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NOMENCLATURE®

Source strength coefficient

Speed of sound

Energy flow per unit area

Mean energy flow per unit area

J-1

Wave number in x-direction (Cartesian coordinates)
Wave number in y-direction (Cartesian coordinates)
Wave number = alﬂiizﬂ/{z; (Cartesian coordinates);

Wave number in axial direction (cylindrical coordinates)

I

Reduced wave number in x-direction

ki/w' (Cartesian
coordinates)

Reduced wave number in y-direction

kz/aﬂ- (Cartesian
coordinates)

Reduced wave number = k/w' = a&1E+K2 (Cartesian coordinates);

Reduced wave number in axial direction = k/o' (cylindrical
coordinates)

Mach number

an integer

Pressure increment from acoustic waves
Mean-~-square pressure from acoustic waves

Radial cylindrical coordinate

*The secondary symbols not defined in this list are defined

where they are introduced in the analysis,
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R.P.

IlP'

Radius of uniform velocity jet core

Radius of jet

Radial position of source

ro/ri

r /r,

Radial spherical coordinate

Strouhal number

Time

Streamwise coordinate (coordinates fixed in source)
Streamwise coordinate (coordinates fixed in ambient air)
Lateral coordinate

Normal coordinate

Denotes "real part of"

Denotes "imaginary part of"

Radial displacement of a fluid particle

Angular position in far field measured from upstream
jet axis

Fluid density

Velocity potential

Angle about x-axis (cylindrical coordinates)
Generating frequency

a)/c

Observed frequency

Transient source frequency



Nomenclature, continued

Subscripts

c refers
J refers
s refers
R refers
I refers

to

to

to

to

to

critical
Jet
source

real part

imaginary part
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THEORETICAL STUDY OF REFRACTION EFFECTS
ON NOISE PRODUCED BY TURBULENT JETS

E. W. Graham and B. B. Graham

Graham Assocliates, Shaw Island, Washington

INTRODUCTION

Objectives
This report is an extension of the work published in NASA CR-23901.

None of this work is intended as a comprehensive theory for the predic-
tion of noise produced by turbulence in jets., Instead we concentrate on
one aspect of this complex problem, the transmission of acoustical dis-
turbances from the interior of the jet into the ambient air, These
acoustical disturbances are generated by mathematically defined point
sources drifting with the local fluid. We neglect temporarily the more
difficult problem of identifying these mathematical sources with the
turbulence which they are intended to represent.

Because of the diversity of the material presented here (the far
field of supersonic jets as contrasted with the near field of subsonic
jets) this report is divided into two parts.

In Part 1 we study the peaks which arise in plots of mean-square
pressure versus angle in the far field for some supersonic jet examples,
Such peaks may occur even when the basic wavelength produced by the
pulsating source is several times the jet thickness. These peaks are so
severe in some instances that a pressure change of several orders of
magnitude may appear and disappear within a one degree change of angle
in the far field.

In Part 2 the near field disturbances created by transient sources

in a subsonic Jet are studied. This is a preliminary attempt to get



theoretical data for comparison with the experimental in-house research
work of NASA TN D-72692 by Maestrello., It may also be useful for check-
ing the applicability of infinite-jet analysis to realistic expanding

jets of finite length,

Related Work
This report and the preceding one, NASA CR-2390, utilize the radia~

tion fields of sources convected with a moving fluid. Prior work of this
type was done by GottliebB, and by Moretti and Slutskyu. More recently
an analysis of this type has been made by Mani5.

Work on diverging jets (which are of course more realistically
shaped than the cylindrical jets of the above literature) has been done
by Schubert6, by Liu and Maestrello7, and by Padula and Liu8. We hope
such analyses can be extended to cover sources convected with the moving
fluid.

Possibly we have overlooked other closely related work which should
be cited here, and certainly we have failed to refer to many Jjet noise
studies which bear some relation to our own work. No disparagement of
such omitted references is intended.

In our preceding report (NASA CR-2390) we should also have cited
theoretical analyses by Mani5 and by Morfey and Tannag, and experimental
work by Ingard and Singhalio, when mentioning the existence of more than

one type of moving source.

Description of Model

The noise generator chosen is a sequence of transient sources
drifting with the local fluid. The jet (either two-dimensional or
circular cylindrical) extends to infinity upstream and downstream, with
velocity profile independent of streamwise position., Thus the large
velocity gradients across the jet are accounted for, and the smaller
gradients in the streamwlise direction are neglected, It seems reason-
able to suppose that the major refraction effects will be shown by such

a model. However investigation of the streamwise extent of near-field



disturbances may also cast light on the suitability of this model,

In making this analysis we consider that turbulence ("self-noise"
igs the only true originator of noise, and that "shear noise"”, being
composed of linear terms, is part of the transmission process.

It must be emphasized that this is not a stability analysis. We
deal with a distribution of turbulence in the Jet which is essentially
independent of time. This steady-state situation is the end result of
the action of instabilities.

We then attempt to find the effect of the Jjet mean velocity profile
on the transmission of acoustic disturbances from one element of turbu-
lence through the jet and into the ambient air. The scattering effect

of other elements of turbulence is neglected.

Description of Methods¥

Generality of Methods™™

Nearly all of the work in this report and the preceding report,

NASA CR-2390, has in common certain necessary steps and concepts. The
noise may be generated by sources (i.e. monopole sources), dipoles or
quadrupoles, The noise generators may be on center, off center in a
uniform velocity region or, in some cases, in the shear layer. Temper-
atures may be ambient or varying across the jet. The jet itself may be
two~dimensional or circular, Still, with only minor modifications cer-
tain basic ideas apply, and we review them briefly.

For convenience we will describe the Jjet as being two-~-dimensional.
The velocity profile must be independent of streamwise and lateral
positions, For simplicity we will say "source", and speak of a single
(constant velocity gradient) shear layer on each side of it, but other
singularities can be used, and more complicated shear layers can be
treated.

*Much of this is reproduced from NASA CR-2390 for the reader's conven-
ience.

**3ee references 11-15.



The Source in a Jet
It is first assumed that the pulsatimg source is at rest in

a completely stationary homogeneous fluid of infinite extent. The
origin of coordinates is fixed in the source, and the conventional wave
equation applies. The velocity potential produced by the source is
readily expressed as the double integral of the velocity potentials for
all reduced wave numbers, K, and K, in the s (streamwise) and y (lateral)
directions. This corresponds to the decomposition of the source poten-
tial into an infinite set of plane waves (and exponential disturbances).
The source and some portion of the surrounding fluid at rest must
next be confined within a jet. From coordinates fixed in the source
this jet is seen as shear layers flowing past on each side, and outside
the shear layers the ambient fluid flowing by at a fixed velocity. (See
Fig. 1.) To accomplish this insertion of the source into the jet one
must add to its original velocity potential the potentials for upward-
moving and downward-moving waves reflected off the shear layers. These

two reflected wave amplitudes are as yet unknown.

The Shear Layers and Ambient Alr

In the shear layers the conventional wave equation does not
apply. The correct partial differential equation is derived, and by
assuming periodic solutions in the streamwise and lateral directions
an ordinary differential equation is obtained in the coordinate normal
to the shear layers, The ordinary differential equation is solved by
power series expansions about the singular point, or about other points,
and two independent solutions are obtained (in each layer) with ampli-
tudes as yet unknown,

In the ambient air the conventional wave equation applies again
(for coordinates fixed in the ambient fluid). Only outward moving
waves need be considered, so (in each ambient region) one solution of
unknown amplitude appears.

There are now eight unknown amplitudes to be determined and four
boundaries between fluid layers. Across each of these boundaries pres-

sure and displacement must be continuous, yielding the necessary eight

"
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equations to make the system determinate. A double integral (over K1
and KZ) for velocity potential in the ambient air is then obtained as

a function of source strength and frequency.

The Far Field
Only in the far field can this double integral be evaluated

easily. There the integrand generally consists of a slowly varying func-
tion multiplying a function which oscillates rapidly about zero, Such
functions interact weakly, and significant contributions to the integral
occur only when (a) the slowly varying function becomes rapidly varying
(i.e. in the neighborhood of singular points) or (b) when the rapidly
oscillating function ceases to be rapidly oscillating (i.e. in the neigh-
borhood of stationary phase points). Evaluation of the integral yields

the pressure in the far field for coordinates fixed in the source.

