \cdot \underline{u}_{\mathrm{VA}}\right] \\
& \underline{V}_{\text {IG }}=\text { inertial velocity in the G-frame } \\
& =[I G] V_{I} \\
& V_{R G}=\text { relative velocity in the G-frame } \\
& =[I G] V_{R} \\
& \underline{v}_{A G}=\text { atmospheric relative velocity in the G-frame } \\
& =[I G] \underline{V}_{A} \\
& A_{Z I}=\text { inertial azimuth } \\
& =\tan ^{-1}\left[\mathrm{~V}_{\mathrm{YG}} / \mathrm{V}_{\mathrm{XG}}\right] \\
& A_{2 R}=\text { relative azimuth } \\
& =\tan ^{-1}\left[V_{\mathrm{RYG}} / \mathrm{V}_{\mathrm{RXG}}\right] \\
& A_{Z A}=\text { atmospheric relative azimuth } \\
& =\tan ^{-1}\left[\mathrm{~V}_{\mathrm{AYG}} / \mathrm{V}_{\mathrm{AXG}}\right] \\
& \phi_{c}=\text { geocentric latitude } \\
& =\sin ^{-1}\left[z_{I} / r_{I}\right] \\
& { }^{\theta}{ }_{I}=\text { inertial longit }{ }^{\prime} \\
& =\tan ^{-1}\left[y_{I} / x_{I}\right]
\end{aligned}
$$

${ }^{\theta_{R}}=$ relative longitude
$-\theta_{I}-\Omega_{P}\left(t-t_{0}\right)$
$A_{S B}=$ sensed acceleration in the B-frame-
$=A_{T B}+A_{A B}$
$A_{S}=$ magnitude of the sensed acceleration
$-\left(A_{S} \cdot A_{S}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
A_{S I} & =\text { sensed acceleration in the ECI-frame } \\
& =[I B]^{-1}\left[A_{T B}+A_{A B}\right]
\end{aligned}
$$

Auxilary Attitude Calculations

The attitude angles that are not used to generate the steering commands arc computed for output in the auxiliary calculation subroutine. These equations are summarized below:

1) Aerodynamic angles:

$$
\begin{aligned}
& a=\tan ^{-1}\left(w_{B} / u_{B}\right) \\
& B=\tan ^{-1}\left(v_{B}^{2} / \sqrt\left[u_{B}^{2}+w_{B}^{2}\right)\right]{ } \\
& \sigma=\tan ^{-1}\left(\frac{G B_{23}+\sin B \sin }{G B_{22} \cos A_{Z A}-G B_{21} \sin A_{Z A} \cos \gamma_{A}}\right)
\end{aligned}
$$

2) Inertial Euler angles:

$$
\begin{aligned}
& \phi_{I}=\tan ^{-1}\left(\mathrm{LB}_{23} ; L B_{22}\right) \\
& \psi_{I}=-8 \ln ^{-1}\left(\mathrm{LB}_{21}\right) \\
& \theta_{I}=\tan ^{-1}\left(\mathrm{LB}_{31} / L B_{11}\right) ;
\end{aligned}
$$

3) Relative Euler angles:

$$
\begin{aligned}
& \psi_{R}=\tan ^{-1}\left(G B_{12} / G B_{11}\right) \\
& \theta_{R}=-\sin ^{-1}\left(G B_{13}\right) \\
& \phi_{R}=\tan ^{-1}\left(G B_{23} / G B_{33}\right)
\end{aligned}
$$

Tracking Data

2OST computas tracking information for as many as ten tracking atations per phame. The tracking atations are lacated on a reference ellipsoid and are gpecified in terms of their latitude, longitude, and altitude above the ellipaoid. These variablea are illustrated in figure VII-2.

Figure VII-2.- Radar Traciking Schematic

The position components of the tracker in the Earth-relative frame are given by

$$
\underline{\varepsilon}_{T R}=\left(R_{\theta}+h_{T}\right)\left[\begin{array}{l}
\cos \phi_{T} \cos \theta_{T} \tag{VII-11}\\
\cos \phi_{T} \sin \theta_{T} \\
\sin \phi_{T}
\end{array}\right]
$$

where h_{T} is the altitude of the tracker, ψ_{T} the latitude of the tracker, and θ_{T} the longitude of the tracker.

The slant range vector in the ECI frame is given by

$$
\begin{equation*}
\underline{r}_{S R}=\underline{r}_{I}-[I P]^{-1} \underline{r}_{T R} \tag{VII-12}
\end{equation*}
$$

and the slant range is then computed as

$$
\begin{equation*}
r_{S R}=\sqrt{\underline{r}_{S R} \cdot \underline{r}_{S R}} \tag{VII-13}
\end{equation*}
$$

The elevation angle can then be computed as

$$
\begin{equation*}
\gamma_{T}=\sin ^{-1}\left(\underline{u}_{T R} \cdot \underline{r}_{S R} / r_{S R}\right) \tag{VII-14}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{u}_{T R}=[I P]^{-1} \underline{r}_{T R} /\left|[I P]^{-1} \underline{r}_{T R}\right| . \tag{VII-15}
\end{equation*}
$$

The slant range vector, transformed to the geographic frame, is

$$
\underline{r}_{S R G}=[I G] \underline{r}_{S R} \text {. }
$$

(VII-16)
and thus the tracker's azimuth is given by

$$
\begin{equation*}
A_{Z T}=\tan ^{-1}\left(y_{S R G} / x_{S R G}\right) \tag{VII-17}
\end{equation*}
$$

The look angles are calculated from the slant range vector transformed to the body frame; 1.e.,

$$
\underline{r}_{S R B}=[I B] \underline{r}_{S K}
$$

(VII-18i

VII-12

Using the componenta of $\mathrm{F}_{\mathrm{GRB}}$, the cone angle is then givan by

$$
\begin{equation*}
\psi_{T}=\cos ^{-1}\left(x_{S R B} / r_{S R}\right) \tag{VII-19}
\end{equation*}
$$

and the clock angle is given by

$$
a_{c}=\tan ^{-1}\left(y_{S R B} / a_{S R B}\right)
$$

(VII-20)

Space losses are calculated for the tracking stations as follows:

$$
\begin{aligned}
& S L_{1}=36.56+20 \log _{10}\left(R_{S L M} \cdot P R_{1}\right) \\
& S L_{2}=36.56+20 \log _{10}\left(R_{S L M} \cdot \mathrm{RR}_{2}\right) \\
& S L_{3}=36.56+20 \log _{10}\left(\mathrm{R}_{\mathrm{SLM}} \cdot \mathrm{FR}_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& F R_{1}=420.0 \text { (command frequency) } \\
& F R_{2}=2287.5 \text { (telemetry frequency) } \\
& F R_{3}=5765.0 \text { (tracking frequency) } \\
& R_{S L M}=\text { slant range distance in statute miles. }
\end{aligned}
$$

Analytic Impact Calculations

The analytic impact calculations predict the geodetic latitude, longitude, and time of flight at impact for a vehicle with a given position and velocity to its intersection with the surface of the oblate planet. These calculations assume Keplerian motion and are not corrected for drag effects.

