General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA TM X-62,497

A FAMILY OF APPROXIMATE SOLUTIONS AND EXPLICIT ERROR ESTIMATES FOR THE NONLINEAR STATIONARY NAVIER-STOKES PROBLEM

Ralph E. Gabrielsen
Ames Research Center and
U. S. Army Air Mobility R\&D Laboratory

Moffett Field, Calif. 94035
and

Steven Karel
U. S. Army Element, NASA

Washington, D. C. 20546
and
Ames Research Center
Moffett Field, Calif. 94035

17. Key Word (Sugperted by Author(s)) Navier-Stokes equations (stationary) Newton-Kantorovich method		18. Distribution Sutement Unlimited STAR Caterory - 34		
19. Security Clomif. (of this report) Unclassified	20. Security Crewif. (of this pepa)		21. No. of Papm	22. Price*
	Unclassified		10	\$3.25

A FAMILY OF APPROXIMATE SOLUPIONS AND EXPLICTT ERROR ESTTMATES FOR THE
 NONLINEAR STATIONARY NAVIER-STOKES PROBLEM

Ralph e. gabrielsen* and steven karel ${ }^{\dagger}$

Abstract. An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given.

1. Introduction. Since the separation problem of aerodynamics is at present intractable, it has been decided to undertake a closely related problem via a mathematical technique that is potentially adaptable to the separation problem. Specifically, the problem under consideration is the "nonlinear stationary Navier-Stokes problem" of fluid dynamics. The generalized Newton's method, as developed by Kantorovich [5, 7] is used. Its application to this problem is of definite value for those seeking practical solutions of related fluid flow problems. The following questions are considered:
(i) Under what conditions does the sequence of functions obtained by Newton's method converge to the solution?
(ii) How should the initial guess be made, as a function of v, so as to guarantee convergence?
(iii) At what rate does the sequence of approximate solutions converge?

Given S, a two-dimensional Green's domain, and $f_{1}(x, y) \in C^{1}(S)$, $f_{2}(x, y) \in C^{1}(S)$, the nonlinear stationary Navier-Stokes problem is:

[^0]\[

$$
\begin{aligned}
u u_{x}+v u_{y}+q_{x}-v \Delta u+f_{1}(x, y) & =0, \\
u v_{x}+v v_{y}+q_{y}-v \Delta v+f_{2}(x, y) & =0, \\
u_{x}+v_{y} & =0,
\end{aligned}
$$
\]

with boundary conditions

$$
u(\partial s)=-b_{2}(\partial S), \quad v(\partial S)=b_{1}(\partial S)
$$

An equivalent expression is

$$
\begin{gather*}
P(\psi) \equiv v \Delta \Delta \psi+\psi_{y} \Delta \psi_{x}-\psi_{x} \Delta \psi_{y}+f_{1} y-f_{2}=0 \tag{2}\\
\psi_{x}(\partial S)=b_{1}(\partial S), \quad \psi_{y}(\partial S)=b_{2}(\partial S),
\end{gather*}
$$

where

$$
\psi_{x}=v, \psi_{y}=-u,
$$

and P is a mapping from $C^{4}(s)$ into $C^{0}(S)$ with norm

$$
\|\psi\|_{C^{N}}=\sum_{n=0}^{N} \sum_{m=0}^{n} \max \left|\frac{\partial^{n} \psi}{\partial x^{m} y_{y}^{n-m}}\right| .
$$

For clarity, the equivalence of (1) and (?) is now shown.
Lemma (1) $\rightarrow(2)$.
Proof.
$(1) \rightarrow(2)$ directly follows from [6, Theorem 6, p. 131].
$(2) \rightarrow$ (1): (2) can be readily rearranged into the form

$$
\left(-v \Delta u+u u_{x}+v u_{y}+f_{1}\right)_{y}=\left(-v \Delta v+u v_{x}+v v_{y}+f_{2}\right)_{x} \text {. }
$$

with

$$
u=\psi_{y}, \quad v=-\psi_{x}
$$

Let

$$
\vec{z}=\left(-v \Delta u+u u_{x}+v u_{y}+f_{1}\right) \vec{i}+\left(-v \Delta v+u v_{x}+v v_{y}+f_{2}\right) \vec{j} .
$$