Transient Sources and Retarded Coordinates (the far field)

A more useful result would be the far-field mean-square pres-
sure produced by sources in a localized region, say immediately behind a
jet nozzle. To obtain this we conslder a sequence of transient sources,
each originating at the same point relative to the ambient air or nozzle,
As one source disappears after drifting downstream with the fluid, a new
one (with random phase relative to the first) appears at the upstream
point. The mathematical analysis of this process (Ref. 13) is rather
tedious. However the practical application conforms to a simple rule if
it is assumed (as in the present analysis) that the transient sources
have a lifetime of many cycles. The rule is that the mean-square pressure
in source coordinates should first be formally transformed to retarded
coordinates, fixed in the nozzle. (See Fig. 2.) The result must then be
multiplied by (1 + MX?/R) , where M is the source Mach number relative
to the ambient air, x, is the streamwise distance and R the radius to the

2
far-field observation point.* (The rule holds also for the supersonic

*The factor |1 + Mx,/R| 1is often written [1+M cose| where 6 is
the angular position of the far-field observation point relative to the

jet axis, © = 0 being measured upstream, © = v downstream,
The travel distance of each transient source and the thickness of

the jet are of course negligible compared to R,

6
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Fig. 2 COORDINATE SYSTEM FIXED RELATIVE TO
NOZZLE (RETARDED COORDINATES)



case if the |1 + sz/Rl factors are enclosed by absolute magnitude
signs.)

Solutions
The methods just described have been amply illustrated in
1,13,14

previous reports Power series solutions for sources in two-
dimensional shear-layer Jets and in circular-cylindrical shear-layer
Jets are given in Ref. 1 and are not repeated here. These previously-
derived solutions were programmed for machine computation and are the
basis for calculating all shear-layer Jjet results presented in the
first section of Part 1 of the present report.

The partial differential equation for the shear layer is
Eq. (37) of NASA CR-2390. This should provide a good first approx-
imation for cold jets of low supersonic Mach number, where temperature
gradient effects are considerably smaller than velocity gradient
effects, For high supersonic Mach numbers and heated jets it may be
necessary to use Eq. (107) of CR-2390 which includes temperature

gradients.,

The Near Field
Near-field calculations are much more difficult than far-

field calculations for two reasons. Stationary phase approximations
cannot be used, and the transient sources cannot be assumed to pass

through many cycles. To get a realistic picture of the near field,

transient sources must generally be required to have very short

lifetimes, This will be discussed further in Part 2.



Part 1 PEAKS IN THE FAR-FIELD DIREGTIVITY PATTERN FOR SUPERSONIC JETS

Introduction and Examples

In one of our first investigations of supersonic jets (see Ref. 14)
the example chosen was for Mach number 3, the jet was two-dimensional and
the source was located at the center of the jet. The velocity profile
was a linear variation from maximum velocity at the center to zero velo-
city at the edge. In this case the mean-square pressure plotted against
angle in the far field showed zero at the Mach angle, but showed a high
finite peak in the "subsonic approach region" and a much lower peak in the
"supersonic approach region". Both of these peaks were near the Mach
angle. (The source Mach number of 3 projected onto any angular ray gives
an "approach” Mach number of 3 or less for that ray. When the approach
Mach number is less than unity we say the far field point is in the
subsonic approach region., When the approach Mach number is greater than
unity the far field point is saild fto be in the supersonic approach range
of angles.)

This result seemed reasonable. The cruder representation of the
Jet by stationary fluid with "moving sources" passing through it shows an
infinite (and unrealistic) peak at the Mach angle. The requirement that
Jjet fluid must move with the sources (as in the present analysis) ap-
parently produces a more realistic result.

However the consideration of an off-center source in the jet de-~
scribed above (a more difficult problem) produced an unexpected result.,
Fig. 3 shows the effect of locating the source one-quarter of the way
from the centerline to the edge of the jet. The source, drifting with the
local fluid in the shear layer, now travels at a Mach number of 2.25 .
The expected and comparatively broad peaks in the subsonic and supersonic
approach regions are much lower than before and now there appears a
"spike" confined to less than one degree of angular range but hundreds of

times higher than the other peaks. In an ordinary survey of the far
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field with a five-degree angle interval, or even a one-degree interval,
such an effect might be completely overlooked. It is not yet known
whether the area under such a spike would contribute significantly to the
final integrated results.,

Studies were also made of two-dimensional jets at a Mach number of
1.5 . In Fig. 4 mean-square pressure is plotted against far-field angle
for a jet whose velocity profile is linear, giving M = 1.5 at the center
and M = 0 at the edge. The source is at the center., A high peak appears
in the subsonic approach region as in the M = 3 case, and the supersonic
approach peak is negligible (see Fig. 5). For a second case we let the
Jjet have uniform velocity over the central half of the jet thickness, then
velocity decreasing linearly to zero at the edge, The source is located
halfway between the center and the edge, and so its Mach number is 1.5 as
in the preceding case. However the subsonic approach peak is now greatly
reduced (see Fig. 4) and a supersonic approach peak of similar magnitude
appears (see Fig., 5). Such effects are not easily explained, In a third
example the source is located in the shear layer, three-quarters of the
way from the centerline to the edge. This source, drifting with the
fluid, travels at M = 0,75 . There is of course no supersonic approach
region based on source Mach number, and the mean-square pressure plot
somewhat resembles the subsonic jet type as might be expected (see Fig. 6).

We now turn our attention to circular cylindrical Jjets with M = 1.5 .
In each case the jet has a central core traveling at uniform velocity
(corresponding to M = 1.5), and an annular region in which the velocity
varies linearly from the central value to zero at the outer edge of the
jet. The radius of the central region is EO , and the radius at which
the source is located is TS « The mean-square pressure is an average
value obtained by integrating around the jet., In Figs, 7 and 8 results
are shown for a variety of values of core radius, the source being located
either at the center or at the edge of the core. Thus the source, drift-
ing with the fluid always travels at M = 1.5, In Fig., 7 the subsonic
approach region is shown. The subsonic approach peak is highest for the

smallest central core, and decreases rapidly as the core size is increased.

11
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In fig. 8 the supersonic ap?roach region is shown, It is necessary at
this point to explain that a source at radius ;S and angle ¢y =0 in
the jet is constructed by the Fourier series representation of a delta-
function. The first term is a uniform distribution of source strength
on the circle of radius ;s . The next term is a simple cosiney term,
the next a cosine 2y term, etc., each with the appropriate coefficient

to represent a delta-function. Since the wavelength created by the pul-
sating source is generally much greater than 255 we expected the zero
harmonic to behave much like a simple source, the first harmonic like a
dipole, etc. BFach higher harmonic would then have a much smaller con-
tribution to the mean-square pressure than the preceding one, In many
cases this turned out to be correct, and convergence was rapid. However
Fig. 8 shows for EO = ES = 0,5 a very high peak due largely to the
third harmonic*. This is a rather surprising result. Presumably it is

produced by some sort of quasi-resonant effects associated with commun-

ication around the jet. Such effects would not appear in the two-

dimensional examples, However the "spikes" occurring in two-dimensional
examples also occur for the circular jet, though perhaps more rarelx.
For ;O = Es = 0,45 , Sp =0.2 , Mj = 1.5 (see Fig., 9) a spike was en-
countered in the supersonic approach region. This very high peak was
contained within an angular range of one degree or less.

In the examples just considered the source was elther at the center
or at the edge of the core, traveling at a Mach number of 1.5. In Fig,
10 we show for several core radii the effect of locating a source in the
shear layer just far enough out so that it travels at M = 0,7. For
jets with larger cores the sources will then be nearer the outer edge
of the jet, but all sources travel at the same Mach number., It is inter-
esting that the peaks vary widely in position and magnitude, showing the
extreme importance of jet velocity profile in modifying the radiation
pattern of sources convected at a specified velocity., It is also of
interest that the mean-square pressures are nearly zero at the Mach angle
*¥Where they are of interest dominant harmonics are noted on the curves

by a 0, 1, 2, 3 etc. enclosed in a circle.
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corresponding to the Jjet Mach number even though the -source velocity
is subsonic.

