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A FAMILY OF APPROXIMATE SOLUTIONS AND EXPLICTT ERROR ESTIMATES FOR THE

NONLINEAR STATIONARY NAVIER-STOKES PROBLEM

WPt Cwbrr b b B b e A A e %

RALPH E. GABRIELSEN* AND STEVEN KAREL'

Abstrac}. An algorithm for solving the nonlinear stationary Navier-Stokes

problem is developed. Explicit error estimates are given,

1, Introduction. Since the separation problem of aerodynamics is at
present intractable, it has been decided to underteke a closely related problem
via a mathematical technique that is potentially adaptable to the separation
problem. Specifically, the problem under consideration is the "nonlinear sta-
tionary Navier-Stokes problem" of fluid dynamics. The generalized Newton's
method, as developed by Kantoroviech [5, T) is used. Its application to this
prﬂtaem is of definite value for those seeking practical solutions of related
fluid flow problems. The following questions are considered:

(i) Under what conditions does the sequence of functiohs obtained by
Newton's method converge to the solution?

(i1) How should the initial guess be made, as a function of v, so as to
guarantee convergence?

(i1i) At what rate does the sequence of approximate solutions converge?

Given S, a two-dimensional Green's domain, and f£,{(x,y) ¢ c1(s),

fo(x,y) € €1(S), the nonlinear stationary Navier-Stokes problem is:

*Ames Research Center and U.S. Army Air Mobility R&D Laboratory, Moffett
Field, Calif, 94035,
+U.S. Army Element, NASA, Washington, D.C. 20546 and Ames Research Center,

Moffett Field, Calif. 94035,



wa, +vu 4 g - v me £.(x,y) =0,
uv, + v g - v av + £o(x,y) =0,
(1) 4 u, + vy =0,

with boundary conditions

k u(3s) = -b2(38) , v(38) = b,(28) .

An equivalent expression is

(2) P(V¥) = vaAy + wywa - wawy + ny -f =0

v (28) = p1(38) , wy(as) = by(38) ,
where

Wx =v , wy = -u ,
and P is a mapping from C*(S) into C%(S) with norm

uwllcfiim

n=() m=0

2y
axm n-m

For clarity, the equivalence of (1) and (2) is now shown,
LEMMA (1) < (2).
Proof.
(1) + (2) airectly follows from [6, Theorem 6, p. 131].
(2) + {i}): (2) can be readily rearranged into the form
(=vAu + uu + v-m.y + fl)y = (=-vAv + uv, + v, + fz)x .

with

us= wy , V= -wx .
Let
7 = (-vbu + + £1)1 + (-vav + + + 22)3
= (~vBu + uu vu.y + 1)1 + (=viv uv, vv’v 2)) .
- -+ -+ 1
Note the fact: if V = ai + bj ¢ C'(S), then

-]-F-)\7=VF<-+ay-bx.




Hence, + q + Z = vq.
Therefore, (2) + (1).
2, Main Results. We seek a solution to (2) by the generalized Newton's
method. Consider the equation
P(yg) + P'(yg)(p = o) =0 .
If ) is a solution of this equation, we can write a new equation
P(y1) + P {y){y = ¥1) = 0.

Assume that for each n > 0 + wm-l ¥

Ply) Py )y, =v) =0,

n

(3)
' wnx(as) =D , wny(as) = b, .,
(See LEMMA 1 for explicit expression for P'.)
If lim wn exists, let % be the limit. Then
W B(W) + B (¥ (¥® = y¥) = 0
P(y*) =

Thus * is the desired solution. This is Newton's method.

HN ' '
x € SJ' n=0 m=0

vhere G is the Green's function of the problem

Define

3G (x',y',X,y)
axt Mayt P

ax dy

M) =0inS, P(38) =0, @n(as) =0,
(1], (2], (3], [&], [8].
Let M, = max(maxlAwoyl, ma.xlmboxl, max|vo, | ma.xl%y[).
Therefore, based on the remarkable theory developed by Kantorovich, we

obtain the following result:



THEOREM 1. If the initial ¥y i8 #

Wox

b =P M, H3 <wv
S= 1s dmylas 2y “»'03 s

v2(1 - %-Mwoxa)z
2 ]
4

then the Newton-Kantorovieh sequence (wm}; 0 does in fact converge to the

Ip(yoll s
co 2H

unique solution of (2).
Proof. By the theorem of Kantorovich [5, p. T08], it is sufficient to

show that
l -
2 [
20p (wo)=H “iemil

this is shown by the following lemmas.

Ip(yo)l s

LEMMA 1. P'(y), the Frechet derivative exists at all points VYo 1in the
domain, and

P'(yp)g = vasg + Vo 08, + Bbo,& - AVo.8, - woxAgy .

P(y) = vaay + Uy Buy = Yybby * f1, - f2, *

If
1im 1?(1])"’&) - P(\P) - L&l =0 ,
af+0 lall

for some linear operator L, then define P'(yy) = L.

P(yg+a) = P(yp) = vasa + Vo de, + 8 bg, + 8 ta - o bbo, - ¥ ba -8 o .

Let
L(yg)(a) = vAsa + Vo, b8, + 8 Bvo, - & Ao, - Vo, b8 .