Note the fact: if $\vec{v}=a \vec{i}+b \vec{j} \in c^{1}(S)$, then

$$
子 F+\dot{v}=\nabla F \leftrightarrow a_{y}=b_{x} .
$$

Hence, $\psi q+\vec{Z}=\nabla q$.
Therefore, $(2) \rightarrow(1)$.
2. Main Results. We seek a solution to (2) by the generalized Newton's method. Consider the equation

$$
P\left(\psi_{0}\right)+P^{\prime}\left(\psi_{0}\right)\left(\psi-\psi_{0}\right)=0 .
$$

If ψ_{1} is a solution of this equation, we can write a new equation

$$
P\left(\psi_{1}\right)+P^{i}\left(\psi_{1}\right)\left(\dot{\psi}-\psi_{1}\right)=0 .
$$

Assume that for each $n \geq 0 \nLeftarrow \psi_{n+1}+$

$$
P\left(\psi_{n}\right)+P^{\prime}\left(\psi_{n}\right)\left(\psi_{n+1}-\psi_{n}\right)=0,
$$

(3)

$$
\psi_{n_{x}}(\partial S)=b_{1}, \quad \psi_{n_{y}}(\partial S)=b_{2}
$$

(See LEMMA 1 for explicit expression for P^{\prime}.)
If $\lim _{n \rightarrow \infty} \psi_{n}$ exists, let ψ^{*} be the limit. Then

$$
\begin{aligned}
P\left(\psi^{*}\right)+P^{\prime}\left(\psi^{*}\right)\left(\psi^{*}-\psi^{*}\right) & =0 \\
P\left(\psi^{*}\right) & =0 .
\end{aligned}
$$

Thus ψ^{*} is the desired solution. This is Newton's method.
Define

$$
H_{N}=\max _{x^{\prime}, y^{\prime} \in S} \int \sum_{n=0}^{N} \sum_{m=0}^{n}\left|\frac{\partial_{G} n_{G}\left(x^{\prime}, y^{\prime}, x, y\right)}{\partial x^{\prime} n^{\prime} y^{\prime} n-m}\right| d x d y
$$

where G is the Green's function of the problem

$$
\Delta \Delta \tilde{\psi}=0 \text { in } S, \tilde{\psi}(\partial S)=0, \tilde{\psi}_{n}(\partial S)=0 .
$$

[1], [2], [3], [4], [8].
Let $M_{\psi_{0}}=\max \left(\max \left|\Delta \psi_{0_{y}}\right|, \max \left|\Delta \psi_{0_{x}}\right|, \max \left|\psi_{0_{x}}\right|, \max \left|\psi_{0_{y}}\right|\right)$.
Therefore, based on the remarkable theory developed by Kantorovich, we obtain the following result:

THEOREM 1. If the initial ψ_{0} is +

$$
\left.\psi O_{x}\right|_{\partial S}=b_{1},\left.\quad \psi O_{y}\right|_{\partial S}=b_{2}, \quad M_{\psi_{0}} H_{3}<v,
$$

and

$$
\left\|P\left(\psi_{0}\right)\right\|_{C^{0}} \leq \frac{v^{2}\left(1-\frac{1}{v} M_{\psi_{0}} H_{3}\right)^{2}}{2 H_{4}^{2}},
$$

then the Newton-Kantoroviah sequence $\left\{\psi_{m}\right\}_{m=0}^{\infty}$ dose in fact converge to the unique solution of (2).