Figures 11 and 12 show the radiation patterns when the sources are
so placed in the shear layer that M, = 0.5 and 0.3 . The mean-square
pressures are much lower in general, because of the lower convection
speeds, The extreme effects of velocity profile are still apparent, and
some double peaks now appear. For angles less than 131.8° mean-square
pressures are not negligible, but are not of special interest here.

In view of the unexpected and rather perplexing results of the
supersonic Jet analysis it seemed desirable to get a check on the
correctness of the basic formulation of the problem and on the computa-~
tions, The following two sections are devoted to the independent study

of simplified models of two-dimensional and circular jJets.

The Three Layer Model of the Two-Dimensional Jet

This case is particularly valuable in giving an understanding of
spikes because it can be studied analytically to a large extent and
the necessary numerical calculations can be made with a small computer
(e.g. the HP-35),

The model is illustrated in Fig. 13 and the analysis follows the
general procedure outlined in the introduction., The absence of a shear
layer of course simplifies that procedure.

The velocity potential in any region, (:), <:> or (:), satisfies

the simple wave equation
2 1
v ¢ = Zz¢t.t (1)

for coordinates at rest in the fluid of that region. Only outgoing
waves need be considered in the ambient air, and for simplicity the
analysis given here treats only ordinary waves (i.e. K1M1 < 1, subsonic
approach angles), though note is made of the changes required for the

reversed wave case (K1M1 > 1, supersonic approach angles). For simplicity,
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also, we consider a symmetric problem (source at Zg and image source at

-z_) and an anti-symmetric problem (source at z_ and "sink", i.e. 180°

out-of -phase source, at —zs) and write equations only for =z > 0, The

solution for the single source at =z = Z is then the superposition of

a symmetric solution and an anti-symmetric solution, each of half-strength,
For this example the source is situated in the outer layer. The

potentials in the three regions (Fig. 13b) may then be expressed as

A¢O = Ad' R.P. F[exp{iu'(Ki[xo-(Mo-Ml)ct}sz-cH , 1+(MO—M1)K1]2_K2)}
* exp{iw'(K (Lxg= (g1, Yot T y-ctmayf 1+ -n 1)1{1]2-1{2)}]. (2)
A%, = Ad' R.P. [e@{iw'[Kixﬂ{zy-C'H Iz—zs}ﬁ?:’} / 12
+ 3 e@{iw'[xiﬁsz-cﬁzﬁ?]}
+7D exp{iw'[Kix+K2y-ct-z\/i:EZ]}] (3)
A, = Ast R.P. B exp{iw'[}{i(x2+Mict)+K2y—ct+(z—az)W]} ()

where R,P, denotes "real part of" and the complex notstion is convenient,
In these equations A is the source strength coefficient [A = (source
strength)/8w2, the source strength being the maximum volume introduced
per unit timeJ; B, D, R, S are unknown complex amplitude coefficients

to be determined., In z3¢1 the first term is the component potential due
to the point source; the other two terms are upward-moving and downward-
moving reflected waves, 1In Z&¢o the upper sign applies to the symmetric
problem described above and the lower sign applies to the anti-symmetric
problem, Z&¢O thus is chosen to satisfy required conditions of symmetry
or anti-symmetry at z =0 (zero normal velocity, [&¢OZ y, in the
symmetric case; zero pressure, —pz3¢0t y in the anti-symmetric case).

K1 and K2 are reduced wave numbers (K1 = ki/w' ’ K2 = kz/w' » where
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B> -

w' =w/c)., K= 12+K22 . A, A¢1, A¢2 are component potentials, of

course, the total potential in each region being the integral over all

positive K1 and X, of the component potentials shown. (In the reversed

2
wave case, the term involving the square-root in the exponential of z>¢2

changes sign, so the exponent becomes

1w [1(){ +Mict)+K2y—ct-(z-a2)a/(1—M1K1)2—K2] }.)

The boundary conditions require matching at each interface the
pressures (on the two sides of the interface) and the displacements.

These four conditions determine the four amplitude coefficients B, D, R,

S. The last of these is particularly of interest in describing the dis-

turbance which is transmitted outside the jet:

_ 2[ Iy
S = > (5)
(1-M1K1),/1-K L],
where . .
(1, - [ele(e ot1) ¥ -1))
- e (M ,m1) § ) ) 1 (6)
[1p= (™G -1) (X% 1) 7 e *%u,-1))
- ¢ Mg 1) (e upmt) T e ) 1 (7)
and where
& = w'(zs-al)Ji—K2
o = w'(az—ai)JI—Kz
a = w'aiJ(1+[MO-M1]K1)2—K2 - (8)
_ ( -M Ki)
/"1 -

(1-m K1)2 1-K

) [ 1+ -1, ]k, )2

(1+ [1\!10—1@1]1{1)2 xZ
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Again, the upper sign applies to the symmetric solution and the lower
sign to the anti-symmetric solution,
corresponding solutions are obtained by substituting -.J(i—MiKi)z—K2
for +Vk1—M1K1)2—K2 wherever it occurs.)

Application of the far-field analysis (using the principle of sta-

tionary phase) is described in previous reports

K-values, which alone determine S in the far field, are, in retarded

coordinates,
X?/R
K1 = —
1+M1x2/R
/R
K2 = ——
141, x, /R

where X,,¥,2 (and R = 4bé2+y2+zz ) are the retarded coordinates fixed
in the nozzle (which is assumed to be stationary in the ambient air),
From the far-field potential for a permanent source of frequency w
(the case so far considered), the far-field potential for a transient
source follows by Fourier integral construction,

source sequence described in the Introduction and used in previous

1,13,14

studies

transient source to go through many cycles of frequency wy oy is

5%(wg) + 5"%(up)

(For the reversed wave case the

The critical

For the transient

the mean-square pressure in the far field, assuming each

PR 2 2
APZ = 0 —_—
R® R?

where S = S' + 18" , For convenience the subscript 0 on the gener-
ating frequency is dropped in the remainder of this analysis.

Since the mean-square pressure in the far field is proportional to
the square of the absolute value of the transmission factor S , evalu-
ated at the critical values of K1 s X
‘focused primarily on |§|2 . Results were considered only in the plane
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(Egs. (9)), attention will be

(9)

(10)



y = 0 where K2 =0 and K = ]Ki « We define 6 = 0 1in the upstream
direction so that © = cos"i(xz/R) .

When Egs. (5) and (10) were investigated for several numerical ex-
amples, spikes were found only when K was large (K > 1) and when

(1M, -M 2> K2 : that is, spikes occur in this example in regions
07"1-1

of the far field where the critical K-values correspond to exponential
components of the source but to true wave disturbances in the central
region of the jet., For this region, if we write ¢ = ig' , o= ie¢',

By = -ipi' ' po = -i,LZ' (so that &', o', "1' , ,‘2' are real) then

2
=12 L N
[5]* = (11)
2 2 2
(1-1,K, )2 (K%-1) (D, %, "%D,%)

where, in the symmetric case,

N = coshg&' cosa - pz' sinhé' sine
D, = sinhe' cosa - pz' cosho® sina (12)

D, = coshe¢® cosa - pz' sinho' sina

with

o' = w'(az—a.i)\(é -1
g = w'(zs—ai):\[{z -1

(13)
' \/(1—M1K1)2-K2
F 3
SO T S C
2 .2
_ ﬁ1+[MO-M1]K1) X
2 f2.
(1+[My-1, K, ) VK -1
and, in the anti-symmetric case,
27




N = coshé&' sina +p.2' sinhé' cosea
D, = sinhe' sina+p,' coshe' cosa (14)
D, = coshe' sina+,u.2' sinho' cosa

In this form it will be noticed that when X 1is large, u 1' is small,

Thug for large K, D 2 is normally the dominant term of the denominator,

1
However it is oscillatory and zeros of D 4 can occur in the symmetric

case when

tanhe' = p,' tana (15a)
and in the anti-symmetric case when

tane tanhe' = - #2'- (15Db)

It is when the dominant term of the denominator drops to zero that sharp
peaks occur in the far-field mean-square pressure distribution, For very
large K (which according to Eq. (9) occur for supersonic values of M1
near the corresponding Mach cone, i.e. near © = Cos-i(_i/Mi) ) there can
be multiple solutions of Egs.(15), and the pressure peaks are very abrupt

in 6, becoming spikes., The magnitudes of the spikes are, for g,
S = f/sin6 (16)
and for the corresponding mean-square pressure

2 2 2

Ap~ R™ _ i (17)
2,22 2 5

2 ATp w 1+M10089|

where, in the symmetric problem,

coshé' cosa - p.2' sinhé' sina
f=f_ = (18)
S coshe' cosa - p,' sinho' sina
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and in the anti-symmetric problem

coshé? sina~+pL2' sinh€' cosa

f=1f = (19)
& cosheo' s:‘l.na+p.2' sinho' cosa

Two source locations are especially of interest. If the source is
at the outer edge of the outer layer, then §' = o' and fs = fa =1,

Note that ‘Apz then corresponds to that of the modified moving source15.

