NASA TECHNICAL NOTE

NASA TN D-8121

NASA IN D-8121 6.

LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N. M.

INLET NOISE OF 0.5-METER-DIAMETER NASA QF-1 FAN AS MEASURED IN AN UNMODIFIED COMPRESSOR AERODYNAMIC TEST FACILITY AND IN AN ANECHOIC CHAMBER

Thomas F. Gelder and Richard F. Soltis Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON,

WASHINGTON, D. C. • DECEMBER 1975

1.	Report No.	2. Government Acces	sion No.	3. Recipient's Catalo	g No.		
4.	Title and Subtitle		RA OF 1 FAN AG	5. Report Date)75		
	MEASUDED IN AN IDMODIEI	-DIAMETER NA	SA QF -1 FAN AS	6 Besterming Ormei	770 action Cada		
	TEASURED IN AN UNMODIFIE	LD COMPRESSO		6. Performing Organ			
7.	Author(s)	NECHOIC CHAM	IBER	8. Performing Organiz	zation Report No.		
	Thomas F. Gelder and Richard	l F. Soltis		E-8201			
				10. Work Unit No.	·····		
9.	Performing Organization Name and Address			505-04			
	Lewis Research Center		<u> </u>	11. Contract or Grant	No.		
	National Aeronautics and Space	Administration					
	Cleveland, Ohio 44135			13. Type of Report a	nd Period Covered		
12.	Sponsoring Agency Name and Address			Technical No	ote		
	National Aeronautics and Space	Administration		14 Sponsoring Agency	/ Code		
·	Washington, D.C. 20546			14. opendering / gener	0000		
15.	Supplementary Notes						
	_						
16.	Abstract						
	Narrowband analyses revealed	grossly similar	sound pressure leve	el spectra in eac	h facility.		
	Blade passing frequency (BPF)	noise and multip	ole pure tone (MPT)	noise were supe	erimposed		
	on a broadband (BB) base noise	. From one-this	rd octave bandwidth	sound power an	alyses the		
	BPF noise (harmonics combine	d), and the MPT	noise (harmonics c	combined, except	ting BPF's)		
•	agreed between facilities within	1.5 dB or less	over the range of sp	peeds and flows	tested. De-		
	tailed noise and aerodynamic pe	erformance is al	so presented.				
17.	Key Words (Suggested by Author(s))		18 Distribution Statement				
	Low speed fan noise		Unclossified	unlimited			
	Compressor noise		STAD Ostanen 71 (n				
	Low anod for some		SIAR Callegory	(I (I'ev.)			
	Low speed fan aero						
	· •			r · · · · · · · · · · · · · · · · · · ·			
19.	Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*		
	Unclassified	Unclass	ified	98	\$4.75		
		-					

.

.

-

 * For sale by the National Technical Information Service, Springfield, Virginia ${f 22161}$

• · · · • • -. · ·

.....

CONTENTS

l

-

	Page
SUMMARY	1
INTRODUCTION	2
APPARATUS	3
Test Stage Design	3
	3
Compressor aerodynamic test facility and instrumentation	3
Anechoic chamber test facility and instrumentation	4
Comparison of fan inlet configurations	6
PROCEDURES	6
Test	6
Noise Data Reduction	7
General	7
Anechoic chamber.	8
Plenum chamber	9
RESULTS AND DISCUSSION	10
Aerodynamic Performance	10
Overall pressure ratio and efficiency	10
Rotor tip Mach number	11
Inlet flow mean velocity and turbulence intensity in anechoic chamber	11
Inlet Noise Performance	11
Effect of turbulence screen	11
Typical noise spectra in each facility	12
One -third octave band power spectra comparisons	14
Noise components as functions of speed and flow	15
Throttle noise in unmodified compressor test facility.	16
CONCLUDING REMARKS	17
SUMMARY OF RESULTS	18
APPENDIXES	
A - SYMBOLS	20
B - EQUATIONS	23
C - ABBRE VIATIONS AND UNITS USED IN TABLES	26
REFERENCES	29

.

ä

•

INLET NOISE OF 0. 5-METER-DIAMETER NASA QF-1 FAN AS MEASURED IN AN UNMODIFIED COMPRESSOR AERODYNAMIC TEST FACILITY AND IN AN ANECHOIC CHAMBER by Thomas F. Gelder and Richard F. Soltis Lewis Research Center

SUMMARY

The inlet noise from a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan was determined from measurements in the reverberant plenum chamber of an unmodified (i.e., no acoustic treatment) compressor aerodynamic test facility and from measurements in an anechoic chamber. These noise results are presented along with detailed aerodynamic performance recently published. Narrowband (50-Hz) noise analyses revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and, at the higher tip speeds, multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. Sound power levels were determined from one-third octave bandwidth analyses. On that basis the BPF noise (harmonics combined) and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 dB or less over the range of speeds and flows tested. Trends in the total broadband noise with changes in speed and flow were similar in each facility but comparisons of the absolute power levels are questionable because of differing frequency spectra and maximum frequency limits analyzed.

The satisfactory determination of one-third octave based inlet tone power levels in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband spectra that are representative of free and far field spectra it also offers the potential for cause and effect relationships between aerodynamic and noise performance.

In the anechoic chamber the BPF noise was highest near peak efficiency operation. It propagated at all speeds despite a design to cut it off at low speeds and despite inlet flow with low free stream turbulence intensity and flow distortion. The MPT noise was only significant at 100 percent design speed where it dominated the spectrum. The broadband noise increased about 6 dB from 60 to 80 percent design speed then decreased about 1 dB from 80 to 90 percent speed, all on a calculated operating line passing through the design point.

INTRODUCTION

Facilities utilized to determine the detailed aerodynamic performance of a fan or compressor are generally unsuitable for free and far field noise measurements. The test package is usually installed between an upstream plenum chamber and a downstream collector and exhaust system which have hard, noise reflecting walls throughout. However, it has been demonstrated (ref. 1) that the usual noise components of blade passing frequency tones, multiple pure tones, and broadband noise can be identified and sound power levels determined from noise measurements in the reverberant field environment of the inlet plenum chamber of an unmodified (i.e., no acoustic treatment) compressor aerodynamic test facility. These data contained no directivity information, no downstream or exit noise measurements, and were for rotors with blade passing frequencies at design speed of at least 10 kilohertz which eliminated any significant standing wave problems.

There is a real incentive to obtain meaningful noise data in the same installation and time period that the detailed aerodynamic data are obtained. Early screening of designs and the potential for cause and effect relationships between the aerodynamic and noise performance is thereby possible.

A 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan has been tested for noise and aerodynamic performance in an unmodified compressor test facility. The detailed aerodynamic performance has been recently reported (ref. 2). In addition, the same QF-1 scale model, renamed stage 15-9 (rotor 15 - stator 9) for convenient reference, was recently tested for inlet noise in an anechoic chamber. This anechoic chamber is a new facility which belongs to the General Electric Co. It was designed and developed by them and is located at their Corporate Research and Development Center, Schenectady, New York. The cooperation of the General Electric Company and particularly that of C. T. Savell and R. J. Wells is gratefully acknowledged.

The purposes of this report are the following: (1) to compare the inlet sound pressure level spectra and the absolute sound power levels in each noise component as determined in an unmodified compressor aerodynamic test facility with that determined in an anechoic chamber and thereby establish the validity and limitations of the non-anechoic facility and (2) to document the inlet acoustic performance of a 0.271-scale model of NASA QF-1 fan over a wide range of speeds and flows for which detailed aerodynamic data are also available.

The design tip speed of the NASA QF-1 fan is 337 meters per second (1107 ft/sec) and design total pressure ratio is 1.50. The fan was tested over a range of speeds from 50 to 100 percent of design and weight flows between near choke and near stall. Onethird octave bandwidth sound power spectra for all test conditions and narrowband (50-Hz) sound pressure spectra for selected conditions are presented. All symbols and equations are defined in appendixes A and B, respectively. Abbreviations and units for the tabular data are defined in appendix C.

APPARATUS

Test Stage Design

The overall aerodynamic design parameters for stage 15-9 are listed in table I. Design total pressure ratio, efficiency, and weight flow per unit annulus area were 1.499, 0.848, and 201.8 kilograms per second per square meter $(41.3 \text{ lb/(sec)(ft^2)})$, respectively, at a tip speed of 337 meters per second (1107 ft/sec). There were 53 rotor blades and 112 stator blades spaced 3.5 rotor chords downstream of the rotor trailing edge. The flow path through the blading and aerodynamic instrumentation stations are shown in figure 1. A view of the stage with outer casing removed is shown in figure 2.

The blade element design parameters for rotor 15 and stator 9 are presented in tables II and III, respectively. The blade geometry is presented in table IV for the rotor and in table V for the stator. Both rotor and stator used multiple circular arc blade shapes. Further details of the aerodynamic and mechanical designs appear in reference 2. Stage 15-9 is a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan (refs. 3 and 4).

Test Facilities

Compressor aerodynamic test facility and instrumentation. - The compressor test facility has been previously described (e.g., refs. 2 and 5), but pertinent features are repeated here for convenience. An overall schematic view is shown in figure 3(a) while rotor and microphone locations are detailed in figure 3(b). The drive system consists of a 3000-hp electric motor with a variable-frequency speed control. The drive motor is coupled to a 5.521-to-1 ratio speed-increaser gearbox that drives the test rotor.

Atmospheric air enters through a filter house (not shown) into a line on the roof of the building. The air passes successively through a flow measuring orifice, inlet throttle valves, two cascades of turning vanes which reverses the direction of flow, and then into the 183-centimeter - (72-in. -) diameter plenum chamber. As shown by figure 3(b), the air then enters a 122-centimeter - (48-in. -) diameter pipe leading to a bellmouth which then reduces the flow path to the 49.5-centimeter (19.49-in.) diameter of the rotor tip. Downstream of the stator, the air is turned into a toroid-shaped collector. A cylindrically shaped and translatable sleeve valve at the collector entrance was used exclusively to throttle the airflow for the present tests. The air is finally exhausted to either a low- or high-vacuum receiver, as required.

The walls of the plenum chamber and all piping to and from it are rolled steel plate about 1.3 cm (1/2 in.) thick with no acoustic treatment. The volume of the chamber between the rotor and the turning vanes in the first 90° bend upstream is about 13.3 cubic meters (470 ft³). The corresponding wall surface area is about 36 square meters (388 ft²).

Hereafter, noise data from the microphone locations of figure 3(b) are referred to as those from the plenum chamber.

The acoustic instrumentation was the same as that detailed in reference 1. A 0.64centimeter - (1/4 - in. -) diameter condenser -type microphone was positioned by remote control to two different radii in the plenum chamber in a plane 236 centimeters (93 in.) upstream of the rotor as shown in figure 3(b). A pistonphone -type microphone calibrator was routinely used. The microphone signal was recorded in the FM -mode at a tape speed of 19.05 centimeters per second $(7\frac{1}{2} in. /sec)$ with a frequency capability to 25 kilohertz. Playback from the tape recorder was connected to either a continuous 50 hertz constant bandwidth wave analyzer geared to its graphic level recorder, or to a continuous one-third octave constant percentage bandwidth analyzer geared to its graphic level recorder.

The aerodynamic instrumentation is pictured in figure 4(a) and its location is given in figure 4(b). The wedge probes were used to determine static pressure and the combination probes were used to determine total pressure, total temperature, and flow angle. These probes were automatically alined with the direction of flow. Radial traverses of the flow were made at three axial stations labeled 1, 2a or 2b, and 3 in figure 1. Further downstream at station 4 were four fixed rakes for measuring total pressure. Each fixed rake contained five radially spaced tubes with equal circumferential spacing between rakes. Two combination probes and two 8⁰ wedge probes (fig. 4) were radially traversed at each of the stations 1 to 3. The combination probes at station 3 were also circumferentially traversed across one stator blade gap (3.2^{0}) from the nominal values shown in figure 4(b). Calibrated transducers were used to measure all pressures. The total pressures at station 1 to 3 were used for more accurate determination of overall performance and for the blade element performance. The data were recorded by a central data recording system.

Anechoic chamber test facility and instrumentation. - A three view schematic of the General Electric Company's anechoic chamber is shown in figure 5. The structural enclosure of the chamber is approximately 10.4 meters (34 ft) wide, 7.2 meters (23.5 ft) long, and 4.1 meters (13.5 ft) high. All enclosing surfaces are covered with an array of polyurethane foam wedges about 0.7 meter (2.3 ft) long. A photograph of the anechoic chamber taken from the air intake opening is shown in figure 6. The anechoic chamber

was designed to test fans in both intake and exhaust modes. In the intake mode the test fan is mounted so that air flows into the anechoic chamber and out through the muffler and inlet noise may be measured. In the exhaust mode the test fan and airflow are reversed and exhaust noise may be measured. For the present tests only the intake mode was used. All the anechoic chamber walls were made porous by leaving small spaces between the foam wedges. By distributing the intake air with ducting to all the porous walls, spherical sink-type flow was simulated in the intake mode of operation. This was to minimize inlet flow distortion and turbulence level.

Test fans in the anechoic chamber are driven by a constant speed motor of 2500 hp. A gearbox for speeds to 19 000 rpm was used for stage 15-9. The airflow was throttled about 43 meters (141 ft) downstream of the fan (fig. 5), and a muffler was installed about 2 meters (6.5 ft) upstream of this throttle. A flow measuring orifice was 7.6 meters (25 ft) upstream of the muffler.

Acoustic calibration tests of the chamber utilized a horn driver with pure tone inputs. Microphone traverses were made from about 1 to 6 meters (3 to 20 ft) along different azimuthal rays emanating from the fan inlet location. Results of these tests indicated a standing wave ratio of ± 1 dB or less for frequencies from about 400 to 40 000 hertz and for azimuthal angles from 0[°] to 90[°]. Fan far field noise measurements were made at a fixed radius of 5.18 meters (17 ft) (~7 bellmouth diameters) at driveshaft height and for azimuthal angles from 0[°] to 120[°].

The acoustic instrumentation utilized in the anechoic chamber consisted of the following: Thirteen 0.64-centimeter- (1/4-in. -) diameter condenser-type microphones and pistonphone-type microphone calibrator. The acoustic data were recorded in the FM-mode at 152.4 centimeters per second (60 in./sec). The tape recorder was calibrated over the frequency range from 0 to 80 kilohertz. Only above 40 kilohertz were significant corrections to the data necessary and these have been incorporated in the data presented. These data were all processed by a one-third octave bandwidth analyzer with digital output. Selected data were further reduced by a 50 hertz constant bandwidth analyzer and corresponding graphic level recorder. Computers were utilized to process the digital one-third octave data into various standardized formats and also to calculate the sound power levels from the sound pressure levels measured by the azimuthal array of 13 inlet microphones.

The aerodynamic instrumentation in the anechoic chamber was minimal. It consisted of two five-element total pressure rakes at station 4 (fig. 1). These were two of the four rakes utilized in the compressor aerodynamic test facility to monitor overall performance. Only two rakes, 180° apart, were used in the anechoic chamber due to limitations in available data channels. Inlet total pressure was taken equal to anechoic chamber static pressure. Mass flow was measured by a 55.9-centimeter- (22-in.-) diameter orifice. Inlet mean velocity and turbulence intensity were measured by a radially traversable single-wire hot film probe in a plane 26.8 centimeters (10.6 in.) upstream of the rotor (fig. 7). Four circumferential locations, 90⁰ apart were surveyed with the hot film. The fluctuating velocity was measured by a true rms meter. All hot film data were recorded on tape for later processing.

<u>Comparison of fan inlet configurations.</u> - Above the fan centerline in figure 7 is shown the anechoic chamber inlet and below the fan centerline is shown the unmodified compressor test facility inlet. A nearly spherical screen encloses the well rounded bellmouth in the anechoic chamber for most of the tests. The purpose of the screen was to homogenize the inflow to the fan and thus produce lower turbulence intensity levels. There is a flat screen in the plenum chamber of the other facility (figs. 7 and 3(b)). The screens for each facility utilized different wire and mesh sizes but the ratio of screen distance from rotor to mesh size was comparable. The unmodified compressor facility also utilizes four support struts in a relatively low velocity section about 60 centimeters (23.6 in.) upstream of the rotor. These struts are equally spaced, airfoil shaped, and have maximum thickness to chord ratio of about 23 percent. The contour of the case between the support struts and the rotor was designed to minimize boundary layer growth and prevent separation. The centerbody in the compressor test facility was fixed and longer than the rotating spinner utilized in the anechoic chamber.

PROCEDURES

Test

In both facilities the fan was tested over a range of speeds from 50 to 100 percent of design and weight flows between near choke and near stall. Fan rotative speed and temperatures were allowed to stabilize before any aerodynamic or acoustic measurements were made. Downstream throttle valves were then adjusted to the several desired weight flows. In the unmodified compressor test facility the aerodynamic data at stations 1 to 3 (fig. 1) were obtained at nine radial positions for each speed and weight flow tested. All the aerodynamic performance data presented herein are from mass weighted integrations of the traverse data taken in the non-anechoic facility. The anechoic chamber aerodynamic performance was related to this traverse data performance through the common rake measurements at station 4 and the respective flow measurements.

Hot film measurements in the anechoic chamber were recorded for 2 minutes at each location. Corrections for any temperature and pressure changes during testing were made from manufacturers' calibrations.

All 13-arc microphones in the anechoic chamber were calibrated with a pistonphone before and after each test. If these levels differed for any microphone, its average level was used to reduce the data from that microphone. Frequency response of the acoustic data acquisition system was calibrated by inserting constant amplitude sine waves at each one-third octave center frequency. Anechoic chamber acoustic data from all microphones were recorded simultaneously for at least 1 minute at each operating point. No inlet probes (hot film) were in place during acoustic tests.

The plenum chamber microphone was calibrated with a pistonphone before each test. About 2 minutes of data at each operating point and for each of two radial positions (fig. 3(b)) were recorded.

Prior to taking noise data in the plenum chamber, all the aerodynamic probes at stations 1 to 4 were withdrawn from the flow path and the holes in the outer case smoothly plugged. Aerodynamic probes in the flow path can create extraneous noise sources as demonstrated in reference 1. Except for adding a microphone in the plenum chamber and the removal of all aerodynamic probes (except for a single pitot tube at station 4 for monitoring purposes), the compressor test facility was not otherwise modified for the present noise tests.

Noise Data Reduction

<u>General.</u> - Sound power levels (PWL) rather than sound pressure levels (SPL) must be utilized for absolute value comparisons of stage 15-9 inlet noise determined in the anechoic chamber with those determined in the reverberant environment of the untreated plenum chamber in the compressor test facility. Inlet noise directivity is measured in the anechoic chamber but cannot be measured in the plenum chamber. In the latter a diffuse sound field exists (ref. 1). Thus a different calculation for inlet PWL from the measured SPL values will be described for each facility.

Fan noise is usually subdivided into the following three components (refs. 6 and 7): (1) the fundamental blade passing frequency (1×BPF) and its harmonics (2×BPF, etc.), (2) multiple pure tones (MPT), and (3) broadband (BB). One-third octave bandwidth analysis is most commonly used to display the spectra of fan noise and determine its noise components. However, MPT noise is generally not obvious from one-third octave bandwidth spectra alone. Significant MPT noise is usually associated with rotor blade relative Mach numbers that are supersonic. These MPT occur at harmonics of rotor speed frequency (rotor RPM/60, Hz) which usually cannot be identified without narrow (\sim 50-Hz), constant bandwidth analysis. These narrowband analyses provide a continuous trace of the sound pressure level with frequency as measured at a particular microphone location. Such narrowband traces are rarely used to calculate a sound power level which would require a large amount of detailed interpretation and calculation.

A typical compromise in reducing fan noise data (refs. 4 and 8) is to process all of the data by one-third octave bandwidth SPL and PWL analyses. Then data from selected microphone locations are further reduced by narrowband analysis to continuous SPL against frequency traces. The narrowband results are then used to guide the

interpretation of the one-third octave bandwidth SPL and PWL spectra. Such a procedure was adopted for reducing the noise data from both the anechoic chamber and the plenum chamber as illustrated next.

<u>Anechoic chamber</u>. - Sample narrowband and one-third octave bandwidth noise spectra are shown in figure 8 for a speed high enough to generate all three noise components - BPF, MPT, and BB. In figures 8(a) and (b), the SPL from the 60° microphone are shown. But in figure 8(c), the inlet PWL based on all microphones is presented for one-third octave bandwidths. These PWL were obtained by assuming symmetry above and below the plane of the microphones (fig. 5) and integrating the SPL over the nearly hemispherical surface that could be generated by rotating the arc of 13 microphones through 180° . (The SPL from the 100° to 120° microphones was included in the PWL calculation but that sector had an insignificant influence on the overall level from 0° to 90° , the hemisphere of interest herein.)

In figure 8(a) the 50-hertz analysis extends from 0 to 25 kilohertz and the 1×BPF tone is clearly shown by the peak in SPL at about 11.6-kilohertz. The MPT noise is at integral multiples of rotor speed frequency of 219 hertz and is most significant at frequencies below 1×BPF. Peak MPT values are higher than values of 1×BPF and appear between 4 and 8 kilohertz. In figure 8(b) the one-third octave SPL analysis of the same data also shows a significant peak in the 4- to 8-kilohertz range. With the previous narrowband detail (fig. 8(a)) this hump in the one-third octave band data (fig. 8(b)) can be identified as MPT noise. Similarly, in the PWL spectrum from all inlet microphones (fig. 8(c)) the powerpeak in the 4- to 8-kilohertz range is attributed to MPT noise.

The 1×BPF noise at 11.6 kilohertz (fig. 8(a)) is near the dividing frequency of 11.3 kilohertz which separates adjacent one-third octave bands (indicated along abscissa of figs. 8(b) and (c)). To account for this adjacent band sharing or band splitting of the 1×BPF noise, the sound energy in the two bands is added. As will be evident in subsequent plots, when 1×BPF falls near the center frequency of the one-third octave band, band sharing does not occur. In the sample shown (fig. 8), 2×BPF noise is insignificant (at least 10 dB lower) relative to 1×BPF. At lower speeds it is not. For all speeds and weight flows, the 1×BPF and 2×BPF noise are added together in subsequent comparison plots of BPF noise from each facility.

A broadband noise base is indicated on all parts of figure 8. In figure 8(a) it is estimated to be along a line connecting the low points of the narrowband spectrum as shown. From this narrowband estimate a one-third octave bandwidth broadband level is calculated for figure 8(b) as indicated on the figure and discussed next.

A spectrum level (SL) for the broadband base is determined from the 50-hertz analysis at each one-third octave center frequency which are indicated along the abscissa of figure 8(a). The spectrum level, SL, is defined as the average sound pressure level of the broadband base in decibels referred to a 1-hertz-wide bandwidth. To each SL the corresponding one-third octave bandwidth, $(bw)_{1/3 \text{ oct}}$, allowance was added to yield the broadband SPL in that band (fig. 8(b)).

The indicated broadband base in the one-third octave PWL spectrum (fig. 8(c)) is obtained by joining the low points in the PWL spectrum underlying the BPF's and MPT's which have been previously identified in narrowband SPL analyses like figure 8(a). The reasonably close agreement of the broadband base levels between figures 8(b) and (c) supports this technique.

All levels above the calculated broadband base in figures 8(b) or (c) are interpreted as the total noise in either (MPT + BB) or (BPF + BB). The MPT or BPF noise is determined by decibel subtraction of the underlying BB energy contribution from the total SPL or PWL values at that frequency.

The tabulations on figure 8(c) show a sample breakdown of the noise components and the broadband corrections to the indicated tones. The total BB noise indicated in figure 8(c), 135.8 dB, resulted from adding the energy at the centerline frequencies of each one-third octave band between 100 and 80 000 hertz. Also tone indications, if any, below about 250 hertz were generally ignored because of poor narrowband resolution there and possible starting transient errors in the graphic level recorders.

<u>Plenum chamber</u>. - These noise data were reduced in a manner similar to the anechoic chamber data with the following exceptions: (1) the upper limit of frequency analysis was 20 kilohertz (instead of 80 kHz) because of tape recorder limitations, and (2) the calculation of PWL from SPL measurements was based on reverberant chamber relations (instead of free and far field integrations over a hemisphere) because of the diffuse sound field in the plenum. These relations are developed in reference 1 and result in the following equation:

$$PWL = SPL + 10 \log (v) - 10 \log (\tau) - 19 dB$$
(1)

where PWL is in dB (referenced to 10^{-13} W), SPL is in dB (referenced to 0.0002 µbar), v is chamber volume in cubic feet (470 ft³), and τ is reverberation time in seconds. The experimentally determined reverberation time is shown in figure 9(a) taken from reference 1. (The microphone locations in fig. 9(a) encompass those utilized in the present study (fig. 3(b)). Because reverberation time is a function of frequency and chamber volume is a known constant, the PWL-SPL relation can be plotted as shown in figure 9(b). Further details of this procedure are given in reference 1. An average SPL from the two radial positions in the plenum was utilized to calculate the one-third octave PWL spectra presented although such radial differences were usually within 1 dB for all conditions and center frequencies. Finally, separating out the MPT and BPF noise from the BB and adjusting the tone levels for the broadband contribution was exactly the same for the plenum chamber data as for the anechoic chamber data previously illustrated (fig. 8(c)).

L

RESULTS AND DISCUSSION

Aerodynamic as well as acoustic results are presented in this section. Some of the data are tabulated as well as plotted. The overall aerodynamic performance for eleven representative operating points with stage 15-9 are given in table VI. Blade element performance for these operating points is presented in table VII for the rotor and table VIII for the stator. These and other aerodynamic data for the stage can be found in reference 2 and are repeated here for convenience. Operating points for the acoustic data will be indicated. In general they are close to but not identical to those in table VI.

Acoustic data from each of the 13 microphones in the anechoic chamber reduced to one-third octave bandwidth spectra from 100 to 80 000 hertz and adjusted to standard day conditions at 30.48 meters (100 ft) are presented in table IX along with the acoustic power levels calculated from the microphone array. Subsequent plots will present all of the anechoic and plenum chamber results from one-third octave bandwidth analyses as well as narrowband (50-Hz) analyses for selected operating conditions and microphone locations.

Aerodynamic Performance

Overall pressure ratio and efficiency. - An overall performance map for stage 15-9 is presented in figure 10. The solid lines are fairings through the data of reference 2. Operating points for the acoustic data are indicated by arrowheads. At design speed and on an operating line calculated to pass through the design point with a fixed fan exhaust nozzle (see ref. 2), the stage pressure ratio, efficiency, and percent design weight flow were 1.475, 0.835, and 98.0, respectively; these compare favorably with design values of 1.499, 0.848, and 100.0 (table I). The near stall or near surge lines indicated are not much removed from the calculated operating line, particularly in the anechoic chamber installation. The near surge line in the anechoic chamber occurs at higher weight flows than in the compressor aerodynamic facility. This is believed related to the much larger volume between the stator trailing edge and the throttling valve in the anechoic facility (fig. 5) compared with the sleeve valve located in the collector inlet in the compressor test facility (fig. 3(a)). Also, the increased exit ducting and muffler in the anechoic chamber installation caused its minimum resistance line (wide open throttle) to occur at lower weight flows than that for the other facility. The combined result was a relatively narrow flow range of operation at a given speed in the anechoic chamber facility. Flow range was less than half that available in the compressor test facility. Power and vibration limits at design speed caused an additional restriction to the anechoic chamber operating range.

Rotor tip Mach number. - Speed is a primary variable in evaluating acoustic as well as aerodynamic performance. For convenient reference the Mach number relative to the rotor blade leading edge at 5 percent span from the tip, $(M_{1,05}^{\prime})$, is presented in figure 11 for all conditions tested. These data along with loadings (diffusion factor D), loss coefficients, incidence angles, and so forth, are available at nine spanwise locations for both rotor and stator blades in tables VII and VIII, respectively.

Inlet flow mean velocity and turbulence intensity in anechoic chamber. - These data were obtained from radial surveys with a hot film at four equally spaced circumferential locations, 26.8 centimeters (10.6 in.) upstream of the rotor in the anechoic chamber installation both with and without the inlet turbulence screen as indicated in figure 7. Comparable data were not taken in the compressor test facility. Results of the hot film surveys are shown in figure 12. A circumferentially averaged mean velocity without the turbulence screen is presented in figure 12(a). Circumferential variations were less than ± 2 percent (within accuracy of measurement) and nonsystematic. (Hot film calibration problems with the screen in place made that data unreliable thus it is not shown). As indicated by the radial profile of mean velocity, the boundary layer from the well-rounded bellmouth inlet did not extend beyond a radius ratio of about 0.98 at the measuring station. Also, the free stream average velocity of about 97.5 meters per second (320 ft/sec) (fig. 12(a)) agrees within a few percent of an average value that was calculated from the measured flow, the cross-sectional area in the hot wire plane, and the local density deduced from static conditions measured in the anechoic chamber.

Circumferentially averaged turbulence intensities with and without the screen in place are presented in figure 12(b). With screen, the midstream levels are quite low, about 0.0045. (Nonsystematic circumferential variations ranged from 0.0035 to 0.0055). Similar midstream levels have been measured in outdoor model tests. Turbulence intensities within the boundary layer were much higher than in midstream, ranging from 2 to over 6 percent. Tests without the inlet screen show an average midstream intensity level of about 0.007. (Midstream circumferential variations ranged from 0.0065 to 0.0085.) Also without the screen, the region of intense turbulence near the case wall was thickened. There were no measurable differences in overall pressure ratio or weight flow in the anechoic chamber with or without the turbulence screen. The effects of the screen on the acoustic results are discussed next.

Inlet Noise Performance

Effect of turbulence screen. - As shown by one-third octave band sound power spectra in figures 13(a) to (d) for speeds of 70 to 100 percent of design, respectively, the screen in the anechoic chamber reduced the high frequency broadband noise (above about 2×10^4 Hz) at all speeds by 3 to 5 dB. In general as speed was increased, the

effectiveness of the screen spread to lower frequencies. Blade passing tone levels were generally affected less than 2 dB. At design speed (fig. 13(d)) the screen was not effective in reducing the multiple pure tone noise occurring in the frequency range from 4 to 8 kilohertz. Because the screen was found from calibrations not to have significantly altered the sound from a speaker source, and because the screen was located in a low velocity region, the broadband noise reduction is believed to be a result of a reduction in the noise source levels. As previously discussed, the screen reduced the inlet freestream turbulence intensity and reduced the thickness of intense turbulence near the case wall.

The flat screen half way through the plenum chamber of the compressor test facility (fig. 3(b)) was not removed thus comparable data from that facility are not available.

As shown in figure 7, the distance between the screen and the rotor, divided by the mesh size (wire center to center distance) was about 960 for the anechoic chamber and about 850 for the compressor test facility with plenum chamber. Such large and comparable distance to mesh size ratios are an indication of comparable turbulence intensities at the rotor face (ref. 9). Thus the noise data from the two facilities, discussed next, is with their respective screens in place.

<u>Typical noise spectra in each facility</u>. - In the anechoic chamber the effect of speed on narrowband and on one-third octave band SPL from the 60° microphone is shown in figures 14 and 15, respectively. Comparable results from a microphone in the plenum chamber of the aerodynamic test facility are shown in figures 16 and 17. The 60° angle SPL was selected for comparison because it is generally at or near the peak azimuthal value for all operating conditions (see table IX) and is representative of the spectra which has the major influence on the inlet sound power.

The narrowband results from the anechoic chamber (fig. 14) show prominent $1 \times BPF$ tones at all speeds despite a design that should cut them off at low speeds (refs. 4 and 10). The MPT content increases as the speed is increased from 70 to 100 percent speed. High levels of MPT noise relative to the $1 \times BPF$ noise in the far field have been related to supersonic relative blade speeds (refs. 7 and 11). The blade relative Mach number (at 5 percent span from tip) at 100 percent design speed is about 1. 15 and that at 70 percent speed is about 0. 75 (see fig. 11). Also, figure 14 shows the $2 \times BPF$ tone decreasing relative to the $1 \times BPF$ level as speed is increased.