Proof. By the theorem of Kantorovich [5, p. 708], it is sufficient to show that

$$
\left\|P\left(\psi_{0}\right)\right\| \leq \frac{1}{2\left\|P^{\prime}\left(\psi_{0}\right)^{-1}\right\|^{2}\left\|P^{\prime}\right\|} ;
$$

this is shown by the following lemmas.
LEMMA 1. $\mathrm{P}^{\prime}(\psi)$, the Frechet derivative exists at all points ψ_{0} in the domain, and

$$
P^{\prime}\left(\psi_{0}\right) g=v \Delta \Delta g+\psi 0_{y} \Delta g_{x}+\Delta \psi_{O_{x}} g_{y}-\Delta \psi \partial_{y} g_{x}-\psi 0_{x} \Delta g_{y} .
$$

Proof:

$$
P(\psi)=v \Delta \Delta \psi+\psi_{y} \Delta \psi_{x}-\psi_{x} \Delta \psi_{y}+f_{1_{y}}-f_{2_{x}} .
$$

If

$$
\lim _{\|a\| \rightarrow 0} \frac{\left\|P(\psi+a)-P(\psi)-L_{a}\right\|}{\|a\|}=0,
$$

for some linear operator L, then define $P^{\prime}\left(\psi_{0}\right)=L$.

$$
P\left(\psi_{0}+a\right)-P\left(\psi_{0}\right)=v \Delta \Delta a+\psi_{O_{y}} \Delta a_{x}+a_{y} \Delta \psi_{0_{x}}+a_{y} \Delta a_{x}-a_{x} \Delta \psi_{0_{y}}-\psi_{x} \Delta a_{y}-a_{x} \Delta a_{y} .
$$ Let

$$
L\left(\psi_{0}\right)(a)=v \Delta \Delta a+\psi 0_{y} \Delta a_{x}+a_{y} \Delta \psi 0_{x}-a_{x} \Delta \psi O_{y}-\psi 0_{x} \Delta a_{y} .
$$

Then $L\left(\psi_{0}\right)$ is a inear operator. Therefore, $L(\psi)=P^{\prime}(\psi)$ if

$$
\begin{gathered}
\lim _{\|a\| \rightarrow 0} \frac{\left\|P\left(\psi_{0}+a\right)-P\left(\psi_{0}\right)-L a\right\|}{\|a\|}=\lim _{\| a, 0} \frac{\left\|\varepsilon_{y} \Delta a_{x}-a_{x} \Delta a_{y}\right\|}{\|a\|}=0 . \\
a_{y} \Delta a_{x}-a_{x} \Delta a_{y} \varepsilon C^{0} .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
&\left\|a_{y} \Delta a_{x}-a_{x} \Delta a_{y}\right\|=\max _{S}\left|a_{y} \Delta a_{x}-a_{x} \Delta a_{y}\right| \\
& a \varepsilon c^{4} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \|a\|=\sum_{n=0}^{4} \sum_{m=0}^{n} \max \left|\frac{\partial^{n} a_{a}}{\partial x^{m} \partial y^{n-m}}\right| \cdot \\
& \left|a_{y} \Delta a_{x}-a_{x} \Delta a_{y}\right| \leq\left|a_{y}\right|\left(\left|a_{x x x}\right|+\left|a_{x y y}\right|\right)+\left|a_{x}\right|\left(\left|a_{x x y}\right|+\left|a_{y y y}\right|\right) .
\end{aligned}
$$

Therefore,
$\max _{S}\left|a_{y} \Delta a_{x}-a_{x} \Delta a_{y}\right| \leq \max _{S}\left|a_{y}\right|\left(\max _{S}\left|a_{x x x}\right|+\max _{S}\left|a_{x y y}\right|\right)+\max _{S}\left|a_{x}\right|\left(\max _{S}\left|a_{x x y}\right|+\max _{S}\left|a_{y y y}\right|\right)$.
So:

$$
\begin{aligned}
0 & \leq \lim _{\|a\| \rightarrow 0} \frac{\left\|P\left(\psi_{0}+a\right)-P\left(\psi_{0}\right)-L a\right\|}{\|a\|} \\
& \leq \lim _{\|a\| \rightarrow 0} \frac{\max _{S}\left|a_{y}\right|\left(\max _{S}\left|a_{a_{x x x}}\right|+\left.\max _{S}\right|_{a_{x y y}} \mid\right)+\max _{S}\left|a_{x}\right|\left(\left.\max _{S}\right|_{a_{x x y}}\left|+\max _{S}\right|_{a_{y y y}} \mid\right)}{a} \\
& \leq \lim _{\|a\|+0} \frac{\|a\|(\|a\|+\|a\|)+\|a\|(\|a\|+\|a\|)}{\|a\|} .
\end{aligned}
$$