The basic problem in determining an impact point from a epecified position and velocity $\left(\underline{r}_{10}, \underline{V}_{I O}\right)$ is in calculating the impact eccentric anomaly. This angle is determined by iteratively solving the equation

$$
\begin{equation*}
r_{1}(E)=R_{B}\left(\phi_{c}\right)+h_{1 p} \tag{VII-22}
\end{equation*}
$$

where Hjp ta the dealred impact altetude above the oblate planot and ther porittan verion la pitven hy

$$
\begin{aligned}
& 1(\mathrm{~F})=\left(\operatorname{lou}\left(\mathrm{H}-\mathrm{F}_{0}\right)=0 \cos \mathrm{~F}_{0}\right) /\left(1-\cos \mathrm{E}_{0}\right) \\
& g(1:)-\sqrt{\frac{a^{3}}{4}}\left(: i \ln \quad E-i_{0}\right)-e \sin 1+e+i n L_{0} \text {. }
\end{aligned}
$$

(VII-23)

Once the impact ercentric anomaly, $E_{i p}$, is determined, then the time, latitude, and longitude of impact are calculated as

$$
\begin{aligned}
& L_{i p}=t_{0}+\sqrt{\frac{a^{4}}{L}}\left(L_{i j}-i_{0} \text { esin } E_{i p} \text { - esin } E_{0}\right) \\
& \psi_{g_{i p}}=\tan ^{-1}\left(k z_{i p} / \sqrt{\left.x_{i p}^{2}+\overline{y_{i p}}\right)}\right. \\
& j_{i p}=\tan ^{-1}\left(\frac{y_{i p}}{x_{i p}}\right)-!_{p}{ }^{t}{ }_{i p} .
\end{aligned}
$$

VIII. TARGETING AND OPTIMIZATION

POST uses an accelerated projected gradient algorithm (PGA) as the basic targeting/optimization technique. PGA is a combination of Rosen's projection method for nonlinear programing (refs. 3, 4, and 5) and Davidon's variable metric method for unconstrained optimization (ref. 6). The program also contains backup singlepanalty function methods that use steepest descent, conjugate gradienta, and/or the Davidon method. These standard gradient methods are well documented in references 6 and 7 and are only briefly described in the following discussion.

The projected gradient algorithm is an iterative technique designed to solve a general class of noninear programming problems. PGA employs cost-function and constraint gradient information to replace the multidimensional optimization problem by an equivalent sequence of one-dimensional searches. In this manner, it solves a difficult multidimensional problem by solving a sequence of simpler problems. In general, at the initiation of the ituration sequence, PGA is primarily a constraint-satisfication algorithm. As the iteration process proceeds, the emphasis changes from constraint satisfaction to cost-function reduction. The logic lised to effect this changeover process will be discussed below.

Since numerous analytical developments of this technique are available (see refe. 3,4 , and 5), this presentation will primarily emphasize the geometrical aspects of the algorithm. This geometric interpretation clearly motivates the equations and logic contained in PGA, and a basic understanding of these concepts is usually sufficient to enabje the user to efficiently use the algorithm.

Problem Formulation

The projected gxadient method aolves the following nonlinear programing problem:

Determine the values of the independent variables, \underline{u}, that minimize the cost function (optimization variable)

$$
\boldsymbol{F}(\underline{u}),
$$

(VIII-1)

subject to the constraints (dependent variables)

$$
\begin{equation*}
\underline{\mathrm{c}}(\underline{\mathbf{u}}) \geq \underline{0}, \tag{VIII-2}
\end{equation*}
$$

where $\underline{\underline{u}} \varepsilon \mathbb{R}^{m} ; \underline{c}$ is a vector-valued function, i.e., $\underline{c}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$; and F is a scalar-valued function, i.e., $F: R^{m} \rightarrow R^{\underline{l}}$.

The algorithen is actually more versatile than this simple formulation might indicate. In order to maximize any particular function, say $W(\underline{u})$, all that is required is to define $F(\underline{u})=-W(\underline{u})$ and determine the minimum of $F(\underline{u})$. The equality constraint case is also contained within the above formulation since constraint equations of the form

$$
c_{j}(\underline{u})=0
$$

(VIII-3)
are special cases of Eq (VIII-2).
In the trajectory optimization, the cost function and the constraints are not explicitly a function of the independent variables, but rather depend explicitly on the sta e variables $\underline{r}_{I}, \underline{V}_{I}, m$, and Q. The explicity equations relating the state (dependent) variables to the independent variables are the integrals

$$
\left.\begin{array}{rl}
\underline{r}_{I} & =\underline{r}_{I}+\int \underline{V}_{I} d t \\
\underline{V}_{I} & =\underline{V}_{I_{0}}+\int\left[[1 B]^{-1}\left[\underline{A}_{T B}+\underline{A}_{A B}\right]+\underline{G}_{I}\right]^{d t} \\
m & =m_{0}+\int \dot{m} d t \\
Q & =\int \dot{Q} d t
\end{array}\right\}(V I I I-4)
$$

If x_{n} denotes the above state variablee-of the system being simulated at the $n^{\text {th }}$ event, and $\frac{x}{n}^{+}$and x_{n}^{-}denote the value of x_{n} on the plus and minus sides of that event, then

$$
\begin{equation*}
x_{n+1}^{-}=T_{n}\left[\underline{x}_{n}^{+}, u_{n}\right] \tag{VIII-5}
\end{equation*}
$$

where u_{n} are the independent variables in phase n, and $\boldsymbol{T}_{\mathrm{n}}$ represent the solution of the state differential equations over phase n. The values of the state variables on the positive side of event n are then

$$
\begin{equation*}
\underline{x}_{n}^{+}=\underline{x}_{n}^{-}+\frac{\Delta x_{n}}{} \tag{VIII-6}
\end{equation*}
$$

where Δx_{n} represents the discontinuity in state (e.g., velocity impulse at the $n^{\text {th }}$ event).

The cost function and the trajectory constraints are computed at the positive side of the specified events, and are therefore given by

$$
\begin{equation*}
F(\underline{u})=f\left(\underline{x}_{f}^{+}\right) \tag{VIII-7}
\end{equation*}
$$

and

$$
\underline{c}(\underline{u})=\left[\begin{array}{cc}
\underline{c}_{v_{1}}\left(\frac{x_{v}^{+}}{v_{1}}\right) \tag{VIII-8}\\
\vdots \\
\vdots \\
\underline{c}_{v_{j}}\left(\frac{x_{v}^{+}}{v_{j}}\right)
\end{array}\right]
$$

where ${ }_{f}$ danotes the event at which the optimization variable 1s specified and v_{f} denotes the evente at which the dependent variables are specified. This generality enables the program to colva problems in which intermediate constraints are defined, as wall as problems where the cost function is not specified at the final event.

