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RALPH E. GABRIELSEN* AND STEVEN KARELt

Abstract. An algorithm for solving the nonlinear stationary Navier-Stokes

problem is developed. Explicit error estimates are given.

1. Introduction. Since the separation problem of aerodynamics is at

present intractable, it has been decided to undertake a closely related problem

via a mathematical technique that is potentially adaptable to the separation

problem. Specifically, the problem under consideration is the "nonlinear sta-

tionary Navier-Stokes problem" of fluid dynamics. The generalized Newton's

method, as developed by Kantorovich (5, 71 is used. Its application to this

pZlem is of definite value for those seeking practical solutions of related

fluid flow problems. The following questions are considered:

(i)Under what conditions does the sequence of funetiohs obtained by

Newton's method converge to the solution?

(ii)How should the initial guess be made, as a function of v, so as to

guarantee convergence?

(iii)At what rate does the sequence of approximate solutions converge?

Given S, a two-dimensional Green's domain, and f l (x,y) a Cl(S),

f2(x,y) a C I (S), the nonlinear stationary Navier-Stokes problem is:

*Ames Research Center and U.S. Army Air Mobility R&D Laboratory, Moffett

Field, Calif. 94035.

tU.S. Army Element, NASA, Washington, D.C. 20546 and Ames Research Center,

Moffett Field, Calif. 94035.
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uux +vY+ qx - v Qu+ fI(x,y) = 0

uvx +vy+ qy - v 4v+ f 2(x .Y ) = 0

with boundary conditions

UPS) _ —b2( aS) , v(aS) = b l (aS) .

An equivalent expression is

(2)	 PW = v44* + 0v^x0 + f ly — f2x = 0

X(as) = b l (as)	 V►v(aS) = b2(as) .

where

*x = v , V►Y = -u ,

and P is a mapping from C 4 (S) into C O (S) with norm

N n

N V►^^ = r
 anmax me-mCN

n= 0 m=0m= 0	 ax ay

For clarity, the equivalence of (1) and (2) is now shown.

LEMM (1) '-' (2).

Proof.

(1) -► (2) directly follows from [6, Theorem 6, p. 131).

(2)-► (1): (2) can be readily rearranged into the form

(-v4u + uu + vu + f l ) _ (-v4v + uv + vv + f2)
x	 y	 y	 x	 y	 x

with

Let

Z=(-v4u+uux +vy+fl)i+(-v4v+uvx +vv+f2)I .

Note the fact: if V= ai + bj f C l (S), then

.} F + V = VF •-► Y = b 
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Hence, + q	 Vq.

Therefore, (2) + (1).

2. Main Results. We seek a Rnlutten to (2) by the generalised Newton's

method. Consider the equation

P 40) + P'(*o)(* - *0)	 0 .

If *1 is a solution of this equation, we can write a new equation

P(*0 + P= (W1)(W - V► 1)	 0 .

Assume that for each n 
> 0 + *n+1 }

P (On ) i` P'(*n) (*n+ 1 - *n ) - 0 '
(3)

Onx(as) a bl	 ny(as) - b2 .
(See LEMMA 1 for explicit expression for P'.)

If lim^n exists, let	 be the limit. Then
n—

P(**) = 0 .

Thus ** is the desired solution. This is Newton ' s method.

Define

N nEanG(x'.Y'.x.Y)
	= 	 n n-mmax ^	 ^Y

x'rY' E S	
n-0 m=0	

axe ayt

where G is the Green's function of the problem

eel =0 in s, SOS) =0, ,yn(as)=0.

(1], (2), (3], (41, (8).

Let M. 0 = max (max l 6*0 1, maxIt'*0 1,	 I^Ox 1, ^1*0Y .
Therefore, based on the remarkable theory developed by Kantorovich, we

obtain the following result:



THEOREM 1. If the initiaZ *0 is 4-

*0x 
las	 oYIBS

= bl, 	- b2, M *o H 3 < v s

and	
v2(l - 

V M*OH3)2

NP(* 0 )I 	 s	 2
C O 	2H4

then the Newton-Kantorovich sequence (*m)m=o does in fact converge to the
unique solution of (2).

Proof. By the theorem of Kantorovich 15, p. 7081, it is sufficient to

show that

IP(*0)I S	
1

21P I (Vo) —lr flP"I

this is shown by the following lemmas.

LEmm 1. P'(*), the Freehet derivative exists at aZZ points *0 in the

domain, and

P ' (*O) g = vAAg + % Agx + A*Oxgy - A*Oygx - * OxAgy .

Proof:

PW _ vav + *yA*x - *xA*y + f ly - 
f 2x .

If

lim IP(*+a) - P(*) - Lai = 0
Dal -0	

IaN

for some linear operator L, then define P'(* 0 ) = L.

P(*O+a) - P (*O) = vAAa + *OyAax + aA*0x + yAax - axA*ov - &Aay - axAay .
Let

L(*O) (a) = vAAa + *p r Aax + yA*Ox - axAfty - *oxA y .

Then L(^ O ) is a linear operator. Therefore, L(*) = P'(*) if

lim 
NP( * p+a) - P(*0) - Lal)= lim 

N yAax ax A : 0

1184,010	
IaN	 jaM-O	

MaN

aaax - yYeCO .
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Therefore,

a Aax - axA v^ max v
A x axA vS

a C C4 .

Therefore,	
4 n

	

H a l "	 ^max ana

n=0 m=0
l ax ayn

-m

yaax - aXAar ^ 1 1 vI ( Ia^I + 
Ia ► 1) 

+ IaxI 
(I Xxv ) + l a 	1) .