At 70 percent speed (fig. 14(c)), there is an extraneous tone near 2000 hertz, the source of which is unknown. Other fan designs tested in this anechoic chamber have not displayed such a tone. Also, at comparable speed and flow conditions, the same fan tested for noise in the compressor aerodynamic facility did not generate the stray tone (see fig. 16(c)). Fortunately the 2000-hertz tone is not a factor in evaluating the three noise components of interest.

Also at 70 percent speed in the anechoic chamber (fig. 14(c)) the $2 \times BPF$ and $3 \times BPF$ tones appear split into two discrete tones about 600 hertz (4 rev/sec) apart. This

phenomena also did not appear in the narrowband analyses of the plenum chamber data (fig. 16(c)) nor at any of the higher speeds in either facility. Reasons for the split are unknown. However, it is not a factor in the one-third octave analyses (fig. 15(c)) where the wider bandwidths automatically combine the aforementioned tone splits.

Direct graphic comparison of the 50-hertz spectra from each facility (figs. 14 and 16) is a little difficult because of the different scales utilized by the different graphic level recorders. To eliminate that difficulty and also to illustrate that MPT's (including the BPF's) occur at multiples of the engine order E (rev/sec of the rotor shaft), figures 18 and 19 were constructed. Figure 18 is for 70 percent speed, and figure 19 is for 100 percent speed. Part (a) of each figure represents the anechoic chamber traces of figures 14 (a) and (c); part (b) represents the plenum chamber traces of figures 16(a)and (c). The peaks and valleys of each MPT, relative to the level of 1×BPF, were read from the graphic traces. The peaks were plotted at the appropriate engine orders and the valleys half way between. Straight lines were drawn between them. In regions without MPT clusters (mainly the 70 percent speed data) the SPL at each engine order was read from the respective analyzer traces then these levels were joined by straight lines. Exact correspondence of noise spectra from any single microphone in an anechoic chamber with that from any microphone in a reverberant chamber is of course not expected or even possible. However, there are enough similarities in the narrowband spectra between the plenum chamber data and the anechoic chamber data to make the former a helpful representation of the free and far field frequency content and of relative dB levels. For example, in either facility, the MPT's are similar in frequency content and in level (relative to $1 \times BPF$) at 100 percent speed (fig. 19). At this speed the MPT's dominate the spectrum. Likewise in either facility the MPT's are equally insignificant at 70 percent speed (fig. 18).

With regard to $1\times$ BPF at 70 percent speed, (fig. 18) similar patterns are evident in either facility although the tone is wider at the broadband base level in the plenum chamber. Also at 70 percent speed, the $2\times$ BPF tone is lower relative to the $1\times$ BPF tone in the plenum chamber than in the anechoic chamber. At 100 percent speed (fig. 19), the $1\times$ BPF tone level is less above the broadband base in the plenum chamber data than in the anechoic chamber data.

There are gross similarities in the narrowband (50-Hz) spectra from each facility at comparable operating conditions. However, some of the finer details differ.

The one-third octave band results from either the anechoic chamber (fig. 15) or the plenum chamber (fig. 17) are much easier to interpret when their corresponding narrow-band results (figs. 14 and 16, respectively) are available. The MPT noise at 100 percent design speed (figs. 15(a) or 17(a)) is mainly clustered in the one-third octave bands centered at 4, 5, 6.3, and 8 kHz. The 1×BPF noise at 100 percent speed is shared by the 10 and 12.5 kilohertz centered bands and the 2×BPF by the 20 and 25 kilohertz centered bands. At 70 percent speed (figs. 15(c) or 17(c)) the 1×BPF is near the center of the one-

third octave band centered at 8 kilohertz and no band sharing of this tone or its second harmonic is apparent. The one-third octave broadband base calculated from the narrow-band analyses (fig. 14) agrees with the direct one-third octave analysis for all speeds (fig. 15).

In the plenum chamber at 70 percent speed and 67 percent flow (figs. 16(c) and 17(c)) there is a broadband hump in the SPL spectra extending from about 500 to about 3000 hertz that is not present for comparable conditions in the anechoic chamber (figs. 14(c) and 15(c)). This is believed due to exit throttle generated noise in the compressor test facility discussed later.

One-third octave band power spectra comparisons. - As previously discussed, the flow range at each speed is much less in the anechoic chamber installation than in the compressor test facility. Thus, in general there was only one flow at a given speed that was nearly the same in each facility. These four directly comparable operating conditions are shown in figures 20(a), (b), (c), and (d) for 70, 80, 90, and 100 percent speed, respectively.

In general, the broadband spectra are somewhat different between the two facilities as is the upper frequency limit of the analysis. There is the previously indicated low speed (70 and 80 percent), low frequency range (500- to 3000-Hz) hump in the plenum data. Also, above 1×BPF, the plenum broadband is less than the anechoic data. At 90 and 100 percent speed (figs. 20(c) and (d)), the plenum broadband is higher under the MPT noise than in the anechoic chamber. Above 1×BPF, the broadband noise switches to higher in the plenum at 90 percent speed and about equal at 100 percent speed relative to the anechoic chamber levels. Substantially different downstream throttle systems are believed responsible for the broadband differences below about 3000 hertz (see later discussion). Reasons for the inconsistent broadband relation between facilities above 1×BPF are not apparent. The overall result is that absolute value comparisons of broadband noise power are questionable because of the aforementioned differences. However, the broadband contribution to the indicated 1×BPF tone levels is not significantly different between facilities to adversely affect that tone noise comparison described next.

The 1×BPF noise component is nearly the same in both facilities for all speeds shown (fig. 20). At 70 and 80 percent speed the $2\times$ BPF noise is higher in the anechoic chamber than in the plenum but the combined BPF noise agrees within less than 1.5 dB for speeds from 70 to 100 percent.

The MPT spectra are quite similar at 90 and 100 percent speed and the absolute values are in close agreement at 100 percent speed where the MPT component is dominant.

The satisfactory determination of one-third octave based inlet tone power levels (BPF's and MPT's) in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband

spectra that are representative of free and far field spectra it also offers the potential for cause and effect relations between the aerodynamic and noise performance.

All of the one-third octave band power spectra from each facility are presented in figures 21 to 26 for speeds of 50 to 100 percent of design, respectively. At 50 and 60 percent speed directly comparable data are not available as it is for 70, 80, 90, and 100 percent speed. The weight flows at each speed are shown and the absolute value of each noise component tabulated.

In the anechoic chamber at 60 and 70 percent speed (figs. 22 and 23(a)) the second harmonic (2×BPF) is about equal to the fundamental (1×BPF). In the aerodynamic test facility at 70 percent speed (fig. 23(b)), the 2×BPF noise level is 7 to 9 dB below 1×BPF for all weight flows tested. This implies that the stage 15-9 waveforms measured in the reverberant plenum chamber are shaped nearly like sine waves while those in the anechoic chamber are more irregular in shape. However the combined acoustic power in 1×BPF and 2×BPF in one chamber is nearly equal to that in the other at comparable operating conditions. Also, at the higher speeds (figs. 24 to 26), the 2×BPF noise levels are nearly 10 dB lower than 1×BPF in both facilities.

Crossplots summarizing each of the noise components are presented and discussed next. Following that, the throttle noise in the compressor aerodynamic test facility is examined.

Noise components as functions of speed and flow. - The inlet sound power in blade passing frequencies (BPF), in multiple pure tones (MPT), and in the broadband (BB) noise are shown in figures 27, 28, and 29, respectively, for both test facilities. These results are from the previously presented one-third octave analyses (figs. 21 to 26) and cover the range of speeds and flows tested.

The levels of BPF noise (fig. 27) represent the combined power of $1 \times BPF$ and $2 \times BPF$. On this basis there is very good agreement between the two facilities over the entire range studied. At a midthrottle setting, the BPF levels generally increase with increasing tip speed from 50 to 80 percent speed and remain near the later level at 90 and 100 percent speed. The effect of flow or loading at a fixed speed on BPF levels is mixed. At speeds between 70 and 100 percent the midthrottle settings associated with near peak efficiency operation (fig. 10) produce the highest level of BPF noise. Also, the near stall flows in the aerodynamic test facility generally result in the lowest levels of BPF at a given speed. Reasons for this unexpected behavior of BPF noise are not presently known.

The levels of the multiple pure tones are shown in figure 28 against a background of blade passing frequency levels. Only at 100 percent speed are the MPT a significant noise source (relative to the BPF) and there the agreement between the two facilities is very good. There is some MPT contribution at 90 percent speed where the relative Mach number is near 1.0 but it is less than the BPF. The MPT levels at 90 percent speed are about 5 dB less in the anechoic chamber than in the plenum for unknown reasons. At 100 percent speed the combined MPT levels exceed the combined BPF levels. It appears that

some of the acoustic energy in the blade passing frequency is increasingly shifted into multiple pure tones as the blade relative Mach number increases above unity. Evidence for this is the leveling off of the BPF noise near 1.0 relative Mach number concurrent with increasing MPT noise as Mach number increases beyond about 1.0. At design speed there is no effect of loading (flow changes) on the MPT levels for the range of flows that could be tested.

The broadband noise levels for each facility are presented in figure 29. As previously discussed, the plenum chamber data show a broadband frequency spectra that generally differs from the anechoic chamber data as does the upper frequency limit analyzed thus absolute value comparisons of total broadband power are questionable. However, trends with speed and flow may be valid and are similar in each facility. At constant speed, the broadband noise increases steadily with decreases in flow. Such flow decreases mean increased blade loading with possibly increased flow separation and thus increased turbulence from blade and wall boundary layers. The allowable flow range at constant speed was small in the anechoic chamber thus the range of broadband noise was only a few dB. The broadband noise in the anechoic chamber increased about 6 dB from 60 to 80 percent design speed (about fifth power of speed dependence) then decreased about 1 dB from 80 to 90 percent speed. These values apply along a fan operating line calculated to pass through the design point with a fixed fan exhaust nozzle. Design speed data could not be run at this throttle setting (fig. 10). Reasons for the lower broadband noise at 90 percent speed are not known.

A summary of the one-third octave based inlet sound power from the 0.271-scale model of the NASA QF-1 fan tested in an anechoic chamber revealed the following: the blade passing frequency noise was highest near a midthrottle, peak efficiency, setting. It propagated to the far field at all speeds despite a stator to rotor blade number ratio satisfying the cutoff criteria (ref. 10) and despite low levels of free stream inlet turbulence intensity and flow distortion. The MPT noise was not significant at 90 percent speed (takeoff condition, ref. 3) but was dominant at 100 percent speed. And the broadband noise increased with speed between 60 and 80 percent design speed but declined about 1 dB from 80 to 90 percent speed.

<u>Throttle noise in unmodified compressor test facility.</u> - As previously mentioned there is a broadband hump in the noise spectra from about 500 to 3000 hertz for the midthrottle data at 70 and 80 percent speed (figs. 20(a) and (b)) that is not apparent from the anechoic chamber data. The source of this broadband hump is believed to be the sleeve throttle valve at the entrance to the collector about 60 centimeters (23.6-in.) downstream of the stator in the compressor test facility (fig. 3(b)). At maximum flow, the sleeve valve is translated forward and completely out of the flow path. Under these conditions (see figs. 23(b) to 26(b)), the plenum chamber noise spectra do not show a low frequency hump and are similar to the anechoic chamber spectra. However, to reduce weight flow, the sleeve valve must be translated rearward and into the flow path. Then the broadband noise hump is present as shown (figs. 23(b) to 26(b)). On the other hand in the anechoic chamber installation, the throttle valve is remote from the stator and also there is a muffler in the line to reduce its upstream noise (fig. 5).

To further identify possible secondary noise sources, additional data from the aerodynamic compressor test facility without stage 15-9 installed is presented in figure 30. A range of weight flows was drawn by vacuum exhaust equipment (fig. 3(a)) through the compressor flow path and throttled by the collector entrance sleeve valve. The overall sound powers measured in the plenum as a function of flow are shown in figure 30(a). In figure 30(c) are the one-third octave power spectra for a range of flows, while figure 30(b) presents the average Mach number of the flow in the minimum area section (station 3 of fig. 1). Noise levels increased with increasing flow until the annulus was nearly choked and then the noise dropped off over 10 dB when the average Mach number approached 0.9. The noise spectra were similarly shaped for all flows with the highest levels in the range of frequencies between about 500 and 3000 hertz. These highest absolute levels are about the same as those with stage 15-9 operating at conditions resulting in about the same average Mach number at station 3 (fig. 1). By choking the flow at station 3 in the vacuum exhaust tests without stage 15-9 installed, the noise decrease extends across most of the spectrum (fig. 30(c)). In particular, the broadband noise between about 500 and 3000 hertz is substantially reduced. Thus the noise that has been choked off is believed to originate from the partly closed sleeve throttle.

The high broadband noise at the near stall flows in the aerodynamic test facility (figs. 21 to 26) are believed generated by stage 15-9. The continuously increasing level with increasing frequency (up to $1 \times BPF$) is not characteristic of the facility operated without the stage (fig. 30(c)). Increased regions of flow separation from the highly loaded rotor and stator blades is a possible source of the increased broadband noise. In the anechoic chamber, similarly low weight flows and the correspondingly high blade loadings were not attainable thus acquiring noise data under such conditions was not possible.

CONCLUDING REMARKS

There are some obvious limitations to the noise measurements taken in the reverberant inlet plenum chamber of the present or any similar aerodynamic compressor test facility. No noise directivity information is possible from reverberant facilities which is required for effective perceived noise level or noise footprint calculations. Also, fan exit as well as inlet noise data are essential in evaluating its overall noise performance and these are not reported herein. Although 1.32-centimeter- (1/8-in. -) diameter microphones were radially traversed behind the stators of stage 15-9 (and others), there are presently no anechoic or other free and far field data with which to compare and thus evaluate it.

The high blade passing frequencies of stage 15-9 (about 11 kHz at design speed) eliminated any significant standing wave problems in the symmetrical plenum chamber (ref. 1). Rotors with much lower blade passing frequencies (due to lower numbers of blades or lower tip speeds) may introduce such problems. Then modifications to the plenum or to the method of acquiring a good space average of the noise level will probably be required. Finally, the presently described contamination by exit throttle noise may be reduced by using a more remote and perhaps muffled throttle than one at the collector entrance.

SUMMARY OF RESULTS

The inlet noise from a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan was determined from measurements in the reverberant plenum chamber of an unmodified compressor aerodynamic test facility and from measurements in an anechoic chamber. The principle results of the study were the following:

1. Narrowband (50-Hz) analyses revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and, at the higher tip speeds, multiple pure tone (MPT) noise were superimposed on a broadband (BB) based noise.

2. Sound power levels were determined from one-third octave bandwidth analysis. On that basis the BPF noise (harmonics combined) and the MPT noise (harmonics combined excepting BPF's) agreed between facilities within 1.5 dB or less over the range of speeds and flows tested. However, the sound power difference between $1\times$ BPF and $2\times$ BPF was not the same in each facility at low speed. Trends in the total broadband noise with changes in speed and flow were similar in each facility but comparisons of the absolute power levels are questionable because of differing frequency spectra and maximum frequency limit analyzed.

3. The satisfactory determination of one-third octave based inlet tone power levels in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband spectra that are representative of free and far field spectra it also offers the potential for cause and effect relations between the aerodynamic and noise performance.

4. In the anechoic chamber the BPF noise was highest near peak efficiency operation. It propagated at all speeds despite a design to cut it off at low speeds and despite free stream inlet flow with low turbulence intensity and flow distortion. Also the MPT noise was only significant at 100 percent design speed (tip relative Mach number of about 1.10) where it dominated the spectrum. The broadband noise increased about 6 dB from 60 to 80 percent design speed then decreased about 1 dB from 80 to 90 percent speed, all on a calculated operating line passing through the design point.

Lewis Research Center,

Ł

National Aeronautics and Space Administration, Cleveland, Ohio, August 22, 1975, 505-04.

APPENDIX A

SYMBOLS

A _{an}	annulus area at rotor leading edge, 0.144 m ² ; 1.55 ft ²
A _f	frontal area at rotor leading edge, 0.192 m^2 ; 2.07 ft ²
C _p	specific heat at constant pressure, 1004 J/(kg)(K); 0.24 Btu/(lb)(O R)
c	aerodynamic chord, cm; in.
D	diffusion factor
Е	engine order, rev/sec
ⁱ mc	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
i _{ss}	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
М	Mach number
Ν	rotative speed, rpm
N _D	design rotative speed, 13 020 rpm
Р	total pressure, N/cm ² ; psia
PWL	sound power level, dB (referenced to 10^{-13} W)
р	static pressure, N/cm 2 ; psia
r	radius, cm; in.
SM	stall margin
\mathbf{SPL}	sound pressure level, dB (referenced to 0.0002 $\mu { m bar}$)
т	total temperature, K; ^O R
U	wheel speed, m/sec; ft/sec
U'	fluctuating velocity from hot film probe, m/sec; ft/sec
Ū	mean velocity from hot film probe, m/sec; ft/sec
v	air velocity, m/sec; ft/sec
W	weight flow, kg/sec; lb/sec
w _D	design weight flow, 29.16 kg/sec; (64.3 lb/sec)
\mathbf{Z}	axial distance referenced from rotor blade hub leading edge, cm; in.

- ·

$\alpha_{\mathbf{c}}$	cone angle, deg
α_{s}	slope of streamline, deg
β	air angle, angle between air velocity and axial direction, deg
$\beta_{\mathbf{c}}^{\prime}$	relative meridional air angle based on cone angle, arctan $(\tan \beta_{\rm m}' \cos \alpha_{\rm c}/\cos \alpha_{\rm s})$, deg
γ	ratio of specific heats (1.40)
δ	ratio of rotor inlet total pressure to standard pressure of 10.13 N/cm^2 (14.69 lb/in. ²)
δ ^O	deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
η	efficiency
θ	ratio of rotor inlet total temperature to standard temperature of 288.2 K (518.7 $^{\rm O}$ R)
^{<i>K</i>} mc	angle between blade mean camber line and meridional plane, deg
ĸ _{ss}	angle between blade suction surface at leading edge and meridional plane, deg
σ	solidity, ratio of chord to spacing
Ξ	total loss coefficient
$\overline{\omega}_{\mathbf{p}}$	profile loss coefficient
$\overline{\omega}_{\mathbf{s}}$	shock loss coefficient
Subscr	ipts:
ad	adiabatic (temperature rise)
id	ideal
LE	blade leading edge
m	meridional direction
mom	momentum rise
р	polytropic
R	rotor
ref	reference
stall	stall
TE	blade trailing edge
tip	tip

-

i

ł

•

- z axial direction
- θ tangential direction
- 05 5 percent span from tip of rotor

1 instrumentation plane upstream of rotor (fig. 1)

2a instrumentation plane nearest rotor trailing edge (fig. 1)

2b instrumentation plane nearest stator leading edge (fig. 1)

3,4 instrumentation planes downstream of stator (fig. 1) Superscript:

' relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle

$$\mathbf{i}_{ss} = \left(\beta_c'\right)_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle

$$\mathbf{i_{mc}} = \left(\beta_{c}^{\prime}\right)_{LE} - \left(\kappa_{mc}\right)_{LE}$$
(B2)

Deviation angle

$$\delta^{\mathbf{O}} = \left(\beta_{\mathbf{C}}^{\prime}\right)_{\mathbf{TE}} - \left(\kappa_{\mathbf{mC}}\right)_{\mathbf{TE}}$$
(B3)

Diffusion factor

$$\mathbf{D} = \mathbf{1} - \frac{\mathbf{V}_{\mathbf{TE}}}{\mathbf{V}_{\mathbf{LE}}} + \left| \frac{\left(\mathbf{r} \mathbf{V}_{\theta}\right)_{\mathbf{TE}} - \left(\mathbf{r} \mathbf{V}_{\theta}\right)_{\mathbf{LE}}}{(\mathbf{r}_{\mathbf{TE}} + \mathbf{r}_{\mathbf{LE}})\sigma(\mathbf{V}_{\mathbf{LE}})} \right|$$
(B4)

Total loss coefficient

$$\overline{\omega} = \frac{\left(\mathbf{P}'_{id}\right)_{TE} - \left(\mathbf{P}'\right)_{TE}}{\left(\mathbf{P}'\right)_{LE} - \left(\mathbf{p}\right)_{LE}}$$
(B5)

Profile loss coefficient

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{s}}$$
(B6)

Total loss parameter

$$\frac{\overline{\omega}\cos\left(\beta_{\rm m}^{\prime}\right)_{\rm TE}}{2\sigma} \tag{B7}$$

-

23

- - -- --- ----

Profile loss parameter

$$\frac{\overline{\omega}_{p} \cos\left(\beta_{m}^{\prime}\right)_{TE}}{2\sigma}$$
(B8)

Adiabatic (temperature -rise) efficiency

$$\eta_{ad} = \frac{\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{TE}}{T_{LE}} - 1}$$
(B9)

Momentum-rise efficiency

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\left(\frac{\mathbf{U}\mathbf{V}_{\theta}}{\mathbf{T}_{\text{E}}} - \left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}\mathbf{C}_{\text{p}}}}$$
(B10)

Equivalent weight flow

$$\frac{\mathbf{W}\mathbf{\sqrt{\theta}}}{\delta} \tag{B11}$$

Equivalent rotative speed

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area

$$\frac{\underline{W}\sqrt[b]{\theta}}{\underline{\delta}}$$
(B13)

.... ----.

•

Weight flow per unit frontal area

$$\begin{pmatrix}
\underline{W \, V_{\theta}} \\
\delta \\
\underline{A_{f}}
\end{pmatrix}$$
(B14)

Head-rise coefficient

.

L

$$\frac{C_{p}T_{LE}}{U_{tip}^{2}} \left[\left(\frac{P_{TE}}{P_{LE}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$
(B15)

Flow coefficient

$$\left(\frac{\mathbf{V}_{\mathbf{z}}}{\mathbf{U}_{\mathrm{tip}}}\right)_{\mathrm{LE}} \tag{B16}$$

Stall margin

$$SM = \begin{bmatrix} \left(\frac{P_{TE}}{P_{LE}}\right)_{stall} \times \left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref} \\ \left(\frac{P_{TE}}{P_{LE}}\right)_{ref} \times \left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall} - 1 \end{bmatrix} \times 100$$
(B17)

Polytropic efficiency

$$\eta_{\rm p} = \frac{\ln\left(\frac{\mathbf{P}_{\rm TE}}{\mathbf{P}_{\rm LE}}\right)^{(\gamma-1)/\gamma}}{\ln\frac{\mathbf{T}_{\rm TE}}{\mathbf{T}_{\rm LE}}}$$
(B18)

APPENDIX C

.-----

ABBREVIATIONS AND UNITS USED IN TABLES

(Aerodynamic and acoustic parameters listed separately)

Aerodynamic Parameters

ABS	absolute
AERO CHORD	aerodynamic chord, cm
AREA RATIO	ratio of actual flow area to critical area (where local Mach number is 1)
BETAM	meridional air angle, deg
CONE ANGLE	angle between axial direction and conical surface representing blade element, deg
DELTA INC	difference between mean camber blade angle and suction-surface blade angle at leading edge, deg
DEV	deviation angle (defined by eq. (B3)), deg
D-FACT	diffusion factor (defined by eq. (B4))
EFF	adiabatic efficiency (defined by eq. (B9))
IN	inlet (leading edge of blade)
INCIDENCE	incidence angle (suction surface defined by eq. (B1) and mean defined by eq. (B2)), deg
KIC	angle between blade mean camber line at leading edge and meridional plane, deg
KOC	angle between blade mean camber line at trailing edge and meridional plane, deg
КТС	angle between blade mean camber line at transition point and meridional plane, deg
LOSS COEFF	loss coefficient (total defined by eq. (B5) and profile defined by eq. (B6))
LOSS PARAM	loss parameter (total defined by eq. (B7) and profile defined by eq. (B8))
MERID	meridional

MERID VEL R	meridional velocity ratio
OUT	outlet (trailing edge of blade)
PERCENT SPAN	percent of blade span from tip at rotor trailing edge for design streamlines
PHISS	suction-surface camber ahead of assumed shock location, deg
PRESS	pressure, N/cm ²
PROF	profile
RADII	radius, cm
REL	relative to blade
RI	inlet radius (leading edge of blade), cm
RO	outlet radius (trailing edge of blade), cm
RP	radial position
RPM	equivalent rotative speed, rpm
SETTING ANGLE	angle between aerodynamic chord and meridional plane, deg
SOLIDITY	ratio of aerodynamic chord to blade spacing
SPEED	speed, m/sec
SS	suction surface
STREAMLINE SLOPE	slope of streamline, deg
TANG	tangential
TEMP	temperature, K
TI	thickness of blade at leading edge, cm
TM	thickness of blade at maximum thickness, cm
то	thickness of blade at trailing edge, cm
ТОТ	total
TOTAL CAMBER	difference between inlet and outlet blade mean camber lines, deg
VEL	velocity, m/sec
WT FLOW	equivalent weight flow, kg/sec
X FACTOR	ratio of suction-surface camber ahead of assumed shock location of a multiple-circular-arc blade section to that of a double-circular-arc blade section

[**-**

27

ZIC axial distance to blade leading edge from rotor hub leading edge, cm
 ZMC axial distance to blade maximum thickness point from rotor hub leading edge, cm
 ZOC axial distance to blade trailing edge from rotor hub leading edge, cm

al contra

- ZTC axial distance to transition point from rotor hub leading edge, cm

Acoustic Parameters

.

BAR	barometric pressure, in. Hg
DBA	decibels using A weighted frequency response network (ref. 12)
DBB	decibels using B weighted frequency response network (ref. 12)
DBC	decibels using C weighted frequency response network (ref. 12)
НАСТ	absolute moisture content of inlet air, ${ m g/m}^3$
NFA	actual rotative speed, rpm
NFK	equivalent (corrected rotative speed, NFA/ $\sqrt{\theta}$), rpm
NFD	design rotative speed, rpm
PERC RH	percent relative humidity
PNL	perceived noise level, PN dB
PNLT	tone corrected perceived noise level
PWL	sound power level, dB (referenced to 10^{-13} W)
SPLS	sound pressure level, dB (referenced to 0.0002 $\mu { m bar})$
TAMB	ambient temperature, ^O F
TWET	wet bulb temperature, ^O F

REFERENCES

- Gelder, Thomas F.; and Soltis, Richard F.: Inlet Plenum Chamber Noise Measurement Comparison of 20-Inch Diameter Fan Rotors with Aspect Ratios 3.6 and 6.6. NASA TM X-2191, 1971.
- Gelder, Thomas F.; and Lewis, George W., Jr.: Aerodynamic Performance of a 0.5-Meter Diameter, 337-Meters-Per-Second Tip Speed, 1.5-Pressure Ratio, Single Stage Fan Designed for Low Noise Aircraft Engines. NASA TN D-7836, 1974.
- Leonard, Bruce R.; Schmiedlin, Ralph F.; Stakolich, Edward G.; and Neumann, Harvey E.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. I - Design of Facility and QF-1 Fan. NASA TN D-5877, 1970.
- 4. Goldstein, Arthur W.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines.
 II - Performance of QF-1 Fan in Nacelle Without Acoustic Suppression.
 NASA TN D-6080, 1970.
- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.
- 6. Kester, J. D.; and Slaiby, T. G.: Designing the JT9D Engine to Meet Low Noise Requirements for Future Transports. SAE Paper 670331, April 1967.
- Kramer, James J.; Hartmann, Melvin J.; Leonard, Bruce R.; Klapproth, Jack F.; and Sofrin, Thomas G.: Fan Noise and Performance. Section II of Aircraft Engine Noise Reduction. NASA SP-311, 1972, pp. 7-61.
- Montegani, Francis J.: Noise Generated by Quiet Engine Fans. I Fan B. NASA TM X-2528, 1972.
- 9. Hinze, J. O.: Turbulence; An Introduction to its Mechanism and Theory. McGraw-Hill Book Co., Inc., 1959, (p. 217 and figs. 3-19).
- Tyler, J. M.; and Sofrin, T. G.: Axial Flow Compressor Noise Studies. SAE Trans., vol. 70, 1962, pp. 309-332.
- Burdsall, E. A.; and Urban, R. H.: Fan-Compressor Noise: Prediction, Research, and Reduction Studies. Pratt and Whitney Aircraft (FAA-RD-71-73), 1971.
- 12. Beranek, Leo L.; ed: Noise Reduction. McGraw-Hill Book Co., Inc., 1960.