Therefore,

$$
\lim _{\|a\| \rightarrow 0} \frac{\left\|P\left(\psi_{0}+a\right)-P\left(\psi_{0}\right)-L a\right\|}{\|a\|}=0 . \quad \text { Q.E.D. }
$$

LEMMA 2. $\mathrm{P}^{\prime \prime}(\psi)$ exists at all points ψ_{0} in $\mathrm{C}^{4}(\mathrm{~s})$ and

$$
P^{\prime \prime}\left(\psi_{0}\right) \psi \phi=\psi_{y} \Delta \phi_{x}+\phi_{y} \Delta \psi_{x}-\phi_{x} \Delta \psi_{y}-\psi_{x} \Delta \phi_{y} .
$$

Proof. By definition, $\mathrm{P}^{\prime \prime}\left(\psi_{0}\right)$ exists if there is a bilinear operator $\mathrm{B}+$

$$
\lim _{\|\phi\| \rightarrow 0} \frac{\left\|P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)-B \phi\right\|}{\|\phi\|}=0 .
$$

If so, $P^{\prime \prime}\left(\psi_{0}\right)$ is defined to be B.

$$
\begin{gathered}
P^{\prime}\left(\psi_{0}+\phi\right) g=v \Delta \Delta g+\left(\psi_{0}+\phi\right)_{y} \Delta g_{x}+g_{y} \Delta\left(\psi_{0}+\phi\right)_{x}-g_{x} \Delta\left(\psi_{0^{+}+\phi}\right)_{y}-\left(\psi_{0}+\phi\right)_{x} \Delta g_{y} . \\
{\left[P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)\right]_{g}=\phi_{y} \Delta g_{x}+g_{y} \Delta \phi_{x}-g_{x} \Delta \phi_{y}-\phi_{x} \Delta g_{y} .}
\end{gathered}
$$

Now,

$$
\left[P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)\right]\left(g_{1}+g_{2}\right)=\left[P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)\right]_{g_{1}}+\left[P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)\right]_{g_{2}},
$$

and

$$
\left[P^{\prime}\left(\psi_{0}+\phi_{1}+\phi_{2}\right)-P^{\prime}\left(\psi_{0}\right)\right] g=\left[P^{\prime}\left(\psi_{0}+\phi_{1}\right)-P^{\prime}\left(\psi_{0}\right)\right]_{g}+\left[P^{\prime}\left(\psi_{0}+\phi_{2}\right)-P^{\prime}\left(\psi_{0}\right)\right] g .
$$

Therefore, $\left[P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)\right] g$ is a bilinear operator of ϕ and g. Let $B \phi=P^{\prime}\left(\psi_{0}+\phi\right)-P^{\prime}\left(\psi_{0}\right)$. Then it follows that

$$
P^{\prime \prime}\left(\psi_{0}\right) \phi \theta=\phi_{y} \Delta \theta_{x}+\theta_{y} \Delta \phi_{x}-\theta_{x} \Delta \phi_{y}-\phi_{x} \Delta \theta_{y}
$$

LAMMMA 3. $P^{\prime}\left(\psi_{0}\right)^{-1}$ exists.
Proof. Given $P\left(\psi_{0}\right)+P^{\prime}\left(\psi_{0}\right)\left(\psi-\psi_{0}\right)=0$, let $\bar{\psi}=\psi-\psi_{0}$, then

$$
P^{\prime}\left(\psi_{0}\right) \tilde{\psi}=-P\left(\psi_{0}\right)
$$

Equivalently, $v \Delta \Delta \tilde{\psi}+\Delta \psi_{0_{x}} \tilde{\psi}_{y}+\psi_{0_{y}} \Delta \tilde{\psi}_{x}-\psi_{0_{x}} \Delta \tilde{\psi}_{y}-\Delta \psi_{0_{y}} \tilde{\psi}_{x}=-P\left(\psi_{0}\right)$. This equation can be abbreviated as $v \Delta \Delta \bar{\psi}=\mathcal{P}(\tilde{\psi})+F$. Let G be the Green's function for $\tilde{\Psi}$ (see Theorem 1), then

$$
\tilde{\psi}=\frac{1}{v} \int G \tilde{f}+\frac{l}{v} \int G F .
$$

Define the linear operators

$$
\begin{aligned}
& A \bar{\psi}=\frac{1}{v} \int G \tilde{f}(\tilde{\psi}) . \\
& B\left[-P\left(\psi_{0}\right)\right]=\frac{1}{v} \int G F .
\end{aligned}
$$