The trajectory propagator, $T_{\mathfrak{n}}$, can represent either numerical integration or analytical Keplerian equations.

Fundamental Concepts and Nomenclature

To facilitate the discussion of the projected gradient algorithm, the following nomenclature and basic concepts will be introduced.

A real k-dimensional Euclidean vector space is denoted by R^{k}, and \underline{x} denotes a column matrix whose elements are x_{i}, where $1=1,2, \ldots, k$. The vector inequality $\underline{x} \geq 0 \quad 1 m-$ plies $x_{i} \geq 0$ for each i, and A^{-}denotes the transpose of the real matrix A.

The cost gradient is an m-vector of partial derivatives denoted as $\underline{\nabla} F$ or $\partial F / j \underline{u}$, and $1 s$ defined as

$$
(\underline{\nabla F})_{j}=\frac{\partial F}{\partial u_{j}} .
$$

(VIII-9)

The gradient to the $i^{\text {th }}$ constraint is similarly represented.
The Jacobian matrix of the constraint vector function with respect to the independent variable is a matrix whose $i^{\text {th }}$ row is the gradient vector \underline{V}_{1}. This matrix is denoted as

$$
\begin{equation*}
J(\underline{u})=\frac{\partial \underline{\underline{c}}}{\partial \underline{u}} \tag{VIII-10}
\end{equation*}
$$

and contains n rows and m columns. Clearly,

$$
\begin{equation*}
J_{i j}=\frac{\partial c_{i}}{\partial u_{j}} . \tag{VIII-11}
\end{equation*}
$$

The $f^{\text {th }}$ constraint is said...to be active at $\hat{\underline{u}}$ if and only if
a)

$$
\begin{equation*}
c_{j}(\hat{u})<0, \tag{VIII-12}
\end{equation*}
$$

An active constraint is said to be unconstraining if and only if
b)

$$
\begin{equation*}
c_{j}(\hat{u})=0 \text { and } r_{j}=\left[\left(S S^{\rho}\right)^{-1} S_{g}\right]_{j} \leq 0 \tag{VIII-13}
\end{equation*}
$$

Condition a) implies that the $j^{\text {th }}$ constraint is either violated at u, while b) indicates that the negative of the cost function gradient "points" outside the feasible region.

The sensitivity matrix is that matrix whose rows are the gradients to the active constraints, and is denoted by

$$
\begin{equation*}
S(\underline{u})=\frac{\partial \underline{e}}{\partial \underline{u}}, \tag{VIII-14}
\end{equation*}
$$

where e is the n_{a}-vector of active constraints. Equality constraints are always active and thus are loaded into the upper elements of the e. Thus, e is essentially the error vector for the active constraints. The empor function is defined to be

$$
E(\underline{i})=e^{-} \underline{e} .
$$

(VIII-15)
The sensitivity metrix, S, is obtained from the Jacobian matrix, J, simply by deleting those rows that correspond to inactive constraints.

Corresponding to each constraint function $c_{i}(\underline{u})$ is a boundary hypersurface, B_{1}, defined by

$$
B_{i}=\left\{\underline{u}: c_{1}(\underline{u})=0\right\}
$$

(VIII-16)

Clearly, B_{i} is an $m-1$ dimensional nonlinear manifold. it can, howevar: be approximated at each point $Q_{\text {in }} \mathbb{R}^{m}$ by an m-1 dimeneional linear manifold

$$
\begin{equation*}
c_{1}(\underline{0})=\left\{\underline{u}: \underline{\nabla} c_{1}-(\underline{0})(\underline{u}-\underline{0})+c_{1}(\underline{u})=\underline{o}\right\} \tag{VIII-17}
\end{equation*}
$$

The feasible region for the $1^{\text {th }}$ inequality constraint is the half-space in the independent-variable space defined by the set

$$
R_{i}=\left\{\underline{u}^{\prime} c_{i}(\underline{u}) \geq 0\right\}
$$

(VIII-18)
while the complete feasible region for all of the constraints is

$$
R={\underset{i=1}{n} R_{i} .}^{n}
$$

The boundary of the complete feasible region must be

$$
\mathcal{E}(R)=\bigcup_{i=1}^{n}\left(B_{i} \cap R\right)
$$

(VIII-20)

The intersection in the preceding equation is required to select from the unbounded boundary, B_{i}, of the feasible region of the $1^{\text {th }}$ constraint that portion which is adjacent to the feasible region, R, for all of the constraints.

At any particular $\hat{\underline{0}} \cdot \mathrm{R}^{\mathrm{m}}$ it is useful to define the local boundary hypersurface, $\bar{B}(\underline{\hat{u}})$, to the complete feasible region as the intersection of the active constraints at \underline{Q}. Let $N(\underline{Q})$ denote the set of indices of the f_{a} tight constraints at $\underline{\text { a }}$. Then, symbolically,

$$
B(\underline{\varrho})=\underset{i \in K(\underline{\hat{u}})}{\cap} B_{i}
$$

Clearly $B(\underline{\hat{u}})$ is an $m-k_{a}$ dimensional nonlinear manifold in the m-dimensional independent variable space.

An $m-k_{a}$ dimensional linear manifold $C(\underline{\hat{O}})$ approximating $B(\underline{0})$ is the intersection of the active linearized constraints at Q; that is,

$$
\begin{align*}
c(\underline{\theta}) & =n c_{1}(\underline{u}) \tag{VIII-22}\\
& 1 \in K(\underline{\theta}) \\
& =\{\underline{u}: S(\underline{u})(\underline{u}-\underline{\hat{u}})+\underline{e}(\underline{u})=\underline{0}\} \tag{VIII-23}
\end{align*}
$$

Now let ${ }_{(1}(\underline{1})$ denote the linear space spanned by the gradients to the active constraints; that is,

$$
\begin{equation*}
\hat{\gamma}(\underline{\hat{u}})=\left\{\underline{u}: \exists \alpha_{1}, \ldots, \alpha_{n_{a}} \text { for which } \underline{u}=\sum_{i=1}^{k_{a}} \alpha_{j} s_{i j}(\underline{a}),\right\} \tag{VIII-24}
\end{equation*}
$$

and let $Q(\underline{\hat{u}})$ denote the orthogonal complement to $\tilde{Q}(\underline{\theta})$; that is,

$$
\begin{equation*}
\mathbf{R}^{\underline{m}}=\mathbf{Q}(\underline{\hat{u}}) \oplus \tilde{\mathbf{Q}}(\underline{\underline{\alpha}}) \tag{VIII-25}
\end{equation*}
$$

It can be shown that $Q(\underline{\theta})$ is the unique linear space that can be translated to obtain the linear manifold $C(\underline{\hat{a}})$.