TABLE I. - OVERALL AERODYNAMIC DESIGN

PARAMETERS FOR STAGE 15-9

ROTOR TOTAL PRESSURE RATIO	1.541
STAGE TOTAL PRESSURE RATIO	1.499
ROTOR TOTAL TEMPERATURE RATIO	1.145
STAGE TOTAL TEMPERATURE RATIO	1.145
ROTOR ADIABATIC EFFICIENCY	0.909
STAGE ADIABATIC EFFICIENCY	0.848
ROTOR POLYTROPIC EFFICIENCY	0.915
STAGE POLYTROPIC EFFICIENCY	0.856
ROTOR HEAD RISE COEFFICIENT.	0.334
STAGE HEAD RISE COEFFICIENT	0.312
FLOW COEFFICIENT.	0.581
WT FLOW PER UNIT FRONTAL AREA 15	51.534
HT FLOW PER UNIT ANNULUS AREA 20	1,797
NT FLOW 2	29.161
RPM	20.000
TIP SPEED 33	7.451

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 15

1

l

FP TIP 123456789 HUB	RAD IN 24.750 23.510 22.884 21.021 18.550 16.075 14.192 13.573 12.960 12.352	II OUT 23.962 23.424 22.886 22.347 20.732 18.579 16.425 14.810 14.272 13.734 13.195	ABS [N 0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	BETAM QUT 40.8 38.9 37.6 36.9 38.2 41.5 45.3 48.6 49.9 51.3 52.6	REL [N 63.6 61.6 59.8 58.3 54.7 50.9 47.2 44.0 42.7 41.5 40.1	BETAM OUT 45.6 44.9 44.1 43.0 37.6 27.1 11.7 -3.0 -8.3 -13.8 -19.2	TOTA IN 298.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RAT [0 1.169 1.158 1.149 1.143 1.139 1.141 1.144 1.144 1.148 1.149 1.151 1.151	TOTAL [N 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RATIO 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541
RP 1 23456789B	ABS [N 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2 200.0 200.1	VEL 0UT 229.2 227.4 226.5 226.3 230.9 242.4 261.7 282.0 290.1 298.8 308.3	REL IN 376.6 374.0 370.7 366.7 351.2 326.1 298.9 278.8 272.7 266.9 261.5	VEL 0UT 247.7 249.9 249.8 247.4 229.1 203.9 188.0 186.6 188.7 192.5 198.1	MERII IN 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2 200.0 200.1	VEL OUT 173.4 176.9 179.4 180.9 181.5 181.6 184.2 186.3 186.8 187.0 187.1	TAN IN 0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	G VEL OUT 149.8 142.9 138.2 135.9 142.7 160.6 185.9 211.7 221.9 233.1 245.0	WHEEL IN 337.5 329.0 320.5 312.0 286.6 253.1 219.2 193.5 185.1 176.7 168.4	SPEED OUT 326.7 319.4 312.0 304.7 282.7 253.3 224.0 201.9 194.6 187.3 179.9
RP TIP 123456789 HUB	ABS M IN 0.504 0.557 0.565 0.585 0.619 0.628 0.620 0.611 0.610 0.609 0.609	ACH NO OUT 0.649 0.646 0.646 0.648 0.663 0.699 0.759 0.825 0.851 0.880 0.911	REL M. [N 1.135 1.130 1.124 1.114 1.071 0.995 0.911 0.849 0.831 0.813 0.797	ACH NO OUT 0.701 0.713 0.713 0.708 0.658 0.588 0.588 0.546 0.554 0.554 0.567 0.586	MERID M [N 0.504 0.557 0.555 0.585 0.619 0.628 0.620 0.611 0.610 0.609 0.609	ACH NO OUT 0.491 0.503 0.512 0.518 0.521 0.523 0.534 0.545 0.548 0.551 0.553	STREAML I IN -19.40 -16.77 -14.29 -11.97 -5.98 0.30 5.93 10.16 11.61 13.07 14.55	NE SLOPE OUT -14.51 -12.48 -10.63 -8.97 -4.78 -0.20 4.15 7.57 8.79 10.05 11.34	MERID VEL R 1.037 0.995 0.965 0.959 0.894 0.883 0.906 0.928 0.935 0.935 0.935	PEAK SS MACH NO 1.448 1.455 1.455 1.448 1.451 1.475 1.405 1.324 1.292 1.258 1.222
RP TIP 1 2 3 4 5 6 7 8 9 NJB	PERCENT SPAN 0. 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00 100.00	INCI MEAN 3.3 3.4 3.5 3.6 4.2 5.5 7.8 10.3 11.6 13.1 14.9	DENCE SS -0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0 0.	DEV 7.0 6.4 5.9 5.7 5.8 6.4 7.4 8.1 8.2 8.3 8.5	D-FACT 0.488 0.469 0.458 0.453 0.479 0.517 0.529 0.504 0.486 0.462 0.430	EFF 0.778 0.834 0.885 0.919 0.944 0.936 0.914 0.890 0.882 0.873 0.864	LOSS C TOT 0.189 0.135 0.093 0.063 0.046 0.058 0.090 0.131 0.148 0.166 0.185	COEFF PROF 0.154 0.100 0.059 0.031 0.018 0.035 0.081 0.129 0.147 0.165 0.185	LOSS F TOT 0.049 0.035 0.024 0.016 0.012 0.015 0.022 0.029 0.031 0.033 0.034	PRCF 0.040 0.026 0.015 0.008 0.005 0.009 0.020 0.020 0.029 0.031 0.033 0.034

31

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 9

يغموناوي ومغ

1000

RP 1234567898	RAD IN 23.414 22.943 22.478 22.004 20.577 18.632 16.733 15.343 14.848 14.344 13.853	11 OUT 23.409 22.945 22.475 21.909 20.575 18.718 16.916 15.622 15.165 14.635 14.181	ABS IN 37.5 55.3 55.8 55.9 55.4 55.1 40.2 45.2 45.4 47.2 49.0 50.8	BETAM OUT 0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	REL IN 37.5 35.5 35.8 32.9 35.1 40.2 45.4 47.2 49.0 50.8	BETAM OUT O. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	TOTA IN 355.9 555.6 331.1 329.4 528.3 328.7 329.6 350.7 551.1 351.6 332.0	L TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 15.61 15.61 15.61 15.61 15.61 15.61 15.61 15.61 15.61	PRESS RAT 10 0.952 0.969 0.975 0.985 0.985 0.985 0.979 0.951 0.899 0.821
RP F1 1 2 3 4 5 6 7 8 9 沿	ABS IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 287.2 289.9 293.5 297.8	VEL 0UT 187.1 190.9 195.8 195.9 198.7 199.1 198.5 195.2 183.7 177.7 162.0	REL IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 207.2 209.9 295.5 297.8	VEL 0UT 197.1 190.9 193.8 195.9 198.7 199.1 193.5 195.2 188.7 195.2 188.7 177.7 162.0	MERI IN 199.9 205.7 210.3 213.6 218.1 219.2 215.1 201.8 196.9 192.5 188.3	D VEL OUT 187.1 190.9 195.8 195.9 193.7 199.1 195.2 188.7 177.7 162.0	TAN IN 153.4 145.9 140.7 138.0 143.8 159.7 181.9 204.4 212.7 221.5 230.7	IG VEL OUT O. -O. -O. -O. -O. -O. -O. -O.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP P 1 2 3 4 5 6 7 8 9 B	ABS M IN 0.719 0.724 0.750 0.755 0.760 0.792 0.825 0.825 0.850 0.850 0.862 0.876	ACH NO OUT 0.522 0.535 0.535 0.535 0.535 0.535 0.555 0.555 0.555 0.455 0.455	RZL M IN 0.719 0.724 0.750 0.753 0.760 0.792 0.825 0.842 0.850 0.852 0.876	ACH NO OUT 0.522 0.534 0.5554 0.5551 0.5551 0.5551 0.5552 0.455 0.455	MERID M IN 0.571 0.605 0.618 0.634 0.630 0.630 0.630 0.592 0.578 0.565 0.554	ACH NO OUT 0.522 0.555 0	STREAML I IN -0.01 0.02 0.03 0.27 1.39 3.69 6.87 7.91 8.84 9.67	NE SLOPE OUT 0.00 0.01 0.01 0.00 0.18 1.25 3.59 7.40 9.04 10.85 12.85	MERID VEL R 0.936 0.928 0.922 0.917 0.911 0.908 0.923 0.967 0.958 0.923 0.860	PEAK SS MACH NG 1.261 1.212 1.181 1.165 1.196 1.274 1.377 1.469 1.506 1.546 1.539
RP 1 2 3 4 5 6 7 8 9 HB	PERCENT SPAN 0. 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00 100.00	INCI NEAN 13.7 14.1 14.3 14.3 14.3 13.1 11.2 9.4 8.1 7.6 7.2 6.8	DENCE SS 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.	DEV 5.3 4.8 4.5 4.3 5.1 5.9 6.8 7.1 7.4 7.6	D-FACT 0.474 0.445 0.424 0.411 0.412 0.433 0.460 0.485 0.513 0.557 0.616	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.165 0.131 0.103 0.032 0.053 0.040 0.048 0.056 0.130 0.264 0.455	02FF PROF 0.165 0.131 0.082 0.053 0.040 0.045 0.046 0.116 0.245 0.428	L055 P. T0T 0.059 0.046 0.035 0.027 0.017 0.011 0.012 0.013 0.029 0.057 0.095	ARAM PROF 0.059 0.046 0.035 0.027 0.017 0.011 0.011 0.026 0.053 0.090
TABLE IV. - BLADE GEOMETRY FOR ROTOR 15

•

l

	PERCEN	T RAD	11(BLA	DE ANGLI	ES	DELTA	CONE
RP	SPAN	RI	RO	KIC	KTC	KOC		ANGLE
TIP	<u>o</u> .	24.750	23.962	60.18	56.04	37.62	3.32 -	20.376
1	5.	24.152	25.424	58.16	53.63	57.89	3.3/ -	17.429
Z	10.	23.510	22.855	55.22	51.57	57.68	5.46 -	14.752
3	15.	22.884	22.341	54.69	49.88	57.00	5.58 -	12.262
4	50.	21.021	20.152	50.52	40.02	51.80	4.17	-5.998
2	50.	18.560	18.5/9	47.41	38.87	20.00	7 70	U.349 E 077
5	/V.	10.075	10.420	33.23	27 61	4.20	10 32	0.333
6	65. QA	13 573	14.272	31 22	26 10	-16 53	11 60	10 738
ă	90.	12 960	13 734	28 47	24.63	-22.01	13 13	11.756
HR	100.	12.352	13, 195	25.42	23.22	-27.59	14.88	12.727
				٨		INCHETO	NC	
	BLADI	E THICKN	IESSES	710	TMC	770	700	
RP	TI	TM	TO	0 711	1 655	1 026	200	
ΠP	0.055	0.145	0.052	0 666	1 683	1 012	2.001	
1	0.035	0.145	0.051	0.620	1 700	1 886	2.920	
4	0.057	0.147	0.032	0.573	1.706	1 841	3 042	•
۲ ۲	0.030	0.157	0.034	0.448	1.673	1 674	3 198	
5	0.050	0.199	0.039	0.313	1.624	1.408	3 407	
ē	0.062	0.246	0.045	0.203	1.625	1,114	3.638	
7	0.074	0.295	0.052	0.082	1.631	0.825	3.723	
8	0.079	0.315	0.055	0.048	1.637	0.731	3.734	
9	0.084	0.337	0.058	0.022	1.648	0.641	3.738	
HUB	0.090	0.360	0.061	0.000	1.664	0.554	3,734	
	AFPO	SETTIN	TOTAL		¥		AREA	
PP	CHORD		CANSER	SOL IDITY	FACTOR	PHISS	RATIO	
TIP	5.830	53.99	22.55	1.344	0.500	8.34	1.005	
1	3.863	51.91	20.27	1.370	0.578	8.62	1.014	
2	3.851	50.05	18.65	1.400	0.659	8.76	1.021	
3	3.839	48.36	17.69	1.431	0.681	8.78	1.024	
4	3.812	42.94	18.72	1.540	0.780	9.66	1.036	
5	3.802	34.58	24.78	1.727	0.858	11.38	1.046	
6	3.820	23.55	35.11	1.983	0.920	13.11	1.047	
7	3.853	13.29	44.80	2.244	0.963	13.64	1.029	
8	3.872	9.62	47.75	2.346	0.976	13.54	1.015	
9	3.887	5.85	50.48	Z.456	0.989	13.30	0.996	
HUB	5.906	1.98	55.02	2.5/9	1.000	12.92	0.972	

TABLE V. - BLADE GEOMETRY FOR STATOR 9

	PERCEN	T RAI	110	BLA	ADE ANG	LES	DELTA	CONE
କ୍ଷ	SPAN	RI	RO	KIC	KTC	KOC	[NC	ANGLE
TIP	٥.	25.414	23.409	23.77	14.42	-5.26	13.73	-0.162
1	5.	22.949	22.9.5	21.22	14.42	-4.82	14.11	-0.100
2	10.	22.478	22.475	19.49	14.48	-4.49	14.30	-0.125
3	15.	22.004	21.999	18.58	14.59	-4.29	14.30	-0.180
Ā	30.	20.577	20.575	20.32	15.70	-4.50	13.09	-0.060
5	50.	18.692	18.718	24,83	17.85	-5.14	11.19	1,156
š	70	16 785	16 915	50.81	20 69	-5 94	9 39	4 176
7	85	15 545	15 622	57 14	23 74	-6.78	8 06	9 026
ġ	<u>0</u> 0	14 2/8	15 165	59 59	24 01	-7 09	7 64	10 2/9
ă	05	14.040	14 623	A1 60	26 13	-7 35	7 22	10.240
5	100	12 022	1/ 101	13 00	27 /1	-7 -2	L 03	11 305
		13.055	14.101	-3.00	21.41	1.02	0.05	11.545
60	BLADE	E THICKN	IESSES	710	XIAL DI	MENSION	NS TOC	
	11	111	10		ZML 10 1ED	17 77.		
115	0.057	0.154	0.023	17.555	18.159	17.771	19.162	
· •	0.033	0.101	0.020	17.335	10.101	17.740	19.165	
Ž	0.035	0.177	0.020	17 507	10.100	17,718	19.164	
5	0.000	0.175	0.020	17 500	10.100	17.700	19.105	
Ē	0.052	0.102	0.023	17.339	10.164	17.709	19.165	
5	0.000	0.150	0.020	17 392	10.101	17.751	19.164	
7	0.020	0.102	0.020	17 505	10.104	17.70	19.159	
ò	0.020	0 119	0.020	17 300	10.140	17 773	10 154	
6	0.020	0.115	0.020	17.000	10.145	17,777	10 155	
	0.020	0.110	0.020	17 416	10.145	17 701	19.155	
	0.020	4.114	0.025	17.410	10.140	17,701	19.197	
	AER0	SETTING	TOTAL		X		AREA	
RP	CHORD	ANGLE	CARLER	SOLIDITY	FACTOR	PHISS	RATIO	
TIP	1.846	7.93	29.03	1.405	1.500	19.55	1.123	
1	1,845	7.61	23.04	1.454	1.300	17.05	1.095	
2	1.845	7,41	23.93	1.463	1.300	15.39	1.074	
3	1.845	7.33	22.97	1.495	1.300	14.35	1.061	
4	1.844	8.02	24.52	1.597	1.300	14.11	1.052	
5	1.843	9.43	30.02	1.757	1.300	15.13	1.054	
6	1.846	11.46	55.75	1.953	1.300	16.87	1.078	
7	1.865	13.62	43.93	2.145	1.500	19.13	1.124	
8	1.869	14.43	46.47	2.220	1.300	19.88	1.140	
9	1.873	15.24	48.93	2.301	1.300	20.55	1.157	
HUB	1.875	16.07	51.42	2.386	1.300	21.15	1.173	

TABLE VI. - OVERALL AERODYNAMIC

i.

Percent	Percent	Stage	Stage	Reading
design	design	pressure	efficiency	number
speed	flow	ratio		
100	100.3	1.397	0.763	558
100	98.2	1.463	. 830	539
100	94.8	1.484	. 821	551
90	94.9	1.320	. 806	564
90	88.4	1.377	. 852	567
90	75.5	1.334	. 715	545
80	60.4	1.243	. 657	572
70	79.9	1. 177	. 855	573
70	67.0	1.211	. 851	575
70	52.7	1, 185	. 673	550
50	36.3	1.090	. 771	579

PERFORMANCE OF STAGE 15-9

TABLE VII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 15

(a) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 558

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN D. 177	TUO	[N	007	IN	OUT		RAT 10	IN	RATIO
1	24.155	25.424	-0.1	21.4	50.0	48.5	200.7	1,120	10.00	1,401
4	23.510	22.885	-0.7	21.4	57.4	40.0	288 3	1 122	10.13	1 420
2	22.885	22.341	-0.2	31.3	54.0	30 0	288 1	1 125	10.12	1 447
Ē	19 550	18 578	-0.5	38.0	50.2	27.5	288 0	1 131	10.14	1 470
ã	16.000	16.226	-0.4	Z1 Z	46 3	12.0	289.0	1.137	10.14	1.505
7	14,194	14.811	-0.5	45.3	43.7	-3.8	288.0	1,149	10.14	1.567
8	13.574	14.272	-0.5	46.8	42.6	-8.6	287.9	1.152	10.14	1.573
9	12.959	13,734	-0.8	48.9	41.8	-13.3	287.7	1.151	10.11	1.551
			55		NED 1		7			
00	AB2	VEL		VLL	PE-1	U VEL	1 4 1	OUT	WHEEL	DUT
RF 1	194 6	215 6	101 3770 £	277 0	104 5	102 0	-0.3	112 5	220 2	321 E
2	104.0	210.0	372 2	272 0	104.0	104.0	-0.5	112.0	321 2	312 0
ž	200 5	221 0	372 3	267 0	200 5	120 1	-0.6	116.0	313 1	315 7
ž	210.0	230 1	357 4	244 8	210.0	100 5	-1 9	120 3	287 3	283 3
5	213 6	247 8	333 7	220 1	213 8	195 3	-2 9	152.3	253 5	253.8
6	211.2	273.2	305.6	209.6	211.2	205.0	-1.4	180.7	219.5	224.3
7	205.3	305.2	283.4	215.1	205.3	214.6	-1.9	217.0	194.2	202.7
8	203.7	311.9	276.8	215.7	203.7	213.3	-1.6	227.5	185.7	195.3
9	200.8	312.8	269.5	211.1	200.8	205.5	-3.0	235.8	176.8	187.3
	488 M	ACH NO	REL M	ACH NO	MERID M	ACH NO			MERID P	E4K SS
a9	IN	OUT	IN	OUT	IN	OUT			VEL R N	iach no
1	0.558	0.620	1.146	0.799	0.558	0.529			0.997	1,439
- 2	0.592	J.E31	1,145	0.786	0.592	0.539			0.959	1.434
- 3	2.611	0.640	1,154	0.775	0.611	0.546			0.943	1.432
4	0.642	0.665	1.095	0.708	0.642	0.550			0.906	1.442
5	0.654	0.19	1.022	6.659	0.654	0.56/			0.914	1.465
D	3.640	0.800	0.900	0.014	0.040	0.600			0.9/1	1,414
ź	0.621	0.905	0.045	0.636	0.621	0.633			1.047	1.343
8	0.621	0.925	0.840	0.040	0.621	0.652			1 022	1.311
à	0.012	0.928	9.022	0.020	0.012	0.010			1.025	1.202
	PERCENT	INCI	DENCE	DEV	D-FACT	EFF	LOSS CO	DEFF	LOSS PA	RAM
RP	SPAN	MEAN	SS				TOT	PROF	TOT	PRCF
1	5.00	2.6	-0.8	10.0	0.373	0.824	0.114	0.080	0.028	0.019
2	10.00	2.4	-1.0	.8.6	0.382	0.844	0.101	0.068	0.025	0.017
5	15.00	2.7	-0.9	7.8	ü.389	0.86Z	0.091	0.059	0.022	0.014
4	50.00	5.5	-0.7	7.3	0.455	0.888	0.081	0.002	0.020	0.013
2	50.00	4.8	-0.7	0.0 77	J.4/D	0.005	0.090 0.090	0.000	0.023	0.01/
7	/U.UU 05 AA	10.1	-0.9	7 र	0.400	0.903	0.093	0.007	0.023	0.020
Ŕ	00 00	11 5	-0.5	8.0	0 402	0.912	0.109	0.108	0.023	0.023
0	30.00		W + 1	0.0	4 . - V <u>C</u>	•••••				

EDGES FOR ROTOR 15

(b) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 539

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN	OUT	IN	OUT	IN	RATIC	(N	RAT10
i	24.133	23.424	-0.1	34.3	61.5	48.3	288.9	1,136	10.03	1,457
2	23.510	22.885	0.5	33.2	59.2	46.1	288.6	1,135	10.11	1.477
3	22 883	22 347	-0.2	33.6	57.9	44 0	288 4	1 135	10 13	AOA I
Ă	21 026	20 731	-0.2	36 6	54 3	38 1	288 1	1 136	10 14	1 500
ŝ	19 500	10 570	-1 1	30.0	51 9	26.0	200.1	1 137	10 15	1 520
2	10.000	16.010	-1.1	J3.0 JZ Z	47.0	12 2	200.0	1.1.57	10.15	1.524
7	10.076	10.420	-1.0	43.3	47.9	12.5	207.9	1.140	10.15	1.004
	14.194	14.811	-1.2	41.2	40.5	-2.1	287.9	1,146	10.14	1.002
8	13.5/4	14.272	-0.5	49.4	45.0	-8.5	288.0	1.148	10.14	1.500
9	12.959	15./54	-1.0	51.4	44.0	-15.7	288.0	1.149	10.12	1.565
	ABS	VEL	REL	VEL.	MERI	D VEL	TAN	G VEL	WHEEL	SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	179 B	215 1	376 3	267 1	179 B	177 7	-03	121 2	330 3	322.5
2	100 7	220 7	372 2	265 2	100 7	184 6	1 2	121.0	321 3	323.0
2 3	105 7	224.7	350 7	200.2	130.7	107.3	-0.5	121.0	717 5	312.
,	190.7	224.1	269.1	260.3	190.7	105 4	-0.5	124.3	312.5	
Ē	200.7	231.0	204.D	200.1	206.7	185.4	-0.8	157.8	281.3	283.3
2	210.2	241.5	332.0	210.6	210.2	190.8	-4.1	151.1	255.	222.9
ç	201.6	200.0	201.0	198.5	201.6	195.7	-5.0	182.5	219.9	224.0
	188.2	280.1	213.2	194.7	188.2	194.5	-5.9	209.7	194.2	202.
8	187.0	294.5	264.3	195.6	187.0	191.6	-1.0	223.3	185.	195.3
9	185.9	298.4	259.7	191.6	185.8	186.2	-3.2	233.2	177,3	187.6
	ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO			MERIO P	PE4K 33
RP	IN	OUT	IN	OUT	IN	OUT			VEL R I	ACH NO
•	0.543	0.614	1,137	0.763	0.543	0.507			0.988	1.454
2	0.578	0.632	1.129	0.762	0.578	0.529			0.968	1.436
3	0.598	0.645	1.124	0.747	0.598	0.537			0.952	1,443
4	0.631	0.665	1.083	0.678	0.631	0.533			0.897	1,446
5	0.643	0.717	1.017	0.618	0.643	0.552			0.908	1.483
6	0.615	0.775	0.918	0.578	0.615	0.565			0.961	1.438
7	0.571	0.839	0.829	0.571	0.571	0.571			1.034	1 363
Ŕ	0 567	0.866	0.801	0.570	0.567	0.564			1 025	1 307
ă	0 567	0 879	0 788	0 565	0 567	0.549			0 997	1 285
	4.50	410.5	•.•••	•	0.00	0.5-5			•• 55.	1.200
		-								
	PERCENT	INCL	DENCE	DEV	D-FACT	EFF	LOSS C	OEFF	LOSS P	ARAM
RP	SPAN	MEAN	SS				TOT	PROF	тот	PROF
1	5.00	3.2	-0.2	9.8	0.406	0.835	0.118	0.082	0.029	0.020
2	10.00	2.8	-0.7	7.9	0.398	0.874	0.091	0.059	0.023	0.015
3	15.00	3.1	-0.4	6.7	0.412	0.899	0.074	0.042	0.019	0.011
4	30.00	3.8	-0.3	6.3	0.461	0.900	0.078	0.049	0.020	0.013
5	50.00	5.4	-0.1	6.1	0.499	0.927	0.063	0.037	0.016	0.009
6	70.00	8.6	0.8	8.0	0.499	0.931	0.071	0.058	0.017	0.014
7	85.00	12.8	2.5	9.1	0,465	0.918	0.101	0.098	0.022	0.022
8	90.00	13.8	2.2	8.2	0,453	0.922	0.103	0.102	0.022	0.022
9	95.00	15.7	2.5	8.4	0.453	0.914	0.118	0.118	0.023	0.023

EDGES FOR ROTOR 15

(c) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 551

RP 1 2 3 4 5 6 7 8 9	RAD I I IN 24.133 23 25.510 22 22.883 22 21.026 20 18.560 18 16.076 16 14.194 14 13.574 14 12.959 13	OUT .424 .885 .347 .731 .578 .426 .811 .272 .734	ABS [N 0.5 0.6 0.1 -0.8 -1.2 -1.0 -0.6 -0.5 -0.7	BETAM OUT 39.2 37.9 38.2 39.7 41.3 44.2 48.5 50.1 51.8	REL IN 62.7 59.1 55.5 51.7 48.7 47.0 45.9 44.6	BETAM OUT 45.9 44.3 42.6 37.5 27.0 13.0 -2.5 -8.3 -13.7	TOTA IN 289.1 288.9 288.4 288.0 287.9 287.8 287.9 287.8 287.8 288.0	L TEMP RATIO 1.159 1.154 1.151 1.146 1.140 1.139 1.146 1.150 1.150	TOTAL IN 10.06 10.11 10.13 10.14 10.15 10.14 10.14 10.14 10.13	PRESS RATIO 1.569 1.571 1.568 1.547 1.532 1.525 1.545 1.560 1.562
RP 123456789	ABS V IN 169.3 2 178.9 2 186.6 2 203.7 2 195.7 2 182.4 2 180.9 2 181.1 2	EL 0UT 23.1 25.4 30.4 43.5 59.7 80.6 88.8 94.3	REL IN 368.7 365.4 365.4 351.3 328.4 296.4 267.2 259.9 254.5	VEL 0UT 248.3 248.4 242.8 223.2 205.3 191.2 186.2 187.2 187.2	MERI IN 169.2 178.9 186.6 198.8 203.6 195.7 182.4 180.9 181.1	D VEL OUT 172.9 177.8 178.6 177.2 183.0 186.3 186.1 185.2 181.9	TAN 1.5 1.9 0.2 -2.7 -4.1 -3.5 -1.8 -1.4 -2.3	IG VEL OUT 141.1 138.6 140.7 147.2 160.6 180.9 210.1 221.6 231.3	WHEEL IN 329.1 320.5 312.5 287.0 253.5 219.2 193.6 185.1 176.5	SPEED OUT 319.4 312.0 305.2 283.0 263.7 224.0 202.0 194.7 187.1
R 1 234 567 89	ABS MAC) IN (0.509 0. 0.545 0. 0.605 0. 0.622 0. 0.526 0. 0.552 0. 0.552 0. 0.548 0.	H NC DUT .632 .641 .648 .659 .703 .755 .821 .847 .865	REL MA IN 1.110 1.104 1.102 1.070 1.002 0.902 0.809 0.787 0.770	CH NO N OUT 0.703 0.706 0.692 0.592 0.556 0.555 0.545 0.550	MERID MA IN 0.509 0.540 0.655 0.621 0.552 0.552 0.548 0.548	ACH NO 0.490 0.505 0.509 0.509 0.528 0.528 0.542 0.544 0.543 0.535			MER:: P VEL R M 1.02! 0.994 0.957 0.891 0.898 0.952 1.020 1.024 1.005	EAK SSC MACH NG 1.469 1.469 1.480 1.508 1.508 1.345 1.308 1.275
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INC ID MEAN 4.4 5.0 6.3 9.3 13.3 14.8 16.3	ENCE SS 1.1 0.8 0.9 0.8 1.5 3.0 3.2 3.2	DEV 7.3 6.1 5.3 5.6 6.3 8.7 8.6 8.3 8.3 8.4	D-FACT 0.463 0.452 0.466 0.502 0.520 0.521 0.483 0.467 0.457	EFF 0.866 0.896 0.908 0.910 0.926 0.919 0.906 0.906 0.907	LOSS CC TOT 0.113 0.087 0.076 0.076 0.067 0.085 0.121 0.129 0.132	DEFF PROF 0.077 0.052 0.042 0.044 0.038 0.073 0.119 0.129 0.132	LOSS PA TOT 0.029 0.022 0.020 0.020 0.020 0.017 0.021 0.027 0.027 0.027	RAM PROF 0.020 0.013 0.011 0.011 0.010 0.018 9.027 0.027 0.026

EDGES FOR ROTOR 15

(d) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 564

RP 1 2 3 4 5 6 7 8 9	RADII IN 0U 24.133 23.4 23.510 22.8 22.883 22.3 21.026 20.7 18.560 18.5 16.076 16.4 14.194 14.8 13.574 14.2 12.959 13.7	ABS T [N 24 -0.4 85 -0.6 47 -0.6 31 -0.8 78 -0.9 26 -0.5 11 -0.6 72 -0.4 34 -1.0	BETAM OUT 27.9 27.6 28.1 30.8 34.7 38.8 43.4 45.7 47.2	REL IN 60.5 58.6 57.3 53.8 49.7 45.8 43.2 42.1 41.4	BETAM CUT 48.2 46.6 44.8 38.7 27.3 12.6 -2.0 -7.9 -12.5	TOTA IN 288.7 288.4 288.2 288.1 288.0 288.0 288.0 288.0 288.0 288.0	L TEMP RATIO 1.089 1.090 1.091 1.096 1.102 1.109 1.117 1.120 1.124	TCTAL IN 10.07 10.14 10.13 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.295 1.299 1.312 1.346 1.376 1.404 1.429 1.446 1.454
RP 123456789	ABS VEL IN OU 167.9 197 177.3 200 181.7 203 191.5 212 195.4 229 193.5 251 187.6 274 186.2 283 184.2 289	REL I IN 4 341.3 2 340.0 4 336.0 3 324.0 6 302.4 8 277.8 6 257.3 4 250.8 4 245.7	VEL 0UT 261.6 258.5 253.0 233.9 212.3 201.0 199.5 199.9 201.4	MERII IN 167.9 177.3 181.7 191.5 195.4 193.5 187.6 186.2 184.2	D VEL OUT 174.4 177.4 179.4 182.5 188.7 195.1 199.4 198.0 196.6	TAN: IN -1.0 -1.8 -2.9 -1.7 -1.9 -1.2 -3.3	5 VEL 92.5 92.8 108.6 130.8 130.8 130.8 202.8 212.4	WHEEL IN 296.1 288.4 280.7 258.6 227.9 197.5 174.2 166.8 159.3	SPEED CUT 287.5 280.7 274.1 255.0 228.8 181.8 175.4 168.8
P123456789	ABS MACH 1 IN OU 0.505 0.5 0.536 0.5 0.581 0.6 0.594 0.6 0.588 0.7 0.569 0.8 0.565 0.8 0.558 0.8	NO REL MA T IN 73 1.027 82 1.027 92 1.017 19 0.984 71 0.920 41 0.844 13 0.760 41 0.761 60 0.744	CH NO 1 0.760 0.751 0.736 0.681 0.621 0.591 0.590 0.593 0.598	MERID MA IN 0.505 0.535 0.550 0.558 0.558 0.569 0.565 0.558	CH NO CUT 0.506 0.516 0.522 0.552 0.552 0.552 0.552 0.552 0.558 0.588			MER:5 F VEL R M 1.039 1.001 0.987 0.953 0.966 1.014 1.063 1.063 1.067	EAK 55 (ACH NG 1.356 1.355 1.360 1.370 1.327 1.263 1.196 1.166 1.151
R ^P 1 2 3 4 5 6 7 8 9	PERCENT SPAN M 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 1 95.00 1	INCIDENCE EAN SS 2.3 -1.1 2.2 -1.3 2.5 -1.0 3.3 -0.9 4.3 -1.2 6.5 -1.3 9.6 -0.8 0.9 -0.7 3.1 -0.0	DEV 9.6 8.5 6.9 6.6 8.3 9.1 8.7 9.6	D-FACT 0.332 0.338 0.348 0.389 0.426 0.423 0.395 0.381 0.364	EFF 0.859 0.859 0.884 0.927 0.941 0.937 0.920 0.924 0.913	LOSS CC TOT 0.079 0.080 0.068 0.047 0.045 0.058 0.058 0.089 0.090 0.110	DEFF PROF 0.066 0.055 0.036 0.041 0.058 0.089 0.090 0.110	LOSS P. TOT 0.019 0.020 0.017 0.012 0.012 0.014 0.020 0.019 0.022	ARAM PROF 0.016 0.017 0.014 0.009 0.010 0.014 0.020 0.019 0.022

L

39

EDGES FOR ROTOR 15

(e) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 567

R 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	11 0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272 13.734	ABS IN -0.4 -0.5 -0.8 -1.2 -0.4 -1.2 -0.4 -0.5 -0.7	5 BETAM OUT 35.1 34.6 35.1 37.1 40.3 43.7 48.3 49.7 51.1	REL IN 62.7 59.4 56.2 52.4 49.2 47.0 45.9 44.9	BETAM OUT 45.8 44.5 43.1 37.8 27.8 14.1 -2.9 -8.8 -13.7	TOT/ IN 288.8 288.4 285.3 288.1 288.0 267.9 288.0 288.0 288.0	AL TEMP RATIO 1.114 1.113 1.112 1.110 1.109 1.111 1.119 1.122 1.123	TOTAL IN 10.07 10.13 10.14 10.14 10.14 10.13 10.13 10.14 10.12	PRESS RATIO 1.418 1.412 1.410 1.412 1.401 1.404 1.438 1.457 1.458
R 1 2 3 4 5 6 7 8 9	ABS IN 153.7 163.3 168.3 176.0 178.6 172.9 164.4 163.5 162.4	VEL 0UT 203.7 204.6 205.3 208.8 217.8 232.3 255.9 265.9 271.1	REL IN 335.4 330.3 316.4 292.9 264.4 241.0 235.1 229.3	VEL 0UT 238.7 236.1 230.2 210.8 188.0 175.1 170.4 175.3	MERI IN 153.7 163.2 168.2 176.0 178.6 172.9 164.4 163.5 162.4	D VEL 0UT 166.5 168.4 168.0 166.6 166.2 167.9 170.2 171.8 170.3	TAN IN -1.0 -1.4 -2.3 -4.2 -3.8 -1.8 -1.2 -1.4 -1.9	NG VEL 0UT 117.2 116.2 117.9 125.9 140.8 160.6 191.2 202.9 210.9	WHEEL IN 297.0 289.3 281.9 258.7 228.4 168.3 175.0 167.6 159.9	SPEED OUT 288.3 281.6 275.3 255.1 228.6 202.6 182.7 176.2 169.5
R 1 23 4 5 6 7 8 9	ABS M IN 0.461 0.491 0.507 0.532 0.540 0.522 0.522 0.495 0.492 0.489	ACH NO OUT 0.586 0.589 0.592 0.603 0.632 0.677 0.750 0.782 0.799	REL M IN 1.005 0.995 0.956 0.886 0.798 0.726 0.707 0.690	ACH NO OUT 0.686 0.680 0.664 0.609 0.545 0.504 0.504 0.511 0.516	MERID M/ IN 0.461 0.507 0.532 0.540 0.522 0.495 0.492 0.489	ACH NO OUT 0.479 0.485 0.484 0.481 0.482 0.489 0.489 0.499 0.505 0.502			MER:: F N VEL R N 1.083 1.032 0.999 0.946 0.931 1.035 1.051 1.048	EAK SS 14CH NG 1.422 1.423 1.423 1.423 1.423 1.423 1.423 1.423 1.426 1.177 1.148
R - 23456789	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INC I MEAN 4.5 4.3 5.7 7.0 9.8 13.4 14.8 16.6	DENCE SS 1.1 0.8 1.1 1.5 2.0 3.0 3.2 3.4	DEV 7.2 6.3 5.8 5.9 7.2 9.8 8.3 7.7 8.4	D-FACT 0.415 0.416 0.429 0.466 0.501 0.502 0.475 0.450 0.430	EFF 0.920 0.919 0.924 0.938 0.938 0.918 0.918 0.918 0.932 0.927	LOSS C TOT 0.058 0.055 0.047 0.063 0.084 0.104 0.104 0.092 0.103	0EFF PR0F 0.039 0.041 0.038 0.035 0.058 0.058 0.104 0.092 0.103	LCSS P/ TCT 0.015 0.015 0.014 0.012 0.016 0.020 0.023 0.019 0.020	ARAM PROF 0.010 0.010 0.009 0.015 0.020 0.023 0.019 0.020

