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EFFECT OF AXIAL LOAD ON MODE SHAPES AND FREQUENCIES OF BEAMS
by Francis J. Shaker

Lewis Research Center

SUMMARY

An investigation of the effect of axial load on the natural frequencies and mode
shapes of uniform beams with various types of boundary conditions and of a cantilevered
beam with a concentrated mass at the tip is presented. This investigation yielded ex-
pressions for the mode shapes and characteristic equations for the various cases con-
sidered. For the uniform beams the characteristic equations were solved either numer -
ically or in closed form, and the results are presented by a series of graphs showing the
effect of preload on the different types of beams. The effect of axial load on the mode
shapes is also shown in graphical form for several different loading conditions. For the
cantilevered beam with a tip mass, two types of axial loads were considered: In the
first case the axial load vector remained constant, and in the second case the load was
directed through the root of the beam at all times. The results of this portion of the in-
vestigation are presented in graphs that show the effects of both tip-mass variation and
axial load on the fundamental frequency of the system,

INTRODUCTION

In the design of certain spacecraft structural components it sometimes becomes
necessary to determine the normal modes and frequencies of beam type components
which are in a state of preload or prestress. This preload may result from inertial ef~
fects, as in the case of a spinning spacecraft, or it may be induced by mechanical
means. For example, current designs for large, flexible solar arrays (refs. 1 to 4)
are such that the boom that supports the array is in a state of prestress due to the ten-
sion that must be maintained in the solar cell substrate. Also, certain types of attach-
ment and ejection mechanisms can cause preload in parts of the primary spacecraft
structure. In most of these cases an exact solution for the normal modes and frequen-
cies of the system would be intractable and recourse would be made to one of the many
approximate solutions such as the Rayleigh-Ritz method, Galerkin's method, finite



elements, etc. (refs. 5to 8). There exists, however, a class of problems for which an
exact solution can be obtained., This class consists of uniform beams under constant
axial load with various types of simple boundary conditions, This type of structure may
represent some structural components reasonably well for preliminary design informa-
tion, Even in those cases where it does not adequately model the structure, the modes
obtained for these cases can be used to obtain Rayleigh-Ritz or Galerkin type of
solutions,

For these reasons an investigation was made to determine the effect of an axial load
on the modes and frequencies of a uniform beam with various boundary conditions and of
a cantilevered beam with a tip mass. The boundary conditions considered for the uni-
form beam include all possible simple boundary conditions at both ends of the beam
(i.e., free, hinged, clamped, and guided). For the cantilevered beam with a tip mass,
two types of axial loads were considered. The first type was a constant axial load ap-
plied at the tip, and the second was an axial load whose direction is always through the
fixed support. The second is the limiting case for some current large solar array de-
signs if the mass of the blanket is negligible compared with the mass of the support
beam., When the mass of the blanket is not negligible, which is usually the situation,
these modes could still be used in a Rayleigh-Ritz analysis for this type of array.

SYMBOLS

A,B,C,D,E arbitrary constants of integration

An’Bn constants of integration corresponding to nth mode of vibration

F1 uniform beam bending stiffness

k axial load parameter, YP/EI

k nondimensional axial load parameter, @ﬁ

k nondimensional axial load parameter corresponding to critical load,

cY
‘/ 2
Pch/EI

L length of beam
M(x, t}), m(x), moment distribution along length of beam
m(x)
An total mass of beam, pl
,,/lT tip mass for cantilevered beam
p axial load
cr critical or Euler's buckling load for beam
2
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Q(x, t),q(x),
a(x)

t

V(x, t),v(x)
V(%)

7, @

X

x

aq, Ay

%1n’ Y2n

n
Subscripts:

B
n

T

Superscript:

Al

shearing force distribution

time

beam displacement

nondimensional beam displacement, v/I
mode shape of nth mode

lengthwise coordinate

nondimensional lengthwise coordinate, x/1
characteristic values, eq. (9)

characteristic values for nth

4
frequency parameter, VYpw/EI

nondimensional frequency parameter, 81

mode

nondimensional frequency parameter corresponding to nth

- 4/ 9
vibration, pwy / EI

ratio of tip mass to total beam mass, 4/ 4p

mode of

mass per unit length of beam
circular frequency of vibration

th

circular natural frequency of n~ mode

beam
integral number designating natural bending mode and frequency of beam
tip of cantilevered beam

differentiation with respect to x

THEORETICAL ANALYSIS

Uniform Beam Under Axial Load

Equations of motion. - The development of the equations governing the bending

vibrations of uniform beams are presented in numerous texts on vibration theory

(refs. 5, 6, or 8).

In the development that follows the effect of an axial load is included.
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Consider a uniform beam vibrating freely under the action of a constant axial load
P as shown in figure 1(a). Let V(x,t) be the displacement of any point x along the
neutral axis of the beam, The internal shear, moment, and inertial forces acting on an
element dx in length will be as shown in figure 1(b). Summing forces and moments on
this element yields the following two equilibrium equations:

2 A
8QMx,t) _ ) 3TV, _ (12)
ox atz
aM(X, t) + P BV(X,t) + Q(X, =0 (1b)
ox ox

From elementary beam theory the moment-curvature relationship for the sign convention

depicted in figures 1is

2
M(x,t) = EI & V&1 (1c)

P

The shearing force Q(x,t) can be expressed in terms of the displacement variable by us-
ing equations (1b) and (1c). Thus

3
X

ox

Finally, from equations (1a) and (2) the equation of motion in terms of the displacement

variable can be written as

4 2 2
eV P VY, p TVEL_, (3)
st EI 5.2 EI .2

Equation (3) represents the governing partial differential equation describing the motion
of the beam, and equations (1c) and (2) represent the moment and shear distribution

along the beam,
Solution of equation and boundary conditions. - The time variable in equations (1) to

(3) can be eliminated by assuming a solution of the form

V(x,t) = v(x) sin wt (4a)



M(x,t) = m(x) sin ot (4b)
Q(x,t) = q(x) sin wt (4e)

Substituting equations (4) into equations (1) to (3) yields

4 2
dvE) , (2 4vE) _ ghyxy =0 (5)
ax? dx?
a2y (x)
m(x) = EI — (6a)
dx
3
q(x) = -EI [9V&) |, 2 dv(x) (6b)
dx3 dx

where k2 = P/EI and ,84 = pcbz/EI. It will be convenient at this point to put equa-
tion (5) into nondimensional form by letting x = x/l, v=v/l, k=ki, and B = 81. Us-
ing these expressions allows equations (5) and (6) to become

Fx) + K@ - BR® =0 (1)
m® = EJZI_;"

(8)

4@ = - EI_{V"'&) . Ezv'(a}

l3

The solution to equation (7), which can be readily verified by direct substitution, is
given by

v(X) = A cosh ali + B sinh 0% + D cos ayX + E sin ayx (9)

where A, B, C, and D are constants and



2 4
> (10)
_ 1/2
2 4
Oy = k_+ k—+ 64
2 4 D

The frequency equation can now be determined from equation (9) once the boundary con-
ditions are stipulated. The boundary conditions being considered at either end of the

beam are as follows:

Pinned -
v=0and m=0 or V"=O. (11a)
Clamped -
v=0 and V' = (11b)
Free -
m=0or v' =0 and q=0 or v'" +E% - (11c)
Guided -
v'=0 and q=0 or V'''=0 (11d)

The various combinations of these boundary conditions at both ends of the beam are
listed in table I. If the boundary conditions given by equations (11) are used at x =0,
two of the unknown constants in equation (9) can be evaluated, and the resulting solutions
are for the beam free at X=10