Therefore,

max Ia Aa-a && < max Ia 	 I+maxIa
S y	

x 
y	 S y S	 S '4'3'	 S	 S 

xxy S

So:

IP(4YO+a) - P(*O) - Lail
0 < lim

p al!-►O	 la)

5 lim
pap *0

max, JJ Sm , a	 I + max, a	 I + max Is, 1 a a	 I + max) 
a"- IS	 ` s	 s	 s	 `s	 s

a

-< lim NaN(Nall +Nall) + Map(NaN + Nall)

IaN,,O	
Nall

Therefore,

(1P(ft + a) - P (WO) - Lall
lim	 pa'	 = 0	 Q.,E.D.

I all-+O

LEMMA 2. P"(*) exists at aZZ points too in C `' ( S) and

P11
00 : YOX + ^YOX - Y*y - yly .

Proof. By definition, P"(^ O ) exists if there is a bilinear operator B

lim NP' 
(*0 + 0) - P' (*O) - B01 1

p 0 -*0
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If so, P"(VO) is defined to be B.

P ' ( *0+m )g - vaag + ( * 0+4)yagx + gya (*O+0X — 
gxa(* O+*)y — (*o+*) XagY .

[ P'(*o+#) — P'(*o)] g - ^yegx + gya^x — gxa^v — OXagy .

Now,

[P'(*o+o) - P'(*o )](g1+62) - [ P'(*O+O) - P '(*0) 191 + [P ' ( *O+* ) - P ' (*0)392 •

and

[P'(0 0+W1 2 ) - P'(*O)] g - [ P'Q-O+W - P'(*0)]g + [P'4002) - P'(*O)]g

Therefore, [P'(0 0+0) - P'(*O)] g is a bilinear operator of ^ and q. Let

BO = P'(* 0+¢) - P l (* O ). Then it follows that

P 11 40) 48 - rya@ X + 
eyox - OXA^Y - 

yeY .

IM44A 3. P' (*o ) -1 exists.

Proof. Given P(* O ) + P' ( *O)(*-Oo)	 0, let	 *0, then

P' 40)i - -P(*o) .

Equivalently, vaa^ + a*Oxjy + *Oya^x - *OxA^y 
- A*oy;X - -P(* () ). This equation

can be abbreviated as va4 - f(^) + F. Let G be the Green's function for

y (see Theorem 1), then

iy=1JG?+^ jGF.

Ato

Define the linear operators

A^ 1v j (',f (V^ )

B[-P(* 0 )] v
 ! GF

Then	
``.

	 (
I - 1 A

); ' 
B[-P(*O)] .

V

-1

Under proper conditions, as shown later in the proof, ^I - I Aa exists. Then
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{I - A) -iBE -P( 0) ] •

Therefore,

i	 P' (00 ) tI - v A
l iB [ -P (*0) ] _ -P(*p)

i	 J
and (I - A) B is a right inverse. Also, CI - A) iBP' ( *p)^

(I - A) IBP' ( gy p) - I, and (I - A) - 'B is a left inverse. Therefore,

``
(I - A)

i 
B = (P'(*O)]-i

i
We now show the conditions under Which CI - A, exists.

Any = 
1S 

G ( *X '*py - *3rA*ox + *oxA*'y - *oyl'*x)dS

OAII = sup NA*N

N^gsl

so

NAB = sup	 max j
S 
G( *xA* Oy-V^yA* Ox+ ^ypxA*+ _*OyA*XMS I + max ( ) X I +	 .

C	 <1 1XI,y'eS^ 

IIAI	 < sup	 max j[IGI + IGx11 + Y11 + . . .] • (1*x 11oOy 1 + . . .]
C	 AA S1 x ' •y ' Es

dAN	 S max	 max	 M f (IG I I IG , l + IG ^ I + .	 . ]	 t l^x I + I* 1 +
C	 1*1a 1 x' lY I CS * 0 	x	 y	 y

Therefore,

IIAII 4 = M*0 mm f t 
1G1 + IGx ,1 4 I Y' 

1 + . .. ]dx dy .

NAI C4 s M*0H3 .

^m
Therefore, (I - A) i exists if M^oH 3 < v. ^I - v A) -i = j 1̂  An exists.

n=0 
v
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LEMMA 4• NP"(*0)N -< 1.

.	 Proof.

max Io ao. + eynmx - ^xeey - yo.j
IAN l Y

JOIS1

loy l + 143= 1 + 14	 1+I#,1+I+,^,I ♦ lo,,,,y,l) s 1•

This completes the proof of Theorem 1.

THEOREM 2. Under the hypothesis of Theorem 1, the error estimate for the

mth approximate solution is expressed by

Hy
2^1-1

it 0 - ►mil	
(22^m )
	 1	 l P (V^ 0) p 

2m .

1(1 - 
v M

* Hg^
0

Proof. By the Kantorovich theory, this result follows from the hypothesis

of Theorem 1.

COROLLARY 1. As a function of v, for fixed m,

Q* - om il - 0 (vP+'+l)

COROLLARY 2. If the hypothesis of Theorem 1 is satisfied, then for a given

e > 0, there exists a denwrwrably infinite number of Zinear equations and solu-

tions Om as speoifled by (3) such that the entire famiZy of gym 's are within

the e-neighborhood of the exaot solution 0 of (2), i.e.,

M* - *JC4 < E .

Proof. Follow directly from Theorem 2.
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