EDGES FOR ROTOR 15

(f) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 545

RP 123456789	RAD IN 24.133 2 23.510 2 22.883 2 21.026 2 18.560 1 16.076 1 14.194 1 13.574 1 12.959 1	UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272 13.734	ABS IN -0.6 -0.5 -0.9 -1.8 -1.8 -1.0 -0.4 -0.2 -0.2	BETAM OUT 46.4 43.1 41.8 43.2 46.8 47.0 49.6 50.5 51.5	REL IN 67.9 65.8 64.57 58.0 58.0 50.9 49.6 48.3	BETAM CUT 48.3 46.2 44.5 39.9 29.3 14.0 -2.4 -8.5 -13.5	TOTA IN 289.0 288.5 288.3 288.1 288.1 287.9 287.9 287.9 287.9	L TEMP RAT [0 1.134 1.130 1.127 1.120 1.117 1.114 1.121 1.123 1.124	TOTAL IN 10.07 10.12 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 1.389 1.391 1.394 1.382 1.382 1.378 1.396 1.429 1.455 1.464
RP 1 2 3 4 5 6 7 8 9	ABS IN 121.0 130.1 134.7 141.6 144.3 144.9 142.4 142.0 141.9	VEL 0UT 192.1 194.2 195.8 196.5 205.2 223.5 247.5 258.7 266.0	REL IN 321.8 317.2 313.1 298.3 273.7 246.6 225.8 219.3 213.3	VEL 0UT 199.2 204.9 186.7 161.1 157.1 160.5 166.4 170.5	MERI IN 121.0 130.1 134.7 141.5 144.2 144.9 142.3 142.3 142.0 141.9	D VEL 0UT 132.4 141.8 145.8 143.2 140.5 152.4 160.3 164.6 165.8	TAN IN -1.3 -1.0 -2.0 -4.5 -2.5 -1.1 -0.6 -0.5	G VEL 0UT 139.2 132.7 130.6 149.6 163.4 188.6 199.6 208.0	WHEEL [N 296.8 288.3 280.6 258.0 258.0 197.0 174.1 166.5 158.7	SPEED 0UT 288.1 280.6 274.0 254.4 228.3 201.3 181.7 175.1 168.2
R 123456789	ABS MA IN 0.360 0.388 0.402 0.423 0.423 0.432 0.434 0.426 0.425 0.425	CH N0 0UT 0.545 0.553 0.559 0.590 0.648 0.722 0.758 0.782	REL M/ IN 0.956 0.946 0.955 0.892 0.819 0.739 0.676 0.657 0.638	ACH NO OUT 0.565 0.583 0.584 0.535 0.455 0.455 0.468 0.468 0.488 0.501	MERID MJ IN 0.350 0.388 0.402 0.423 0.423 0.452 0.434 0.425 0.425	ACH NO OUT 0.375 0.404 0.416 0.410 0.404 0.442 0.468 0.487			MER; D F VEL R 1 1.094 1.093 1.083 1.012 0.974 1.052 1.126 1.159 1.168	E4K SS MACH NC 1.532 1.508 1.508 1.482 1.417 1.310 1.214 1.175 1.136
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INC II MEAN 9.7 9.8 11.2 12.8 14.6 17.3 18.5 20.0	DENCE SS 6.3 6.2 7.0 7.3 6.9 7.0 6.9 6.8	DEV 9.8 8.1 7.2 8.1 8.6 9.7 8.7 8.1 8.6	D-FACT 0.538 -0.503 0.493 0.524 0.574 0.535 0.480 0.441 0.405	EFF 0.732 0.760 0.787 0.808 0.819 0.875 0.888 0.922 0.930	LOSS C TOT 0.234 0.209 0.185 0.172 0.182 0.146 0.160 0.119 0.113	0EFF PROF 0.206 0.186 0.164 0.157 0.164 0.157 0.160 0.119 0.113	LOSS P. TOT 0.057 0.052 0.046 0.043 0.046 0.036 0.036 0.025 0.022	ARAM PROF 0.050 0.046 0.041 0.039 0.045 0.036 0.036 0.025 0.022

_____.

EDGES FOR ROTOR 15

(g) 80 Percent of design speed; intrablade row instrumentation at station 2a; reading number 572

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 25.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	11 0UT 25.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272 13.734	ABS IN -0.5 -0.6 -1.1 -1.8 -1.7 -0.8 -0.5 -0.6	BETAM OUT 52.8 47.8 45.8 49.9 53.3 51.2 50.9 51.9 52.8	REL IN 70.7 68.9 67.9 65.4 62.2 57.9 54.2 57.2 51.3	BETAM OUT 52.2 46.5 42.1 30.3 12.3 -3.1 -9.4 -14.6	TOT/ IN 288.6 288.3 288.3 288.0 288.0 288.0 288.0 288.0 288.0 288.1	AL TEMP RATIO 1.111 1.106 1.102 1.098 1.096 1.094 1.096 1.097 1.098	TOTAL IN 10.09 10.13 10.14 10.14 10.14 10.14 10.14 10.14 10.13 10.13	PRESS RAT10 1.283 1.289 1.294 1.280 1.278 1.306 1.337 1.352 1.363
RP 123456789	ABS IN 92.7 99.7 102.2 106.4 108.6 112.3 113.0 113.7 114.4	VEL OUT 162.7 166.4 168.6 168.3 176.4 196.0 218.3 227.6 235.6	REL IN 280.7 277.0 271.8 255.4 233.1 211.3 193.4 187.6 183.2	VEL 0UT 160.4 169.5 170.9 146.3 122.0 125.7 137.9 142.5 147.2	MERI IN 92.7 99.7 102.2 106.4 108.5 112.3 113.0 113.7 114.4	D VEL 00T 98.4 111.9 117.5 108.5 105.3 122.8 137.7 :40.6 142.4	TAN IN -0.9 -1.0 -1.1 -3.4 -3.3 -1.7 -1.0 -1.3	KG VEL OUT 129.6 123.2 120.8 128.7 141.6 152.7 169.5 179.0 187.8	WHEEL IN 264.1 257.4 250.8 230.2 202.9 175.7 15.2 148.2 141.8	SPEED 0UT 256.3 250.6 244.9 203.1 179.5 162.0 155.9 150.2
R 23456789	ABS M IN 0.274 0.296 0.303 0.316 0.336 0.336 0.338 0.340	ACH NO OUT 0.463 0.475 0.483 0.483 0.508 0.508 0.568 0.638 0.667 0.692	REL M. IN 0.831 0.621 0.621 0.628 0.692 0.628 0.575 0.558 0.544	ACH NO OUT 0.456 0.484 0.489 0.420 0.351 0.365 0.403 0.417 0.432	MERID M. IN 0.274 0.296 0.303 0.316 0.322 0.334 0.336 0.338 0.340	ACH NO 0UT 0.280 0.319 0.336 0.311 0.303 0.356 0.402 0.412 0.418			MER:D F VEL R N 1.061 1.122 1.150 1.020 0.970 1.094 1.218 1.237 1.244	EAK SS (ACH NC 1.410 1.396 1.355 1.294 1.199 1.099 1.058 1.027
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 50.00 85.00 95.00	INCI MEAN 12.5 12.5 13.2 14.9 16.8 18.5 20.6 21.6 23.0	DENCE SS 9.1 9.6 10.7 11.3 10.7 10.3 10.0 9.9	DEV 13.6 10.6 9.2 10.3 9.7 8.0 7.2 7.3	D-FACT 0.596 0.546 0.526 0.592 0.657 0.593 0.428 0.450 0.412	EFF 0.662 0.707 0.747 0.743 0.754 0.842 0.902 0.902 0.927 0.944	LOSS C TOT 0.306 0.261 0.225 0.245 0.270 0.201 0.150 0.119 0.097	0EFF PROF 0.301 0.257 0.222 0.244 0.270 0.270 0.150 0.119 0.097	LOSS PJ TOT 0.068 0.061 0.054 0.059 0.067 0.050 0.033 0.025 0.019	ARAM PROF 0.067 0.053 0.059 0.059 0.050 0.050 0.055 0.025 0.019

42

····**--** ···· · · · · ···--- ·--- · ···-

Ē

EDGES FOR ROTOR 15

(h) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 573

RP 1 2 3 4 5 6 7 8 9	RADII IN 24.133 23 23.510 22 22.883 22 21.026 20 18.560 18 16.076 18 14.194 14 13.574 14 12.959 13	0UT .424 .885 .347 .731 .578 .426 .811 .272 .734	ABS IN 0.4 0.0 -0.1 -0.4 -0.9 -0.6 -0.6 -0.6	BETAM OUT 20.5 21.3 24.4 29.5 34.7 40.5 42.8 44.8	REL IN 60.0 57.8 56.6 53.0 49.1 45.4 42.4 41.5 40.3	BETAM OUT 47.7 46.4 44.9 59.3 28.2 13.8 -1.2 -7.0 -12.3	TOTA IN 288.5 288.5 288.5 288.3 288.3 288.1 288.0 288.0 288.0 288.0 288.1	L TEMP RATIO 1.043 1.043 1.044 1.048 1.055 1.063 1.072 1.074 1.077	TOTAL [N 10.08 10.14 10.13 10.14 10.14 10.14 10.14 10.13 10.12	PRESS RAT10 1.141 1.142 1.148 1.170 1.196 1.224 1.255 1.268 1.275
R 1 2 3 4 5 6 7 8 9	ABS V IN 132.4 1 141.0 1 144.3 1 151.9 1 155.4 1 153.5 2 149.4 2 148.6 2 147.5 2	EL OUT 61.6 63.8 65.4 70.5 84.5 202.9 222.8 231.2 238.2	REL IN 264.7 264.9 262.2 252.4 237.3 218.6 202.5 198.6 193.4	VEL 0UT 225.1 222.4 217.6 200.8 192.2 171.8 169.5 171.1 173.1	MER II IN 132.4 141.3 151.9 155.3 153.6 149.4 148.6 147.5	VEL OUT 151.4 153.4 155.5 160.6 166.8 169.5 169.1	TAN N 0.8 0.1 -0.2 -1.1 -2.4 -2.4 -1.4 -2.1 -1.6	G VEL 0UT 56.7 57.5 90.5 144.6 157.0 167.8	WHEEL 1N 230.0 224.4 218.7 200.6 176.9 153.3 135.2 129.6 123.4	SPEED 0UT 223.3 218.4 213.6 197.8 177.1 156.6 141.1 136.2 130.8
RP 1 2 3 4 5 6 7 8 9	ABS MAC IN 0.395 0 0.422 0 0.432 0 0.455 0 0.466 0 0.466 0 0.468 0 0.448 0 0.448 0 0.442 0	H N0 0UT 475 482 502 543 599 5660 5686 5686 5708	REL MA IN 0.789 0.785 0.757 0.757 0.656 0.607 0.595 0.580	ACH NO OUT 0.662 0.654 0.591 0.537 0.507 0.502 0.507 0.514	MERID MA IN 0.395 0.422 0.432 0.455 0.466 0.461 0.448 0.445 0.442	CH NO OUT 0.445 0.451 0.453 0.457 0.457 0.473 0.492 0.502 0.502 0.504 c.502			MERID F VEL R M 1.143 1.088 1.068 1.023 1.034 1.086 1.134 1.142 1.145	EAK SS MACH NO 1.050 1.047 1.046 1.034 1.012 0.971 0.915 0.902 0.874
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INCII MEAN 1.7 1.5 1.9 2.5 3.7 6.0 8.8 10.4 12.0	DENCE SS -1.6 -2.0 -1.7 -1.7 -1.8 -1.8 -1.5 -1.2 -1.2	DEV 9.2 8.2 7.5 9.5 9.9 9.6 9.8	D-FACT 0.226 0.237 0.250 0.346 0.352 0.327 0.314 0.288	EFF 0.894 0.913 0.953 0.951 0.951 0.944 0.943 0.943 0.935	LOSS C TOT 0.045 0.045 0.038 0.024 0.031 0.047 0.070 0.065 0.080	0EFF PROF 0.045 0.045 0.038 0.024 0.031 0.047 0.070 0.065 0.080	LOSS P TOT 0.011 0.009 0.006 0.008 0.011 0.016 0.014 0.016	ARAM PROF 0.011 0.009 0.006 0.008 0.008 0.011 0.016 0.014 0.016

43

- ---

_

EDGES FOR ROTOR 15

(i) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 575

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 2 23.510 2 22.883 2 21.026 2 18.560 11 16.076 10 14.194 10 13.574 10 12.959 10	! 0UT 3.424 2.885 2.347 0.731 8.578 6.426 4.811 4.272 3.734	ABS IN 0.0 -0.1 -1.5 -1.3 -0.8 -0.7 -0.5 -1.0	BETAM OUT 34.0 33.2 35.6 36.2 39.8 43.4 47.5 48.9 50.2	REL IN 64.7 62.8 61.6 58.5 55.2 51.6 48.9 47.6 46.5	BETAM OUT 47.0 45.9 44.5 39.7 29.5 15.1 -1.0 -7.6 -12.5	TOTA IN 288.6 288.3 288.1 288.2 288.1 288.0 288.0 288.0 288.0 288.0 287.9	L TEMP RAT 10 1.065 1.065 1.063 1.063 1.064 1.066 1.072 1.074 1.074	TOTAL IN 10.13 10.13 10.13 10.13 10.14 10.14 10.14 10.13 10.13	PRESS RATIO 1.222 1.220 1.225 1.225 1.225 1.251 1.265 1.264
R 1 2 3 4 5 6 7 8 9	ABS 1 109.1 115.3 118.0 123.8 125.7 123.5 119.9 119.7 119.3 2	VEL OUT 154.4 155.0 155.5 156.9 165.8 178.1 195.6 205.1 209.5	REL [N 255.1 252.4 248.4 236.8 220.1 198.6 182.5 177.4 173.4	VEL 0UT 187.8 186.4 181.7 164.8 146.4 134.1 132.2 135.9 137.5	MERI IN 109.1 115.3 118.0 123.8 125.6 123.5 119.9 119.7 119.3	D VEL 0UT 128.0 129.6 129.5 126.7 127.5 129.5 132.2 134.7 134.2	TAN IN 0.0 -3 -1.1 -2.9 -1.7 -1.5 -1.0 -2.1	IG VEL 0UT 86.4 85.0 92.6 106.1 122.3 144.2 154.6 160.9	WHEEL IN 230.5 224.9 218.4 200.7 177.9 153.8 136.0 129.9 123.8	SPEED OUT 223.8 218.9 213.3 197.9 178.1 157.2 141.9 136.6 131.2
R 1 254 567 89	ABS MAC IN 0.324 (0.343 (0.351 (0.355 (0.369 (0.357 (0.356 (0.355 (0.355 (0.355 (H N0 OUT (448) (450) (452) (456) (456) (453) (521) (573) (602) (617)	REL MA IN 0.757 0.750 0.739 0.705 0.556 0.592 0.543 0.528 0.516	CH NO 1 CUT 0.545 0.528 0.479 0.427 0.392 0.388 0.399 0.405	MERID M/ IN 0.324 0.369 0.369 0.369 0.368 0.357 0.356 0.355	ACH NG OUT 0.371 0.377 0.369 0.372 0.379 0.379 0.388 0.395			MERIC 1 VEL R 1.173 1.124 1.098 1.024 1.024 1.015 1.049 1.103 1.125 1.125	PEAK SS MACH NC 1.130 1.121 1.114 1.095 1.068 1.000 0.938 0.908 0.888
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 85.00 90.00 95.00	INCI MEAN 6.4 6.9 8.0 9.8 12.2 15.3 16.4 18.2	DENCE SS 3.1 3.3 3.3 4.3 4.4 5.0 4.8 5.1	DEV 8.5 7.8 7.2 8.8 10.8 10.2 9.0 9.6	D-FACT 0.386 0.380 0.388 0.432 0.478 0.484 0.457 0.426 0.404	EFF 0.896 0.904 0.923 0.927 0.926 0.920 0.920 0.925 0.944 0.939	LOSS CC TOT 0.070 0.064 0.052 0.053 0.062 C.083 0.097 0.078 0.088	DEFF PROF 0.070 0.052 0.053 0.064 0.053 0.053 0.062 0.083 0.097 0.078 0.088	LOSS P. TOT 0.017 0.016 0.013 0.013 0.013 0.016 0.020 0.022 0.016 0.018	ARAM PRCF 0.017 0.016 0.013 0.013 0.015 0.020 0.020 0.022 0.016 0.018

EDGES FOR ROTOR 15

(j) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 550

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN	OUT	IN	CUT	IN	RATIO	IN	RATIC
1	24.133 2	23.424	-0.1	51.6	71.1	51.9	288.6	1.084	10.10	1.214
2	23.510 2	22.885	0.3	46.2	69.1	48.9	288.3	1.080	10.12	1.217
3	22.893 2	22.347	0.2	44.0	68.0	46.8	288.4	1.076	10.13	1.219
4	21.026	20.731	-0.2	47.8	65.3	42.3	288.2	1.074	10.13	1.212
5	18.560	18.578	-0.7	51.4	62.1	31.1	288.0	1.073	10.13	1.208
Ğ	16.076	16.426	-1.0	50.3	58.0	13.1	288.0	1.072	10.14	1.228
7	14,194	14.811	-0.3	50.1	54.3	-3.1	287.9	1.074	10.14	1.261
8	13.574	14.272	-0.4	50.8	53.0	-8.2	287.8	1.074	10.13	1.264
ē	12,959	13.734	-0.8	51.5	51.9	-12.7	287.9	1.073	10.13	1.263
			-				-			
	ABS	VEL	REL	VEL	MER 1	D VEL	TAN	IG VEL	WHEEL	SPEED
RP	IN	0UT	IN	OUT	IN	OUT	14	OUT	IN	OUT
1	78.7	141.2	242.4	142.2	78.7	87.8	-0.1	110.6	229.2	222.5
2	85.0	143.7	238.8	151.2	85.0	99.4	0.5	103.8	223.7	217.7
3	87.8	145.4	234.1	152.6	87.8	104.5	0.4	101.1	217.4	212.3
4	92.2	146.1	220.7	132.7	92.2	98.2	-0.3	108.2	200.2	197.4
5	94.1	152.6	201.0	111.2	94.1	95.2	-1.2	119.2	176.5	176.6
6	96.8	170.5	182.6	111.9	96.8	109.0	-1.7	131.1	153.1	156.4
7	97.5	192.8	167.2	123.8	97.5	123.6	-0.5	148.0	135.3	141.2
8	97.6	198.3	162.3	126.7	97.6	125.4	-0.6	153.6	129.0	135.6
9	97.7	202.8	158.2	129.3	97.7	126.1	-1.3	158.8	123.1	130.5
	JRC M	ACH NO	RFI M	ACH NO	MERID M	ACH NO			MED'S S	SIK CC
22	11	OUT	IN	OUT	IN IN	DET				1244. 33 446.4 NG
1.	1.1	001							VEL RI	1457 AU
1	1 232	0 405	0 716	0 407	0 / 2/	0 252			1 115	
1	0.232	0.405	0.716	0.407	0.252	0.252			1.115	1 207
128	0.232	0.405 0.413 0.414	0.716 0.706 0.692	0.407	0.252	0.252			1.116	1.207
123	0.232 0.251 0.260	0.405 0.413 0.419 0.422	0.716 0.706 0.692 0.653	0.407 0.435 0.440	0.251	0.252			1.169	1.207
12345	0.232 0.251 0.260 0.273	0.405 0.413 0.419 0.422	0.716 0.706 0.692 0.653 0.596	0.407 0.435 0.440 0.383 0.322	0.252 0.251 0.260 0.273	0.252 0.286 0.301 0.283 0.283			1.116 1.169 1.190 1.065	1.207
123456	0.232 0.251 0.260 0.273 0.279	0.405 0.413 0.419 0.422 0.441	0.716 0.706 0.692 0.653 0.596	0.407 0.435 0.440 0.383 0.322 0.325	0.252 0.251 0.260 0.273 0.279	0.286 0.286 0.301 0.283 0.276 0.317			1.116 1.169 1.190 1.065 1.012	1.207
1234567	0.232 0.251 0.260 0.273 0.279 0.287	0.405 0.413 0.419 0.422 0.441 0.496	0.716 0.706 0.692 0.653 0.596 0.541	0.407 0.435 0.440 0.383 0.322 0.325 0.325	0.252 0.251 0.260 0.273 0.279 0.287	0.252 0.286 0.301 0.283 0.283 0.276 0.317			1.116 1.169 1.190 1.065 1.012 1.126	1.207 1.192 1.166 1.110 1.034
12345670	0.232 0.251 0.260 0.273 0.279 0.287 0.289	0.405 0.413 0.419 0.422 0.441 0.496 0.564	0.716 0.706 0.692 0.653 0.596 0.541 0.496	0.407 0.435 0.440 0.383 0.322 0.325 0.362	0.252 0.251 0.260 0.273 0.279 0.287 0.289	0.252 0.286 0.301 0.283 0.276 0.317 0.361			1.116 1.169 1.190 1.065 1.012 1.126 1.267	1.207 1.192 1.166 1.110 1.034 0.950
123456780	0.232 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.289	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.564	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.371	0.252 0.251 0.260 0.273 0.279 0.287 0.289 0.289	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368			1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285	1.207 1.192 1.166 1.110 1.034 0.950 0.918
123456789	0.232 0.251 0.260 0.273 0.279 0.289 0.289 0.289 0.290	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.581 0.596	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380	0.252 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.289	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370			1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285 1.291	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893
123456789	0.232 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.289 0.290	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.581 0.596	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469	0.407 0.435 0.440 0.383 0.322 0.325 0.325 0.362 0.371 0.380	0.252 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.290	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370			1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285 1.291	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893
123456789	0.232 0.251 0.260 0.273 0.287 0.289 0.289 0.289 0.290	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.581 0.596	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380	0.252 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.289 0.290	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370	1055 (OFFE	1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285 1.291	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893
123456789 89	0.232 0.251 0.260 0.273 0.287 0.287 0.289 0.289 0.290 PERCENT	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.564 0.581 0.596	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469 DENCE	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380 DEV	0.251 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.289 0.290	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF	LOSS C	0EFF PROF	1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285 1.291	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893
123456789 R	0.232 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.290 PERCENT SPAN 5 00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.581 0.596 INCI MEAN 12 8	0.716 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469 DENCE SS	0.407 0.435 0.440 0.383 0.322 0.325 0.325 0.362 0.371 0.380 DEV	0.251 0.251 0.260 0.273 0.279 0.287 0.289 0.289 0.290 D-FACT	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF	LOSS C TOT 0 291	OEFF PROF 0 291	LOSS P TOT	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893 ARAM PROF
123456789 P12	0.232 0.251 0.260 0.273 0.279 0.287 0.289 0.290 PERCENT SPAN 5.00 10.00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.596 INCI MEAN 12.8	0.716 0.706 0.692 0.653 0.596 0.596 0.596 0.481 0.469 0.469 DENCE SS 9.53	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3	0.252 0.251 0.260 0.273 0.287 0.289 0.289 0.289 0.290 D-FACT 0.578 0.519	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFFF 0.676 0.721	LOSS C TOT 0.291	0EFF PR0F 0.291	LOSS P TOT 0.055 1.2012	1.207 1.192 1.166 1.110 1.034 0.950 0.918 0.893 ARAM PROF 0.065
-25456789 P-25	0.232 0.251 0.260 0.273 0.289 0.289 0.289 0.290 PERCENT SPAN 5.00 10.00 15.00	0.405 0.413 0.419 0.422 0.441 0.564 0.564 0.596 INCI MEAN 12.8 13.3	0.7:6 0.706 0.692 0.653 0.596 0.541 0.469 0.481 0.469 DENCE SS 9.5 9.3 0.7	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8	0.252 0.251 0.260 0.273 0.289 0.289 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.75	LOSS C TOT 0.291 0.245 0.268	0EFF PR0F 0.291 0.245 0.208	LOSS P TOT 0.065 0.058	ARAM PROF 0.058 0.058 0.058
125456789 P-254	0.232 0.251 0.260 0.273 0.289 0.289 0.289 0.290 PERCENT SPAN 5.00 10.00 15.00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.581 0.596 INCI MEAN 12.8 12.8 13.3	0.7:6 0.706 0.692 0.653 0.596 0.541 0.496 0.481 0.469 DENCE SS 9.5 9.7	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.5	0.252 0.251 0.260 0.273 0.289 0.289 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497 0.557	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.763 0.764	LOSS C TOT 0.291 0.245 0.208 0.208	0EFF PR0F 0.291 0.245 0.208 0.228	LOSS P TOT 0.065 1.285 1.226 1.285 1.291 LOSS P TOT 0.065 0.058 0.055	ARAM PROF 0.058 0.050 0.058 0.050 0.058
123456789 P12345	0.232 0.251 0.260 0.279 0.287 0.289 0.289 0.290 PERCENT SPAN 5.00 10.00 15.00 30.00	0.405 0.413 0.419 0.422 0.441 0.426 0.564 0.564 0.581 0.596 INCI MEAN 12.8 12.8 13.3 14.7	0.7:6 0.706 0.692 0.653 0.541 0.496 0.481 0.469 DENCE SS 9.5 9.7 10.2	0.407 0.435 0.440 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.5 10.4	0.252 0.251 0.260 0.273 0.289 0.289 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497 0.557	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.763 0.765	LOSS C TOT 0.291 0.245 0.208 0.222	0EFF PROF 0.291 0.245 0.208 0.222 0.255	LOSS P TOT 0.065 1.267 1.285 1.291 LOSS P TOT 0.065 0.058 0.050 0.053	ARAM PROF 0.055 0.055 0.055
123456789 P123456	0.232 0.251 0.260 0.273 0.287 0.289 0.289 0.290 PERCENT SPAN 5.00 10.00 15.00 30.00 50.00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.564 0.596 INCI MEAN 12.8 13.3 14.8 15.7	0.7:6 0.7:6 0.692 0.653 0.541 0.496 0.481 0.469 DENCE SS 9.5 9.7 10.6 11.2	0.407 0.435 0.445 0.343 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.5 10.4 10.5	0.251 0.251 0.260 0.273 0.289 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497 0.557 0.557	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.763 0.764 0.764	LOSS C TOT 0.291 0.245 0.228 0.222 0.226	0EFF PROF 0.291 0.245 0.208 0.222 0.256 0.256	1.116 1.169 1.165 1.012 1.267 1.285 1.291 LOSS P TOT 0.065 0.058 0.050 0.053 0.054	ARAM PROF 0.053 0.053 0.053 0.054
123456789 P1234567	0.232 0.251 0.260 0.273 0.287 0.289 0.289 0.290 PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.564 0.596 INCI MEAN 12.8 13.3 14.8 16.7 18.6 7	0.7:6 0.706 0.692 0.653 0.596 0.596 0.496 0.481 0.469 DENCE SS 9.3 9.7 10.6 11.2 10.4	0.407 0.435 0.435 0.383 0.322 0.325 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.5 10.4 10.5 8.8	0.251 0.251 0.260 0.273 0.287 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497 0.557 0.620 0.573	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.765 0.764 0.765 0.764	LOSS C TOT 0.291 0.245 0.228 0.228 0.228 0.225 0.205	0EFF PROF 0.291 0.245 0.228 0.222 0.256 0.205	1.116 1.169 1.190 1.065 1.012 1.126 1.267 1.285 1.291 LOSS P TOT 0.065 0.058 0.050 0.053 0.054 0.050	ARIM PROF 0.053 0.053 0.053 0.053 0.054 0.050
123456789 P12345678	0.232 0.251 0.260 0.273 0.287 0.289 0.289 0.290 0.290 PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00	0.405 0.413 0.419 0.422 0.441 0.496 0.581 0.596 INCI MEAN 12.8 13.3 14.8 16.7 18.6 20.2	0.7:6 0.706 0.692 0.596 0.596 0.596 0.496 0.481 0.469 DENCE SS 9.5 9.5 9.7 10.6 11.2 10.4	0.407 0.435 0.435 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.5 10.4 10.5 8.8 8.0	0.252 0.251 0.260 0.273 0.287 0.289 0.289 0.290 D-FACT 0.578 0.519 0.497 0.557 0.557 0.620 0.573 0.420	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.765 0.764 0.765 0.918 0.376	LOSS C TOT 0.291 0.245 0.222 0.225 0.205 0.129	CEFF PROF 0.291 0.245 0.208 0.222 0.256 0.205 0.129	LOSS P TOT 0.065 0.053 0.053 0.050 0.053 0.050 0.050 0.053	ARAM PROF 0.053 0.053 0.053 0.053 0.053 0.054 0.050 0.053
123456789 R123456780	0.232 0.251 0.260 0.273 0.287 0.289 0.290 0.290 PERCENT SPAN 5.00 10.00 10.00 15.00 50.00 70.00 85.00 90.00	0.405 0.413 0.419 0.422 0.441 0.496 0.564 0.564 0.596 INCI MEAN 12.8 13.5 14.8 16.7 18.6 20.7 21.5	0.7:66 0.7062 0.653 0.596 0.596 0.596 0.481 0.469 0.481 0.469 DENCE SS 9.53 9.7 10.6 11.2 10.8 10.4	0.407 0.435 0.445 0.383 0.322 0.325 0.362 0.371 0.380 DEV 13.3 10.8 9.54 10.5 8.8 8.0 8.4	0.252 0.251 0.260 0.273 0.289 0.289 0.289 0.289 0.290 D-FACT 0.578 0.578 0.519 0.497 0.557 0.620 0.573 0.462 0.427	0.252 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370 EFF 0.676 0.721 0.765 0.764 0.765 0.918 0.918 0.935	LOSS C TOT 0.291 0.245 0.222 0.225 0.225 0.129 0.108	0EFF PROF 0.291 0.245 0.222 0.256 0.205 0.129 0.108	LOSS P TOT 0.065 0.058 0.058 0.058 0.058 0.053 0.064 0.050 0.029 0.020	ARAM PROF 0.053 0.053 0.053 0.053 0.053 0.054 0.050 0.050 0.050 0.023

.