If the source is at the inner edge of the outer layer, then ¢' = 0 and
(using Eqs. (15)) £ o=1f, = coshe' « The mean-square pressure in this
case is much larger than that for the modified moving source (and ap-
proaches infinite value at the Mach cone for supersonic Mi)'

Note also, however, that there are zeros in the symmetric problem

contribution to the far-field pressure distribution when

tanhg' tana = 1/}2' (20a)
and in the anti-symmetric contribution when

tana = -p," tanh{" | (20b)

For very large K these zeros are not far removed (in ©) from the spikes
located according to Egs. (15a,b).
Further examination of Eq, (5) reveals additional information for
other parts of the far field where spikes were not found,
2 2 2 .
(a) When K°>1 and X° > (1+[MO-M1]K1) , then neither

term of the denominator of |§]2 is oscillatory and no spikes can occur.
(b) When K° <1 and K° 2 (1+[MO-M1JK1)2 , both terms of the
denomipator are oscillatory but neither is dominant (i.es Ipil =0(1) ).
Hence, although pressure peaks may occur, their magnitude is more limited.
Also, since the variation of the critical K-value with 6 (location in the

far field) is not rapid for those © where K < 1 , there are no real

29



spikes. Pressure peaks occur singly and with moderate slope (in plots

of Ap‘2 VSs ).

This example illustrates the type of problem encountered when the
supersonic shear-layer jets were investigated, For the shear-layer Jets
abrupt spikes sometimes occurred in the numerical solution, as illus-
trated earlier., For all cases checked, the spikes were associated with
the sudden vanishing of one term of the denominator, a term which dom-
inated the denominator at nearby 6's. These spikes existed over less
than a degree in ©, so that they could easily be overlooked in any but
an extremely fine survey of the far-field. The question then arises
whether it is possible to predict that section (or sections) of the far
field where spikes might be expected and whether one can know when all
of the spikes have been located for a given problems, The very simple
example being considered here, where the Jjet shear layers are replaced
by two constant-velocity layers on either side of a central layer of
higher constant velocity, shows some of the difficulties of answering
this question,

For this example, the three-layer model of the two~dimensional jet,
the following generalities probably can be made:

(a) Spikes occur only when Ki2 > 1. (This appears to be

true also for shear-layer jets.) Now, in general,

cos8e

1 1+Micose

K

so that 1f M, is subsonic (M1 <1)

1 1
w>6 >0 corresponds to - i:ﬁz < K1 <-Iﬁﬁz (21a)
and if M1 >1
-1 1
>0 >cos (-1/M,) corresponds to >K, >~ o
1 M1+1 1
(211)
cos-i(-—i/M ) >6 >0 corresponds to o > X >——-1
1 1 M1—1
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(See Fig. 1k4-a.)

(b) The possibility of spikes requires that f( 1+[M M1]K1)

be real, If (Mo—Ml) < 1 this happens for

1 1
" T, S K S T (222)

and if (MO—Mi) > 1 it requires

- <Ky €< G S T g <K < (225)

(See Fig. 14-b.)
~ Thus, if (MO~M1) is subsonic and M, is subsonic, there is no
overlapping of the K, -ranges of Eq. (21a2) and Eq. (22a) such that K12

and no spikes can occur.

If M, < 1 and (MO—Mi) > 1 +there will be an overlapping of the

K,-ranges of Eq. (21a) and (22b) in a region where K12 >1 if

1 -1
1-M, (Mo—Mi)—i
This requires
MO > 2
(MO is the jet center-region Mach number.,) Note that the overlapping

K

1 2
although K1
peaks is therefore limited. Since the phase change of a (Eq. (8)) is

limited in the overlapping Ki—range, it is not difficult to numerically

~-range is finite, so there can be relatively few peaks, if any. Also,

> 1, it is not excessively large and the magnitude of the

locate all of the peaks in this case, using Egs. (15).
If M1
the pertinent K,-ranges (Eq. (21b) and Eq. (22a)) when K1 > 1 if

>1 and (M ) < 1 there will again be overlapplng of

1
<
M,-1 1-(MO—M1)

> 1,
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Again this leads to the requirement MO > 2 . Again the peaks are
limited in number and somewhat limited in magnitude,
Finally, if both M, > 1 and (MO—Mi) > 1 there is overlapping of

the K,-ranges of Eq. (21b) and Eq. (22b) for
P T
(MO-Mi)-i M, -1

(Of course, if (MO_Mi) > 2, we are interested only in K, < -1 on the
negative side, and if M1 > 2 we are interested only in K1 > 1 on the
positive side, in order to stay within the K12 > 1 criterion.) Since

|K1| is unlimited in this case, the number of possible peaks is infinite

and the magnitude of the spikes can get very large when IKil—— o (that

is, when © *-cos_i(—i/Mi) » the Mach angle corresponding to the source
velocity). Note also that the spacing (in ©) between the spikes dimin-
ishes continually as |K1|*'” .

We repeat that all of our calculations have been made for the plane
y = 0 in this two-dimensional problem, so that K2 =0, K= |K1
(from Egs. (9)). If K,

conclusions probably can be extended to the appropriate overlapping re-

is not zero, that is y # 0 , the foregoing

gions of the X K2 plane (see Fig. 14). The criteria for locating

’
spikes are 1essisimply written in such cases, but appear to be straight-
forward enough. However, if the shear layer of the jet were to be
approximated by multiple layers, each introducing phase-changing quan-
tities similar to e , ¢ used above, it will be foreseen that the criteria

for the possible existence of spikes become very complicated indeed.,

Analysis similar to the preceding has been carried out for the
three-layer two-dimensional jet when the source is located in the central
high-velocity layer of the jet. In this case no spikes were found in the
far-field pressure distributions of any of the examples investigated.

This result appears to follow from the fact that, although the denominator
of the transmission factor l§|2 is the sum of two oscillatory terms,

neither one is truly dominant in any Kl—range (that is, in any ©-range).
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The Circular-Cylindrical Jet Having Two Constant-Velocity Layers

This model consists of a cylindrical central region having constant
high velocity, surrounded by an annular layer having smaller constant
velocity., Viewed in any section containing the axis of the Jet, the vel-
ocity distribution appears the same as previously sketched for the corres-
ponding two-dimensional model. Fig. 15 shows the velocity distribution
and the parameters used to describe the two-layered circular cylindrical
Jjet.

This model, like the previous one, has also the advantage that an
analytical solution can be obtained. Because of the cylindrical func-
tions involved, however, and because an off-center source is represented
mathematically as a series of such functions, numerical calculations for
specific examples are considerably lengthier than for the two-dimensional
case., A survey of the far-field pressure distribution for any example
would be formidable without the aid of a programmed computer.

In cylindrical coordinates the velocity potential for a source
which i1s at rest with respect to the immediately surrounding fluid and

which is located at T WS may be written

o0

¢s = mhw' S ‘n co{n(“““’s)] R.P. eiw'(Kx'Ct)
! Jn(rs‘""V -K*) Hr(li)(l‘w'\/i-Kz) dX ; (r > rs)
. (23)

o0

s mAw' i < cos[n(q,_q,s')]R.P. / eiw'(Kx—ct) .

n=0 —co
. Jn(IWHWA-KE) Hgi)(rsw'di-K ) dK (r < rs)

ASS
1l

(A is the source strength factor previously defined; w' = w/c where ¢

is the speed of sound; X = k/w' where k is wave number in the x-
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o= 1 e =2 for n=1,23; 3 (), ED() are

cylindrical functions, basic solutions of the Bessel equation.) For

direction; e

convenience we write the source potential as

@ = R.P. § /¢Sn(K) ax | (24)

s =0

where ¢sn(K) is the component source potential for one wave number pair
(K,n) . (In what follows we will write only component potentials for the
various regions, it being understood that the total potential is obtained
from the component by integrating over all K (positive and negative) and
summing over n (zero plus all positive integers).)