Furthermore there exist unique orthogonal projection oparactors $P(\underline{\hat{0}})$ and $\hat{F}(\underline{\hat{u}})$ that resolve any vector in the independentvariable space into its corresponding components in $Q(\underline{Q})$ and $\hat{\chi}(\hat{\underline{u}})$, respectively; that 1 , for any $\underline{u} \in \mathbb{R}^{m}$

$$
\underline{\underline{u}}=P(\hat{\hat{u}}) \underline{u}+\hat{P}(\underline{0}) \underline{\underline{u}},
$$

(VIII-26)
where

$$
P(\underline{a}) \underline{\underline{u}} \in Q(\underline{\underline{u}}) \text { and } \tilde{\mathcal{P}}(\underline{\underline{a}}) \underline{\mathbf{u}} \in \tilde{Q}(\hat{\underline{u}}) \text {. }
$$

In particular,

$$
\hat{F}=s^{-}\left(S s^{-}\right)^{-1} s
$$

(VI IE-28)
and

$$
\mathbf{P}=\mathbf{I}-\hat{\mathbf{P}} .
$$

(VIII-29)

An additional concept is the idea of problem scaling. The purpose of problem scaling is to increase the efficiency of the targeting/optimization algorithme by tranaforming the original problem into an equivalent problem that is numerically easier to solve.

To numerically scale a problem, two general types of scaling are required: (1) independent-variable scaling, and (2) dependentvariablu scaling. Independent-variable scaling is accomplished by defining a pnisive diagonal scaling matrix, W_{u}, such that, the weighted inlependint variables are given by

$$
\tilde{\underline{u}}=\left[W_{u}\right] \underline{\underline{u}} .
$$

(vIIt-30)

Simularly, dependent-variable weighting is accomplished by defining an optimization-variable scale factor, \dot{W}_{F}, and a
positive, diagonal, dependent-variable scaling matrix, W_{e}, such that the weighted optimization variable is

$$
P_{1}=W_{F} F(\underline{u})
$$

(VIII-31)
and the weighted depenilent variables are given by

$$
\begin{equation*}
\ddot{\underline{c}}(\underline{u})=\left[W_{e}\right] \subseteq\left(W_{u}^{-1} \underline{\tilde{u}}\right), \tag{VIII-32}
\end{equation*}
$$

ylelding a weighted error function

$$
\begin{equation*}
P_{2}=\tilde{\tilde{e}^{-}}-\underline{\underline{e}}(\gamma) . \tag{VIII-33}
\end{equation*}
$$

The program contains several options for computing the in-dependent-variable weighting matrix. However, the option most of ten used is the percentage scaling matrix

$$
\left[w_{u}\right]_{i 1}=\frac{1}{\mid u_{i} T}
$$

(VIII-34)

VIII-8

The dependent-variable weighting matrix is always computed an the reciprocal of the conatraint tolerances, and is given. by

$$
\begin{equation*}
\left[w_{e}\right]_{i 1}=\frac{1}{\varepsilon_{i}} \tag{VIII-35}
\end{equation*}
$$

where ε_{1} is the tolerance for the $1^{\text {th }}$ constraint. The optimization acale factor is merely input so that \mathcal{P}_{2} is approximately equal to one.

For simplicity, the following discussion of the algorithm assumes an appropriately scaled problem. However, the scaled equations can be obtained by making the following simple substitutions:
\underline{u} replaced by $\underline{\tilde{u}}$
F replaced by P_{1}
c replaced by $\underset{\sim}{c}$
h_{c} replaced by P_{2}
s replaced by $\left[W_{e}\right][S]\left[W_{u}\right]^{-1}$
IF replaced by $W_{F} \dot{W}_{U}^{-1}$ IF.
The final key concept employed by PGA is the idea of a direction of search. Heuristically, the direction of search is nothing more than a particular line in the independent-variable space long which the constraint error is reduced, or along which the cost-function is decreased. In a more precise sense, the direction of scarch at \underline{Q} is half-ray manating from \mathfrak{a}. Thus, for any poaitive scalar; γ, the equation

$$
\begin{equation*}
\underline{u}=\underline{\underline{a}}+r \underline{\underline{t}} \tag{VIII-36}
\end{equation*}
$$

eate the ilmits of this half-ray and represente "movement" in the direction $\&$ from $\underline{0}$. This is illustrated in figure VIII-1.

Figure VIII-1. - Direction of Search in the
Independent-Variable Space

If \dot{s} is a unit vector, then γ represents the actual distance "moved" in the diraction $\underset{\text { E }}{ }$. This concept of direction-ofsearch is particularl: important since it enables the m-dimensional nonlinear programming problem to be replaced by a sequence (hopefully finite) of one-dimensional minimizations. What remains to be explained then is: (1) how to select the direction-ofsearch; and (2) how to determine the step size in that direction. All "direct." optimization methods employ this concept and, hence, differ only in their answers to the two preceding questions. The technique by which ${\underset{\mathrm{s}}{\mathrm{n}}}$ and i^{n} are selected by PGA will be described in subsequent sections.

Direction of Search

The projected gridient method uses two basic search directions. For this discussion, they will be termed the constraint and optimization directions, reapactivaly. PGA procaeds by taking successive steps in one or the other of these two diractions. The computation of each of these search directions is described below at a particular point \dot{u} in the independent-variable apace where \hat{f}_{a} of the constraints are active.

Conatraint direction.- The conatraint direction dependa criticelly on the number of active conatrainte. Trrae canam arn diatinguishad below:

1) Case 1.- If $f_{a} \leqslant m_{\text {, }}$ than that unique ce.trol corre'tion $\Delta 0$ is sought, whici solvae the inearized conetraint equation

$$
S(\underline{\underline{a}}) \Delta \underline{u}+\underline{\underline{(})}-\underline{0}
$$

(VIII-37)
and minimizes the length of Δu. The solutions to the preceding vector equatious define the $m-f_{a}$ dimeneionel
inneer manifold $C(\mathbb{O})$, which approximatios the local boundazy at a described in detall in the preceding section. The desired minimum norm correction, $\Delta \underline{Q}$, is then the vector or minimum length in the indepdendentvariable space from \underline{a} to the inear manifold $C(\underline{Q})$. Analytically, it is given as

$$
\Delta \underline{\theta}=-s^{-}\left[s s^{-}\right]^{-1} \underline{e}(\underline{\theta}) .
$$

(VIII-38)
Thie correction ie illustrated in figure VIII-2.
The direction of search then is simply taken to be this minimum-norm correction to the lorally active ilnearised conatraints; that 1e,

$$
\underline{\underline{s}}^{c}(\underline{\theta})=\Delta \underline{\theta} .
$$

(VIII-39)

Figure VIII-2, - Illuatration of Minimum-Norm Constraint, Direction for $\mathrm{a}_{\mathrm{a}}=2 \leqslant m=3$

VIII-11
2) If $I_{a} m m_{0}$ than the ineariead local boundary $C(\underline{0})$ raduces to a aingle point. Thus, there is a unique molution to the innearized constraint equations without the additional requirement that the length of the independentvariable correction be minimized. The minimum-norm correction formula then reduces to the familar NewtonRaphon formula for solving m equations in m unknowns; name ly

$$
\Lambda \underline{\hat{u}}=-S^{-1} \underline{e}(\underline{\hat{u}}) .
$$

(VIII-40)
The Newton-Raphson correction is illustrated geometrically in figure VIII-3.