_ _ _ _ o« B
v(x) = A [cosh ax + L eos agx |+ B <sinh agX + 2 gin a2x> (12a)
for the beam pinned at x = 0
v(x) = A sinh a1§ + E sin a2§ (12b)




for the beam clamped at X =0
—_ - - -
v(x) = A (cosh aX - cos azﬂ + B|sinh a;X - — sin a,x (12c)

and for the beam guided at X =0
v(X) = A cosh a1§ + D cos oz2§ (12d)

Note that each of equations (12) contains two unknowns. When the boundary conditions at
x = 1 are specified, these equations will yield two homogeneous, algebraic equations in
these two unknowns. The determinant of the coefficients of the unknowns must be equal
to zero for a nontrivial solution to exist, Equating this determinant to zero then yields
the characteristic equation from which the frequency parameter B can be determined as
a function of axial load P or axial load parameter k. To illustrate, consider the case
where the beam is free at x = 1. From equation (11c) the boundary conditions are

¥ =0 ") + X1 = 0 (13)

From equations (12c¢) and (13) the following two homogeneous, algebraic equations in A
and B are obtained after some manipulation:

A<a:i cosh @y = a:i cos oz1>+ B<a:i sinh ay - ag sin a2> 0 (142)

0 (14b)

l

A(ag sinh ay + a:i sin ozz)+ B(ag cosh @ - ozg cos al)

Equating the determinant of the coefficients of A and B in equations (14) to zero, ex-
panding, and simplifying will then yield the following characteristic equation for the free-
free beam:

2?6(1 - cosh a; cos ay) +1_£2(1:4 + 323-4) sinh o, sin a, =0 (15a)
Similarly, for the other boundary conditions at X = 1 the following characteristic equa-
tions are obtained: for the free-guided beam

oz:23 sinh @4 COS 0y + a:i cosh @y sin o, = 0 (15b)



for the free-pinned beam

3

-ag cosh ay sin oy + ay sinh @y COS ag = 0

for the clamped-free beam

25 4 (2% + l_§4) cosh a; cos a, - B%&2 sinh a,sin a, =0

for the clamped-~pinned beam

oy cosh oy sin oy - 5 sinh @4 cos a, = 0

for the clamped-guided beam

ay sinh a4 €os ag + az cosh @y sin ay = 0

for the clamped-clamped beam

232(1 - cosh a, cos az) - %2 sinh @y sin ay =0

for the guided~guided and pinned-pinned beams
sin ay = 0
and for the guided-pinned beam

cos a, = 0

(15¢)

(15d)

(15e)

(15f)

(15g)

(15h)

(15i)

Equations (15g) and (15i) yield the following expressions for the frequency parameter:

for the pinned-pinned or guided-guided beam -

and for the pinned-guided beam

(16)

(17)



Equations (16) and (17) exhibit the main characteristics of all the frequency equations
given by equations (15). Namely, as P (or k) increase, the frequencies decrease until
P equals the Euler buckling load P er of the beam. At this point the lowest elastic fre-
guency becomes zero. For P greater than P or? the fundamental frequency becomes
complex, and the corresponding mode shape is unstable (ref. 6, p. 451 and ref. 8, p.
302). Thus, the maximum value for P of practical interest is P or The values of

p cr and k cr for beams with the different boundary conditions are tabulated in table II.
To determine the frequency parameter for the beams with cther boundary conditions,
equations (1@ can be solved numerically for En for any value of k less than the cor-

responding k cre

Cantilevered Beam Under Axial L.oad With Tip Mass

For the case of a cantilevered beam with a concentrated mass at the free end, two
types of axial loads will be considered. In the first case (fig. 2(a)) the axial load will be
taken as a constant in both magnitude and direction so that this case corregponds to the
uniform clamped-~free beam case except that a concenirated mass is added to the free
end, In the second case (fig. 3(a)) the axial load is assumed to be directed through the
root or fixed end of the beam at all times. For this case the axial load is not constant
since it changes direction during the motion. This type of loading will be referred to as
a directed axial load. For both cases the deflection is given by (eq. (12c) since the
boundary condition at the fixed end is the same as for a uniform cantilevered beam.
Also, the moment boundary condition at the free end is the same for both cases and is
given by