EDGES FOR ROTOR 15

(k) 50 Percent of design speed; intrablade row instrumentation at station 2a; reading number 579

RP 123456789	RADI IN 24.133 2 23.510 2 22.883 2 21.026 2 18.560 1 16.076 1 14.194 1 13.574 1 12.959 1	1 0UT 25.424 22.885 22.347 20.731 8.578 6.426 4.811 4.272 3.734	ABS IN 37.7 48.5 29.0 4.6 -1.1 -1.2 -1.3 -1.3 -1.7	BETAM CUT 55.5 57.7 54.6 50.2 46.5 46.5 47.3 48.0 49.7	REL IN 78.9 79.2 71.3 63.6 63.1 56.5 53.1 51.8 51.8	BETAM OUT 53.2 51.7 49.6 44.1 31.6 15.7 -1.0 -6.9 -12.7	T01/ IN 290.9 292.2 291.2 288.8 287.3 286.9 286.6 287.0	AL TEMP RATIO 1.024 1.025 1.029 1.034 1.036 1.039 1.040 1.042	TOTAL IN 10.06 10.08 10.08 10.15 10.17 10.18 10.17	PRESS RATIO 1.110 1.106 1.093 1.100 1.113 1.121 1.124
RP 1 2 3 4 5 6 7 8 9	ABS IN 35.2 37.9 50.7 68.2 73.7 73.5 73.6 73.9 74.2	VEL OUT 100.7 102.5 101.5 101.5 121.8 139.2 146.6 151.8	REL IN 145.3 134.1 138.2 153.0 147.6 133.2 122.7 119.6 117.0	VEL 0UT 95.3 88.2 90.7 96.2 89.1 86.9 94.3 98.8 100 27	MERI IN 27.9 25.1 44.4 68.0 73.6 73.5 73.6 73.9 74.1	D VEL OUT 57.0 54.7 58.8 64.8 75.9 83.7 94.3 98.1 98.3	TAN IN 21.5 28.4 24.6 5.5 -1.4 -1.5 -1.7 -1.7 -2.2	NG VEL 0UT 83.0 86.67 77.8 88.5 102.3 108.9 115.8	WHEEL IN 164.2 160.1 155.4 142.6 126.5 109.5 96.5 92.3 88.3	SPEED 0UT 159.3 155.8 151.8 140.6 126.7 111.9 100.7 93.6
R - 254567-89	ABS MA IN 0.103 0.111 0.149 0.201 0.218 0.218 0.218 0.219 0.219	CH NO OUT 0.293 0.295 0.295 0.322 0.322 0.357 0.409 0.431 0.447	REL M. IN 0.426 0.405 0.451 0.436 0.394 0.363 0.354 0.346	ACH NO OUT 0.277 0.257 0.264 0.263 0.260 0.255 0.255 0.277 0.291 0.296	MERID M. IN 0.082 0.073 0.130 0.200 0.218 0.218 0.218 0.219 0.219	ACH N0 0UT 0.166 0.159 0.171 0.189 0.222 0.245 0.245 0.277 0.289 0.289			MER10 F VEL R 1 2.044 2.181 1.326 0.953 1.030 1.138 1.281 1.328 1.325	PE4K SS MACH NC 0.845 0.743 0.779 0.783 0.783 0.680 0.661 0.645
RP 123456789	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 50.00 85.00 90.00 95.00	INC I MEAN 20.7 22.9 16.6 13.1 14.7 17.1 19.5 20.7 22.3	DENCE SS 17.4 19.4 13.0 8.9 9.2 9.3 9.2 9.1 9.2	DEV 14.7 13.5 12.3 12.3 11.0 11.3 10.1 9.7 9.4	D-FACT 0.495 0.493 0.563 0.556 0.520 0.424 0.376 0.350	EFF 1.001 1.209 1.094 0.810 0.756 0.762 0.789 0.821 0.810	LOSS C TOT -0.001 -0.172 -0.076 0.145 0.227 0.283 0.321 0.291 0.334	0EFF PROF -0.001 -0.172 -0.076 0.145 0.227 0.283 0.321 0.291 0.334	LOSS P/ TOT -0.000 -0.038 -0.017 0.034 0.056 0.059 0.071 0.061 0.061	ARAM PRCF -0.000 -0.038 -0.017 0.034 0.056 0.069 0.071 0.061 0.065

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 9

Į.

•

ľ

(a) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 558

RP 1 23456789	RADII IN 0U 22.949 22.9 22.479 22.4 22.004 21.9 20.577 20.5 18.682 18.7 16.787 16.9 15.342 15.6 14.849 15.1 14.343 14.6	ABS T IN 44 27.8 74 27.5 99 27.4 74 29.3 17 32.2 16 35.9 24 41.9 64 44.5 84 47.8	BETAM OUT 7.5 3.9 3.1 5.4 5.8 2.6 1.5 1.8 3.7	REL IN 27.8 27.5 27.4 29.3 32.2 35.9 41.9 44.5 47.8	BETAM OUT 7.5 3.9 3.1 5.4 5.8 2.6 1.5 1.8 3.7	TOTAL IN 324.2 323.7 323.5 324.2 325.7 327.4 330.9 331.6 331.2	TEMP RATIO 0.997 0.999 1.000 1.000 1.000 0.999 1.001 0.999	TCTAL IN 14.10 14.27 14.38 14.67 14.91 15.26 15.89 15.95 15.69	PRESS RATIO 0.925 0.970 0.973 0.960 0.952 0.946 0.926 0.926 0.940 0.934
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN 0U 245.5 206 251.1 228 255.9 231 266.4 228 284.4 230 301.7 234 313.9 244 311.9 248 304.7 232	REL T IN .5 245.5 .7 251.1 .1 255.9 .7 266.4 .2 284.4 .6 301.7 .1 3.3.9 .9 311.9 .1 304.7	VEL 0UT 206.5 228.7 231.1 228.7 230.2 234.6 244.1 248.9 232.1	MERI iN 217.1 222.6 227.1 232.4 240.8 244.5 233.8 222.4 204.6	D VEL CUT 204.8 228.2 230.8 227.7 229.0 234.4 244.1 248.7 231.6	TANI IN 114.7 116.1 117.8 130.3 151.4 176.8 209.5 218.7 225.8	5 VEL OUT 26.9 15.7 12.6 21.4 23.4 10.8 6.4 7.7 14.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 125456189	ABS MACH 1 IN 0U 0.714 0.5 0.733 0.6 0.748 0.6 0.782 0.6 0.840 0.6 0.896 0.6 0.896 0.6 0.933 0.7 0.925 0.7 0.900 0.6	NO REL M. 1 IN 93 0.714 62 0.733 69 0.748 61 0.782 64 0.896 76 0.896 02 0.933 16 0.925 64 0.900	ACH NO OUT 0.593 0.662 0.665 0.664 0.676 0.716 0.664	MERID M/ IN 0.631 0.650 0.664 0.682 0.71: 0.726 0.695 0.605 0.605	ACH NO OUT 0.588 0.660 0.668 0.658 0.658 0.663 0.702 0.715 0.663			MER:: F VEL R 0.943 1.025 1.016 0.980 0.951 0.959 1.044 1.119 1.132	24< 55 4424 35 1.029 1.029 1.122 1.241 1.363 2.568 0.015 2.745
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN MI 5.00 4 15.00 5 30.00 5 50.00 7 85.00 9 90.00 9 95.00 6	INCIDENCE EAN SS 6.6 -7.5 8.0 -6.3 8.8 -5.5 9.0 -4.1 7.3 -3.9 5.0 -4.3 4.6 -3.5 4.9 -2.7 6.0 -1.2	DEV 12.3 8.4 7.4 9.9 11.0 8.6 8.3 8.8 11.0	D-FACT 0.283 0.226 0.234 0.269 0.319 0.363 0.372 0.353 0.387	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS CC TOT 0.261 0.100 0.87 0.120 0.130 0.132 0.132 0.132 0.142 0.234	DEFF PROF 0.26: 0.100 0.87 0.120 0.130 0.130 0.126 -0.213 0.142 -0.249	LOSS P TOT 0.090 0.034 0.029 0.037 0.037 0.034 0.040 0.032 0.051	ARAM PRCF 0.090 0.034 0.029 0.037 0.037 0.037 0.032 -0.050 0.052

EDGES FOR STATOR 9

(b) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 539

-i

	RAD	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	OUT	IN	OUT	IN	0UT	IN	RATIO	IN	RATIO
1	22.949	22.944	30.7	7.7	30.7	7.7	328.2	0.998	14.62	0.942
2	22.479	22.474	29.3	5.4	29.3	5.4	327.5	1.000	14.94	0.966
3	22.004	21.999	29.4	3.8	29.4	3.8	327.3	1.000	15.14	0.969
4	20.577	20.574	31.7	3.1	31.7	3.1	327.4	0.999	15.22	0.977
5	18.682	18.717	33.9	3.1	33.9	3.1	327.4	1.000	15.42	0.969
6	16.787	16.916	38.1	1.2	38.1	1.2	328.1	0.999	15.57	0.974
7	15.342	15.624	44.0	1.9	44.0	1.9	329.8	1.001	15.75	0.968
8	14.849	15.164	47.2	3.7	47.2	3.7	330.7	0.999	15.89	0.945
9	14.343	14.684	50.3	4.5	50.3	4.5	330.9	0.999	15.83	0.919
			-							
	ABS	VEL	REL	VEL	MERI	D VEL	TAN	IG VEL	WHEEL	SPEED
RP	IN	001	IN	001	IN	001	IN	OUT	IN	OUT
1	242.2	178,1	242.2	178,1	208.2	176.5	123.7	23.9	0.	Ο.
Z	251.5	199.0	251.5	199.0	219.2	198.1	123.2	18.9	0.	0.
- 3	257.2	205.Z	257.2	205.2	Z24.1	204.7	126.2	13.7	0.	0.
4	264.1	207.2	264.1	207.Z	224.6	206.9	138.8	11.1	ο.	0.
5	281.0	206.1	281.0	206.1	233.2	205.8	156.9	11.0	ο.	0.
6	288.8	207.6	288.8	207.6	227.2	207.6	178.4	4.2	٥.	0.
7	291.6	210.8	291.6	210.8	209.8	210.6	202.5	7.1	٥.	э.
8	292.7	206.0	292.7	206.0	198.9	205.6	214.7	13.4	ο.	3.
9	290.4	194.3	290.4	194.3	185.7	193.7	223.3	15.3	0.	٥.
	ARC M	ACH NO	RELMU	ACH NO		ACH NO				
60	11	DUT	IN	DUT						245. 33 Hani Ng
1	1 200	3 503	0 60G	0 503	0 601	001 0				1407 BU
·	0.033	0.505	n 720	0.505 0 555	0.000	0.553			0.040	1,000
ž	0.729	0.505	n 748	0.585	0.652	0.505			0.914	1.069
,	0.740	0.505	0.770	0.505	0.655	0.505			0.91	1 100
Ē	0.075	0.597	0.076	0.597	0.000	0.590			A 003	1 200
2	0.020	0.507	0.020	A 502	0.000	0.507			0.000	1 209
5	0.001	0.552	0.0J	0.592	0.009	0.592			1 004	1.200
÷	0.000	0.555	0.000	0.505	0.017	0.555 0 503			1 077	1,40/
Ğ	0.000	0.549	0.852	0.549	0.545	0.547			1.043	1 566
5	0.002									
	PERCENT	INC I	DENCE	DEV	D-FACT	EFF	LOSS CO	DEFF	LOSS PA	RAM
RP	SPAN	MEAN	SS	-			TOT	PROF	TOT	PROF
1	5.00	9.5	-4.6	12.5	0.408	0.	0.207	0.207	0.071	0.071
2	10.00	9.8	-4.5	9.9	0.350	Ο.	0.114	0.114	0.039	0.039
3	15.00	10.8	-3.5	8.1	0.349	0.	0.099	0.099	0.033	0.033
4	30.00	11.4	-1.7	7.6	0.367	0.	0.069	0.069	0.022	0.022
5	50.00	9.0	-2.1	8.2	0.414	0.	0.087	0.086	0.025	0.025
6	70.00	7.3	-2.1	7.1	0.435	0.	0.069	0.066	0.018	0.017
7	85.00	6.7	-1.4	8.7	0.432	٥.	0.083	0.073	0.019	0.017
8	90.00	7.6	-0.0	10.8	0.449	0.	0.145	0.128	0.032	0.029
9	95.00	8.5	1.2	11.9	0.485	0.	0.214	0.192	0.046	0.042

EDGES FOR STATOR 9

(c) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 551

RP 1 2 3 4 5 6 7 8 9	RAD I IN 22.949 2 22.479 2 22.004 2 20.577 2 18.682 1 16.787 1 15.342 1 14.849 1 14.343 1	l OUT 2.944 2.474 1.999 0.574 8.717 6.916 5.624 5.164 4.684	ABS IN 35.5 33.9 34.0 35.8 35.8 35.2 45.4 48.0 50.7	BETAM OUT 6.1 4.5 4.1 3.9 3.1 1.3 2.1 3.9 4.1	REL IN 35.5 33.9 34.0 34.9 35.8 39.2 45.4 48.0 50.7	BETAM OUT 6.1 4.5 4.1 3.9 3.1 1.3 2.1 3.9 4.1	TOTAL IN 334.9 335.3 332.0 330.1 328.2 328.0 329.9 330.9 331.1	TEMP RATIO 0.998 0.998 1.000 1.000 1.000 1.000 0.999 0.997 0.997	TOTAL IN 15.78 15.89 15.68 15.69 15.54 15.68 15.68 15.82 15.82	PRESS RATIO 0.936 0.950 0.951 0.963 0.971 0.965 0.938 0.928
R 1 2 3 4 5 6 7 8 9	ABS IN 247.9 252.7 255.5 259.1 272.7 279.9 284.8 286.9 286.4	VEL 0UT 186.7 195.9 195.5 195.1 198.4 202.6 196.6 192.3	REL IN 247.9 252.7 255.5 259.1 272.7 279.9 284.8 286.9 286.4	VEL 0UT 186.7 195.9 195.5 195.1 198.6 198.4 202.6 196.6 192.3	MER[[IN 201.8 209.6 211.8 212.4 221.1 216.8 200.0 192.1 181.5	VEL OUT 185.7 195.3 195.0 194.7 198.3 198.3 202.5 196.1 191.8	TAN: IN 144.0 141.1 142.9 148.4 159.7 177.0 202.8 213.0 221.5	G VEL OUT 19.7 15.3 14.1 13.1 10.8 4.4 7.6 13.2 13.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 125456789	ABS MA IN 0.709 0.726 0.737 0.750 0.797 0.821 0.835 0.841 0.839	CH N0 OUT 0.523 0.552 0.551 0.552 0.554 0.564 0.564 0.556 0.556 0.543	REL MA IN 0.709 0.726 0.737 0.750 0.750 0.821 0.835 0.841 0.839	ACH NO OUT 0.523 0.552 0.555 0.552 0.552 0.564 0.564 0.575 0.556 0.543	MERID MA IN 0.577 0.602 0.611 0.615 0.646 0.636 0.586 0.563 0.531	ACH NO OUT 0.520 0.550 0.551 0.563 0.564 0.574 0.555 0.542			MER:2 VEL R 0.920 0.932 0.917 0.917 0.915 1.012 1.021 1.056	PEAK SS MACH NS 1.192 1.178 1.220 1.277 1.343 1.459 1.510 1.553
R ¹ 23456789	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INC 11 MEAN 14.3 14.4 15.4 14.6 11.0 8.4 8.1 8.4 8.9	DENCE SS 0.2 0.1 1.5 -0.2 -1.0 0.1 0.7 1.7	DEV 10.9 9.0 8.4 8.3 7.2 8.9 10.9 11.5	D-FACT 0.422 0.395 0.404 0.410 0.427 0.449 0.447 0.449 0.447 0.449	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.225 0.169 0.162 0.118 0.085 0.085 0.086 0.096 0.167 0.196	0EFF PROF 0.225 0.169 0.162 0.118 0.085 0.067 0.087 0.153 0.178	LOSS F TOT 0.078 0.058 0.054 0.037 0.024 0.018 0.022 0.037 0.043	PROF 0.078 0.058 0.054 0.037 0.024 0.017 0.020 0.034 0.039

EDGES FOR STATOR 9

(d) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 564

	RAD	11	485	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP 1 2 3 4 5 6 7 8 9	IN 22.949 2 22.479 2 22.004 2 20.577 2 18.682 16.787 15.342 14.849 14.343	0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164 14.684	IN 24.8 24.3 24.5 26.4 29.4 33.7 40.1 43.3 45.9	0UT 6.0 2.5 1.6 2.5 3.7 1.6 0.8 1.2 3.3	IN 24.8 24.3 26.4 29.4 33.7 40.1 43.3 45.9	001 6.5 2.6 5 1.6 5 1.8 2.3 1.8 2.3	IN 314.5 314.4 314.5 315.7 317.3 319.3 321.7 322.6 323.7	RATIO 0.999 1.000 1.000 0.999 1.001 1.001 1.002 1.000	IN 13.04 13.17 13.29 13.65 13.96 14.24 14.49 14.66 14.70	RATTO 0.936 0.978 0.983 0.974 0.963 0.964 0.964 0.969 0.932
R 1 2 3 4 5 6 1 - 8 9	ABS IN 224.8 229.8 234.4 246.3 264.9 273.6 283.1 284.2 283.1	VEL 0UT 191.8 212.7 216.9 219.0 221.0 226.3 236.7 241.5 229.9	REL IN 224.8 229.8 254.4 246.3 278.6 283.1 284.1 283.1	VEL 0UT 191.8 212.7 216.9 219.0 221.0 226.3 236.7 241.5 229.9	MERI IN 204.0 209.5 213.3 220.7 230.7 231.9 216.5 206.8 197.0	D VEL 0UT 212.5 216.8 220.5 226.2 236.7 241.5 229.5	TAN 94.4 94.5 97.3 109.4 130.1 154.6 182.3 194.9 203.4	G VEL CUT 20.2 9.4 6.0 9.6 14.1 6.5 3.3 5.2 13.3	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 215 4 5 6 7 8 9	ABS M4 IN 0.659 0.675 0.690 0.727 0.786 0.830 0.841 0.839	ACH NO 0.07 0.556 0.621 0.634 0.640 0.640 0.658 0.658 0.688 0.702 0.665	REL M4 IN 0.659 0.675 0.727 0.726 0.830 0.841 0.844 0.839	ACH NO 0UT 0.556 0.621 0.640 0.640 0.644 0.658 0.688 0.688 0.702 0.665	MERID M4 IN 0.598 0.616 0.628 0.652 0.685 0.690 0.644 0.614 0.583	ACH NO OUT 0.553 0.621 0.634 0.639 0.643 0.658 0.658 0.688 0.688 0.664			MER:2 VEL R C.935 .014 .016 0.956 0.956 0.976 1.093 1.168 1.165	PEAK SS 0.866 0.871 0.969 1.087 1.201 1.318 1.382 1.416
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 3.6 4.8 6.1 4.5 2.9 2.8 3.7 4.1	DENCE SS -9.5 -8.4 -7.0 -6.5 -6.5 -5.3 -3.9 -3.1	DEV 10.9 7.0 5.9 7.0 8.8 7.6 7.6 8.3 10.7	D-FACT 0.262 0.201 0.205 0.238 0.290 0.323 0.310 0.299 0.332	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS CC TOT 0.252 0.064 0.089 0.109 0.107 0.096 0.083 0.185	DEFF PROF 0.252 0.082 0.064 0.089 0.109 0.107 0.095 0.079 0.179	LOSS P TOT C.087 C.028 C.021 0.028 0.031 0.027 0.027 0.022 0.019 0.040	ARAM PROF 0.087 0.028 0.021 0.028 0.027 0.027 0.027 0.027 0.027 0.027 0.029

日本分り

EDGES FOR STATOR 9

(e) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 567

RP 123456789	RADII IN (22.949 22 22.479 22 22.004 21 20.577 20 18.682 18 16.787 16 15.342 15 14.849 15 14.343 14	0UT .944 .474 .999 .574 .717 .916 .624 .164 .684	ABS IN 31.7 31.0 31.2 32.7 35.3 39.2 45.3 47.5 49.8	BETAM OUT 6.8 4.6 3.6 3.1 3.0 1.5 2.0 3.5 4.5	REL 1N 31.7 31.0 31.2 32.7 35.3 39.2 45.3 47.5 49.8	BETAM OUT 6.8 4.6 3.6 3.0 1.5 2.0 3.5 4.5	TOTAL IN 321.7 320.8 320.5 319.9 319.4 319.9 322.3 323.1 323.3	TEMP RATIO 1.000 1.000 1.000 1.001 0.999 0.999 0.999 0.999	TOTAL IN 14.28 14.30 14.31 14.21 14.23 14.57 14.78 14.75	PRESS RATIO 0.943 0.975 0.979 0.980 0.984 0.979 0.984 0.979 0.955 0.935
R 1 2 3 4 5 6 7 8 9	ABS VI IN 227.6 14 230.0 11 231.0 11 235.0 11 242.2 11 242.2 11 248.8 11 249.5 11 264.4 11 264.4 11	EL OUT 69.8 85.5 86.1 85.6 84.3 94.7 93.5 84.7 93.5	REL 1N 227.6 230.0 235.0 242.2 242.2 242.8 259.5 264.4 264.4	VEL OUT 169.8 185.5 186.1 185.6 184.3 194.7 193.5 184.7	MERII IN 193.6 197.2 197.5 197.8 197.7 192.9 182.5 178.5 170.7	VEL OUT 168.6 184.9 185.8 185.4 185.4 184.3 194.6 193.1 184.1	TAN IN 119.7 118.3 126.9 140.0 157.1 184.6 195.0 201.9	C VEL OUT 20.0 14.9 11.7 10.0 9.7 6.8 11.9 14.6	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 254561-89	ABS MACK IN 0.660 0 0.672 0 0.686 0 0.709 0 0.730 0 0.762 0 0.777 0 0.777 0	+ N0 0UT .483 .531 .534 .532 .558 .558 .554 .527	REL MA IN 0.660 0.669 0.672 0.686 0.709 0.730 0.730 0.777 0.777	CH NO 1 0.483 0.531 0.537 0.532 0.529 0.558 0.554 0.527	MERID MA IN 0.561 0.573 0.575 0.577 0.579 0.566 0.524 0.524 0.501	CH NO OUT 0.480 0.529 0.536 0.532 0.532 0.528 0.557 0.555 0.525			MER10 F VEL R 0.938 0.946 0.939 0.938 0.955 1.082 1.082 1.079	EAC SS 4ACH 24 1.018 1.027 1.027 1.123 1.192 1.329 1.384 1.415
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INCID MEAN 10.5 11.5 12.7 12.4 10.4 8.3 8.0 8.0 8.0	ENCE SS -3.6 -2.8 -1.6 -0.7 -0.8 -1.! -0.0 0.3 0.8	DEV 11.6 9.1 7.9 7.6 8.1 7.5 8.8 10.6 11.9	D-FACT 0.407 0.347 0.346 0.364 0.367 0.415 0.408 0.422 0.453	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.225 0.098 0.080 0.075 0.056 0.072 0.081 0.138 0.198	DEFF PRCF 0.225 0.098 0.080 0.075 0.056 0.056 0.056 0.081 0.136 0.195	LOSS P. TOT 0.078 0.033 0.027 0.023 0.016 0.018 0.019 0.031 0.043	ARAM PROF 0.033 0.027 0.023 0.016 0.018 0.019 0.031 0.042

51

.

EDGES FOR STATOR 9

(f) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 545

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 2 22.479 2 22.004 2 20.577 2 18.682 1 16.787 1 15.342 1 14.849 1 14.343 1	11 0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164 14.684	ABS IN 43.2 39.6 38.1 39.0 42.2 42.7 46.7 48.3 50.2	BETAM OUT 4.4 3.5 3.2 3.3 2.7 2.8 2.2 3.5 4.4	REL IN 43.2 39.6 38.1 39.0 42.2 42.7 46.7 48.3 50.2	BETAM OUT 4.4 3.5 3.2 3.3 2.7 2.8 2.2 3.5 4.4	TOTA IN 327.9 326.0 324.8 322.6 321.8 320.8 322.7 323.1 323.5	L TEMP RATIO 0.997 0.998 0.999 1.000 0.998 0.998 0.998 0.998 0.998	TOTAL IN 13.99 14.08 14.13 14.01 13.97 14.16 14.49 14.75 14.83	PRESS RATIO 0.938 0.941 0.955 0.960 0.967 0.969 0.944 0.932
RP 1 2 3 4 5 6 7 8 9	ABS IN 207.4 211.9 214.7 215.2 221.4 235.9 250.1 257.0 259.5	VEL 0UT 149.7 155.5 156.7 158.6 156.2 164.8 180.1 178.2 175.0	REL IN 207.4 211.9 214.7 215.2 221.4 235.9 250.1 257.0 259.5	VEL 0UT 35.5 156.7 158.6 156.2 164.8 180.1 178.2 175.0	MERI IN 151.1 163.2 168.9 167.2 163.9 173.4 171.5 173.9 166.2	D VEL 0UT 149.3 155.2 156.5 158.4 156.0 164.6 180.0 177.9 174.5	TAN IN 142.1 135.6 135.6 148.8 159.9 182.0 191.9 199.2	G VEL OUT 11.4 8.8 9.1 7.5 8.0 6.8 10.8 13.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R - 23456789	ABS MA IN 0.591 0.607 0.617 0.620 0.640 0.687 0.731 0.752 0.760	CH NO OUT 0.420 0.438 0.442 0.445 0.445 0.445 0.469 0.514 0.508 0.498	REL M/ IN 0.591 0.607 0.617 0.620 0.640 0.687 0.731 0.752 0.760	ACH NO OUT 0.420 0.438 0.442 0.449 0.443 0.469 0.514 0.508 0.498	MERID M4 IN 0.431 0.467 0.485 0.482 0.474 0.505 0.501 0.501 0.487	ACH NO OUT 0.419 0.437 0.442 0.449 0.443 0.469 0.513 0.507 0.496			MER:D F VEL R M 0.988 0.951 0.927 0.947 0.952 0.949 1.050 1.041 1.050	EAK SS 4CH NC 1.152 1.52 1.586 1.596 1.55 1.204 1.309 1.361 1.394
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INC II MEAN 22.0 20.1 19.6 18.7 17.3 11.9 9.4 8.7 8.4	DENCE SS 7.9 5.8 5.3 5.6 6.2 2.5 1.4 1.1 1.2	DEV 9.2 8.0 7.5 7.8 7.9 8.7 8.9 10.5 11.8	D-FACT 0.498 0.469 0.463 0.447 0.476 0.465 0.441 0.463 0.479	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS CC TOT 0.294 0.267 0.261 0.196 0.196 0.165 0.122 0.105 0.178 0.215	DEFF PROF 0.294 0.267 0.261 0.196 0.165 0.122 0.105 0.177 0.213	LOSS PA TOT 0.102 0.091 0.087 0.061 0.047 0.031 0.024 0.040 0.046	RAM PRCF 0.102 0.091 0.087 0.061 0.047 0.031 0.024 0.040 0.040 0.046

EDGES FOR STATOR 9

(g) 80 Percent of design speed; intrablade row instrumentation at station 2a; reading number 572

RP 12345 6789	RAD11 IN 001 22.949 22.94 22.479 22.47 22.004 21.99 20.577 20.57 18.682 18.71 16.787 16.99 15.342 15.66 14.849 15.16 14.343 14.66	ABS IN 4 50.0 4 44.6 99 42.4 74 46.1 74 49.3 16 47.3 24 48.1 54 49.7 54 51.5	BETAM OUT 2.3 1.6 2.1 3.2 2.5 1.4 3.1 4.7	REL IN 50.0 44.6 42.4 46.1 49.3 47.3 48.1 49.7 51.5	BETAM OUT 2.3 1.6 2.1 3.2 2.5 2.5 1.4 3.1 4.7	TOTAL IN 320.7 319.0 317.8 316.4 315.8 315.1 315.6 315.9 316.4	TEMP RATIO 0.995 0.998 1.000 1.000 0.999 1.001 0.997 0.996 0.998	TOTAL IN 12.95 13.06 13.11 12.97 12.96 13.24 13.56 13.71 13.80	PRESS RATIO 0.945 0.936 0.933 0.953 0.962 0.962 0.961 0.961 0.946 0.939
R 1 2 3 4 5 6 7 8 9	ABS VEL IN 0U 172.7 115 178.7 115 182.0 115 180.0 122 185.7 127 203.5 149 219.9 155 225.7 153 229.9 154	REL I IN .2 172.7 .0 178.7 .5 182.0 .7 180.0 .1 185.7 .9 203.5 .0 219.9 .8 225.7 .5 229.9	VEL 0UT 115.2 115.0 115.5 122.7 127.1 149.9 155.0 153.8 154.5	MER II IN 111.0 127.3 134.4 124.8 121.1 138.2 146.9 146.1 143.2	VEL 0UT 115.1 115.0 122.5 126.9 149.7 154.9 153.6 154.0	TAN IN 132.3 125.4 122.7 129.7 140.8 149.5 163.6 172.1 179.8	G VEL OUT 4.6 3.2 4.3 6.8 5.5 3.9 8.3 12.7	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH N OUT 0.493 0.52 0.52 0.52 0.512 0.52 0.52 0.52 0.518 0.36 0.36 0.42 0.642 0.44 0.660 0.44 0.673 0.44 0.44	NO REL M IN 10 25 0.493 25 0.512 27 0.523 48 0.518 51 0.536 29 0.592 44 0.642 41 0.660 42 0.673	ACH NO OUT 0.325 0.325 0.327 0.348 0.361 0.429 0.444 0.441 0.442	MERID MA [N 0.317 0.365 0.365 0.359 0.349 0.402 0.429 0.427 0.420	ACH NO OUT 0.325 0.325 0.326 0.348 0.361 0.428 0.444 0.440 0.441			MER:C 7 VEL R 1 1.037 0.903 0.859 0.982 1.048 1.084 1.055 1.052 1.075	PEAK SS MACH NG 1.004 1.020 0.999 1.044 1.111 1.131 1.182 1.226 1.266
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN MI 5.00 21 10.00 21 30.00 21 50.00 21 50.00 11 90.00 11 90.00 1	INCIDENCE EAN SS 3.B 14.7 5.1 10.8 5.8 9.5 5.8 12.7 4.4 13.2 6.4 7.0 0.8 2.7 0.1 2.5 9.7 2.5	DEV 7.1 6.4 7.7 8.4 8.2 10.2	D-FACT 0.591 0.593 0.583 0.532 0.523 0.443 0.463 0.480 0.484	EFF 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.363 0.389 0.391 0.279 0.215 0.097 0.214 0.214 0.233	02FF PR0F 0.363 0.389 0.279 0.215 0.215 0.97 0.160 0.214 0.233	LOSS P TOT 0.126 0.131 0.087 0.061 0.025 0.037 0.048 0.051	ARAM PROF 0.126 0.133 0.131 0.087 0.061 0.025 0.037 0.048 0.051