The direction of search is taken to be this unique correction vector satisfying the linearlzed constraints; that 18,

$$
\underline{\boldsymbol{s}}^{c}(\underline{\underline{u}})=\Delta \underline{\hat{u}} .
$$

(VIII-41)
3) If $a_{s}>m_{\text {, }}$ thon $C(\hat{u})$ 1n oupty, wince aimultanmoun aolution of all of the inearisad conatraint aquationa does not exist. Hance, an ontirely new mathod for choosing the search direction muet be devised. PGA deals with thie problam by saeking the unique independentvariable correction $\Delta \hat{0}$ that minimizea the oum of the squares of the deviations from the inearized cinatrainte. Thus, th. function

$$
f(\Delta \underline{u})=|S(\underline{\underline{u}}) \Delta \underline{u}+\underline{e}(\underline{\underline{u}})|^{2}
$$

1s minimized with respect to $\Delta \underline{u}$. Gauss demonstrated that the formula for this "leas't uquaras" correction is

$$
\Delta \underline{\hat{u}}=-\left(S^{\wedge} S^{-1} S^{-} \underline{\underline{e}}(\underline{\theta}) .\right.
$$

(VIII-43)
Figure VIII-4 illustrates the least-squares cortect, in pic torially. As in the preceding two cases, the search direction is then taken to be this optimal correctiun; that 1s,

$$
\underline{\underline{e}}^{c}(\underline{\theta})=\Delta \underline{\theta} .
$$

(VIII-44)

Pigure VIII-4.- IIIustration of Leas-8quares Conetraint, Direct for $n_{a}=4 \geqslant m=3$

Optimization direction.- When the number of active constraints is leas than the number of independent variables, it is then possible to reduce the nonminimil cost-function. Obviously the steepest descent direction, -VF($\underline{\theta})$, would be the best local search direction for reducing the cost function. Such a direc:Ion, however, would generally produce unacceptable constraint violations. To avoid this difficulty PGA orthogonally projects the unconstrained negative gradient, $-\nabla F(\underline{0})$, into a direction parallel to the local linearized constraint boundary $C(\underline{1})$. By searching in the direction of this negative-projected gradient the algorithm can guarantee that there is no further constraint violation than that of $\underline{\underline{U}}$ for the case of linear constraints. To calculate this direction, it is only necessary to apply to the unconstrained negative gradient the projection operator $P(\underline{\hat{u}})$, which maps any vector in the independent-variable space into its component in $Q(\underline{a})$, the unique linear space that can be translated into coincidence with the linear manifold $C(\hat{\hat{U}})$. Thus,

$$
\begin{aligned}
\underline{\underline{s}}^{0}(\underline{\hat{u}}) & =-\mathrm{P}(\hat{\mathrm{u}}) \underline{\nabla F}(\underline{\hat{u}}) \\
& =-[I-\underline{P}(\underline{\hat{u}})] \underline{\nabla}(\underline{\hat{u}}) \\
& =-\left[I-S^{\prime}\left(\mathrm{SS}^{\prime}\right)^{-1} \mathrm{~S}(\underline{\hat{u}})\right] \quad \nabla F(\underline{\hat{u}})
\end{aligned}
$$

The direction of search for the accelerated projected gradient method is

$$
\begin{equation*}
\underline{s}_{n}^{0}(\underline{\underline{u}})=-H_{n} P \underline{\nabla}(\underline{a}) \tag{VIII-46}
\end{equation*}
$$

where

$$
H_{0}=I
$$

(VIII-47)
and

$$
\begin{aligned}
H_{n} & =H_{n-1}+A_{n}+B_{n}, \text { where } n=2 \\
A_{n} & =\left[\Delta x_{n} \Delta x_{n}^{\prime}\right] / \Delta x_{n}^{\prime} g_{n}, \\
B_{n} & =-\left[H_{n-1} g_{n} g_{n} H_{n-1}^{\prime}\right] / g_{n}^{\prime} H_{n-1} g_{n}, \\
\Delta x_{n} & =\underline{u}_{n}-u_{n-1}, \\
g_{n} & \left.=\underline{\nabla F}\left(u_{n}\right)-\underline{\nabla} P_{(}^{u_{n-1}}\right)
\end{aligned}
$$

VIII-14

Figure VIII-5 illustrates the direction of the negative-projected gradient for the case-of-a-single active constraint.

Figure VIII-5.- Direction of Negative-Projected Gradient for $\mathbf{n}_{\mathbf{a}}=1$ and $m=3$ (Peasible region is that region inside paraboloid, above lower plane, and below upper plane; cost-function is vertical height)

If there are no equality constraints, and if all the inequality constraints are inactive, then S is the zero matrix and the direction of search becomes the standard deflected gradient direction

$$
\begin{equation*}
\underline{s}^{0}(\underline{a})=-H_{n} \underline{F}(\underline{a}) . \tag{VIII-49}
\end{equation*}
$$

Similarly, if the single-penalty-function methods are used, then the directions of search that minimize

$$
\begin{equation*}
P_{2}=F+W \underline{e}^{\prime} \underline{e} \tag{VIII-50}
\end{equation*}
$$

are:

1) Steapest-descent method

$$
\underline{s}^{0}(\mathbb{Q})=-\underline{-P}_{2}(Q) ;
$$

2) Conjugate gradient method (steepest-deasent atarter)
3) Davidon's method (steepest-descent starter)
$\stackrel{s}{n}_{0}^{0}=-H_{n} \underline{V P}_{2}\left(\underline{u}_{n}\right)$, where $n \geq 2$
and

$$
H_{n}=H_{n-1}+A_{n}+B_{n}
$$

where A_{n} and B_{n} have the same definitions as in the accelerated projected gradient mode.