v'(1) =0 (18)
The difference between the two cases will be in the shear boundary condition at the free
end. For the case of constant axial load, the shear boundary conditions can be found by

satisfying the equilibrium condition at the free end which is depicted in figure 2(b).
Thus

a() + Mpe7(1) = 0 (19)
From equations (6) and (9) this boundary condition becomes

T + B + npB (D) = 0 | (20)




where 7, is the ratio of the tip mass JIT to total beam mass, "IB =pfl. From equa-
tions (12c), (18), and (20) the following two homogeneous equations in A and B are
obtained:

A(oz% cosh oy + dg cos a2> + B(czz1 sinh o, + B2 sin a2> =0

A{ag sinh ay - 32 sin a, + nT-Ez(cosh @y - cos az)} >(21)

2 = . . _
+ B{ag cosh a; + o cos Oy + nTBZ(aZ sinh o - @, sin az)} = OJ
Equating the determinant of the coefficients of A and B to zero, expanding and simplify-
ing yields the following characteristic equation for a cantilever beam with a tip mass
under constant axial load.
9% Fzﬁz sinh o sin a, - (ZF4 + k% cosh ay cos o

+ nT§2 (azl + aé)(al cosh @y sin ay - sinh @, cos az) =0 (22)

For the case of a cantilevered beam with a tip mass and a directed axial load, the con-
dition at the free end is shown in figure 3(b). From this figure the equilibrium condition

can be written as
v + B + (nTE4 - E2>x7(1) =0 (23)
Comparmg this equation with equation (20) shows that the term nTB - &2 replaces

nTB Thus multiplying equation (22) by B and replacing nTB with (nTB - k ) yields
the characteristic equation for the beam with a directed axial load.

-ZEG +7341_<2 sinh ay sin oy - (2_[54 +E4) cosh @y cos ag

+ <77TE4 _‘EZ)(QZI + ozg)(al cosh oy sin ay - O sinh @y cos ozz) =0 (24)

Mode Shapes For Beams Under Preload

The mode shapes for a beam under preload can be determined from equations (12)
and one other boundary condition. For example, assume that the ntP root of the fre-
quency equation is known and is given by En' Corresponding to B—n there will be an

10



®1n and o n which are obtained by substituting By into equations (10). For the case
of a free-free beam, the displacement in the nt? mode is given by equation (1223) as

2
o a
= = —_ 1n oy . - 2n . >
v, (x) = A [cosh oy X - —~ cos g X |+ B (smh @y X+ — sin aZnX) (25)
on In

For the free-free beam case either of equations (14) can be used to determine a relation
between An and B,. Using equation (14a) yvields

(cosh @, -cos a,.)
3
. %n .
sinh @y, - ——sin a2n
%1n

Substituting equations (26) into (25) and arbitrarily setting An = 1 will then yield the
desired mode shape or eigenfunction for the free-free beam. In a similar manner the
mode shapes for the other boundary conditions can be determined. These functions are
summarized in the following equations: for free-free and free-pinned beams

o2

vn(x) ={cosh @y X + —— COo8 Oy X

%9n

cosh @, -cos «a a
- _in 2n sinh a4 X + _2n sin a. X (27a)
3 n o 2n
inh azn . In
sinh &, - _3 sin aq
%1n