EDGES FOR STATOR 9

(h) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 573

RP 1 23456789	RADII IN 22.949 22 22.004 21 20.577 20 18.682 18 16.787 16 15.342 15 14.849 15 14.343 14	0UT 944 474 999 574 717 916 624 164	ABS IN 18.4 18.2 18.8 21.2 25.4 30.4 37.4 40.3 43.2	BETAM OUT 2.4 0.1 -0.8 -0.9 -1.1 -1.3 -1.1 0.3 2.3	REL IN 18.4 18.2 18.8 21.2 25.4 30.4 37.4 40.3 43.2	BETAM OUT 2.4 0.1 -0.8 -0.9 -1.1 -1.3 -1.1 0.3 2.3	TOTA IN 300.9 300.8 301.0 302.0 304.0 306.1 308.7 309.4 310.2	L TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.001	TOTAL IN 11.50 11.58 11.64 11.86 12.12 12.41 12.72 12.85 12.91	PRESS RAT10 0.963 0.989 0.992 0.990 0.987 0.987 0.987 0.977 0.980 0.963
RP 123456789	ABS V IN 183.5 1 187.1 1 189.5 1 196.3 1 210.9 1 223.2 1 230.1 2 233.1 2 234.5 2	EL OUT 55.0 70.6 74.0 79.4 93.4 93.4 93.4 02.0 08.1 03.9	REL IN 183.5 187.1 189.5 196.3 210.9 223.2 230.1 233.1 234.5	VEL 0UT 155.0 170.6 174.0 179.4 185.4 193.4 202.0 208.1 203.9	MERI IN 174.2 177.8 179.4 183.0 190.5 192.5 182.9 177.7 170.8	D VEL 0UT 154.8 70.6 174.0 179.3 185.3 193.3 202.0 208.1 203.7	TAN IN 57.9 58.5 61.0 71.0 90.3 113.1 139.6 150.9 160.6	IG VEL OUT 6.4 0.3 -2.3 -2.7 -3.4 -4.4 -3.8 1.0 8.3	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R - 23456789	ABS MAC IN 0.543 0 0.555 0 0.562 0 0.627 0 0.664 0 0.683 0 0.683 0 0.695 0	H NO OUT 455 503 513 529 5546 5594 612 598	REL MA IN 0.543 0.555 0.552 0.552 0.627 0.664 0.683 0.695	CH N0 0.455 0.503 0.513 0.529 0.546 0.569 0.594 0.612 0.598	MERID M/ IN 0.515 0.527 0.532 0.543 0.566 0.572 0.543 0.527 0.507	ACH NO OUT 0.454 0.503 0.513 0.529 0.546 0.569 0.594 0.612 0.597			MERID F VEL R M 0.889 0.960 0.970 0.980 0.973 1.005 1.104 1.171 1.193	EAK SS MACH NC 0.553 0.555 0.550 0.657 0.774 0.885 1.007 1.064 1.111
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 50.00 85.00 90.00 95.00	INCIE MEAN -2.8 -1.3 0.2 0.9 0.5 -0.4 0.1 0.8 1.5	DENCE SS -16.9 -15.6 -14.1 -12.2 -10.7 -9.8 -8.0 -6.9 -5.8	DEV 7.2 4.6 3.5 3.6 4.1 4.6 5.7 7.4 9.7	D-FACT 0.254 0.195 0.193 0.204 0.247 0.268 0.266 0.251 0.270	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C0 TOT 0.202 0.061 0.041 0.054 0.054 0.055 0.085 0.073 0.134	DEFF PROF 0.202 0.061 0.041 0.047 0.054 0.051 0.086 0.073 0.134	LOSS P4 TOT 0.070 0.021 0.014 0.015 0.015 0.015 0.013 0.020 0.016 0.029	RAM PROF 0.070 0.021 0.014 0.015 0.015 0.013 0.020 0.016 0.029

EDGES FOR STATOR 9

(i) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 575

RP 123456789	RAD IN 22.949 22.479 22.004 20.577 18.692 16.787 15.342 14.849 14.343	11 0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164 14.684	ABS IN 31.2 30.2 30.4 35.5 39.3 44.6 46.7 48.6	BETAM OUT 6.1 4.0 2.8 2.3 2.5 1.3 3.3 4.6	REL IN 31.2 30.2 32.4 35.5 39.3 44.6 46.7 48.6	BETAM OUT 6.1 4.0 2.8 2.5 1.3 1.9 3.3 4.6	TOTA IN 307.6 307.0 306.3 306.6 307.1 308.6 307.1 308.6 309.2 309.1	L TEMP RATIO 1.001 1.000 1.000 0.999 1.000 1.000 1.000	TOTAL IN 12.34 12.36 12.36 12.41 12.47 12.69 12.82 12.79	PRESS RATIO 0.966 0.984 0.989 0.991 0.988 0.986 0.987 0.978 0.964
RP 123456789	ABS IN 170.3 171.7 172.5 173.9 181.7 189.1 198.3 204.3 205.2	VEL 0UT 128.1 140.3 142.2 142.0 142.9 145.1 156.2 158.2 150.4	REL IN 170.3 171.7 172.5 173.9 181. 189.1 198.3 204.3 205.2	VEL 0UT 128.1 140.3 142.2 142.0 142.9 145.1 156.2 158.2 158.2 150.4	MERI IN 145.6 148.3 148.8 146.7 148.0 146.3 141.3 141.3 140.2 135.6	D VEL OUT 127.4 139.9 142.0 141.9 142.8 145.1 156.1 157.9 149.9	TAN IN 88.2 86.5 93.3 105.5 119.7 139.2 148.6 154.0	G VEL OUT 13.7 9.8 7.0 5.7 6.3 5.1 9.2 12.1	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 2 3 4 5 6 7 8 9	ABS M IN 0.496 0.501 0.504 0.502 0.552 0.554 0.582 0.603	ACH N0 OUT 0.369 0.406 0.412 0.412 0.412 0.412 0.421 0.452 0.458 0.435	REL M. IN 0.496 0.504 0.508 0.532 0.554 0.582 0.600 0.603	ACH NO OUT 0.369 0.406 0.412 0.412 0.412 0.412 0.421 0.452 0.458 0.435	MERID M IN 0.424 0.433 0.435 0.429 0.433 0.429 0.415 0.412 0.398	ACH NO OUT 0.367 0.405 0.412 0.411 0.414 0.420 0.452 0.457 0.433			MERIC F VEL R 1 0.875 0.943 0.955 0.965 0.965 0.992 1.104 1.126 1.105	PEAK SS MACH NO 0.76! 0.75! 0.756 0.784 0.846 0.907 1.000 1.051 1.074
RP123456789	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 85.00 95.00	INCI MEAN 10.0 10.8 11.8 12.1 10.6 8.5 7.3 7.1 6.9	DENCE SS -4.1 -3.5 -2.5 -1.0 -0.9 -0.8 -0.8 -0.6 -0.4	DEV 11.0 8.5 7.1 6.8 7.7 7.2 8.6 10.4 12.0	D-FACT 0.400 0.336 0.331 0.369 0.369 0.369 0.378 0.415	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.217 0.100 0.071 0.058 0.071 0.073 0.065 0.100 0.164	0EFF PROF 0.217 0.100 0.071 0.058 0.071 0.065 0.100 0.164	LOSS P TOT 0.075 0.034 0.024 0.018 0.020 0.019 0.015 0.022 0.035	ARAM PROF 0.075 0.034 0.024 0.018 0.020 0.019 0.015 0.022 0.035

EDGES FOR STATOR 9

(j) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 550

RAD	II	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
IN	OUT	IN	OUT	IN	OUT	IN	RATIO	IN	RATIO
22,949	22.944	48.8	2.4	48.8	2.4	312.9	0.996	12.26	0.958
22.479	22.474	43.2	2.0	43.2	2.0	311.4	0.998	12.32	0.953
22 004	21.999	40.8	2.7	40.8	2.7	310.4	1.001	12.35	0.952
20 577	20.574	44.1	3.5	44.1	3.5	309.5	1.000	12.28	0.966
18 682	18 717	47 3	2.8	47 3	2.8	308.9	1.000	12.25	0.974
16 787	16 916	46 4	2.7	45.4	2.7	308.7	1.000	12.45	0.984
15 342	15 624	47 3	21	47 3	2.1	309.4	0 997	12.78	0.966
14 849	15 164	48 5	37	48 5	3.7	309.1	0 997	12.81	0.956
14.343	14 684	50.0	50	50 0	5.0	309.0	1.000	12.80	0.955
14.545		50.0	<i></i>	50.0	5.0	50500			
ARS	VEL	RFI	VFI	MERI	D VEL	TAN	G VEL	WHEEL	SPEED
IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
150.0	100 3	150.0	100.3	98.8	100.2	112.9	4.2	0.	0.
154 4	100 8	154 4	100.8	112 6	100.7	105.7	3.5	0.	0.
157 1	101 8	157 1	101 8	118 9	101 7	102.6	A 7	0	5
156 7	108 7	155 7	108 7	112.6	108 5	109 0	6.6	0	0.
161 2	112.2	161 2	1:2.2	109 2	112 1	118 5	55	0	ñ.
177.2	120 8	177 2	120 8	122 2	120 7	128 3	6.2	0	0
194 4	136 1	101 1	136 1	131 8	136 0	142.8	5.0	0	Δ.
197 0	132 0	107 0	132 0	130 4	132 7	147 7	95	ň.	1
198 4	133 5	108 4	133 5	127 4	133.0	152.0	11 7	0.	а. 6
150.4		130.4			100.0	12.0		۷.	۷.
ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO			MERIU F	EAK SS
IN	OUT	IN	OUT	IN	0UT			VEL R M	ACH NO
0.431	0.286	0.431	0.286	0.284	0.286			1.014	0.928
0.445	0.288	0.445	0.288	0.324	0.287			0.895	0.864
0.454	0.290	0.454	0.290	0.344	0.290			0.855	0.842
0.453	0.311	0.453	0.311	0.326	0.311			0.963	0.880
0.467	0.322	0.467	0.322	0.317	0.321			1.026	0.935
0.516	0.374	0.516	0.374	0.356	0.373			1,061	0.971
0.569	0.392	0.569	0.392	0.386	0.392			1.032	1.031
0.577	0.383	0.577	0.383	0.382	0.382			1.017	1.049
0.582	0.384	0.582	0.384	0.374	0.383			1.044	1.064
PERCENT	INCI	DENCE	DEV	D-FACT	EFF	LOSS CO	DEFF	LOSS PI	ARAM
SPAN	MEAN	SS				TOT	PROF	TOT	PROF
5.00	27.6	13.5	7.2	0.584	0.	0.353	0.353	0.123	0.123
10.00	23.7	9.4	6.5	0.573	0.	0.370	0.370	0.126	0.126
15.00	22.Z	7.9	7.0	0.560	0.	0.365	0.365	0.122	0.122
30.00	23.8	10.7	8.0	0.511	0.	0.258	0.258	0.081	0.081
50.00	22.5	11.3	7.9	0.503	0.	0.187	0.187	0.053	0.053
70.00	15.6	6.2	8.7	0.443	٥.	0.098	0.098	0.025	0.025
85.00	10.0	1.9	8.9	0.464	0.	0.174	0.174	0.041	0.041
90.00	9.0	1.3	10.8	0.482	٥.	0.219	0.219	0.049	0.049
95.00	8.3	1.0	12.4	0.479	0.	0.217	0.217	0.047	0.047
	RAD IN 22.949 22.004 20.577 15.342 14.849 14.343 ABS IN 150.0 154.4 157.1 156.7 161.2 177.2 194.4 197.0 198.4 ABS M IN 0.431 0.455 0.455 0.455 0.569 0.577 0.582 PERCENT SPAN 5.00 10.00 15.00 50.00 95.00	RADII IN OUT 22.949 22.944 22.479 22.474 22.004 21.999 20.577 20.574 18.682 18.717 16.787 16.916 15.342 15.624 14.343 14.684 ABS VEL IN OUT 150.0 100.3 154.4 100.8 157.1 101.8 156.7 108.7 161.2 112.2 177.2 129.8 194.4 136.1 197.0 132.9 198.4 133.5 ABS MACH NO IN OUT 0.431 0.286 0.445 0.288 0.453 0.311 0.467 0.322 0.516 0.374 0.569 0.392 0.577 0.383 0.582 0.384 PERCENT INCI SPAN MEAN 5.00 27.6 10.00 23.7 15.00 22.2 30.00 23.8 50.00 22.5 70.00 15.6 85.00 10.0 90.09 9.0	RADII ABS IN OUT IN 22.949 22.944 48.8 22.479 22.474 43.2 22.004 21.999 40.6 20.577 20.574 44.1 18.682 18.717 47.3 16.787 16.916 46.4 15.342 15.624 47.3 14.849 15.164 48.5 14.343 14.684 50.0 ABS VEL REL IN OUT IN 150.0 100.3 150.0 154.4 100.8 154.4 157.1 101.8 157.1 156.7 108.7 156.7 161.2 112.2 161.2 177.2 129.8 177.2 194.4 136.1 194.4 197.0 132.9 197.0 198.4 133.5 198.4 ABS MACH NO REL MM IN OUT IN 0.453 0.311 0.453 0.455	RADII ABS BETAM IN OUT IN OUT 22.949 22.944 48.8 2.4 22.049 22.474 43.2 2.0 22.004 21.999 40.8 2.7 20.577 20.574 44.1 3.5 18.682 18.717 47.3 2.8 16.787 16.916 46.4 2.7 15.342 15.624 47.3 2.1 14.849 15.164 48.5 3.7 14.343 14.684 50.0 5.0 ABS VEL REL VEL IN OUT IN OUT 150.0 100.3 150.0 100.3 154.4 100.8 154.4 100.8 157.1 101.8 157.1 101.8 156.7 108.7 156.7 108.7 161.2 112.2 161.2 112.2 177.2 129.8 177.2 129.8 194.4 136.1 194.4 136.1 197.0 132.9 <td>RADII ABS BETAM REL IN OUT IN OUT IN 22.949 22.944 48.8 2.4 48.2 22.479 22.474 43.2 2.0 43.2 22.004 21.999 40.6 2.7 40.8 20.577 20.574 44.1 3.5 44.1 18.682 18.717 47.3 2.8 47.3 16.787 16.916 46.4 2.7 46.4 15.342 15.624 47.3 2.1 47.3 14.849 15.164 48.5 3.7 48.5 14.343 14.684 50.0 5.0 50.0 150.0 100.3 150.0 100.3 98.8 154.4 100.8 154.4 100.8 112.6 161.2 112.2 161.2 112.2 109.2 177.2 129.8 177.2 129.8 122.2 194.4 135.5 198.4 135.5 <</td> <td>RAD I I ABS BETAM REL BETAM REL BETAM IN OUT IN OUT IN OUT 22.949 22.944 48.8 2.4 2.4 22.479 22.474 45.2 2.0 45.2 2.0 22.004 21.999 40.6 2.7 40.8 2.7 20.577 20.574 44.1 3.5 44.1 3.5 18.682 18.717 47.3 2.1 47.3 2.1 15.342 15.624 47.3 2.1 47.5 2.1 14.849 15.164 48.5 3.7 48.5 3.7 14.343 14.684 50.0 5.0 50.0 5.0 150.0 100.3 150.0 100.3 98.8 100.2 157.1 101.8 157.1 101.8 112.6 108.5 161.2 112.2 161.2 112.2 109.2 112.1 177.2 129.8 172.2 198.4</td> <td>RAD11 ABS BETAM REL BETAM TOTA IN OUT IN OUT IN OUT IN 22.949 22.479 22.474 43.2 2.0 45.2 2.0 311.4 22.004 21.999 40.6 2.7 40.8 2.7 310.4 20.577 20.574 44.1 3.5 44.1 3.5 309.5 18.682 18.717 44.1 3.5 44.1 3.5 308.9 16.787 16.916 46.4 2.7 46.4 2.7 308.7 18.682 18.717 47.3 2.1 47.3 2.1 50.9 309.0 14.345 14.684 50.0 5.0 50.0 50.0 309.0 14.345 14.684 50.0 50.0 50.0 50.0 309.0 155.1 101.8 154.4 100.8 112.6 100.7 105.7 157.1 101.8 157.1 101.8 150.1</td> <td>RAD111 ABS BETAM REL BETAM REL BETAM RAL DUT IN OUT IN RATIO 1N OUT IN OUT IN OUT IN RATIO 22.949 22.944 48.8 2.4 48.8 2.4 312.9 0.996 22.479 22.474 45.2 2.0 43.2 2.0 311.4 0.996 22.479 22.474 45.2 2.0 43.2 2.0 311.4 0.996 22.042 21.947 44.1 3.5 308.9 1.000 10.001 10.001 10.001 10.001 10.997 14.849 15.164 48.5 3.7 48.5 3.7 309.1 0.997 14.343 14.684 50.0 5.0 50.0 5.0 309.0 1.000 15.4 100.8 154.4 100.8 112.6 100.7 105.7 3.5 14.343 14.10.8 157.1 101.8</td> <td>RAD I I ABS BETAM RCL BETAM TOTAL TEMP TOTAL TEMP IN OUT IN OUT IN RATIO IN 22.949 22.474 45.2 2.0 45.2 2.0 311.4 0.996 12.26 22.004 21.999 40.6 2.7 40.8 2.7 310.4 1.001 12.25 22.004 21.999 40.6 2.7 40.8 2.7 310.4 1.001 12.25 16.767 16.916 46.4 2.7 308.7 1.000 12.25 15.742 15.624 47.3 2.1 47.5 2.1 309.4 0.997 12.81 14.343 14.684 50.0 5.0 50.0 5.0 309.0 1.000 12.80 14.343 14.684 50.0 50.0 50.0 50.0 100.0 12.80 154.4 100.8 152.6 100.7 105.7 350.1 1.000 12.81 150.0</td>	RADII ABS BETAM REL IN OUT IN OUT IN 22.949 22.944 48.8 2.4 48.2 22.479 22.474 43.2 2.0 43.2 22.004 21.999 40.6 2.7 40.8 20.577 20.574 44.1 3.5 44.1 18.682 18.717 47.3 2.8 47.3 16.787 16.916 46.4 2.7 46.4 15.342 15.624 47.3 2.1 47.3 14.849 15.164 48.5 3.7 48.5 14.343 14.684 50.0 5.0 50.0 150.0 100.3 150.0 100.3 98.8 154.4 100.8 154.4 100.8 112.6 161.2 112.2 161.2 112.2 109.2 177.2 129.8 177.2 129.8 122.2 194.4 135.5 198.4 135.5 <	RAD I I ABS BETAM REL BETAM REL BETAM IN OUT IN OUT IN OUT 22.949 22.944 48.8 2.4 2.4 22.479 22.474 45.2 2.0 45.2 2.0 22.004 21.999 40.6 2.7 40.8 2.7 20.577 20.574 44.1 3.5 44.1 3.5 18.682 18.717 47.3 2.1 47.3 2.1 15.342 15.624 47.3 2.1 47.5 2.1 14.849 15.164 48.5 3.7 48.5 3.7 14.343 14.684 50.0 5.0 50.0 5.0 150.0 100.3 150.0 100.3 98.8 100.2 157.1 101.8 157.1 101.8 112.6 108.5 161.2 112.2 161.2 112.2 109.2 112.1 177.2 129.8 172.2 198.4	RAD11 ABS BETAM REL BETAM TOTA IN OUT IN OUT IN OUT IN 22.949 22.479 22.474 43.2 2.0 45.2 2.0 311.4 22.004 21.999 40.6 2.7 40.8 2.7 310.4 20.577 20.574 44.1 3.5 44.1 3.5 309.5 18.682 18.717 44.1 3.5 44.1 3.5 308.9 16.787 16.916 46.4 2.7 46.4 2.7 308.7 18.682 18.717 47.3 2.1 47.3 2.1 50.9 309.0 14.345 14.684 50.0 5.0 50.0 50.0 309.0 14.345 14.684 50.0 50.0 50.0 50.0 309.0 155.1 101.8 154.4 100.8 112.6 100.7 105.7 157.1 101.8 157.1 101.8 150.1	RAD111 ABS BETAM REL BETAM REL BETAM RAL DUT IN OUT IN RATIO 1N OUT IN OUT IN OUT IN RATIO 22.949 22.944 48.8 2.4 48.8 2.4 312.9 0.996 22.479 22.474 45.2 2.0 43.2 2.0 311.4 0.996 22.479 22.474 45.2 2.0 43.2 2.0 311.4 0.996 22.042 21.947 44.1 3.5 308.9 1.000 10.001 10.001 10.001 10.001 10.997 14.849 15.164 48.5 3.7 48.5 3.7 309.1 0.997 14.343 14.684 50.0 5.0 50.0 5.0 309.0 1.000 15.4 100.8 154.4 100.8 112.6 100.7 105.7 3.5 14.343 14.10.8 157.1 101.8	RAD I I ABS BETAM RCL BETAM TOTAL TEMP TOTAL TEMP IN OUT IN OUT IN RATIO IN 22.949 22.474 45.2 2.0 45.2 2.0 311.4 0.996 12.26 22.004 21.999 40.6 2.7 40.8 2.7 310.4 1.001 12.25 22.004 21.999 40.6 2.7 40.8 2.7 310.4 1.001 12.25 16.767 16.916 46.4 2.7 308.7 1.000 12.25 15.742 15.624 47.3 2.1 47.5 2.1 309.4 0.997 12.81 14.343 14.684 50.0 5.0 50.0 5.0 309.0 1.000 12.80 14.343 14.684 50.0 50.0 50.0 50.0 100.0 12.80 154.4 100.8 152.6 100.7 105.7 350.1 1.000 12.81 150.0

-

State of the second sec

.

EDGES FOR STATOR 9

(k) 50 Percent of design speed; intrablade row instrumentation at station 2a; reading number 579

RP 123456789	RADII IN OUT 22.949 22.944 22.479 22.474 22.004 21.999 20.577 20.574 18.682 18.717 16.787 16.916 15.342 15.624 14.849 15.164 14.343 14.684	ABS IN 53.0 55.1 9 51.7 4 46.8 7 42.6 5 42.8 4 44.5 4 45.7 4 48.0	BETAM OUT 2.6 3.2 3.1 2.6 2.2 3.1 4.0 3.1	REL IN 53.0 55.1 51.7 46.8 42.6 42.8 44.5 45.7 48.0	BETAM OUT 2.6 3.2 3.1 2.6 2.2 3.1 4.0 3.1	TOTAI IN 299.6 299.2 298.7 297.4 297.1 297.2 298.0 298.2 299.0	L TEMP RATIO 0.999 0.997 0.998 0.998 0.999 0.998 0.998 0.998 0.998	TOTAL 1N 11.20 11.13 11.10 10.95 11.09 11.18 11.33 11.41 11.43	PRESS RATIO 0.979 0.981 0.986 1.002 0.999 0.997 0.984 0.972 0.964
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN 00T 106.0 69. 107.5 69. 107.6 77.1 107.6 77.1 117.6 85. 127.4 91.1 141.0 93.4 146.3 89.0 149.1 85.2	REL IN 1 106.0 4 107.5 5 107.0 0 107.6 1 117.6 2 127.4 4 141.0 6 146.3 2 149.1	VEL 0UT 69.4 72.3 77.0 85.1 91.2 93.4 89.6 85.2	MER I IN 63.8 61.5 66.3 73.7 86.6 93.5 100.5 102.2 99.7	D VEL OUT 69.0 69.3 72.2 76.9 85.0 91.1 93.3 89.4 85.0	TAN IN 84.7 88.2 78.4 79.6 86.6 96.8 104.7 110.8	G VEL OUT 1 3.8 3.9 4.1 3.5 5.0 4.6	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R125456789	ABS MACH NO IN OUT 0.308 0.200 0.313 0.201 0.314 0.224 0.344 0.244 0.374 0.266 0.414 0.272 0.430 0.246 0.438 0.246	REL M. IN 0 0.308 1 0.313 0 0.314 3 0.314 3 0.344 5 0.374 2 0.414 1 0.430 8 0.438	ACH NO OUT 0.200 0.201 0.224 0.248 0.248 0.248 0.272 0.261 0.248	MERID M/ IN 0.186 0.179 0.193 0.215 0.254 0.274 0.295 0.301 0.293	ACH NO OUT 0.200 0.201 0.210 0.224 0.248 0.248 0.248 0.248 0.266 0.272 0.260 0.247			MER:D 7 VEL R1 1.083 1.128 1.088 1.043 0.981 0.974 0.928 0.875 0.853	EAK SS MACH NO 0.715 0.754 0.641 0.631 0.637 0.711 0.740 0.772
RP 1 2 3 4 5 6 7 8 9	PERCENT II SPAN ME. 5.00 31 10.00 35 15.00 33 30.00 26 50.00 17 70.00 12 85.00 7 90.00 6 95.00 6	NCIDENCE AN SS .B 17.7 .6 21.3 .1 18.8 .5 13.4 .7 6.5 .0 2.6 .2 -0.9 .1 -1.5 .3 -1.0	DEV 7.4 7.6 7.4 7.6 7.7 8.1 9.8 11.1 10.5	D-FACT 0.616 0.623 0.575 0.501 0.460 0.451 0.491 0.537 0.581	EFF 0. 0. 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.336 0.229 0.214 -0.033 0.018 0.037 0.147 0.235 0.287	0EFF PR0F 0.336 0.289 0.214 -0.033 0.018 0.037 0.147 0.235 0.287	LOSS P TOT 0.117 0.099 0.071 -0.010 0.005 0.034 0.053 0.062	ARAM PROF 0.117 0.099 0.071 -0.010 0.005 0.009 0.034 0.053 0.062

TABLE IX. - NOISE OF STAGE 15-9 IN ANECHOIC CHAMBER

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

(a) Percent speed, 60; fan actual rotative speed, 7730 rpm; percent weight flow, 62.5

Fre-						Angle fr	om inlet	, deg						PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W)

One-third octave band sound pressure level, dB (re 0.0002 μ bar)

100	69 6	50.7	54.5	57.6	56.5	57.7	60.2	50.3	58.5	58.5	58.6	56.7	52.3	107-0
105	60 E	62 0	50 0	58 7	50.5	57.0	60.2	47 8	64 4	65 6	66 A	67 0	54.0	112 1
1/2			60 4	40.7	50.45	57.4	58.4		56 0	- EA O	87 0		5010	106 4
100		57.7	66 7	64 7	50.0	7/ • 1	50.1	50./	50.9	50.9	5/10	55.1	529U	100.4
200	<u> </u>	00.5	00.0	<u></u>	62.0	- 62.1	60.0		50+1		33.7	54+3	52.5	
220	F9.4	00.5	00.3	6/ • 2	00.00	64+5	63.5	80•¥	50-3	57.5	50./	22+2	52.4	111+9
315	66.4	58.9	68.0	6/-1	05+5	64.2	63.0	61.4	59.2	50.4	5/+0	54.7	51+0	111.6
400	F4 • 1	64 • 1	63.7	62.4	61+0	60+2	58.7	56+1	54.5	53.8	53.1	50+7	47.3	107+2
500	61.5	51.5	61+1	60.8	59.7	58.4	57.9	<u> 55 5 </u>	54.7	52.8	51.0	48+2	45+3	<u> 105+7 </u>
530	63.9	64.2	64+3	63.2	62 • 4	6n-9	59+1	56.5	55.6	54.2	52.7	49.6	46.5	107+9
<u>80 r.</u>	63.1	63.4	63.5	63.2	62.0	60.0	58.5	55.7	53.8	53.2	52.7	49.8	46+4	107•4
1000	≂9 . ª	50.6	60+7	60-1	58.5	57+0	55,5	52+1	49.5	47.0	47.6	45+0	42+3	104+1
125	62.n	61.8	61.4	<u> </u>	58+2	56+7	54.9	51.5	49.2	47.2	46.0	43+2	39.8	104+1
1 n C n	76.4	72.8	67.8	67.3	67.9	66+1	63.3	59.2	55.9	52.1	51+0	48.6	48+2	112+7
201,0	<u> </u>	83.2	77.5	76.7	78.5	76.5	73.2	69.1	65.5	61.8	59.9	58+0	57.9	122.9
2510	nt.2	14.4	63.2	62.9	62.2	£n.4	59.1	55.0	51.7	49.2	48.0	46.4	43.3	107+5
3150	68.3	69.8	67.5	65. <u>8</u>	64.8	63.5	61-2	_ 57•1_	53.8	51.8	5 <u>1 • 3</u>	49.3	47 . 4	110.9
1116	P0.7	72.0	70.3	69.0	67•3	68.0	65.0	60.4	57.0	54.8	54.3	53.0	50.6	114+3
5(0)	6 ⁶ • ⁶	10.2	69.6	69.1	68.9	67+3	65.0	61-2	56.9	55.1	55+4	53+1	51+5	114+4
6301	77.2	80+1	79.7	79.N	79.4	79.0	76+3	71.8	68.1	67.6	66.6	63+1	62+0	125+5
Acc.	76.5	- AL . 7	78.0	74.9	78.5	79.2	74.6	68.3	65.6	68.2	65+2	60+5	62+1	125+0
10001	72.0	12.4	70.8	71.9	72.4	71.6	68,5	63.9	59.3	57.6	57.6	56.7	54.6	119.4
12501	72.2	74.8	74.8	76.1	78.1	76.7	77.0	73.5	66.0	65.5	63.1	60.8	60.6	126.5
1600	67.6	69.5	69.9	72.3	74.0	72.6	73.0	69.6	62.2	61.0	59+1	57+3	56+7	124.4
2000	<u>67.</u>	66.9	66.7	68.0	68 . 4	69.4	68,5	64.7	57.7	54.9	54+4	53.3	52.2	122.6
2500	60.9	61.8	61.3	F2.3	63+6	62.6	63.7	57.4	51-1	48.6	48.8	47.7	46.4	120.6
3150	52.4	53.9	54.3	55.9	56 • 1	55.9	57.1	51.0	43.9	41-3	43.3	41.0	39.4	119+2
4010	41.8	44.4	45 • 1	46.0	47 • 4	46.1	47.6	42.7	34.6	33.0	34.2	32+1	31.5	118+0
$\frac{1}{5000} \frac{2^{8} \cdot 2}{2^{8} \cdot 2} \frac{32 \cdot 3}{32 \cdot 2} \frac{32 \cdot 5}{32 \cdot 5} \frac{34 \cdot 5}{32 \cdot 9} \frac{32 \cdot 9}{34 \cdot 9} \frac{34 \cdot 9}{30 \cdot 8} \frac{30 \cdot 8}{22 \cdot 4} \frac{23 \cdot 9}{21 \cdot 9} \frac{20 \cdot 2}{21 \cdot 9} \frac{19 \cdot 1}{19 \cdot 7} $														
6310.	11.0	15+0	16.4	15.8	18+A	16.1	18.2	15.5	7.2	7.6	2.6	2.8	5+1	115.5
Anurs	• ^	• 2	.0	• 0	• 0	.0	O	.0	• 0	.0	.0	.0	• 0	114.4
^۲ ¬ ۸	49.2	47.6	84.5	83.6	84 • 8	84 . 1	81.2	76.8	72.9	72.2	70.6	67.5	66+9	
line"	#A.0	86.3	A3.3	A2.4	83.4	82.6	79.8	75.7	72.3	71.7	70.6	67.6	66+2	
71	2.7 . 5	nn . 2	87.3	82.4	83.4	82.6	79.9	75.9	73.0	72.6	71.8	69.0	66.8	
P+1	111.4	44.3	97.8	96.9	97.2	96.5	93.9	89.8	86.6	85.7	84.8	81.8	80.3	
PALT	108.2	104+5	102.7	101.9	103.0	102.3	99.1	94.9	91.5	89.4	88.9	86.0	85.5	
			-				-							
				N	FA 77	30 RPM								
						00								• <u>••••</u> •••••••••••••••••••••••••••••••

	_NFA7730 RPM
	NFK 7809 RPM
	NFD 13020 RPM
	NUMBER OF BLADES 53
·	
TAMB 46	DEG F TWET 45 DEG F
	HACT 7,36 GM/M3

the strategic industry of a strategic strategi

A DESCRIPTION OF THE OWNER OF THE

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

(b) Percent speed, 60; fan actual rotative speed, 7724 rpm; percent weight flow, 55.7

Fre-						Angle f:	rom inle	t, deg						PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W)