Step-Size Calculation

At any particular point $\underline{\underline{U}}$ in the independent-variable space, the PGA algorithm proceeds by reducing the multidimensional problem to a one-dimensional search along the constraint direction to minimize the sum of the squares of the constraint violations, or along the optimization direction to minimize the estimated net cost-function. In either case, once the initial point $\underline{\underline{u}}$ and the direction ofsearch $\frac{s}{}$ are specified, the problem reduces to the numerical minimization of a function of a single variable--namely, the step size. PGA performs this numerical minimization via polynominal interpolation, based on function values along the search ray and the function's value and slope at the starting point. Consider then, in detail, the calculation of this latter pair of quantities for the respective functions associated with the constraint and optimization directions.

Constraint direction.- The function to be minimized along the constraint direction, $\frac{\hat{\mathbf{s}}^{c}}{}$, is the sum of the squares of the constraint violations; namely

$$
h_{c}(\gamma)=\left|\underline{e}\left(\underline{\hat{\theta}}+\gamma \underline{\hat{\theta}}^{c}\right)\right|^{2} .
$$

Clearly

$$
h_{c}(0)=|\underline{e}(\underline{\theta})|^{2}
$$

(VIII-52)

Differentiation via the chain rule yields

$$
h_{c}{ }^{-}(0)=2 \underline{e}^{-}(\underline{0}) S(\underline{0}) \underline{\hat{s}}^{c}
$$

(VIII-53)

Recall that the search direction $\hat{\mathrm{s}}^{\mathrm{C}}$ was obtained as an in-dependent-variable correction either satisfying all the linearized constraint equations if $\hat{n}_{a} \leq m$, or minimizing their violation if $m<\hat{n}_{a}$. Thus, if the constraints are reasonably linear, a good initial estimate for the γ minimizing h_{c} is one.

Optimization direction. - The function to be minimized. along the optimization direction, $\hat{\underline{s}}^{0}$, is the estimated net costfunction which is defined as

$$
\underbrace{\left.h_{0}(\gamma)=F\left(\underline{\hat{u}}+\gamma \underline{\hat{\theta}}^{0}\right)-F(\underline{\hat{u}})+\underline{\nabla}^{-} \underline{(0}\right)\left[-S^{-}\left(S S^{0}\right)^{-1} \underline{\left.\underline{e}\left(\underline{\underline{u}}+\gamma \hat{\varepsilon}^{0}\right)\right]} ~\right.}
$$

change in costfunction produced by step of length γ along $\underline{8}^{0}$
linearized approximation to change in cost-function require to perform minimumnorm correction back to the feasible region

Clearly

$$
h_{0}(0)=-\underline{\nabla}^{-} F(\underline{0}) s^{-}\left(S S^{0}\right)^{-1}(\underline{\hat{u}}) \underline{e}(\underline{\hat{u}}) .
$$

(VIII-55)

By expanding h_{0} in a Taylor series in γ about $\gamma=0$, and by making use of the fact that $\hat{\mathrm{F}}_{\underline{B}}{ }^{0}=0$ since $\hat{\underline{e}}^{0}$ ines in Q(a), it can be shown that

$$
h_{0}^{\prime}(0)=\underline{\nabla}^{\top} \boldsymbol{F}^{\prime}(0) \hat{\underline{\theta}}^{0} .
$$

(VIII-56)
These properties of h_{0} are illustrated in figure 25.

Figure VIII-6.- Properties of Estimated Net Cost Function
Both the constraint and optimization directions are based on a sensitivity matrix that depends critically on which constraints are active. Hence, for searches in either direction, it is important to limit the step size so that the set of active constraints does not grow. Such a limit can be obtained based on linear approximation and suffices to deal wit inactive constraints becoming active.

The reverse situation-of active constraints becoming in-active-poses no difficulty. To see this, note that because of our treatment of the active constraints as inear manifolds, a first-order approximation of the distance to a particular active constraint boundary would not change along the optimization direcifon. Furthermore, along the constraint direction any change in the status of an active constraint will be appropriately treated by minimizing h_{c} with respect to the step length.

Lat $X(\mathbb{a})$ denota the eet of active constraint indices at A. and 1at

$$
\begin{equation*}
r_{k}=\underline{s}^{-}(\underline{0}) \nabla c_{k}(\underline{0}), \tag{VIII-57}
\end{equation*}
$$

where \underline{g} (a) is the search direction at vector $\underline{\text { @. Then assign }}$ to each \bar{k} in K the number

$$
\lambda(k)=\left\{\begin{array}{l}
-c_{k}(0) / r_{k} \text { if } r_{k}<0 \\
R \text { if } r_{k} \geq 0
\end{array}\right\} \text { (VIII-58) }
$$

where R is a very large real number. Then $\lambda(k)$ is a linear approximation to the distance along the search ray from $\hat{\underline{u}}$ to the boundary, B_{k}, of the $k^{\text {th }}$ constraint. Hence a resonable upper bound for the step length is

$$
\lambda=\min _{\mathbf{k} \in \mathbb{K}}[\lambda(k)] .
$$

(VIII-59)

One-Dimensional Minimization

Monovariant minimization in PGA is performed exclusively by polynominal interpolation. Pirst the actual function, f, to be minimized is fitted with one or more quadratic or cubic polynominals until a sufficiently accurate curve fit, p, is obtained; that 1s,

$$
p(r)=\sum_{1=0}^{n} a_{1} r^{1} \approx f(\gamma) \text { for all } r \text { of interest. }
$$

Then the independent varieble value, r^{m}, that minimizes f is approximated by the value, γ_{p}^{m}, which minimizes p. Clearly, γ_{p}^{m} can be determined analytically if $n \leq 3$.

The minimization routine makes ingenious use of all the information it accumulates about f to obtain a good curve fit. First, f is fitted with a quadratic polynominal, p_{1}. based on:

1) $\because(0)$
2) $f^{-}(0)$
3) $f\binom{m}{0}$, where $\gamma_{0}^{m}, 0$ is an initial estimate of the γ value that minimizes f.

The coefficients of this quadratic polynominal are then calculated from the formulas:

$$
\left.\begin{array}{l}
a_{0}=f(0) \\
a_{1}=f^{*}(0) \\
a_{2}=\left[r\left(\gamma_{0}^{m}\right)-a_{0}\right] / \gamma_{0}^{m^{2}}+a_{1} / r_{0}^{m}
\end{array}\right\} \text { (VIII-61) }
$$

The value of the independent variable that minimizes this polynominal is

$$
\gamma_{1}^{\mathrm{m}}=-a_{2} / 2 a_{2}
$$

(VIII-62)
If γ_{1}^{m} and γ_{0}^{m} do not differ significantly, γ^{m} is taken to be Y_{1}^{m} and the minimization procedure is considered complete. Similarly, if $p_{1}\left(\gamma_{1}^{m}\right)$ is not significantly different from $f\left(\gamma_{1}^{m}\right)$, then γ^{m} is taken to be equal to γ_{1}^{m} and the process is terminated. Otherwise f is fitted with a cubic polynominal; P_{2}, based or

1) $f(0)$
2) $f^{\prime}(0)$
3) $f\left(r_{0}^{m}\right)$ and $r_{0}^{m}>0$
4) $f\left(r_{1}^{m}\right)$.