11



for a free-guided beam

o2 -

Vn(‘i) = cosh a1n§+ _21n cos a, X
%n

3
. %in .
sinh gy +—— sin %
a _ o« _
- 2n sinh @y X + 20 gin 0y X (27b)
cosh Oy, - COS O, 40
for a clamped-free beam
Vn(x) = (cosh @y X - COS ay nx)
%
cosh Ay +—— COS &
2n
dzln . - % —
- sinh @)X - —sin oy X (27¢)
. %n @
sinh a; + — sin a, n
In
for clamped-pin and clamped -clamped beams
cosh o, - cos a
= = = = In %n . = %m =
vn(x) = cosh 0y X - COS Oy X - - <smh Uy - — sin aznx> (27d)
. In _. 2n
sinh O - T sin ay
2n
for a clamped-guide beam
sinh o, + il_z_rl sin o
In o 2n o
Vn %) = cosh alni - cos azni - 1n sinh aln}_c - In gy a2n§>"(27e)
cosh aq, - COS g, Con
for a guided-guided beam
v, (X) = cos (nX) (27f)

12



for a guided-pinned beam

v, ®) = cos <2n ~ 1)1r§ (27g)
2

and for a pinned-pinned beam
v, (x) = sin (n7X) (27h)

It can readily be shown that the mode shapes for the cantilevered beams with a tip mass
are the same as those given by equation (27c).

RESULTS AND DISCUSSION
Uniform Beam Under Axial Load

To determine the effect of axial load on the natural frequencies of a uniform beam,
the characteristic equations (given by eqs. (15a) to (15g) were solved numerically by the
method of bisection (ref. 9). In this investigation the axial load ratio P/ Pcr was varied
between -1 and 1, and the first three lowest frequencies were determined. The results
for the fundamental elastic body frequencies are presented in figure 4. The pinned-
pinned, guided-guided, and pinned-guided curves in this figure were developed from
equations (16) and (17). In this figure the curves for the free-free and clamped-clamped
beams appear as a single curve. Although the frequencies for these two cases were not
identically equal over the entire range of P/P cr’ the differences could not be shown for
the scale used in the figure., The same is true for the free-guided and clamped -guided
cases. The variation in frequency as a function of axial load for the first few lower fre-
quencies for each uniform beam case is given in figure 5. It can be noted that the var-
iation in the second and third frequency for all cases shown is almost linear for the
range of P/P cr considered. These higher mode frequencies will go to zero when the
second and third buckling loads are reached. However, these portions of the curves are
of no practical interest unless the beam is prevented from buckling in its fundamental
mode,

To show the effect of axial loading on the mode shapes of the beam, equations (27)
were used to determine the modes for P/Pcr = -1.0, 0, and 0. 8. These calculations
were normalized, and the results are shown in figures 6 to 12 for the first three modes.
These figures indicate that the effect of axial load is greatest on the fundamental mode
and that the effect decreases rapidly as the mode number increases. The most

13



pronounced effect occurs for the free-pinned beam in its fundamental mode (fig. 8(a)).
Note, however, that all the cases exhibit this effect as P/P er approaches 1.

Cantilevered Beam With Tip Mass

For a cantilevered beam with a tip mass equation (22) was solved for the case of a
constant axial load and equation (24) for an axial load directed through the root of the
beam. The method of solution of these equations was the same as that used for the uni-
form beams, The effects of both tip mass ratio, Np = JT/_,/lB, and axial load ratio
P/P er OO the fundamental frequencies were determined, and the results are shown in
figures 13 to 16. Figure 13 shows the variation in the frequency parameters E% VI + T
as a function of tip mass ratio, 7, for values of P/Pcr between -1 and 0, 8. Note that

E? V1 + Np equals w4 (_/T + .,IB)Z3/E71, so that the frequency parameter for this case
is related to the total mass of the system and not just the beam mass. Figure 14 shows
the same data plotted as a function of axial load ratio with the tip mass ratio as a param-
eter. Figures 15 and 16 are a similar set of graphs for the cantilever with a directed
axial load.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 5, 1975,
506-22.
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TABLE I. - BOUNDARY CONDITIONS FOR UNIFORM BEAM UNDER CONSTANT AXJAL LOAD