In each of the three regions shown in Fig. 15 the velocity potential
satisfies the wave equation (in cylindrical coordinates) for coordinates
at rest in the fluid of that region., With the source located in the

outer annulus of the jet we can write

(a) for region (:) (0<r< rO) (See Fig. 15) :

¢On = mhu' € cos[n(w—ig)] R.P.[:§n exp{iw'[K{xo-(MO-Ml)ct!—ct]} °

o s a1 g, JOP) | (25)
(b) for region (1) (zr, < <r,):
¢1n = ¢Sn + rAw' o cos[n(¥-¥.)] R.P. [exp{iw'(Kx-ct)} .

5, D)+ G, 1B i) 7]

(26)
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(¢) for region (:) (r > ri):

g, =mhe' ¢ cos[n(‘p—-,ps)] R.P.[§n .exp{i..,-[K(x2+M1ct)—ct]} .

n
e 1 (2 1—M1K)2-K2)] (27)

(When (1—M1K)2 >k% and X > (1/m,) Hfli)(rw'«/ 1~M1K)2—K2) is

replaced by Hﬁz)(rm'q 1-M1K)2-KE) ; this is the "reversed wave" re-
gioniz, and the change to Hankel functions of the second kind preserves
out~going waves as required for the solution outside the jet.)
Satisfaction of boundary conditions of equal pressure and equal
displacement on either side of the boundaries at r = o and at r = Ty

permits evaluation of the complex amplitude coefficients ﬁh, Eﬁ, Eﬁ, Sn'

Using the following convenilent, definitions

o5 = w'rOJiéK
o, = W'r, 1K
1 1
o, = w'T, 1-K
A= w'rox/(l'l'[MO—Mi]K)z—Kz - (28)

n = arr, [ 1—M1K)2—Kz
1-10,%) 2 _x?

y, =
' (1-}/1_11{)244-1«:2
i \/(1+[MO—M1]K)2—K2
Ko =

(1 iy, 1) 212
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the transmission coefficient §n for the cylindrical layered jet is

bi %bQ[JNm-HSN%)[L%

- L (29)
T ey (1-M,K) (1,

n

where

[1, =2, 88" - p, 5.0 5P(ay)

in
[ ]Nzn = 3,(0) 3, (o) = py 3, (V) 3 (o) (30)
[ 35, = [300 83 () -y 3,0 5]

[0 1@y -y 1 @) 1D (o) ]
N [Jno‘) Hr(11>‘("o> ) Jn.()‘) Hrii)("o)] )
[P @) 1B @) - ny 1D @) 2B e ]
(Note again that, in the reversed wave region Hgi)(ﬂ) and its deriv-

ative Hﬁi)'(q) are replaced by ng)(ﬂ) , Héz)'(ﬂ) .)

The far-field analysis, the change to a transient source sequence
(instead of a permanent source) and to retarded coordinates then follow
in the manner indicated in previous studiesl’lu. As shown in Ref. 1
(Eq. (95)), the average mean-square pressure in the far field due to a
ring of random-phase transient sources (of many cycles duration) located
at r = T is

o LS e )
= € S ' +S " (31
2172A2P2w2 1+M100s9|3 25 non n
n=0
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where Sn',Sn" are evaluated at the critical value of X which for a

point xz,R in the far field is

K= cos@/(1+Micose)

(6 = cos_ixz/B , R= Jx22+r2 ; §£ =5 '+ 18" )e

To discover peaks we would examine Ighlz =5, 2 2

region K° > 1, (1+[M0—M1]K)2 > K2 , for example, Eg. (30) leads to
2
L
lghiz _ Nn
(Trw'ri)z(l-MiK)z(Kz—i) (D1n2 + Dznz)
where
N, = In(cs') [Jn(x) Kn'(°o') "k Jn'(x) Kn(ab')J
- Kn(oé') [Jn(x) In'(°o'> oy Jn'<x) In(aO')]
D, = [Jn(x) K '(eg") - myt 310 Kn(o-o')] .

o [ 1oy ") - eyt () T (e )]

(3200 1% (ep") =yt 3, ) (e ]
SRAORENCORITAENORNCD]

DZn B [;n(x) Kn'(ob') - #2' Jn'(x) Kn(GO')] )
* (Y, (0) I(eyt) -t Y () I (")
n 1 1 1
- [3,00 Tt (") = myt 310 T(eN)]
n 0 2 0

* [Yn("’) Kn'(oi') = #1' Yn'(")) Kn(ci')_-l

4o

S ' + Sn" . For the

(32)

(33)
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= 4 ] = ' = = ] = _= J — _= '
with T = 10'0 s 0'1 io, 7%y o, =19, #y R i, S0
that o', 61', US', #1', #2' are real. (Primes on the Bessel

functions [Jn'( Yo T U0 T 0D, KN )] indicate a derivative

with respect to the argument; i.e. I_'(o,') = _ET I (o) , etcy)
n 1 do' n =g !
1

Although D, and D, Dboth are oscillatory, it is not obvious that

in 2n
either one is dominant in some K-range (nor that it at the same time

has one or more zeros within that K-range). Such a situation may occur,
but it is probably much less frequent than in the corresponding two-
dimensional case studied previously.

In the limited number of numerical examples investigated, no spikes
in the mean-square pressure distributions were found. Even for these
examples, however, it is not clear that spikes do not occur at all. The
far-field survey may simply have over-looked them by using too-large ©-
increments. (Preliminary inspection of computed results indicates that
this is probably the case, the calculations showing denominator factors
that oscillate very rapidly and with wide amplitude variation as ©
changes, in some instances.,) These examples did show important harmonic
effects,s That is, for ©-values where X 1is large, the primary contri-
bution to mean-square pressure, from Eq. (31), did not come from the
n = 0 source-strength harmonic alone; contributions of approximately

equal magnitude often were made by the first several harmonics.

General Discussion of Peaks

The preceding sections indicate that the peaks or "spikes" appearing
in plots of mean-square pressure versus angle for supersonic jets are not
the result of numerical errors or computational difficulties, nor are
they the result of convergence problems in series solutions for the shear
layer. Instead they constitute a real part of the theoretical results.
(Also, the lower and broader double peaks produced by harmonic effects

in the circular jet appear to be real.)

It has already been suggested that the spikes are quasi-resonant
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effects, and in Appendix A a drastically simplified model is shown to
exhibit both resonant and quasi-resonant effects. (A denominator passing
through zero to give an infinite peak corresponds to resonance, The
dominant part of a denominator passing through zero to give a finite peak
corresponds to quasi-resonance.)

The two-dimensional layer model, which can be studied analytically,
offers a much better method for investigating peaks (see earlier sub-
section)., For this model only sources in the outer layers create peaks,
and these occur only when there are exponential-type disturbances in
the outer layers and true waves in the inner layer (exponential-wave).
The three other cases (wave-wave, exponential-exponential and wave-
exponential) do not produce peaks. (The disturbances outside the jet
must of course always be true waves if they are to persist into the far
field.)

The peaks occur near the Mach angle for the source Mach number,

and in some cases there may be infinitely many peaks. The observed
frequencies are generally high, approaching infinity at the source Mach
angle, The peaks themselves are finite (except precisely at the source
Mach angle in the layer model case) and always occur when the dominant
one of two denominator terms passes through zero.

When the sources are at the outer edges of the outer layers the
peak values of mean-square pressure are the same as those produced by
"modified moving sources"15, designated "point volume displacement
sources by Mani5 and by Morfey and Tanna9.