If f is fitted using P_{2}, then coetficiente are calculated from the following formulas:
$a_{0}-\mathrm{f}(0)$
$a_{1}=f^{\circ}(0)$
$\lambda=\max \left(\gamma_{0}^{\mathrm{m}}, \gamma_{1}^{\mathrm{m}}\right)$
$\alpha=\min \left(\gamma_{0, \gamma_{1}^{m}}^{m}\right) / \lambda$
$a_{2}=\left[\lambda a_{1} \alpha+a_{0}(1+\alpha)+\left(\alpha^{2} f(\lambda)-f(\alpha \lambda)\right) /(1-\alpha)\right] /\left(\lambda^{3} \alpha^{2}\right)$
$\left.a_{3}=\left[\left(f(\alpha \lambda)-\alpha^{3} f(\lambda)\right) /(1-\alpha)-\lambda \alpha(1+\alpha) a_{1}-\left(1+\alpha=\alpha^{2}\right) a_{0}\right] /\left(\lambda^{2} \alpha^{2}\right)\right]$
(VIII-63)

The value of the independent variable, λ_{2}^{m},- that minimizes this cubic polynomial is

$$
r_{2}^{m}=\left(-a_{2}+\sqrt{a_{2}^{2}-3 a_{3} a_{1}}\right) / 3 a_{3}
$$

(vIII-64)
If γ_{2}^{m} and γ_{1}^{m} do not differ significantly, γ^{m} is taken to be γ_{2}^{m} and the minimization is stopped. Similarly, if $p_{2}\left(\gamma_{2}^{m}\right)$ is not significantly different from $f\left(\gamma_{2}^{m}\right)$, then γ^{m} is taken to be equal to γ_{2}^{m} and the procedure is terminated.

If none of these stopping conditions is met, a third quadratic curve-fit is attempted. The accumulated set of sample points on $-f$, namely $[0, f(\theta)],\left[r_{0}^{m}, f\left(\gamma_{0}^{m}\right)\right],\left[\gamma_{1}^{m}, f\left(\gamma_{1}^{m}\right)\right]$, and $\left[\gamma_{2}^{m}, f\left(\gamma \frac{m}{2}\right)\right]$, is arranged in the order of their ascending abscissa values. Then the first point whose ordinate value is less than that of the following point is selected.

To simplify the notation in the following pages; reliable this point as $\left[\gamma_{2}, f\left(\gamma_{2}\right)\right]$, the preceding point as $\left[\gamma_{1}, f\left(r_{1}\right)\right]$, and the following point es $\left[\gamma_{3}, f\left(\gamma_{3}\right)\right]$.

Another quadratic polynomial, P3, is then fitted to

1) $f\left(\gamma_{1}\right)$
2) $f\left(\gamma_{2}\right)$
3) $f\left(\gamma_{3}\right)$.

The formulas for these quadratic coefficients are as follows:

$$
\begin{aligned}
& b_{i j}=r_{1} \gamma_{j} \\
& c_{1 j}=r_{1}+r_{j} \\
& d_{i j}=\gamma_{1}-r_{j} \\
& a_{0}=\frac{b_{23}}{d_{12} d_{13}} f\left(r_{11}\right)+\frac{b_{13}}{d_{21} d_{23}} f\left(r_{2}\right)+\frac{b_{12}}{d_{31} d_{32}} f\left(r_{3}\right) \\
& a_{1}=\frac{c_{23}}{d_{12} d_{13}} f\left(\gamma_{1}\right)-\frac{c_{13}}{d_{21} d_{23}} f\left(\gamma_{2}\right)-\frac{c_{12}}{d_{31} d_{32}} f\left(\gamma_{3}\right) \\
& a_{2}=\frac{1}{d_{12} d_{13}} f\left(\gamma_{1}\right)+\frac{1}{d_{21} d_{23}} f\left(\gamma_{2}\right)+\frac{1}{d_{31} d_{32}} f\left(\gamma_{3}\right) .
\end{aligned}
$$

The value of the independent variable that minimizes this quadratic is

$$
r_{3}^{m}=-a_{1} / 2 a_{2}
$$

(VIII-66)
If γ_{3}^{m} and γ_{2}^{m} do not differ significantly, γ_{m} is taken to be γ_{3}^{m} and the search is discontinued. On the other hand, if $p_{3}\left(\gamma_{3}^{m}\right)$ is not significantly different from $f\left(\gamma_{3}^{m}\right)$, then r^{m} is taken to be $\left(\gamma_{3}^{m}\right)$ and the process is terminated.

If neither of these stopping conditions is met, then a cubic polynomial is fitted to

1) $f\left(r_{1}\right), r_{1}$
2) $f\left(r_{2}\right), r_{2}$
3) $f\left(r_{3}\right), r_{3}$
4) $f\left(r_{4}\right), r_{4}=r_{3}^{m}$.

The formulas for these coefficients are as follows:

$$
\begin{aligned}
& D_{1}=\left(r_{2}-r_{1}\right)\left(r_{3}-r_{1}\right)\left(r_{4}-r_{1}\right) \\
& D_{2}=\left(r_{1}-r_{2}\right)\left(r_{3}-r_{2}\right)\left(r_{4}-r_{2}\right) \\
& D_{3}=\left(r_{1}-r_{3}\right)\left(r_{2}-r_{3}\right)\left(r_{4}-r_{3}\right) \\
& D_{4}=\left(r_{1}-r_{4}\right)\left(r_{3}-r_{4}\right)\left(r_{3}-r_{4}\right) \\
& a_{0}=\frac{r_{2} r_{3} r_{4}}{D_{1}} f\left(r_{1}\right)+\frac{r_{1} r_{3} r_{4}}{D_{2}} f\left(r_{2}\right)+\frac{r_{1} r_{2} r_{4}}{D_{3}} f\left(r_{3}\right)+\frac{r_{1} r_{2} r_{3}}{D_{4}} f\left(r_{4}\right) \\
& a_{1}=\frac{r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4}}{D_{1}} f\left(r_{1}\right)+\frac{\left(r_{1} r_{3}+r_{1} l_{4}+r_{4} r_{3}\right)}{D_{2}} f\left(r_{2}\right) \\
& +\frac{\left(r_{1} r_{2}+r_{1} r_{4}+r_{2} r_{4}\right)}{D_{1}} f\left(r_{3}\right)+\frac{\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)}{f\left(r_{4}\right)} \\
& a_{2}=\frac{\left(r_{2}+r_{3}+r_{4}\right)}{f\left(r_{1}\right)+\frac{\left(r_{1}+r_{3}+r_{4}\right)}{\left.\left(r_{1}\right)+r_{2}+r_{4}\right)} f_{3} f\left(r_{3}\right)+\frac{\left(r_{1}+r_{2}+r_{4}\right)}{D_{4}} f\left(r_{4}\right)} \\
& a_{3}=-\frac{1}{D_{2}} f\left(r_{1}\right)-\frac{1}{D_{2}} f\left(r_{2}\right)-\frac{1}{D_{3}} f\left(r_{3}\right)-\frac{1}{D_{4}} f\left(r_{4}\right)
\end{aligned}
$$