One-third octave band sound pressure level, dB (re 0.0002 $\mu \text{bar})$

100	E7 8	87.4	57.0		64.7				86 7	64 A		E . 7		10E /
		5/ 10		55,0		55.9		5/.5		50.0				1051
125	01.0	01.0	5/ •/	5/+0	50.4	50.2	01.4	03.5	03./	63.0	00.3	03./	0.00	111.8
100	5/ • 2	5/ .2	5/ • 4	5/ .5	50+1	54.0	50.0	54.0	54.1	54.3	- 24+5	52.0	49.5	103.8
200	02.5	04.2	03.0	62+0	00+1	59.8	59.1	57 • 0	55.0	54+1	52.7	51.8	50.5	107+0
250	65.9	05.4	64.8	64.4	63+0	62.0	60.8	58.2	56.8	56,1	55.4	530	50+2	108.9
315	65.6	65.9	65.0	64+1	63.0	61+0	59.7	58.4	56.0	55.0	54+1	51.7	48.6	108.6
	60.8	60.8	60.4	59.3	.57.5	56.7	55.7	52.8	52.0	50.9	49.8	47.+7	_44+3_	103.9
500	59.0	59.3	58.6	58.5	57+2	55+4	55.2	52.8	51.9	50.2	48.5	45.7	42.5	103.1
630	61.7_	62.2	62.1	61.5	60.4		56.9	54.7	52.9	51.7	50.5	47.1	44.2	105.8
800	60+4	61.2	õ1+5	60.9	59.5	57.8	56.5	53.4	51.3	50.6	49.9	47 + 0	44+2	105.1
1000	59.5	.59.8	59.7	59,6	57.7	56.2	55.0	51.8	49.0	47.0	46.6	44.2	41+3	103.4
1250	61.0	62.8	63+1	62.3	59.9	58.7	56.4	53.5	50.7	48.9	47.8	45+2	41.5	105.9
1600	_ 78.9	82.0	83.3	80.8	77.6	75.3	72.8	69.2	63,9	61.9	59.0	57.6	55+5	124+1
2000	79.8	80.7	81.2	79.2	76+5	74.7	72.0	68.6	64.3	61.8	59-1	57.5	56.4	122.8
2500	67.2	68.2	67.4	66.9	66.0	63.9	62.4	58.5	54.7	52.4	51.3	50.2	47.3	111+3
3150	69.3	69.8	69.8	69.8	68.6	66.7	64-0	60+4	56.8	54+3	54.3	53.0	50+4	113.8
4000	70.5	71.5	72.3	71.5	70+8	68.7	66.2	61.9	59.0	56.5	56.8	55.5	52.9	110.2
5000	72.8	73.7	74+3	73.6	73+2	70.6	68.0	63.7	60.6	58.8	58.9	57 . 4	55+7	118+4
6300	77.7	80.3	61.0	80+0	78.9	77.0	75.0	71.8	68.6	65.8	65.8	63.6	62+0	125.2
8000	73.2	75.2	75+7	75.9	75+0	73.5	70-1	66.1	63.1	61.4	60.9	59.5	57.6	121+4
10000	71.7	72.9	73.8	74.4	74.9	73.3	71.3	65.9	61.5	59.8	60.3	58.9	57.3	121.6
12500	73+2	74+1	74.8	76.6	75.9	77.7	76.3	72.7	66.5	64.5	65.4	61.8	59+4	126.1
16000	67.9	69.0	69.9	70.8	70+5	70.1	71.0	65.6	60.5	57.2	57.4	56.1	54.2	122.0
20000	68.5	68.1	68.0	68.5	68+6	67.9	68.5	62.2	56.2	53.7	54+4	53.3	52.2	122+3
25000	52.9	63.3	62.8	63.3	64+1	62.9	63.5	57 . 4	51+1	48.3	49.8	48.7	46.9	121+0
31500	53.6	55+2	55.5	56.4	57+1	55.9	57.1	50.5	43.6	40.8	43.3	41.5	39.9	119+6
40000	44.3	46.6	46.9	46.7	48.7	46.9	48.9	43.2	34.6	33.5	35+2	33.1	32.3	119+1
50000	30.9	34+3	34.5	33.5	36.0	32.9	35.9	31.3	22.4	22.4	21.2	20.3	20.9	116.9
63000	14.9	20.3	19.2	17.8	20.3	17-1	18.9	16.0	7.7	8.1	3.4	3.8	5.8	116.7
80000	.0	+0	•0	•0	• 0	•0	.0	.0	.0	•0	•0	•0	•0	115.5
DØA	85.7	87.6	88.4	86.9	85.1	83.4	81.1	77.4	73.4	71.1	70.5	68.6	68.7	
DBB	84.5	86.4	87.2	85.6	83.7	82.0	79.7	76.2	72.4	70.6	70.1	68.1	65.7	
DBC	84.5	86.3	87.1	85.5	83.6	81.9	79.7	76.4	72.9	71.4	71.2	69.1	66.3	
PNL	97.7	99.1	99.6	98.7	97.5	95.6	93.6	90.2	87.1	84.8	84.5	82.5	60.5	
PNLT	103.0	102.5	102.8	102.0	100.6	98.7	96.8	93.5	91.0	88.0	87.8	85.6	84.5	
											·			
				N	IFA 77	Z4 RPM								

59

1

1

ł

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(c) Percent speed, 60; fan actual rotative speed, 7749 rpm; percent weight flow, 51.2

Fre-	e- Angle from inlet, deg													PWL,	
auencv														dB	
1 .	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W)	
			On	e-third o	ctave ba	nd sound	pressu	re level.	dB (re (). 0002 u)	bar)				
							P =	···-,			•				
100		58.3	.56.5	55.1	54.0	55.0	57.5	56.3	55.7	55.8	55.8	54.0	49.3	104.3	
125	€U•U 57 0	01.0	5/ • /	5/+3	5/•/	57.9	01./	03.3	67.6	64.6	00+3	63.9	50+5	111+7	
200	57.0	64.7		62-0	55+0		50.1	53.1	55 7			- 51.9	49.5	103.3	
200	64-7	64.0	64-0	63-0	62.0	57+1	30.J	50.4 56 U	55.8 65.8	50.9	52.5	51+5	5U+5	100+/	
315	64.1	04.0	0.3.7	6.3.1	61.2	59.7	58.5	57.4	54.7	53.7	52.6	51+0	A7.4	107-7	
400	6n • 1	61.3	59.4	58.8	50.0	56.5	55.2	52.1	51.0	49.9	48.8	46.7	43.6	10740	
50.0	58.7	62.3	59.1	58.5	50.9	55.9	54.7	52.0	51.9	50.0	48 • D	45.7	42.5	103.4	
630	¢1.4	62.2	02.1	61.2	60+1	58.6	57.1	54.7	53.1	51.9	50.7	47.4	44.5	105.7	
800	61.6	62.4	02.8	51.9	60.0	58.8	57.8	53.9	52.3	51.9	51.4	48.3	45.2	106.1	
1000	61.5	• 0	03.0	62.9	61.0	59.5	58.0	54.8	52.3	50.5	49.9	47.2	44.3	106.3	
1250	64.0	68.8	06.6	65.3	63.4	62.7	61.2	58.0	55.5	52.7	51.5	49.2	45+3	109.9	
1600	79+1_	33.0	84.3	81.8	79+1		.75,6	72.2		60.1	60.7	60.8	57.0	125.5	
2000	2000 79+5 81+5 81+7 79+7 77+8 76+2 75+0 71+1 68+3 64+8 60+1 60+3 56+1 2000 71+7 72+9 72+7 71+9 70+7 69+2 68+1 54+3 60+7 58+9 57+4 55+7 52+3														
2500	1500 71.7 /2.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 57.3 55.7 52.3														
3150	73.8	/4.3	/4.0	73.8	72.3	70.7	68.7	64.0	61.3	59.5	58.3	57.5	54+1	118.0	
4000	/3.0	/0.0	/5.0	75.5	/4+0	72.2	/0.7	66.4	63.0	60.8	00.3	59.3	5/ • 1	120+0	
5000 6300	77.3	74.6	80.7	70 1	70.2	73.0	/1.3	0/.4	63.9	02.1	66 4	60.9	59+0	121+4	
8000	71.2	77.0	76.2	75.7	75.5	777		-11-1	63.6		61.2	60.6	64.1	125.0	
10000	72.0	73.9	74.6	74.7	75.4	74-3	71 1	67 1	63.5	60.8	61.3	50.0	58.1	100 4	
12500	73.2	74.8	75.0	75.1	75.6	75.5	75.8	69.7	64.5	62.2	62.1	60.3	59.0	124-9	
16000	69.4	10.1	71.4	71.3	71.0	70.6	70.0	64.4	59.5	57.2	57.1	56.1	54.7	122.1	
20000	70.8	70.9	70.2	69.5	68.6	68.6	68.5	61.9	56.7	53.9	54.4	53.9	52.5	122.9	
25000	64 • 1	65+3	54.8	64.8	65.4	64 - 4	64.5	57 • 1	51+4	49.3	50.0	49+4	47.9	122.3	
31500	55+4	5/.5	57.8	57.2	57 • 9	56.7	57.6	51.0	44.4	41.3	44+0	42.5	40.9	120.5	
40000	45.9	40.6	49+1	41.7	49 • 4	47 . 7	48.9	43.0	35.1	34-1	35.4	33.9	32.8	119.8	
50000	33.2	36.8	36.8	35.0	37 • 3	34.2	36.5	32.1	22.9	22.2	22.0	20.9	21.5	118.0	
63000	17.4	22.8	21.7	19.3	21.8	18.3	19.7	16.3	7.7	7.9	4 . 4	5.0	6.8	118=0	
80000	•0	۰Ũ	• 0	• 0	• 0	• 0	•0	.0	•0	.0	•0	•0	•0	116.5	
DUA	86.4	88.8	89.5	87.8	86.5	84.7	83.1	79.2	75.9	73.3	71.6	70.4	68.0		
DBB	85 • 1	87.5	88.2	86.5	85 • 1	83.3	81.8	77.9	74.8	72.4	70.9	69.6	66.9		
DBC	85.0	87.4	88.1	86.4	\$5+1	83.2	81.7	78.0	74.9	72.9	71.0	70.3	67.3		
PNL	98.3	100+1	100+7	99.2	98+6	96.7	94.9	91.2	88.3	86.0	85.3	83.7	01.5		
- PNLT	102.5	106.7	104+1	102.3	101.5	99.8	98.1	94.4	91.4	89.2	88.5	86.8	84+2		
-															
				N	FA 77	48 RPM									
		······			FK 78	25 RPM									
				N	FD 130	20 RPM									
NUMBER OF BLADES 53															
		_													
			TAME	48 D	EGF	TWET	46 D	EG F							

HACT 7.35 GM/M3 BAR 29.2 HG

i.

Í

-

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

(d) Percent speed, 70; fan actual rotative speed, 8976 rpm; percent weight flow, 72.8

		• •		- /				-						
Fre-						Angle f	rom inle	t, deg						PWL,
quency	٥	10	20	80	40	50	60	70	80	90	100	110	190	dB
	U	10	20	50	40	50	00	10	00	00	100	110	120	$(re \ 10^{-10} W)$
			~					. 1	1D (0	0000 1				
			One	-third oc	tave ban	d sound	pressure	e level, d	цв (re U.	0002 μο	ar)			
100	61.1	61.1	60.7	59.3	58.5	59.5	61.7	61.3	61.0	61.0	61.1	58.7	54.3	109.1
125	62.0	61.5	59.4	58.8	58.7	59.2	59.7	60.5	62.2	61.0	59.8	60.4	53.3	108.9
160	63.2	61.7	63.6	66.0	64.4	62.9	59.9	66.2	70.6	68.6	66.5	67.1	55.5	115.4
200	67.7	68.7	68.3	66.5	64.8	63.A	63.1	61.0	60.3	59.3	58.2	57.1	54.7	111+5
250	72.4	71.2	71.3	70.4	68.8	67.8	67.0	64.2	63.3	62.1	60.9	58.3	55.9	114.9
315	70.9	71-1	70.0	68.9	67.2	66.0	64.7	63.6	61.2	60.0	58.9	57.2	53.9	113.5
400	67.6	67.3	66.4	65.8	64+5	63.0	62.0	59.6	57.5	56.6	55.8	53+4	50.6	110.3
500	64.7	64.5	64 . 1	63.8	62.4	60.9	60.7	58.8	57.4	55.6	53.8	51.2	48.0	108.5
630	66.4	67.5	67.3	66.5	65+4	64.4	62.4	60+0	58,9	57.6	56.2	52.9	50+0	111+1
800	66+1	66.7	66.8	66.2	65+3	63.5	61+8	59.2	57.3	56.5	55. <u>7</u>	52.8	49,7	110+6
1000	63+0	63.6	63.5	63+1	62.0	60+2	58.0	55.3	52.8	51.0	51.6	48.7	46+1	107+2
1250	62.5	64.1	63.6	62.6	60.7	59.2	57.7	54.8	51.5	49,7	48.8	45.9	42.8	106.6
1600	63.1	63.3	62.5	61.8	60+4	58.8	57.1	53.0	50.4	48.6	47.7	45.8	43.0	106.0
2000		68.5	69.0	69.5	68.0	66.7	63.7	59.9	56.0	53.8	54.1	50+3	48.4	113+1
2500	65.2	65.2	64.4	64.6	63.7	62.4	61•1	57.0	53.2	51.4	50.5	48.7	45+3	109.2
3150	72.3	70.3	69.8	67.5	67.6	65+2	64.5	60.9	56.5	55.3	53.8	53.0	50.9	113+2
4000	77.0	76.5	75+5	73.5	72•6	7n•5	70.0	66.4	62.5	59.5	59.6	58.0	55+9	118+9
5000	71+1	71.9	71.8	70+6	70.2	69.6	68.3	63.9	60.4	_57.6	57.7	55+1	53.5	116.5
6300	70.9	72.6	72.0	72.2	72•4	71+2	69,5	65.3	61.6	59.6	58,6	56+9	55+2	118.3
<u> </u>	77.5	80.2	79.2	81.2	81.5	<u>A0.5</u>	79.4	75.3	71.6	68.9	67.4	66.5	63.3	128.0
10000	74.7	74.9	74 • 1	74.7	74•4	73.8	71.8	67.4	62.5	60.3	60+1	59.2	57.3	122+0
12500		75.1	75.0	75.1	74.4	74,2	74.3	68.5	63.5	60.7	60.9	59.3	58.4	124.0
16000	72.4	73.7	76.2	77.3	77•5	79.1	78.0	75.9	68.5	65.7	65+4	64+1	63+4	129.7
20000	66.8	67.9	67.0	70.0	70.4	70.6	71.5	65.9	61.0	57.2	57.2	55+4	54+0	124.5
25000	63.4	65.8	05.0	66.3	68+1	68+1	70,7	64.0	59.4	55.1	55.3	53.7	52+4	120.4
31500	54.0	5/.0	5/.3	59.4	59.9	50.9	61.9	55 8	50./	45.8	47.3	45+0	43.9	123+4
40000	45.4	48.1	40.6	49.2	51+2	49.9	52.4	4/.5	40.4	3/-1	30.4	30+1	35.0	122+2
0000		35.8	35.8	30.2	34.3	37.2	40.0	30.1	20.4	24.7	24.5	23.9	24+2	120.5
03000	10.4	21 • 0	20.5	20•1	22+0	20.0	23./	21+0	12.5	¥+1	0.0	/•5	¥+1	120.2
80000	0	• 0	• 0	• 0	•0	-0	.0	• 0	<u> </u>	0	<u>•</u> 0	• 0	• 0	117.6

08A	A3.3	84.0	83.4	83.6	83.4	82.3	81.2	77 . 1	73.5	71-1	70+2	68.7	66+1
DBR	82.6	83-1	82.5	82.6	82.2	81-1	79.9	76.4	74.1	72.1	70.9	69.8	65+8
PBC	82.8	83.3	82.7	82.7	82+3	P1 . 2	80-1	76.8	75.3	73.4	72.2	71.3	66.6
PNL	97.7	97.7	97.0	97•0	96+8	95.6	94.4	90.8	87.7	85.4	84.3	82.9	79+8
PNLT	101+0	101.0	100.3	100-4	100+0	98.9	97.7	94.1	91.0	88.7	87.6	86+1	A3+1

NFA	8976 RPM
NFK NFD	9065 RPM 13020 RPM
NUMA	ER OF RIADES 53
TAME 48 DEG HACT	F THET 46 HEG F 7.35 GM/M3
5AR	29.2 HG

61

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(e) Percent speed, 70; fan actual rotative speed, 8991 rpm; percent weight flow, 66.8

Fre-	Angle from inlet, deg													PWL,
allonev						-								dB
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	(ma 10-13 m)
	-													(re10 w)
			One	-third og	tave bar	id sound	pressure	e level.	dB (re 0.	0002 µb	ar)			
								,		P				
100	59.6	59.1	59+5	57.8	57 - 2	57.7	60.2	59.3	58.7	50.8	58.8	57.0	52+3	107.+2
125	60.8	60+0	58.9	58.0	57 • 9	57 - 2	58.4	60.0	61.2	60.9	60.5	59.7	52.0	108.3
100	62.0	01.2	03+1	60./	05+1	59.9	62.4	57 . U	70.1	69.3	00.5	67+1	53+5	115.8
200	64./	00.5	05.0	64./	62+1	61.8	60.8	59-2	58.3	5/ • 0	55.7	54+8	52+7	109+3
250	69.7	00.9	67 7	67.9	00.0	•5•Q	04.0	01./	60.0	57.6	30.9	50.3	53+7	112.3
315	64.8	64 1	67.0	60 B	64.5	03./	63.D	01.0	57.0	50.2	3/64	55+2 Fo 0	25.0	111+0
	62.0	62.3	63.1	61 5	01•0 50-0	00+D	59.0	30.0 EA /	54./	54+0	51.4		40+1	10/+0
500	65.2	65.7	05.6	65.0	64.4	60.1	50.2	50+3	56.0	55.2	54-0	4049 61.1	47.7	100.3
800	64-1	65.2	64.5	64.7	61.1	62-0	60.3	57.4	55.1	54.5	53.9	50-8	47.9	108.8
1000	61.5	62.6	62.2	61.6	60.7	59.0	57.5	54.3	51-0	49.7	50-1	47.0	44.3	106-0
1250	62.7	63.3	63.1	62.6	60.9	59.4	58.2	54.8	52.0	49.9	49.0	45.9	42.5	106+6
1600	71.4	68.3	07.1	67.5	67.9	67.8	64.8	60.2	56.1	54.1	52.0	49.8	47.5	112.8 X
2000	83.8	79.2	77.5	79.0	80.5	80.0	77.2	72.6	67.0	60.n	62.9	60.0	58.6	124.9 2
2500	67.9	67.9	67 . 2	67 . 1	66+7	64.9	63.6	59.0	55.7	53.2	52.0	50.7	47.8	111.9
3150	68.8	70.0	68.8	69.0	68+6	66.7	66.0	61.0	58.3	55.3	54.8	53.5	50+1	114.0
4000	74.0	73.5	72.8	72.3	72.1		69.5	65+4	61.3	58.8	58.6	57.0	54+6	117.7
5000	73.8	73.7	74.1	73.6	73+2	71.6	69.3	65.2	61.1	59.3	58.9	57.9	56.2	118.7
6300	75.2	70 <u>+1</u>	76.2	76.7	76.2	74-0	70.8	67 - 1	64.1	62-1	61.6	60+1	59+0	121+6
8000	77.7	80.2	60.5	82.7	81.0	81.2	78.4	76.3	71.8	68.4	68.2	66.5	64+6	128.4
10000	76+2	76.9	75.6	77.2	76.7	75.3	72.5	67.9	64.0	61.5	61.8	60.9	59.3	123.7
12500	74.7	75.8	75+5	77.1	76.3	75.5	75.2	69.7	64.8	62.2	62.0	6 0. 8	59.3	125.3
10000			14.4	76.8		77.9	78.3	74.3	66.7	63.9	64.6	62.3	60+2	129.0
20000	64.3	04.0	66.7	/0.8	/1.9	71.6	72.2	66.9	61.0	5/ • 4	57+1	55.0	54.2	125.5
25000		60.0 67 0	05.5	00.0	6/+6	67.8	69.5	03.0	57.9	54.3	54.0	53.4	51.9	125.8
40.00	3011	19.7	10.0	60.1	0U+0 51-6	00-2	01.0	20.0	47.4	40.5	4/+0	43+4	44+1	123.7
50000	17.7	17.8	36.7	17.7	70.7	20+7	52.0	4/37	4U 1	30.0	30.7	30.0	35+5	122.0
63000	17.4	23.0	22.2	21.3	24.0	3/ • •	24 4	30.0	11.7	20.4	6.8	8.0	10.3	121+2
80000	.0	.0	.0	•0	•0	.0			.0	-0	.0			118.6
									••	••		••		
DHA	87.3	85.7	85.1	86.3	86 • 1	85.4	82.9	79.3	75.0	72.6	71.5	69.B	67 .9	
DBB	86.1	84.5	83.8	84.9	84 • 7	84.0	81.5	78.1	74.8	72.8	71.9	70+1	66.9	
DAC	86.1	84.5	83.9	84.9	84 • 7	83.9	81.6	78.3	75.6	73.9	73.1	71+4	67.2	
PNL	100+3	40.1	9/ . 5	90./	98.3	97.4	95.1	92.0	88.3	85.8	05.2	83.4	80.9	
F NL I	100.2	101.0	101+0	105.0	103.00	103.0	100.2	96.2	92.3	84.9	00./	80.0	05.1	· —
-														······
							~		-					
				N	FA 89	91 RPM								
				· <u>N</u>	FK 90	87 RPM								<u>-</u>
				, A	PD 131	20 RPM								
				Ň	UMBER C	F BLADE	S 53							
			·····			······								
			TAME	48	EG F	TWET	45 g	EG F						
				4		7.39	GM/M3							
					<u>A</u> N	24.5	n u							

~

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(f) Percent speed, 70; fan actual rotative speed, 9017 rpm; percent weight flow, 62.7

Fre-						Angle f	rom inle	t, deg						PWL,
quency-	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W)
			One	-third oc	tave ban	d sound j	pressure	elevel,	dB (re 0.	0002 μb	ar)			
100	59.1	58.8	58.0	57 • 1	57 • 0	56.7	59.2	58.6	57.7	57.8	57.8	56.2	51.8	106+3

125	60.0	59.5	58.2	58.3	58.7	56.7	58,4	59.5	60.4	60.6	60.8	59.2	51.8	108.0
160	_61.7	61.5	63.4	67.0	66.6	59.6	63.9	67.2	69.9	69.7	69.5	66.9	55.7	116+2
200	65.0	60.2	66.1	54.5	62+8	61.6	61.1	59.2	57 + 8	50.8	55.7	54.6	52.7	109.3
250	68.7	67.7	67 . 3	66.7	65.8	63.8	63.0	60.4	59.3	50.6	57.9	55.3	52+7	111+2
315	57.4	67.6	66.5	66.1	64.7	62.7	62.0	61 - 1	58.2	57.0	55.9	54+0	51+1	110+5
400	63.1	63.1	62.9	61.6	60.5	59.5	58.2	55.3	54.0	53.0	52+1	49.9	46.8	100.4
500	61+5	61.8	61+4	60.8	59+7	58.4	57.7	55.5	54.2	52.2	50+3	48.7	45.3	105+6
630	64.4	64.7	64.8	64.2	63+1	61=1 _	59.9	57.2	55.0	54.4	53.2	50+1	47.0	100+5
800	64.1	64.9	64.5	64.4	63.3	61.5	59.8	56.9	54.8	54.2	53+7	50.0	47 . 7	108.6
1000	62.8	63.1	63.5	62.6	61.7	59.7	58.2	55.1	52.8	50.7	50.9	47 . 7	45+1	106.9
1250	64.7	65.6	65.9	64.8	63.7	62.7	61+2	58.0	55.0	52.9	52.3	49.2	45+5	109.4
1600	76.6	74.5	69.8	68.8	68.9	68.3	65.8	62.2	58.6	56.9	54+7	53+3	49+7	114+6
2000	89.3	87.0	80+2	79.5	80+3	80.5	77.5	73.0	68.8	67.5	64+1	63.8	60+1	126+2
2500	72+4	72.2	71.4	70.9	70.2	69.4	67.9	63.8	59.9	57.7	56.8	55.2	51.08	115.9
3150	72.3	73.5	73.0	72.5	72.6	71.2	69.5	65.4	61.3	59.0	58.8	57.0	54+4	117+8
4000	75.0	76.0	75.8	75.3	74.8	73.0	71.2	66.6	63.0	61.8	60.8	50.0	57.6	120+3
5000	76.3	77.2	77.3	76,9	76.7	74.3	71.8	68.2	64.6	62.6	62.7	61+4	59.2	121-9
6300	78.7	78.6	79.0	79.0	78.9	77.2	73.8	69.3	66.1	64.8	64.6	63.6	61+5	124+3
8000	79.4	80-4	80.5	81.7	82.3	81.0	78.9	75.3	71.3	68.1	67•7	66.2	63+6	128+4
10000	76.5	76.9	76.6	78.2	78.9	77-1	75.0	69.0	65.5	63.0	63.3	62+2	60+1	125.3
12500	75+2	75.8	75.8	77.4	77•6	77.5	76.7	71+2	66.3	64.0	63.9	62+3	60+6	126+5
16000	72.1	74+2	74.4	76.8	77 • 5	77.9	77.8	72+1	67.2	64.9	64.9	62.6	60+4	128.7
20000	72.0	71.8	70.7	71.3	72+1	72-1	72.5	65.9	60.7	57.4	57•4	56.6	55+2	125.9
25000	66.8	67.8	06.7	67.8	68.8	68+1	69.0	62.6	57.1	54.3	54+1	53.2	51.9	126.0
31500	58+1	6u+2	59.5	60.6	61+9	60.9	61.8	56.0	49.1	45.8	48.3	46.4	44.9	124+3
40000	48.8	5 0• 8	51.1	51.9	53.4	51.9	53.1	48.4	40.6	37.8	39.9	37.8	36.8	123.8
50000	35.9	39•U	39.0	38.4	41+7	39+1	41+4	37.3	28.9	25.6	26.0	25.0	25.7	122+4
63000		25.5	23.9	22.5	25+8	23.0	24.4	22.0	12.2	10-1	6.3	9.0	10:5	122+1
80000	• 0	•8	• 0	• 0	• 1	• 0	.0	•0	• 0	• 0	• 0	•0	• 0	120.1
DBA	91.8	90.3	87.2	87.2	87.5	86.5	84.1	80.0	76.0	74.1	73.0	71.8	69.1	
088	90.5	89.0	45.8	85.8	86+0	85.0	82.7	78.8	75.4	73.9	73.0	71.4	68.0	
DBC	90+4	88.9	85.8	85.8	86.0	85.0	82.6	79.0	76.1	74.8	74.0	72.3	68.2	
PNL	104+2	103.0	99.4	99.2	99.3	98.5	96.1	92.4	88.8	87.1	86.0	84+0	81.8	
PNLT	110.7	105.7	102.6	102.4	102.8	102.4	99.7	96.0	92.0	90.5	89.0	87.8	85.1	

 NFA 9017 RPM NFK 9113 RPM NFD 13020 RPM	
 NUMBER OF BLADES 53	
TAMB 48 DEG F TWET 45 DEG F HACT 7.39 GM/M3	····

BAR 29.2 HG

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(g) Percent speed, 80; fan actual rotative speed, 10 287 rpm; percent weight flow, 83.4

Fre-						Angle	from inl	et, deg						PWL,
quency	o	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W)

One-third octave band sound pressure level, dB (re 0.0002 μ bar)

100	F1.3	h1.n	61.5	FI .3	54.2	60.5	52.7	62.3	62.0	62.1	62.3	60.0	55.1	110.1
125	62.3	62×0	60.4	54.3	59.7	F9.2	60.2	60.5	59.9	59.9	59.8	58.7	54.0	108.4
167	F4+2	63.5	63.6	67.2	65.9	66.9	62.1	64.2	63.4	64.3	65+2	64+1	63+2	113.7
200	69.5	79.7	59.3	1.44	67 . 1	66.3	64+1	63.2	h2.0	61.8	61.0	59.6	58.0	113+4
250	73.7	77	12.5	71.9	10.5	5. AA	68.ņ	A5.4	64.3	63.6	62.9	59.8	57 • 4	116.3
315	71.9	12.1	71.0	70.6	69.2	67.5	66.2	64.9	62-2	61.5	60.9	58.5	55 • 1	114.9
417.0	A4.1	54.8	57.1	67.3	66.0	Fd . 2	63.5	61+1	59.2	58.5	57.8	55.9	52+1	111+7
500	66.5	5r . h	66.4	65.8	54.9	63.7	62.9	61.0	59.9	54.1	56+3	53.9	50.3	110+9
670	F8.4	69.2	69+1	64.5	67.6	66+1	54.0	61.7	60.6	59.1	57.5	54.6	51.7	113.0
600	68.1	64.7	04.4	68.2	66.8	F5.0	63.5	60.2	58.6	57.9	57.2	54.0	51.2	112+2
1000	F4.5	65.3	05.5	64.6	63.7	62.5	60.2	57.1	55.0	53.0	53.4	50-2	47.6	109+1
1250	F4.7	65.8	55.9	65+3	63.7	62-2	50.4	57.8	55.0	52.7	51.8	49.2	45.3	109.3
1600	65.4	65.3	64.5	63.3	62.4	61+1	59.4	56.2	52.9	51.4	50•2	48.3	44.5	108.0
2000	<u> </u>	60.2	65.5	65.5	64.0	A2-5	61.7	57.9	54.0	52.0	51.4	50.0	45.9	109.7
2500	66.9	66.9	66.9	67.4	65+2	64.9	63.6	60+0	56.4	53.9	53.8	52.7	48.3	111+8
3150	<u></u> n.n	69.3	69.3	64.3	<u>64.1</u>	67.0	66.2	62.0	59.1	56.5	55.1	54.3	50.7	114+0
4000	75.0	73.5	74.0	72.8	72.1	7n.2	69.0	F5.6	62.0	60.0	59.1	58.8	54.9	118+0
5000	71.6	72.7	73.1	71.6	71.9	71.3	7 <u>0.</u> 8	68.2	64.1	60.8	60.4	59+1	55.5	118.5
6300	70.4	72.1	72.7	73.0	72.7	72.5	71-3	64.3	64.8	62.6	60+4	58.9	57.3	119.5
8000	75.2	75.4	76.2	77.4	77.0	77.5	76.4	75.1	70.4	66.9	64.4	63.0	62.1	125.0
10000	77.7	79.2	79•1	P0•2	79.9	AU*0	79.A	78.6	73.5	70.3	67.9	66+5	65+6	129.0
12500	_73.2	72.5	73.0	73.4	73.4	73.5	74.0	70.5	65.0	63.0	61.6	59.0	57.4	123.3
16000	66.9	64.7	70.4	72.5	72.5	72.1	73.3	68.9	64.2	60.7	59+4	58+3	56+4	124+1
20000	67.1	67.9	69.2	72.0	71.6	72-1	72.A	A8.9	64.2	59.7	58.7	57.6	56.0	126-2
25000	61.4	63+1	63.8	65.9	66+6	AR.9	47.5	62-4	58.2	53.3	52+8	51+2	49.9	124-2
31500	-53.6	55.5	56-3	\$7.9	58.7	58.0	59.6	55.6	50.4	45.6	45.8	44+2	42.2	121.9
40000	45.1	45.4	48.7	49.0	51+7	40.9	51.9	48.0	41.9	37.3	37.5	35.9	35+1	122+2
50000	_32+5_	36 3	36.8	36.2	39.0	35.9	39.5	36+1	29.7	25.4	23.8	23.9	23.7	120+3
63000	15+8	21.9	20.4	20.5	23.2	19.7	23-1	21.4	14.3	10+0	6.3	7.9	9.0	120+2
80000		<u>• n</u>	• 0	_ •0	•0	•_0	<u> </u>	.0	•0	• 0	• 0	• 0	• 0	118.2
D8A	82.8	83.2	83.3	83.4	82.9	82.A	81-9	80.0	75.0	72.8	71+1	69-6	67 • 7	
DUR	82.5	82.4	82.7	A2.7	A2+1	A1 .7	80.A	78.9	75.1	73.0	71.8	70+1	68+0	
DBC	_ <u></u> 2•8	83•1	83-0	A2.9	82+3	P1.9	80. 9	79-1	75.6	73.8	72.9	71.2	69+1	
PNL	97.0	96.6	94.7	96.1	95.4	95.1	74-1	92.2	88.3	85.8	84.3	82+8	80+6	
PNLT	109+3	99.9	100.0	99.4	99.7	98.4	97.4	95.5	91.6	89.2	87.6	86 • 2	83.9	

	
NFA	10247 RPM
NFK NFD	10404 RPM 13020 RPM
NUM	BER OF BLADES 53
TAM _R 47 DEG	F TWET 44 DEG F
BAR BAR	7 7.15 GM/M3

i

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

•

(h) Percent speed, 80; fan actual rotative speed, 10 280 rpm; percent weight flow, 76.4