Experimental observations in the far field of a supersonic jet
would probably never reveal "spikes". BSuch observations include the
effects of many sources having different positions, velocities and
frequencies, and the smoothing produced by this inevitable "integration"
should conceal any spikes, For the same reason a mathematical integration
over frequency (e.g. that required to represent a transient source of
short lifetime) should eliminate spikes in the final theoretical results.
However this does not remove the numerical difficulties in precisely

defining the shapes of spikes contributing to the final smoothed result.
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Only if the areas under the spikes were negligible (compared to the area
under the remainder of the mean-square pressure vs. 8 curve) would the
difficulties vanish, and this has not been investigated.

It has been noted that the spikes seem to occur at high observed
frequencies. For example, in Figs, 3 and 9 the observed frequencies are
8.5, 6.7, and 12.7 times the generating frequency*. The simplest way to
avoid numerical difficulties created by spikes is to exclude the higher
ranges of observed frequency. This is not inconsistent with experimental
approaches since the radiated energy in the far field is often recorded
for several observed frequency bands.

To pursue this idea further one might attempt to plot far-field
mean-square pressure versus angle for prescribed observed frequencies
(or observed frequency bands). However this requires the assumption of
source intensity as a function of generating frequency. (A fixed observed
frequency is produced by one generating frequency at one angle and by a
different generating frequency at another angle.) Such an assumption
might require extensive investigation,

Heating the Jjet can have the effect of reducing the probability of
encountering spikes in the pressure distribution since for fixed velocity
the local Mach number (based on local temperature) is then reduced. This
is illustrated in Appendix B for the simplified three-layer two-dimensional

jet model when each layer has a constant temperature higher than ambient.

—— P o e A B0 Py S Bt S e e B S S et o G e e o oy A o S P e e o S ey Y e o i S (o S P P (ot Gt . e o it i S e S Pt ot B s

¥ The Strouhal number is 0.2 based on generating frequency, local jet
velocity (at jet center) and local jet diameter. The Strouhal numbers

based on observed frequencies are then 1.7, 1.34 and 2.54.
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1.

3.

CONCLUSIONS - Part 1

Two unexpected features appear in plots of mean-square
pressure vs, angle in the far field for supersonic jets when
sources are moved off center., First, "spikes" (very high, very
narrow peaks) are found near the Mach angle for the source for
two-dimensional Jets and, to a lesser extent, for circular jets.
Second, for circular jets, lower and broader multiple peaks
appear. These are associated with harmonic effects (communi-

cation around the jet).

Neither of these features is the result of numerical errors
or computing difficulties, nor are they the result of convergence
problems in series solutions for the shear layer. Instead they
appear to constitute a real part of the theoretical results for
cold, low supersonic Mach number jets. However further investi-
gation is certainly desirable to determine if the areas under the
spikes are large enough to provide significant contributions to
integrated results, and to consider the effect of temperature and
temperature gradients (see Eq. (107) of NASA CR-23901) for high

supersonic Mach numbers and heated Jets,

Examination of a simplified (two-dimensional, three-layer)
model indicates that high temperatures in the jet can materially
reduce the probability of encountering spikes, This is associated
with the decrease in local Mach number for given Jet velocity and

increased speed of sound,

Investigation of simplified models also suggests that the
unexpected features are quasi-resonant effects (where the dominant
part of a denominator passes through zero), and that spikes appear

only for non-uniform velocity profiles,



Integration over source position, velocity and frequency
(which occurs automatically in experimental observations) should
smooth these peaks. However the "spikes", because they may appear
and disappear within a one-degree (or less) angular range in the

far field, present computational difficulties.

The"spikes" are apparently associated with very high ob-
served frequencies, and at present it may be necessary to ignore
this high frequency range in order to avoid computing problems in

some examples.

Although some of the results of Part 1 are both unexpected
and imperfectly understood they cannot safely be ignored. Further

study is necessary to show their true significance.
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Part 2 NEAR-FIELD DISTURBANCES FROM TRANSTENT SOURCES IN SUBSONIC JETS

Introduction

Two factors make the near-field investigation much more difficult
than the study of the far field., First, it is not possible to choose a
critical (or dominant) K for each point in the near field. The at-
tempt to do so leads to non-localized and hence unrealistic near fields.
The disturbance produced by any one source should tend to decrease as
the observation point is moved away from the source (upstream or down-
stream), and this decrease does not appear for a single K., The second
factor is that transient sources which pass through many cycles (a simple
case which avoids a frequency integration) cannot be used because they
also lead to a non-localized near field., Instead the sources must be
restricted to lifetimes of the order of one cycle and an integration
over frequency is required. A new assumption must be made here, the
length of time the source exists.

Another complication associated with the near field is that regions
of exponential decay cannot be immediately discarded as in the far field.
One of these regions (Region F , with true waves in the jet and expo-
nential decay outside; see Fig, 18) may contain resonant points (singu-
larities) which offer some difficulties in numerical calculations,

In the following analyses we consider several cases in order of
their difficulty. First, the stationary pulsating source in a homogeneous
fluid of infinite extent is studied. Next, we examine the harmonic source
in a uniform jet and, finally, the sequence of transient sources in a
uniform jet.

In general we look at mean-square radial displacement and mean
energy flow. However the energy flow for the harmonic source in the Jet
is omitted because this involves a very tedious hand calculation. (Pro-
gramming for machine computation seemed inadvisable at this time.,) For
the transient source space-time correlations are considered also., Numer-

ical results for the transient source case are limited, primarily because
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experienced programming assistance was not available to this project.

The Near Field of a Stationary Source in a Homogeneous Fluid
of Infinite Extent

This solution is almost trivial, involving the well~known spherically
symmetrical pulsating source. However we choose to discuss it in the cyl-
indrical coordinates appropriate for a jJet.

In spherical coordinates

@ = g%é sin[@'(R—ct)] (35)

where ¢ is velocity potential, A is an arbitrary amplitude, R is
spherical radius, w = frequency, ' = w/c, ¢ = speed of sound and

t = time,

R = x2+y2+z2 (36)

where x,y,z are Cartesian coordinates, or

R = JPr? (37)

where r 1is the cylindrical radius and x the axial direction,

In cylindrical coordinates

¢ = —_Z—EAT sin[w'(4&2+r2 - ct):l (38)

JE?

To study instantaneous local energy flow, E , across the cylinder
walls we need Ap ¢r y where Ap 1s the perturbation pressure,

Ap = - pg ¢t , with pg = mass density of the fluid.
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E=-r ¢t ¢r
To study the radial displacement, n , we use
7 =[] 4, at

The time mean of the energy flow, E, is

oszzw'zcr

37z
(P2

2p

B =

The time mean of the radial displacement squared,

2 = ZﬁzAZrZ w'z

Ui
2 3
w? (x2+r2) (x2+r2)

Let A = wavelength = 2n/w' , o' = w/c . Then

mean-square radial displacement, Eq. (43), falls off for points "up-
This is done

(IEE>2 - (¥r)? <2w >2 + 1
2A x? 2 k/r x?
8(1 + _E) 1+ =

In Fig. (16) we normalize to unity at x/r =10,

2
7

stream" or "downstream" on the fictitlious cylinder walls,

for A/r +o and for A/r -0 .

normalized energy flow varies with x/r .

about x/r =0,

this simple case, and can be used as a basis for comparison in later

These curves show source effects to be fairly well localized in

CcaseS.
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and show how the

Also we show from Eq. (41) how the

The curves are symmetrical

(39)

(40)

(41)

(42)
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The Near Field of a Permanent Pulsating Source at the

Center of a Uniform Circular Jet

Introduction

Here we consider a permanent pulsating source (a harmonic
source), on the centerline of a circular cylindrical jet. The jet vel-
ocity is uniform throughout, and the source drifts with the fluid per-
petually, The origin of coordinates is fixed in the source, and we
examine disturbances on the Jet boundary upstream and downstream from
the source, Mean-square radial displacements are compared with those
for the previously studied stationary source in a homogeneous fluid of
infinite extent (a zero-velocity Jjet case).

This problem requires fairly extensive calculations, but is still
much simpler than the transient source problem treated later. Results
are given for one example, obtained by hand-calculation using an HP-35

computer.