The value of the indpendent variable minimizing this fourth cubic polynomial is

$$
r_{4}^{m}=\left(-a_{2}+\sqrt{a_{2}^{2}-3 a_{3} a_{1}}\right) / 3 a_{3} .
$$

If γ_{4}^{m} and γ_{3}^{m} do not differ aignificantly, γ^{m} is taken to be γ_{4}^{m} and the minimization is-atopped. Similarly, if $P_{4}\left(\gamma_{4}^{m}\right)$ is not aignificantly different: from $f\left(\gamma_{1!}^{m}\right)$, then γ^{m} 1s taken to be equal to γ_{4}^{m} and the procedure is terminatiad.

If none of these stopping conditions is met, the accumulated set of sample points is searched for the point with the minimur ordinate value. The abscissu value of this point is taken to be γ^{m}. and the minimization is considered complete.

Algorithm Macrologic

After being initialized the projected gradient algorithm proceeds as a sequence of iterations, each consisting of an optimiration step followed by a constraint-correction step (see fig. VIII-7). The very tirst step from the user's initial independ-ent-variable estimate is however, one of constraint correction. Furthermore, the optimization step is also omitted on any iteration for which the constraint-violation function, h_{c}, wes not reduced by the constraint correction step of the preceding iteration.

The optimization search direction that amanates for u_{n} is based on the sensitivity matrix, $S\left(u_{n}\right)$; that is,

$$
\begin{equation*}
\underline{s}_{n}^{0}=s^{0}\left(u_{n}\right)=-P \underline{\nabla} F\left(\frac{u_{n}}{n}\right) \text {. } \tag{VIII-69}
\end{equation*}
$$

as discussed previousiy. Hence, ${\underset{-n}{0}}_{0}^{n}$ lies in the subspace $Q\left(\underline{u}_{n}\right)$.
The value of the independent-variable vector, u_{n}^{0}, after the optimization 10

$$
\begin{equation*}
u_{1}^{0}=u_{n}+\gamma_{0} \stackrel{s}{n}_{0}^{0} \tag{VIII-70}
\end{equation*}
$$

where r_{0} is the optimum step sise.

Figure VIII-7. - Macrologic of Projected
ORIGINAL PAGE IS Gradiant Algorithm

V1It-25 OP POOR QUALHY

The direction of the conatraint-correction search emanates from u_{n}^{0}; however, since generating a new sensitivity matrix is mush an expensive calculation, the old Jacobian matrix. J, of the constraints with respect to the control evaluated at
u_{n} is used in conjunction with the error at u_{n}^{0}. Thus,

$$
\underline{s}_{n}^{c}=-S^{-}\left(s S^{0}\right)^{-1}\left(u_{n}\right) e\left(u_{n}^{0}\right) .
$$

(VIII-71)

It can be shown by direct computation that

$$
\begin{equation*}
\stackrel{P}{P}\left(u_{n}\right) \frac{8}{n}_{c}^{c}=\frac{s_{n}^{c}}{n} \tag{VIII-72}
\end{equation*}
$$

where $\underset{\sim}{\tilde{P}}\left(u_{n}\right)$ is based on $S\left(u_{n}\right)$. Thus, ${\underset{n}{n}}_{c}$ lies in the subspace $\tilde{Q}\left(\underline{u}_{n}\right)$ in the independent-variable space.

Since $Q\left(\underline{u}_{n}\right)$ and $\tilde{Q}\left(\underline{u}_{n}\right)$ are orthogonal complements, it follows that the optimization and constraint directions for any iteration are exactly orthogonal; that is,

$$
\begin{equation*}
\left(\underline{s}_{n}^{0}\right)^{\prime} \underline{s}_{n}^{c}=0 \tag{VIII-73}
\end{equation*}
$$

The result of the constraint correction step is then the inge-pendent-variable vector for the next iteration. Thus

$$
u_{n+1}-u_{n}^{0}+\gamma_{c}{\frac{s_{n}^{c}}{c} .}^{0}
$$

(VIII-74)

Figure VIII-8 geometrically illustrates_a_complete PGA iteration.

Figure VIII-8. - Complete PGA Iteration, Consisting of Optimization Step Followed by Constraint Step for $\hat{n}_{a}=1$ and $m=3$ (Feasible region is the unbounded region below the indicated nonlinear constraint manifold)

Finally, the algorithm has two stopping conditions. First, the search is stopped if the change in the cost function and the change in the length of the independent-variable vector between two successive iterations fall below their respective input tolerances; that 18, if

$$
\begin{gathered}
\left|F\left(u_{n+1}\right)-F\left(u_{n}\right)\right|<\varepsilon_{1} \\
\quad\left|u_{n+1}-u_{n}\right|<\varepsilon_{2} .
\end{gathered}
$$

(VIII-75)

Second, the procedure is discontinued if the number of the current iteration equals the maximum permisaible number input by the user.

1. K. J. Cox: Space Shuttle Guidance, Navigation, and Control Design Equations. Vol. III Guidance Systems Anailysis Branch, Guidance and Contral Division, Johnson Space Center, Houston, Texas, 1973.
2. K. J. Cox: Digital Flight Control Software Design Requirements. JSC-07759, Revision A. Prepared by the Guidance and Control Systems Branch Avionics Systems Engineering Division, Johnson Space Center, Houston, Texas, 1973.
3. J. B. Rosen: The Gradient Projection Method for Nonlinear Programing. Part I - Linear Constraints. J. Soc, Ind. Appl. Math. Ne. 8, 1967, pp. 181-217.
4. J. B. Rosen: The Gradient Projection Method for Nonlinear Programing. Part II - Nonlinear Constraints. J. Soc, Ind. Appl. Math., No. 8, 1961, pp. 514-532.
5. B. A. Glassman, et al: A Perameter Optimization Procedure for Multistage Vehicles. Vol. II. AAS Science and Technology Series (M. L. Anthony, ed.), pp. 223-241, 1967.
6. W. C. Davidon: Variable Metric Method for Minimization. Report No. ANL-5990 (Rev.). Argonne National Laboratory, Oak Park, Illinois, 1959.
7. R. Fletcher and M.J.D. Powell: A Rapidly Convergent Descent Method for Minimization. Computer J., July 1963.

[^0]: *In 6D POST the center of gravity is assumed to coincide with the center of mass.