Then L(yy) is & linear operator. Therefore, L(y) = P'(y) if
IP(wo-l»a.) - P(yq) - Lal Iu‘_"Aa.x - aan.y“

1linm = lim
a0 el 181+0 fel

=0,

- 0
a.yAe.x aany e CV ,



Therefore,
|ayAax - aanyﬁ = mg.x ’ayAax - aany .
acCt.
Therefore,
ua.g-ZZma.x - nm .
n=0 m=0 ax 3y

o b, = a00 ] s lag[Clag | + lag D+ la[Clag |+ la 1) .
Therefore, )

A A £ +max +max max|a +max|a .
sl < maley | el Iam,l) x| (sl gy mee m,l)

So:

IP(vo+e) = P(yg) - La."

0 < lim

Jal+0 Wall
A Vo M i)
< 1lim =
nap-+0
< 14p datlyed + fah) + yad(yap + vay)
- 'a'.§o 'a“
Therefore,
IP(vp + &) = P(yg) - La|
lim a =0. Q.E.D.
1aii~0 vel

LEMMA 2. P"(y) exists at all points Yo in C“(8) and

P"(bolve = v 0d, + 68U - 6B - Y B0

Proof. By definition, P"(ygo) exists if there is a bilinear operator B -)-

WP*(wo + ¢) - P' (Vo) - B
i 1ol
1 68~0




If so, P"(yg) is defined to be B.
P'(bg+e)e = vang + (bore) de, + g 8lbg+e), - g albgre), - (bote) e .
[P (yo+e) - P'(vo)le = o 8e, + g 00, - BL0, = b B8 .
Now,
[P'(vo+4) = P'(¥g) (g +gz) = [P'(wo+e) - P'(¥o)ley + [P'(vo+é) - P'(¥g)le2
and

[P' (wo+o1+02) = P'(yg)lg = [P'(vo+ey) = P'(¥o)lg + [P'(vg+é2) = P'(vg)lg .

Therefore, [P'(yg+¢) - P'(¥g)]g is a bilinear operator of ¢ and g. Let

Bé = P'(yo+¢) - P'(yg). Then it follows that
) = - -
P"(vgle8 6,00, + 0 80, 8,80, o 00 .
LEMMA 3. P'(yo)~! exists,
Proof. Given P(yg) + P'(v)(¥-v,) = 0, let § = ¥ =y, then
P'(vg)¥ = =P(yq) .

Equivalently, vAAY + Myo, 0 + Vo 80, = Vo, A0, = Bho ¥y = -P(yg). This equation
can be abbreviated as vaAp = F(y) + F. Let G be the Green's function for

¥ (see Theorem 1), then

Define the linear operators

Ay = & f 629

Bl-P(yg)) = = for .
Then

(I - %A)& = B[-P(vg)] .

-1
Under preper conditions, as shown later in the proof, (I - %— A) exigts. Then



- =1
bm (1= 38) 7 Bl-Plug)]
Therefore,

P'(yo){I - %A)-IB[-P(WO)] = <P(yq) ;

P'(%)(I -2 A)-IB =1,

-1 -1 ~ -
and (I - %A) B ig a right inverse. Also, (I - %A) BP'(%)\D = ¥

(I - %A)-IBP'(%) = I, and (I - %A)-IB is a left inverse. Therefore,
-1
(I - %A) B = [P'(yg)]"? .
. . _1
We now show the conditions under which (I - %A) exists.
Ay = j's G(v,dvo, = ¥ bvo, *+ Vo dh - Vo b, )aS

fAll = sup A
1] B3

80

TV max

Gy Ao =¥ Ao +bo, AV ~q AV, )dS| + max ( +...
A e j's (¥, B0y =¥, BV, b0, ¥y =Voy by ) o

lal

ia

sup | max fClc) + Jo,, | + o, 1+ .. .7« Clvllave |l +...]
c gl x',y'es'r x! y x v

ma.x( max M‘DOIHG[ o Icy,l LIRS I A7 B I"'y' +. . 9 .

WAl

i

c Bl <1\x',y'e8

Therefore,
“A“c“ s M%(maxj'[!G! + e, |+ le,l + .. JJax d.v) .

A <M Hy.
u ‘C“ Wo 3

Theretore, (I - 2 A)) exists if M Hy <v. (T =24)" =) &= A" exists.
v Vo 3 v o
n=g



LEMMA 4. JP" (o)} < 1.

Proof,
" = - -
12" (wo )l 'x:::l le 80, + 080, = ¢80, exuyl
He1sl

smax(lo ] + oyl + o 0] * log] + oyl * log 1) 520

This completes the proof of Theorem 1.
THEOREM 2, Under the hypothesis of Theorem 1, the error estimate for the

mth approximate solution ie expressed by

- i, -l
-l < m Pl ™ .
v - vl < (2 )[v( —T \4%33)] [P (vl

.

Proof. By the Kantorovich theory, this result follows from the hypothesis

of Theorem 1,
COROLLARY 1. Ae a funotion of v, for fixed m,

+1
W - vl = O(vzm *1)

COROLLARY 2, If the hypothesis of Theorem 1 is satisfied, then for a given
e > 0, there exists a denumerably infinite number of linear equations and solu-
tions V¥, a8 specified by (3) such that the entire family of V,'8 are within

the e-neighborhood of the exact solution ¢ of (2), i.e.,

fv - Wnucb <e .

Proof. Follows directly from Theorem 2,
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