Fre-						Angle	from inle	et, deg						PWL,
menev														dB
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W)
			One	e∼third o	ctave ba	nd sound	pressur	e level,	dB (re 0	.0002 μl	bar)			
100	61.1	61.1	60 .7	59.3	59.0	60.5	61.7	61.3	60.7	60.8	60.8	59.2	54.3	109.2
125	61.0	61.0	58,9	56.8	58,7	58./	59.2	59,3	58.9	59.0	59.0	57.9	53.3	107.5
160	63.0	02.7	64.4	66.7	65.9	66.6	60.6	63,0	62.4	63.4	64.5	64.1	63.7	113.2
200	66,7	68,5	67.1	66.0	65,3	64.6	62.3	61,0	60,1	59.5	59.0	57,8	56,7	111.4
250	71.9	70.9	70.8	69.9	68.5	67 • 5	66.3	63,7	62.5	62.0	61.4	58.5	55,7	114.5
315	70.6	70.9	69 <u>_</u> 7	68 <u>,</u> 6	67,7	66.0	64.7	63,1	61.0	60.0	59+1	56.7	54,6	113.4
400	66.8	66.3	65.4	65,1	63.2	62+7	61.0	58.0	57.0	50.0	55.1	52.9	49.8	109.4
500	04.0	64,5	64.1	63.3	62.7	61.2	00.4	58,5	57,2	55.5	53.8	51.2	48.0	108.4
630	66.9	67.5	67.3	67.2	66.4	64+6	63.1	60,5	58.6	57.3	56.0	53.4	49.7	111.5
800	07.1	67.9	67.5	67.2	05.5	64.3	02 J	59,4	57.0	50./	55.9	53,0	49-9	111.2
1000	04.5	05.3	04.7	64.4	03.0	61+/	59.7	56 3	54.3	51.	52.4	50+0	40.0	108.5
1220	<u>04.7</u>	95.3.	05.4	64.5	03.4	62+4		57,3	54,5	- <u>52-2</u>	51.5	49.2	45.0	109.1
1000	05.1	05.5	04.0	63.5	02.9	61.8	59.8	56,5	53.4	51.4	51.0	40.0	40+2	100.4
2000	67.0	69./	66 J	68.7	0/.0	65+5	03+ <u>2</u>	59,9	20.2	54.5	53.0	21.2		112.0
2500	07.7	07.9	67.9	67.0	6/.0	63+/	05.1	01.3	5/./	55.2	54.3	524/	40.3	112.0
3120	09.3	10.3	09,0	69.0	09,1	00+0	0/.5	03,4	DQ • 1	5/ 0	50.0			
4000	71.0	/2.5	72.5	/2.0	70.0	70.4	70 0	64 9	01.5	54.5	50.0	5/45	34.1 54 5	11/ 44
		14.2	75.0	- 23.5 2	12.1	72.0	<u> </u>	20 + /		62.4	-01.1	50 6	50.5	121.0
8000	73.9	/5.0	75.0	/5.5	/4./	/30/	12.0	00,1	70.0	04+1 40 7	01.0	54.0	50.0	121.0
10000	5.5 5	19.2	79 1	00,4	01,0	01+0	84 1	1110	75 7	70 8	70.4	68.5	67 4	132 0
12500	77 2	77 8	76 8	77 0	76 6	75.7	75.3	60 7	65.3	63.0	63.6	61.5	60.1	125.8
16000	70 0	7/ 7	75 7	76 8	79.5	76.6	77.0	7146	66 7	63.2	63.9	· 62.8	- AD- 4	128 6
20000	70.6	71 6	71 7	74 8	75 1	75.6	75.5	7174	66.0	61.7	61.7	60.4	58.8	129.2
25000	66.1	66.8	66.8	AQ 1	70.1	70-1	71.2	661	60.7	56.3	56.6	55.2	53.7	127.9
31500	57.6	60.0	59.6	60.9	61.9	62.2	63.4	56.3	52.4	47.6	49.3	47.2	45.4	125.4
40000	48.9	50.9	51.9	52.2	54.4	53.4	55.4	50.7	44.4	39.8	41.0	39.6	37.8	125.3
50000	35.5	39.1	39.5	39.5	42.3	40.2	43.0	39.3	31.9	26.9	27.3	26.6	26.5	123.6
63000	18.8	24.7	23.8	23.5	26.2	23.7	26.3	24.1	15.3	10.7	8.5	10.4	11.5	123.2
80000	,0	.0	<u>•</u> 0	.0		1+1		_0	.0	.0	.0	.0	.0	120.9
DBA	83.9	84.7	84.2	85.1	86.0	85+5	85.1	81.6	76.6	73.4	73.0	70.9	69.0	
D89	63.0	83.7	83.2	83.9	84.5	84.0	83.5	80.1	75.6	72.9	72.5	70.6	68.7	
DBC	63,2	83.8	83.3	83.9	84.5	84=0	83.5	80,2	75.9	73.5	73.2	71.4	69.6	
PNL	96.2	97.2	96.9	97.5	97.9	97 • 4	96.6	93,3	89.0	86.5	85.8	83.7	81.4	
PNLT	99.5	100.5	100.2	100.8	101.2	100.7	100.0	96,7	92.3	89.8	89.2	87.0	84,7	
						• • • • •								
				N	FA 102	80 RPM		· ··						<u> </u>
		· 		N	FD 130	20 RPM					<u></u>			
				N		F BLADE	<u>s</u> 53							
···· ··														
			TAMB	47 D H	EG F Act	THET 7.10	44 D	EGF						
•				<u>- B</u>	AR	29.2	HG							

.

i

.

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

(i) Percent speed, 90; fan actual rotative speed, 11 564 rpm; percent weight flow, 93.8

Fre-						Angle f	rom inle	et, deg						PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W)

One-third octave band sound pressure level, dB (re 0.0002 μ bar)

100	56.8	57.1	56.7	55.8	56.7	57 • 7	58.7	58.3	58.2	58.1	58.1	55.7	51.8	106.3
125	58.8	58.8	56.9	54.8	56.9	57•4	57.4	57 5	57.4	58.0	58.5	57.7	53.0	106.2
160 "	56.5	57.0	56.4	57.2	57.6	58.4	58.4	58.2	58.4	59.2	60.0	58.6	55.0	107.3
200	67.2	68.7	68.1	66.7	66.1	66 • 1	63.6	62.7	62.8	62.8	62.7	65.1	60.0	113.4
250	66.9	66.4	66.0	65.7	64.0	63+0	61.5	59.4	58.5	57.7	56.9	54.5	52.4	110.1
315	65.9	66.1	64.7	64.4	62.7	62.0	61.5	59 1	57.0	56.8	56.6	54.5	51.6	109.3
400	63.1	62.8	61.9	61.3	60.2	59.0	58.2	55.1	54.0	53.6	53.3	52.9	49.8	106.3
500	58.7	59.0	58.9	58.5	57.9	57.2	56.7	54.0	53.4	52.0	50.5	47.4	44.8	104-1
630	62.2	62.5	62.1	62.0	60.9	59.6	57.9	55.2	54.9	54.2	53.5	49.4	47.0	106.6
800	60.1	61.2	61.3	61.9	61.8	60+5	58.8	55.7	53.3	54.0	54.7	52.3	48.7	107.0
1000	60.8	61.1	61.2	60.1	59.5	58.0	56.5	53.3	51.8	50.2	50.3	48.5	44.6	105.0
1250	64.5	65.1	64.4	64.8	63.7	62.7	61.7	59.0	56.7	53.7	52.5	49.2	46.8	109.4
1600	68.4	68.3	66.1	65.0	64.1	63.8	62.6	60.2	56.4	53.6	53.5	50.8	47.7	110.5
2000	63.8	65.2	64.5	64.5	63.5	62.7	62.5	59.6	56.0	53.5	52.9	51.3	46.4	109.7
2500	66.7	65.9	66.7	67.1	66.5	66.2	65.9	63.5	59.4	56.9	55.0	52.9	48.6	112.8
3150	68.3	67.8	68.8	69.8	69.1	69+8	70.2	68.1	64.1	61.3	59.9	58.3	53.2	116.5
4000	68.8	69.3	69.3	70-0	69.8	69.7	71.0	68.9	65.0	61.8	61.6	59.3	54.4	117.4
5000	71.1	72.4	72.6	72.9	73.4	75.8	76.3	72.9	68.4	66.6	66.4	62.6	58.7	122.0
6300	70.2	70.9	70.7	71.5	71.9	74.0	74.0	72.3	68.6	65.6	63.1	60.6	57.8	120.8
8000	69.7	70.7	70.5	71.7	72.8	72.7	72.9	70.1	66.1	62.9	61.2	59.2	56.1	120.4
10000	80.2	80.2	80.9	82.0	82.4	82.9	84.0	80.1	76.0	72.8	70.9	69.2	67.4	131.5
12500	69.7	70.3	70.8	71.9	72.4	73.2	74.8	72.2	67.8	64.0	61.6	60.3	57.9	123.4
16000	66.4	67.2	67.2	68.5	69.5	70+1	71.0	68.9	64.7	60.5	58.4	56.1	54.7	122.0
20000	67.1	68.1	69.0	70.3	71.1	71•4	71.5	66 9	62.7	58.2	56.4	55.9	54.8	125.1
25000	60.1	61.3	62.0	62.4	64.1	63.6	65.2	60.9	56.7	52.1	50.8	49.7	48.2	122.0
31500	54.9	56.7	57.3	57.7	58.7	58.0	59.9	55.1	50.7	45.3	46.0	43.7	42.2	122.0
40000	45.4	48.1	48.1	48.2	49.9	48.9	49.9	46.7	41.1	36.1	36.7	34.9	33.3	120.8
50000	32.2	36.1	36,5	35.5	37.7	36 • 1	37.7	35 3	28.6	24.4	23.0	22.6	22.7	119.3
63000	16.2	21.1	20.3	18.9	22.1	19.9	21.3	20.1	13.1	9.2	5.5	6.4	7.9	119.1
80000	.0	.0	.0	.0	.0	- • 0	.0	0	.0	.0	.0	.0	.0	118.0
							-							
DBA	61.5	81.8	82.0	82.8	83.0	83.8	84.5	81.3	77.3	74.5	73.2	70.9	68.0	
D88	80.4	80.7	80.8	81.5	81.6	82+3	82.9	79.8	76.0	73.4	72.3	70.6	67.3	······
DBC	80.5	80.8	80.9	81.5	81.6	82.3	82.9	79 8	76.1	73.8	72.8	71.3	67.9	
PNL	94.3	94.5	94.7	95.4	95.4	95.8	96.3	93.2	89.6	87.3	86.7	83.9	80.8	
PNLT	97.3	97.6	97.8	98.7	98,5	99.2	99.7	96.5	92.9	90.6	89.9	86.9	83.6	
														· · · · · ·
												_		
												-		
				N	FA 115	64 RPM								
				N	FK 117	02 RPM								
				N	F <u>D 130</u>	<u>20 RPM</u>								
							_ .							
				_ N	UMBER 0	F BLADE	<u>5 53</u>							

- -

TAMB 46 DEG F THET 44 DEG F HACT 7.10 GM/H3 BAR 29.2 HG

-

[Model SPLS for standard day (59⁰ F; 70 percent RH) at 100-ft radius.]

A CARLES WE IN THE REAL PROPERTY OF THE REAL PROPER

(j) Percent speed, 90; fan actual rotative speed, 11 570 rpm; percent weight flow, 89.4

Fre- Angle from met, weg	
quency	dB
0 10 20 30 40 50 60 70 80 90 0 100 110	120 (re 10^{-13} W)
One-third octave band sound pressure level, dB (re 0.0002 μ bar)	
100 61.3 61.1 01.2 fu.3 60.0 f1.0 62.5 62.6 62.5 62.8 63.7 60.0	55.1 110.5
125 62+0 61+5 59+7 57+5 59+4 59+7 59+9 60+8 60+2 60+1 60+0 58+9	55+0 108+5
160 62.2 61.5 62.4 63.0 61.9 60.9 60.6 61.0 60.6 60.9 61.2 59.9	55+7 109+8
200 69.7 70.7 70.3 69.2 68.1 67.8 65.6 65.2 64.1 64.3 64.5 65.3	60+5 <u>115+2</u>
250 73+4 72+2 71+8 71+2 69+8 68+3 67+5 65+2 64+0 63+3 62+7 59+3	57+2 115+7
<u>315</u> 71.6 71.9 76.7 69.9 68.5 67.2 66.0 64.4 61.5 60.8 60.1 58.2	55+6 114+4
400 67.3 67.1 06.7 65.6 64.5 62.7 61.5 59.6 57.5 56.8 56.1 54.2	51+3 110+2
500 65.5 66.0 65.1 64.8 63.4 62.9 62.2 59.8 58.9 57.0 55.0 52.7	49+3 109+8
630 68-2 69-2 68-6 68-5 67-1 65-9 64-1 61-7 60-1 58-8 57-5 54-4	51+2 112+7
800 68.4 68.9 69.6 68.4 67.3 65.5 64.0 60.9 58.0 59.2 57.9 55.0	<u> </u>
	40.3 109.3
$- 1250 - 64 \cdot - 60 \cdot 1 - 65 \cdot 9 - 65 \cdot 6 - 64 \cdot - 63 \cdot 4 - 61 \cdot 9 - 59 \cdot 0 - 54 \cdot 2 - 33 \cdot 0 - 50 \cdot 2 - 54 \cdot 2 - 33 \cdot 0 - 50 \cdot 2 - 54 \cdot 2 - 33 \cdot 0 - 50 \cdot 2 - 54 \cdot 2 - 56 \cdot 2 - 54 \cdot 2 - 54 \cdot 2 - 54 \cdot 2 - 56 \cdot $	
	40.8 117.4
2000	53.4 116.7
	55.6 118.0
5000 73-1 74-7 74-6 74-4 75-4 75-4 76-1 76-6 74-7 70-6 66-3 67-2 63-1	59+5 123+1
6300 72.4 73.4 73.7 73.7 74.4 74.7 75.3 72.8 69.3 65.3 64.6 61.6	59.3 122.2
8000 73.0 73.2 73.5 74.7 74.8 75.0 74.9 72.1 67.9 64.2 62.9 61.5	58.6 122.6
10000 80.0 80.9 d1.6 83.4 85.9 84.8 85.0 81.1 76.5 73.6 72.6 70.9	68.6 133.4
12500 73.5 73.6 73.5 74.4 75.1 75.2 76.8 73.0 68.5 65.0 63.6 61.5	59.6 125.3
16000 69.9 71.0 70.9 71.8 72.2 72.6 74.3 70.9 66.5 63.0 61.4 58.3	57+4 124+8
20000 68.8 70.6 70.5 72.0 72.9 72.9 72.5 67.7 63.5 59.4 58.4 57.6	56+2 126+5
25000 61.9 63.3 64.3 54.8 65.9 56.1 67.0 61.9 57.1 53.3 52.6 51.2	49.7 123.8
<u>31500</u> 56+6 58+2 59+0 59+4 61+1 60+4 60+8 56+5 51+4 46+6 47+3 45+7	43+9 123+7
40000 47.1 49.6 50.1 50.2 52.1 51.1 52.3 47.7 42.6 38.0 38.9 36.9	35.8 122.8
5nuno 33.7 38.3 38.5 37.2 39.7 37.9 39.9 37.0 30.6 25.9 24.7 24.8	24+4 121+2
6300n 17.5 23.6 22.5 21.2 24.4 21.9 23.8 22.6 14.8 10.2 7.0 8.6	9.9 121.3
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	+0 119+8
DBA 82.9 83.7 83.9 84.5 85.8 85.2 86.1 82.3 78.3 75.0 74.5 72.2	69.3
DBB 82.4 83.1 83.1 83.5 84.5 A3.9 A4.5 81.0 77.2 74.5 74.0 71.9	68.8
DBC 82.7 83.3 83.3 83.6 84.5 83.9 84.5 81.1 77.5 75.0 74.6 72.7	69+4
PNL 95-8 96-6 96-7 97-3 98-3 97-6 98-1 94-8 91-2 88-0 88-0 85-3	82+3
PNLT 99+1 100+1 100+0 100+6 101+7 100+9 101+5 98+1 94+5 91+4 91+3 88+6	85.7
NFA 11570 RPM	
NFK 11710 RPM	· · · · · · · · · · · · · · · · · · ·
NFD 13020 RPM	
NUMBER OF ALADES 53	
BAR 29.2 HG	

67

[Model SPLS for standard day (59° F; 70 percen RH) at 100-ft radius.]

(k) Percent speed, 100; fan actual rotative speed, 12 800 rpm; percent weight flow, 99.8

Fre-						Angle	from in	let, deg					PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110 0 120	dB (re 10 ⁻¹³ W

One-third octave band sound pressure level, dB (re 0.0002 $\mu bar)$

100	49.3	49.8	50,5	50,6	53.7	54 .7	59.0	55,6	55.7	56.0	56.3	54.2	50.1	104.2
125	53.0	52.5	52.4	50.5	52.9	5447	57.9	56.8	57.4	58.6	59.8	58.2	54.0	106.0
160	53.2	53.5	51.9	54.2	57.6	57 = 6	62.6	59.0	60.1	60.7	61.2	58.9	55,2	108.4
200	59.7	61.5	56.6	62.5	60.1	64+8	60.8	62.7	67.1	67.5	68.0	65.6	64.5	114.2
250	52.4	53.2	51.8	54.9	53.8	56.0	56.0	53.9	56.8	57.5	58.2	55.8	54.4	105.0
315	55.1	55,9	56.0	54.4	56,5	57+2	57.2	53.6	52.7	53.2	53.6	52.0	50.4	103.7
400	54.3	55,6	55,4	55.0	54.5	55,5	56.2	5213	50.7	50.8	50.8	49.2	46.8	102.2
500	53.2	53,5	53.1	51.8	51.9	51+2	55.2	49 3	48.4	48.0	47.5	44.2	41=0	99.5
630	72.7	72.2	70.6	67.7	66.1	62 1	60.6	56.5	55.4	55.4	55.5	51.1	51.5	111.8
800	60.9	60.9	61.5	62.2	61.5	59.8	59.5	55.9	54.3	54.0	53.7	49+0	45,7	106.9
1000	60.5	60.1	59,2	60.4	59,5	50.0	57.5	54.1	52.3	52.2	51.1	47 .7	45.1	105.0
1250	62.7	62.8	61.6	61.6	61.7	60.9	59.7	57 0	55.0	53.4	51.8	48.2	44.5	107.3
1600	65.1	65.8	66.8	65.8	63,9	63:1	63-1	61 2	58.6	55.6	53.7	51.8	47,5	110+7
2000	61.5	62.7	64.2	62.7	62.0	62+5	63.0	614	58.4	55.0	55.6	52.8	47 . 1	109.7
2500	62.2	62.4	63.9	64.9	64.5	65.4	67.1	6515	62.2	58.9	58.0	55.4	50.6	112.8
3150	66.5	69.5	67.3	68.3	68.3	69:5	74.5	7411	71.3	69.0	66.1	65.8	60.2	120.2
4000	71.B	72.3	70.5	71.5	73.3	80.7	86.0	84.4	81.0	79.0	79.8	73.5	67.6	130.7
5000	71.3	76.2	74.3	74.4	75.4	41+1	88.8	88,9	83,4	84.3	80.9	\$0.i	73.7	134.3
6300	74,9	75.9	75.2	75.7	77.9	81+2	88,8	90,1	84.8	83.6	82.1	78.1	73.3	135.2
8000	72.2	71.9	74.0	72.7	73.8	76 7	8242	82,3	78.1	74.4	71.7	70.0	64.1	128.6
10000	76.7	77.7	77.6	78.5	78.9	79+4	82.8	8216	79.3	75.3	73.9	72.0	65,9	130.8
į 2500	78.7	79.3	79.5	80.6	81.1	81 .2	83.3	83.0	79.3	74.7	72.9	69.0	66.1	132.7
16000	68,1	69.2	69,4	70-1	72.0	71.7	74.3	73,4	69.7	65.2	63.4	60+1	57.7	125+2
20000	68.3	68.4	69.0	68.8	70,1	69.9	71.5	71,4	66.7	61.9	59.9	57.4	56,3	125+7
25000	65,9	66.1	65,8	65,6_	66,6	66+1	68,3	65,9	61.9	57.4	59.3	53,5	51+4	125.4
31500	56.7	57.2	57.6	57,7	50,9	57 . 2	60-1	58,8	54.7	49.3	47.6	45.0	43.4	122.9
40000	47.4	49.1	49.4	48,2	49,9	48 . 4	51-1	49,5	46.1	40-3	38.7	36.1	34.3	122.0
50000	34.5	37.6	37.3	35.7	36,5	35+4	39.0	38.1	33.7	20.9	25.3	23.0	23.0	120.7
63000	18.0	23.1	21.5	19.6	23.1	19.9	23.5	23,1	18.5	14.9	9.0	7.6	8,7	121.0
80000	•0	•0	•0	.0	*0	- ę0	3.7	:0	•0	• 0	•0	•0	•0	122.1
DBA	82.1	83.4	82.9	8342	84-2	87.4	93.0	94.1	AQ. 1	A8.4	86.6	A3.7	77.9	
DBB	80.A	82.0	81.4	81.7	82.5	86.0	92.2	92.4	87.6	86.7	84.9	82.0	76.4	
DBC	80.8	82.0	81.3	81.6	82.5	85.9	92.1	9213	87.5	86.6	A4.9	82.0	76.8	
PNL	94.0	95.7	94.6	94.9	90.1	-99.7	105.6	105.5	101.0	100.0	98.3	96.4	90.7	
PNLT	99.2	100.7	99.0	98.4	99.4	103.1	109-0	108.6	104.0	103.0	101.2	99.2	93.2	
							2 -	~~ ~						

	NFA 12600 RPM NFK 12956 RPM NFD 13020 RPM	
	NUMBER OF BLADES 53	
TAME	B 46 DEG F THET 44 DEG F Hact 7.09 GM/M3 Bar 29.2 Hg	

1

!
TABLE IX. - Concluded.

and the second s

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

Fre-	Angle from inlet, deg													PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W)

(1) Percent speed, 100; fan actual rotative speed, 12 737 rpm; percent weight flow, 99.5

One-third octave band sound pressure level, dB (re 0.0002 μ bar)

100	53.1	53.3	53.2	53.6	55.0	56.0	59.7	56.0	56.7	50.9	57.1	54+7	50+6	105+1
125	55.8	55.0	53.9	53.3	54.9	56.2	58.7	57.5	57.9	58.9	59.8	58.7	54+0	106.5
160	54.5	54.5	53.9	54.7	57 • 4	57.6	62.4	59 . U	59.4	6U-1	60.7	58.9	55.0	108.1
200	63.2	64.7	64.8	61.5	62.1	62.6	62.3	65.2	66.8	60.9	67.u	64.0	64+0	114+0
250	61.4	60.7	60.3	59.9	59.3	58.5	58.5	56.7	56.8	50.8	56.9	54.5	52.7	100.5
315	60.6	61.4	00.5	60.1	59.7	59.5	59.2	56.1	54.7	54.8	54.9	53.2	51.4	106.3
400	58.8	59.1	58.4	57.8	56.7	56.2	57.0	53.8	52.5	52.8	53.1	50.7	47.8	103.9
500	56.2	50.5	56.4	55.8	54.9	54.7	55.4	52.0	50.9	54.2	49.5	45.9	43+0	101+8
630	70.7	69.2	67.6	64.7	62.6	59.4	58.9	54.5	55.1	54.7	54+2	51.0	49.7	109.1
<u>80n</u>	59.9	59.9	61+0	61.9	61+5	61.0	59.8	57 • 2	56.1	55.2	54.4	52.0	48.9	107.4
1000	61.5	61+1	60.7	60.9	00+5	60.0	59.5	56.8	54.5	53.5	53.1	50.0	46.6	106.6
1250	64.0	63.5	63.1	63.1	62.4	62.2	60.9	58.3	56.2	53.9	52.3	49.4	46+0	108.4
1600	67.9	66.8	08.1	67.3	66+9	66.6	65.8	64.0	60.9	58.6	50.0	54.3	50.5	113+1
2000	62.0	63.0	64.2	64.2	63.5	63.5	64.0	61.6	58.3	55.8	55.1	52.3	47 . 4	110+4
2500	63.7	63.4	66.4	66 • 1	66+5	66.9	68.4	65.8	62.4	59.7	50.0	54.9	50.6	113.9
<u>315n</u>	66.8	67.8	68.5	68.3	68.1	70.3		60.9	62.8	61-0	59.0	57.5	52.9	115.9
4000	70.5	7⊍•6	68.8	68.5	68.8	69.8	72.7	71.0	70.5	65.8	66.1	63.5	57+4	119+1
5000	72.1	74.7	74.6	76.4	76+4	81.3	87.1	85.7	83.9	70.6	78.4	77+1	69.0	132+1
6300	74.2	74.4	15.5	76.7	76.9	80.0	90.1	88.5	80.8	81.0	82+1	80.4	73.8	135+2
8000	71+0	73.2	74.0	73.9	73.0	75.2	84.2	83.0	79.4	73.9	73.7	70.0	67.1	129.8
10000	77.5	78.4	78.4	79.5	79.9	79.9	82.1	80.4	77.0	73.1	71+1	69.0	65.9	129.9
12500	76.7	78.4	78.8	79.9	80.4	80.3	81.8	80.8	77.0	72.7	71.9	69.1	66.9	131+3
16000	68.2	68.8	69.2	70+1	71.0	70.7	73.1	71+4	68.3	63.7	61.7	58.6	57+2	124.0
20000	68.8	68.9	09.3	69.6	69.9	70.2	70.8	69.2	66.Q	61.0	50.5	56.9	55+5	125.0
25000	05.4	60.1	65.8	66.1	66.9	66.2	67.3	64.7	01.2	50.6	54.9	53.U	51.5	125.0
	56.4	58.3	57.8	58.0	58 • 7	58.0	59.4	57•1	54.2	40.9	47.6	45+3	42.7	122+5
40000	47 • 1	49.4	49.4	49.0	50.5	48.7	51.2	48.0	45.4	40.1	39+2	35.9	34+6	121.9
50000	34.9	39°ñ	37.7	36.7	38•4	36-1	38.4	37.0	33-1	20.6	25.7	23.5	23.4	120+5
63000	17.4	22.7	21.9	20.5	23•3	19.8	23.2	22.2	18.2	14.8	9+1	7.2	8.5	120.8
00000	•0	• 0	• 0	•0	• 0	•0	3.5	•0	• Ų	.0	• U	• 0	•0	121.9
													_	
BAR	61.8	32.7	83.0	83.8	83.9	<u>86-2</u>	93.0	91.0	89.4	84.3	84.4	82.7	76.3	
UBB	80.5	81.3	01.6	82.3	82.3	84.5	91.2	89.9	87.7	82.7	82.8	01+O	74+8	
	80.5	81.3	01.5	82.2	82.3	84.5	91 • 1	89.8	87.6	82.7	82.8	81.0	74.9	
PNL	94 • 1	95.U	95.2	90.U	95.9	99.0	105-1	103.5	101.5	97.0	97+1	95+2	89.3	
PNLT	98.3	98.7	98.1	99.3	99.3	102+1	108.6	100.9	105.8	100-4	100+4	99•U	92+1	

- ----

.

69

Figure 1. - Flow path for QF-1 fan model.

- Stator mounting ring

1997年の日本部には19月1日の19月1日

Figure 2. - Rear quarter view of stage 15-9. C-69-2510

. _

(b) Rotor and microphone locations. (All dimensions are in cm.)

Figure 3. - Compressor aerodynamic test facility with noise measuring locations.

(a-1) Combination total pressure, total temperature, and flow angle probe (double barrel probe).

(a) Sensing probes.

Figure 4. - Aerodynamic instrumentation.

Side view

Figure 5. - Schematic of anechoic chamber. (All dimensions in m unless indicated otherwise.)

A STATE OF THE OWNER OF THE OWNER

Figure 6. - Interior photograph of anechoic chamber; view looking at fan from air intake opening (intake mode), inlet screen not in place.

-

Figure 7. - Comparison of fan inlet configurations in anechoic chamber and in modified compressor test facility with plenum chamber. (All dimensions in cm.)

国産部長におい

Figure 8. - Sample sound pressure and sound power spectra from anechoic chamber. 100 Percent design speed; 99.8 percent design weight flow.

(b) Relation of PWL to SPL in plenum chamber. PWL - SPL = 10 log v - 10 log τ - 19, dB (re 10^{-13} W) (ref. 12, p. 177) where v = 470 ft³; τ = reverberation time, sec (see fig. 9(a)), \therefore PWL - SPL = 26.7 - 19 - 10 log $\tau \cong$ 8 - 10 log τ .

Figure 9. - Determination of sound power level, PWL, from sound pressure level, SPL, measured in plenum chamber of unmodified compressor test facility.

創造に、私事にない

からいなかなりための時間になっていたのでは、「「「「「「」」」というないないです。

I

Figure 11. - Relative Mach number 5 percent span from tip of rotor 15 (from ref. 2).

(b) Turbulence intensity with and without turbulence screen.

Figure 12. - Radial profiles of mean velocity and turbulence intensity 26.8 centimeters upstream of rotor in anechoic chamber installation with well rounded bellmouth. 80 Percent of design speed, 83.4 percent of design weight flow.

(b) 80 Percent of design speed; 83.4 percent of design weight flow.

Figure 13. - Effect of inlet turbulence screen on inlet sound power spectrum in anechoic chamber.

(d) 100 Percent of design speed; 99.8 percent of design weight flow.

Figure 13. - Concluded.

Support State

「日本の時間にはないのの

(c) 70 Percent of design speed; 66.8 percent of design weight flow.

Figure 14. - Inlet sound pressure level spectra in anechoic chamber; 60⁰ microphone. Typical 50-hertz constant bandwidth analysis.

(c) 70 Percent of design speed; 66.8 percent of design weight flow.

Figure 15. - Inlet sound pressure level spectra in anechoic chamber; 60⁰ microphone. Comparison of direct one-third octave band analysis of total noise with values of broadband component calculated from 50-hertz constant bandwidth analysis.

and and the state of the second s

(c) 70 Percent of design speed; 67.0 percent of design weight flow.

Figure 16. - Inlet sound pressure level spectra in unmodified compressor test facility. Typical 50-hertz constant bandwidth analysis.

(c) 70 Percent design speed; 67. 0 percent of design weight flow.

Figure 17. - Inlet sound pressure level spectra in unmodified compressor test facility. Comparison of direct one-third octave band analysis of total noise with values of broadband component calculated from 50-hertz constant bandwidth analysis.

(b) Untreated plenum chamber; 67.0 percent of design weight flow.

Figure 18. - Typical continuous 50-hertz constant bandwidth spectra (simulated) in anechoic chamber at 60⁰ inlet angle and in inlet plenum chamber of unmodified compressor test facility. 70 Percent of design speed; P/R = 1.21; relative Mach number at inlet rotor tip, M¹_{1,05} = 0.75.

Figure 19. - Typical continuous 50-hertz constant bandwidth spectra (simulated) in anechoic chamber at 60⁰ inlet angle and in inlet plenum chamber of unmodified compressor test facility. 100 Percent of design speed.

Figure 20. - Inlet sound power spectra as measured in anechoic chamber and in unmodified compressor test facility at comparable conditions.

Ì

I

Figure 21. - Inlet sound power spectrum as measured in unmodified compressor design speed.

Figure 22. - Inlet sound power spectrum as measured in anechoic chamber. 60 Percent of design speed.

Figure 23. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 70 Percent of design speed.

Figure 24. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 80 Percent of design speed.

Figure 25. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 90 Percent of design speed.

Figure 26. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 100 Percent of design speed.

Figure 27. - Blade passing frequency noise (1xBPF + 2xBPF) as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

Figure 28. - Multiple pure tone noise (BPF's excluded) as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

T.

Figure 29. - Broadband noise as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

(c) One-third octave sound power spectra for range of flows.

Figure 30. - Effects of corrected weight flow induced without rotor or stator in unmodified compressor test facility with collector sleeve valve.

NASA-Langley, 1975 E

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

140 001 C1 U H 75 12 12 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATOFY ATTN: TECHNICAL LIBEAFY (SUL) KIRTLAND AFB NM 87117

44A ABA 44 4 34 954040 AAA/FAAA

POSTMASTER :

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546