Development
The origin of coordinates is fixed in the source (see Fig. 17)
with x the streamwise distance from the source and r the radial dis-
tance, 1In this coordinate system all the fluid within the jet is at

rest and the acoustic equation is

24 . L
\ ¢ - 2 ¢tt (LLL})
c
where ¢ is the velocity potential, V2 is the Laplacian, ¢ 1s the
speed of sound and t is time,
The potential for a source at the origin is
+oo
3 ' —
g = rho' R.P. f oLo' (Kx-ct) Héi)(rw',h-xz) ax (45)
-

where A = (source strength)/81~r2 , source strength being defined as
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maximum volume per unit time, w is the source frequency, w' = w/c ’

k is wave number in the x-direction, K = k/w' , Héi)(a) is the Hankel
function of the first kind of order zero and argument e, and R.P.
denotes "real part of".

Allowing for reflected waves the component potential @(K) inside

the jet is
#(K) = whw' R.P. [ei“"(Kx’Ct) 3 Bzt 12) + F Jo(rw',-/i—Kz)ﬂ (46)

where R = R'tiR" , a complex reflection coefficient and JO is a zero
order Bessel function.
Outside the jet the simple wave equation (Eq. (44)) must be satis-

fied for coordinates fixed in the ambient air, x, and r , The com-

2
ponent potential, ¢2(K), allowing for outgoing waves only, is then

vAw' R.P. [E eiw‘[K<x2+MCt)_Ct] H(()i)(rw'w/ 1-KM)2—K2)] (47)

where S = S'+is" , and S' and S" are in-phase and out-of-phase

g,(x)

transmission coefficients.
The total potential outside the jet is

g, = Zo g, (x) dx

To determine ¢2 we must find S' and S" . This is done by
matching at the jet boundary the inside and outside values of pressure

and of radial displacement. The pressure is Ap = - Po ¢t inside and
Ap = - py ¢2t outside., The radial displacement is [ ¢r dt inside and
J ¢2 dt outside, x being held constant in the former case and X,

r

constant in the latter. We omit the details and record the result of

applying the boundary conditions,
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’ 24 jr” i(ku-1) ou’ (Kx-ct) H(i)(rw'J 1km)2x°) &
, = — R.P
1 (1) A2 1V 75," () - ((1-10024 (1)[]J()]

(48)

T

where

[ - [ryekion]
() = (ryutii®)

If we let o = [ ¢ dt with x, constant, then
/ ’(KM—i)z—Kz eiw'(KX—C't) H(i) '(I‘w' m_l)Z_
= — R P
[Ga-1)? A 5§D 1 1 3,"C) - faan? 1§D 17 5,0 )]

(49)

The calculation of 5 from Eq. (49) is time consuming. First, the
real part of the integrand must be found for four different K regions
(see Fig., 18). Fairly extensive numerical computations must be made to
obtain the integrand in each of the four regions, and then the numerical
integration must be performed. For each value of x/r1 investigated the
integrand must be altered and a new integration performed, Since sin(wt)

and cos(wt) terms can be removed from under the integral sign it is con-

venient to calculate n2 , the time mean of nz .

We do not include these tedious steps, but simply plot the final
results for mean-square radial displacement at the edge of the jet versus
streamwise position (see Fig.19). In the example chosen the Mach number
(M) is 0.5, the Strouhal number (sT) is 0.2 and the ratio of wavelength
to jet radius (x/ri) is 20.

Discussion

From Fig. 19 it is clear that the mean-square radial displace-
ments at the jet edge fall off fairly rapidly with distance from the
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source (upstream or downstream), However the rate of decrease is consid-

erably less for M = 0.5 than for the stationary source (or zero velocity
jet). One might speculate that reflections from the edge of the jet tend

to prevent the source effects from leaving the Jet cylinder,

It would be interesting to study the energy flow here, but this is
a more difficult numerical problem and time does not permit., The energy
flow should show greater asymmetry between the upstream and downstream
directions. (An almost imperceptible asymmetry exists in Fig, 19 for the
harmonic source in the jet.)

It wouldialso be interesting to study a shear layer case to compare
with the uniform velocity Jet.

It must be remembered that the source in the jet is a continuously
operating source (a harmonic source), not a transient source, The tran-
sient source (or sequence of transient sources) will be considered next.
The coordinate system can then be fixed in the jet nozzle instead of

traveling with the source.

The Near Field of a Sequence of Transient Sources

at the Center of a Uniform Circular Jet

Mean-Square Radial Displacement

For a permanent (harmonic) source of generating frequency w,
let the radial displacement of a fluid particle in the ambient air be
n{w,t) « Then for a transient source of frequency wg existing from

t = -Zﬂn/bo to t = +2ﬁn/bo (2n cycles):

2"’0/ 7(w,t) sin(21~rnw/w0) dw (50)

(wy,t) =
n 0 - A (“'2"“’02)

This corresponds to the Fourier integral construction of a transient
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process from all frequencies of a permanent one ~.

nz(wo,t) can then be written as a double integral using £ as a

dummy variable for one integration:

2
n (“"Ort) =
2

w

4«:02 f f n(w,t) sin(Z'rrnw/wo) n@,t) sin(Z'n’n-Q/wo) df) dw
0 0 %)

(wz_w02> (02_w0
(51)

n(w,t) and 4(Q,t) are given by Eq. (49) of the preceding section.
(Q and K' are substituted for w and K in the second case,) For

brevity we write them as

o]

n(w,t) = R.P. _o{ F(K,w,t) dK
(52)

o0

R.P. [ F(K'sﬂyt) ax!

-0

T)(ﬂ, t)

Substituting Eq. (52) into Eq. (51) gives a quadruple integral for

-qz(wo,'t) . To get the mean-square value of 7 , 1;2 , for a sequence of

transient sources we must integrate over a sufficiently large time (T)

and divide by 4wm/w. , the time interval between the arrival (at a

O ’
fixed point in the ambient air) of the initial impulse from one tran-

sient source and the initial impulse from the next transient source.

_2_( ) w03 j’o sin(Zm«;/wo)j? Siﬂ(Zn’l’l.Q/wo) j‘o j‘o
7 (wy) = :
* 0 ("'2""02) 0 (‘Qz‘“’oz) o o

T
2
. f FR(K,w,t) FR(K',.Q.,t) dt dK' dX dQ dw (53)
T
T2
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where the integration in t is performed with x, constant. (Note

2
that X, = X - Mct o)

It is now convenient to make the time dependence of F explicit

so that the time integration can be performed.
F(Kywpt) = £(K,0) o @ ¥{K-1) (54)
f(K,w) is defined through reference to Eq. (49). F(X',Q,t) and f(Xx',Q2)

are obtained from F(K,w,t) and f(X,w) simply by substituting X' for
K and & for o,

. jw'x
24 J(i—m)Z—KZ Héi) (rw' 1-K1VI)2-K2) e 2

f(K,w) =
me [oen)? Aa@ B0 3,"0) - 00?8 1§11 1)
(55)
[1= [y 1-kM) -k~ ] (56
()= (xywAK°)

(Note that the argument of the Hankel function in the numerator contains

r instead of r, .) Now, denoting F =TF_ + iF; , etc., we have

R

Fo(K,w,t) = £,(K,w) cos[wt(xu-1)] - £ (K,w) sin[wt(ku-1) ]

and so ,
_5( ) wOBJ‘ sin(zwnw/wo)[ sin(21~rn9/w0) ff
17 w = [}
o’ 3, ) (w2_w02) J (nz_woz) JJ
T/2
. [:fR(K,w) (K", Q) f cos wt(xM-1)] cos[@t(x'M-1)] at
-T/2
T/2
+ £2(K,w) fI(K',.Q) f sin[wt(KM-i)] sinE(zt(K'M—i):] dt | dK' dK 4 dw
-T/2 (57)
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Here the integrals involving sin( ) cos( ) products have been omitted
since the integrands are anti-symmetrical over the range -T/2 to
+T/2 and contribute nothing.