Then

$$
\left(I-\frac{1}{V} A\right) \tilde{\psi}=B\left[-P\left(\psi_{0}\right)\right]
$$

Under proper conditions, as shown later in the proof, $\left(I-\frac{1}{V} A\right)^{-1}$ exists. Then

$$
\tilde{\psi}=\left(I-\frac{1}{v} A\right)^{-1} B\left[-P^{\prime}\left(\psi_{0}\right)\right]
$$

Therefore,

$$
\begin{gathered}
P^{\prime}\left(\psi_{0}\right)\left(I-\frac{1}{v} A\right)^{-1} B\left[-P\left(\psi_{0}\right)\right]=-P\left(\psi_{0}\right) ; \\
P^{\prime}\left(\psi_{0}\right)\left(I-\frac{1}{v} A\right)^{-1} B=I
\end{gathered}
$$

and $\left(I-\frac{1}{V} A\right)^{-1} B$ is a right inverse. Also, $\left(I-\frac{1}{V} A\right)^{-1} \mathrm{BP}^{\prime}\left(\psi_{0}\right) \tilde{\psi}=\tilde{\psi}$;

$$
\begin{gathered}
\left(I-\frac{1}{v} A\right)^{-1} B P^{\prime}\left(\psi_{0}\right)=I, \text { and }\left(I-\frac{1}{v} A\right)^{-1} B \text { is a left inverse. Therefore. } \\
\left(I-\frac{1}{v} A\right)^{-1} B=\left[P^{\prime}\left(\psi_{0}\right)\right]^{-1} .
\end{gathered}
$$

We now show the conditions under which $\left(I-\frac{1}{v} A\right)^{-1}$ exists.

$$
\begin{gathered}
A \psi=\int_{S} G\left(\psi_{x} \Delta \psi_{O_{y}}-\psi_{y} \Delta \psi_{0_{x}}+\psi_{0_{x}} \Delta \psi_{y}-\psi_{O_{y}} \Delta \psi_{x}\right) d S \\
\|A\|=\sup _{\|\psi\| \leq 1}\|A \psi\|
\end{gathered}
$$

80

$$
\begin{aligned}
& \mid A \|_{C}=\sup _{\|\psi\| I}\left[\max _{x^{\prime}, y^{\prime} \varepsilon S}\left|\int_{S} G\left(\psi_{x} \Delta \psi_{O_{y}}-\psi_{y} \Delta \psi_{0_{x}}+\psi_{0_{x}} \Delta \psi_{y}-\psi_{0_{y}} \Delta \psi_{x}\right) d S\right|+\max ()_{x^{\prime}}+\ldots\right. \\
& \|A\|_{C} \leq\left.\sup _{\| \psi \mid \leq 1}\right|_{\max ^{\prime}, y^{\prime} \in S} \int\left[|G|+\left|G_{x^{\prime}}\right|+\left|G_{y^{\prime}}\right|+\ldots . .\right] \cdot\left[\left|\psi_{x^{\prime}}\right|\left|\Delta \psi o_{y}\right|+\ldots .\right] \\
& \|A\|_{C} \leq \max _{\|\psi\| \leq 1}\left(\max _{x^{\prime}, y^{\prime} \in S} M_{\psi_{0}} \int\left[|G|+\left|G_{x^{\prime}}\right|+\left|G_{y^{\prime}}\right|+\ldots .\right] \cdot\left[\left|\psi_{x}\right|+\left|\psi_{y}\right|+\ldots .\right]\right) \text {. }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \|A\|_{C^{4}} \leq M_{\psi_{0}}\left(\max \int\left[|G|+\left|G_{x^{\prime}}\right|+\left|G_{y^{\prime}}\right|+\ldots . .\right] d x d y\right) \cdot \\
& \|A\|_{C^{4}} \leq M_{\psi_{0}}^{H_{3}} .
\end{aligned}
$$

Therefore, $\left(I-\frac{1}{v} A\right)^{-1}$ exists if $M_{\psi_{0}} H_{3}<v . \quad\left(I-\frac{1}{v} A\right)^{-1}=\sum_{n=0}^{\infty} \frac{1}{v^{n}} A^{n}$ exists.