Free-free p % P T0) = 0 (1) = 0
Y 17 |30 +K(0) =0 (1) + K (1) = 0
Free-guided P —x p| ¥ =0 vi(1) =0
70) + K21 (0) = 0 (1) + KS(1) = 0 +
Free-pinned P ’_‘X p | V(0 =0 v(1) =0
T0) + K0 =0 v'(1) =0
% _ _
Guided-guided P p (V=0 vi(1) =0
T A KET0) = 0 T LK) = 0
. x — -
Guided-pinned P i p | v(0)=0 v(l) =0
dn T + K@) =0 V(1) =0
. % — -
Clamped-free P p | v(0)=0 vi'(1) =0
¥'(0) = 0 Y1) + K59 (1) = 0
. . X - _
Pinned-pinned P e plvoy=0 v(1) =0
— < — _
1'(0) = 0 (1) =0
| . x
Clamped-pinned | P §~ P (v()=0 v(1) =0
7 v'i(0) =0 vit(1) = 0
| < - ~
Clamped-guided P X p |v0) =0 vi(1) =0
oo ﬂ v(0) = 0 V() « k(D) = 0
| -— -
Clamped-clamped P b E b v(i0) =0 v(l) =0
% E‘* v(0) =0 vi(1) =0
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TABLE II. ~ BUCKLING CHARACTERISTICS OF SIMPLE BEAMS

Boundary conditions

Free-free

Free-guided

Free-pinned

Guided-guided

Guided-pinned

Clamped-free

Pinned-pinned

Clamped-pinned

Clamped-guided

Clamped-clamped

Characteristic
equation
sin kn =0
cos kn =0
sin kn =0
sin kn =0
cos kn =0
cos kn =0
sin kn =0
tan kn = kn
sin kn =0
sin 2 =

Eigenvalue,

kn

m

(2n - 1) -

m

m

nn

4.493

nn

2nm

Critical load,

PCI‘

[\
o~
to |

u:-l“m
|5

o~
Do

m]”m
=
—

o~
N

|
=
]

o~
2]

B
no
Itl:l
=

o~
. Do

2 EI
(0.6997)2

Buckling mode

= \71 = sin (7/2)X

(Same as free-free)

v

X
vl—cosni
v
— X

v = cos n(x/2)

tv -P

Z—/E/Vl=1 —cosi1§

(Same as free-free)

—_ - § , —
1:‘cr - _
vy =cos 2rx -1
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{b) Forces acting at free end of cantilevered beam
under directed axial load.

(a) Coordinate system for cantilevered beam with
tip mass under directed axial load.

Figure 3. - Cantilevered beam with tip mass under directed axial load.

pdx =%
bV ot TQ +dQ
M
Mo, t) P P
1 | AL
dx
X = dx |— ] v
Q, t) t | | Q o
% %
(@) Coordinate system for uniform vibrating beam (b} Sign convention for forces and moment
under constant axial foad, acting on arbitrary element,
Figure 1. - Vibrating beam with arbitrary boundary conditions.
v Y
MpiLsin wt
l p
4 s V(l)siln wt Yq(llsin wt
— — 4 3 :
(a) Coordinate system for cantilevered beam with (b) Forces acting at free end of cantilevered beam
tip mass under constant axial load. under constant axial load.
Figure 2. - Cantilevered beam with tip mass under constant axial load.
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Figure 6, - Effect of axial load on mode shape of free-free beam.
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Figure 7. - Effect of axial load on mode shape of free-guided beam.

23



Modal displacement, vil

24

Axial load
ratio,
PIPer

(a) First mode.

7.8 .9 L0 o .1 .2 .3 4 5 6 1 8 9 10
Nondimensional beam coordinate, x/l

S A (R (R (R Y N R
. . . . .6

(b} Second mode. (c) Third mode.

Figure 8. - Effect of axial load on mode shape of free-pinned beam.
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