LEMMA 4. $\left\|P^{\prime \prime}\left(\psi_{0}\right)\right\| \leq 1$.
Proof.

$$
\begin{aligned}
\left\|P{ }^{\prime \prime}\left(\psi_{0}\right)\right\| & =\max _{\substack{|\phi| \leq 1 \\
\| \theta i \leq 1}}\left|\phi_{y} \Delta \theta_{x}+\theta_{y} \Delta \phi_{x}-\phi_{x} \Delta \theta_{y}-\theta_{x} \Delta \phi_{y}\right| \\
& \leq \max \left(\left|\phi_{y}\right|+\left|\phi_{x x x}\right|+\left|\phi_{x y y}\right|+\left|\phi_{x}\right|+\left|\phi_{x x y}\right|+\left|\phi_{y y y}\right|\right) \leq 1 .
\end{aligned}
$$

This completes the proof of Theorem 1.
THEOREM 2. Under the hypothesis of Theorem 1, the error estimate for the meh approximate solution is expressed by

$$
\left\|\psi-\psi_{m}\right\| \leq\left(2^{2^{m}-m}\right)\left[\frac{H_{4}}{v\left(1-\frac{1}{v} M_{\psi_{0}} H_{3}\right)}\right]^{2^{m+1}-1}\left\|P\left(\psi_{0}\right)\right\|^{2 m}
$$

Proof. By the Kantorovich theory, this result follows from the hypothesis of Theorem 1 .

COROLIARY 1. Ae a function of v, for fixed $m_{\text {, }}$

$$
\psi \psi-\psi_{m} \|=0\left(-v^{2^{m+1}}+1\right)
$$

COROLLARY 2. If the hypothesis of Theorem 1 is satisfied, then for a given $\varepsilon>0$, there exists a denumerably infinite number of linear equations and solusLions ψ_{m} as specified by (3) such that the entire family of ψ_{m} 's are within the e-neighborhood of the exact solution ψ of (2), i.e.,

$$
\left\|\psi-\psi_{n}\right\|_{C^{4}}<\varepsilon \text {. }
$$

Proof. Follows directly from Theorem 2.

REFEREMTCES

[1] I. BABUBKA, K. REMTORYS, and F. VYČICHLO, Mathematisohe Elastisitatstheorie der Ebenen P:obleme, Akademi-Verlag, Beriln, 1960.
[2] R. COURANT and D. HILBERT, Methode of Mathematical Physive, Interscience, New York, N. Y., 1953.
[3] P. R. garabedian, Partial Differential Equations, John Wiley, New York, N.Y., 1964.
[4] L. V. KaNTOROVICH and V. I. KRYLOV, Approximate Methods of Highar Analysis, Interscience, The Netheriands, 1958.
[5] L. V. kamrorovich and G. P. akilov, Functional inalysis in Normed Spaces, Pergamon Pres3, New York, N.Y., 1964.
[6] 0. A. LADYzhenskaiñ, The Mathematical Theory of Viscous Incompressible Flows, 2nd English ed., rev. and Engl. translated from the Pussian by Richard A. Silverman and John Chu, Gordon and Breach, New York, 1969.
[7] L. B. RALL, Computational Solution of Nonlinear Operator Equations, John Wiley, New York, N.Y., 1969.
[8] S. TIMOSHENKO and S. WOINOWSKY-KRIEGER, Theory of Plates and Shelle, McGraw-Hill, New York, N.Y., 1959.

[^0]: *Ames Research Center and U.S. Army Air Mobility R\&D Laboratory, Moffett Field, Calif. 94035.
 ${ }^{\dagger}$ U.S. Army Element, NASA, Washington, D.C. 20546 and Ames Research Center, Moffett Field, Calif. 94035.