The time integration is readily performed to give terms of the

type

sinz[w(KM—i) - n(K'M-i)]%j
[w(xi-1) - a(x'u-1)]

sin;[w(KM-i) + Q(K"H-1)] —gf

[w(ku-1) + QK "¥-1)]

We next consider the integration in XK' and for convenience let
T become large., The integrands are then slowly varying functions of
K' multiplied by functions of the above type which oscillate rapidly
about zero as K' varies, Such functions interact weakly, and sub-
stantial contributions to the integral occur (a) when the rapidly
varying function ceases to be rapidly varying (e.g. at stationary
phase points), or (b) when the slowly varying function becomes rapidly
varying (i.e. at singular points). This case is of the latter type,

and so we investigate the singular points defined by
w(kKM-1) F Q(K'M-1) = 0

or

X (wKM ~ » + Q)M

and

Ké= (- wKM + w + Q)M

In the neighborhood of a singular point let XK' = Ké + &8, Then

integrating over this neighborhood produces integrals of the type
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€ T
sin(.Q.ME 8) 43
I= (60)
¢ M3

which can be evaluated as wAIM, remembering that T -~ . We then get

3 o0 . =] e o]
— w sin(2mu/w,) sin(2mQYw )

2 - 2o 0 0 )
() == f (wz_woz) [ (Qz_wo)z f

-0

+ [ ne (R )

KM ~w0+S$2
+ fI(K"“) fI( LS.;.—‘.I\;I_'- ,.Q)

—wKM+w+82
+ fR(K,W) fR( M—‘Qﬁg_ ’ -Q)

- £(K,w) £ %;F—’Q , 9.)] &K df dw (61)

In Figs, 20 and 21 the preliminary results of calculations for qz

from Eq. (61) are presented, Fig. 20 shows a decrease in n2 with in-
creasing distance radially outward from the jet. This would of course

be expected. Fig. 21 shows that, for r/r1 =1 and r/r1 = 3 most of

the mean-square radial displacement (nz) is confined to the streamwise

stations through which the transient source passes (a distance of ten

jet diameters in this case). —
For r/r1 = 1 and r/r1 = 3 +there are large fluctuations in n2 .

It is not definitely known what causes this. These observation positions

are very close to the source path in terms of the path length (20 ri).

One might speculate that most of the contribution to nz occurs when
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the source passes beneath the observation point, Since the phase of
the source has not yet been made random with respect to source position
on the pgth; some fluctuations in source effect with observation point
might possibly be attributed to this. These fluctuations seem to disap-
pear (or be greatly reduced) for r/r1 = 10,

Fig. 21 also shows that the downstream disturbances exceed the up-
stream disturbances for r/r1 = 10. Such a trend is very pronounced in
the far field, and it is quite interesting that it shows so clearly in
the near field (assuming these preliminary calculations to be sufficiently
accurate).

The rather large streamwise extent of substantial disturbances (ten
diameters) indicates the necessity for using transient sources of very
short lifetime to obtain realistic results in the near field. The source
of this example has a lifetime of two cycles. It might be desirable to
reduce this to one cycle or even one-half cycle (though some modifica-
tion of the equations is necessary).

Note that a similar problem arises in the more realistic expanding
jet. If such a model is to provide the correct far-field pressures the
sources should move with the jet fluid., Therefore the sources should
be transient and have very short effective lifetimes.

For either the cylindrical or the expanding jet it may be possible
that some simulation of convective effects can be achieved using sources
stationary with respect to the amblent air. Such sources are in motion
with respect to the immediately surrounding fluid (i.e. the jet) and
so are of many typesi5. Each type has a different relation between
downstream and upstream radiation., It is possible that some type might
give usable pseudo-convective effects, but this is only a conjecture at

present, and thorough investigation would be required.

An alternative form of Eq. (61) which is possibly more convenient
is obtained by introducing the observed frequency, w*, for an observer

at rest in the ambient air. (o is the generating frequency.)

£~ (1) (62)

62



where MS is the source Mach number., Here the subscript s may be
dropped since the jet has a uniform Mach number and the source travels
with it. (Note that for K =K, = cos8/(1+M_cose), w' = w/(1+M _cose) ,

which checks the expression for w* previously used in the far field,)

From Eq. (62)

-o*) Mu and = - dw"/Mw (63)

Eliminating K from Eq. (61) gives

0 wZnMZO @ (wP-u, ) Q(ﬂz-woz)

w-w” Q- *
[fﬁ( o ¢ @) R g » 2)

w-w" Q+o” Q
(e ) (g o )

- -G
+fI(ww :“’)f:[(—w‘v‘ﬂ)

Hw o)
- Q+d
- e (U5 w) £ (s )| kA dw (64)

A triple numerical integration is still required to obtain the mean-
square radial displacement at any point outside the jet. However it is
possible that the response in a narrow band of observed frequencies in

the neighborhood of w* might be obtained by a double integration.

(Note that the 7° for - w* must be added to that for + * in

such cases.)
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Mean Energy Flow

The rate of energy flow (E) across a unit area of a circular
cylinder is the product of the perturbation pressure times the radial

velocity, or
E=- Py ¢2't ¢21‘ (65)

Tt is E and E which we want to find now instead of = and

n2 . (n=J4¢, dt with x, constant.)

Since the analysis proceeds almost exactly as before we merely

note that instead of f(X,w) and f(K',Q) we now have gi(K,w), gz(K',ID,

where
o) AW 1(1-1) J(1-kM)2-K2 Hgi)'(rw' 1-kM)%K2) eiw 2
g, Kyw) =
: Ty [(KM—i)Z J1-x° Héi)[] JO'( Y - J(1-km)?x? Hél)'[] 3o )]
(66)
i'K'x
. 240 (K'M-1)? Héi)(rﬂ.‘q—/(i—K'M)z—K'z) TR
g,(K",Q) =

r, [(1{‘1\4-1)2 f-x? Héi)[] JO'( ) - J(1-kM)Px'? Héi)'[] 3o ):]
(67)
(Note that Q' =Q/c just as w' =w/c . [ ] and ( ) in Eq. (66)

are defined in Eq. (56). The same definitions apply in Eq. (67) if K
is substituted for K and ' for w' .)
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S1p° Hw * 7 823" THR ¢
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T T

* *
w— W Stw * an
- glI( Mw ’ w) gZI( MO ’ ‘Q')] dw dw

(68)

E(wo) is the time mean of the energy flow across the cylinder wall per
unit area and per unit time, wy is the frequency for each transient
source, which exists for just 2n cycles. Formally n should be an
integer, but actually correct answers are obtained for one cycle when
n=1/2 . & is the frequency recorded by an observer at rest in the

ambient alr.

Space-Time Correlations in the Near Field

Introduction

One part of this work was directed towards the determination
of space-time correlations of the pressure gradient in the near field
for comparison with in-house research at Langley Research Center.

The mathematical formulation of this is not basically more diffi-
cult than the treatment of energy flow Jjust considered. However two

problems arise., First, the introduction of pressure gradients (higher
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derivatives) gives rise to a convergence problem. This can be handled
without much difficulty. Second, the introduction of two new parameters,
a space interval and a time interval, tends to greatly increase the vol-
ume of data to be obtained,

Again we consider first the simple case of a pulsating source at
rest in a homogeneous fluid. Then transient sources at rest in a
homogeneous fluid are investigated. Finally, the sequence of transient

sources at the center of a uniform-velocity circular Jet is studied.

The Stationary Source in a Homogeneous Fluid

The velocity potential for this source in cylindrical coor-
dinates (see Eq. (38)) is

sinfw'( ,42+r2 - ct):] (69)

The pressure gradient in the radial (r) direction is A@r_= - P ¢tr

and if we retain only the portion associated with true sound Apr is

2rAp wa'r
Ao (x,8) = - P [ (B - o] (70)

X +r

If we let € TDe a space interval in the axial (x) direction, and

v a time interval, then

2rAprww' Y
Bp (%€, t+) = - [(”%— sinfut (fx+€)2r2? - o(tre))] (71)
x+

The correlation function is
+T/2

Ap (xt€,t+7) Ap (x,t) db (72)

e}
i
H
>

1

I_I
l_l
=

H =

-T/2
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and using the two preceding equations we get

2,2 22 422

21 A7p, w 'Y
corr., fn, = 0 COS[«J',‘/ x+£)2+r2 - w',/x2+r2 - w{l (73)

[( x+¢) 2+r2] [x2+r2]

This correlation function does not die out with increasing time
interval (r), and so is unrealistic for the turbulent jet problem. We
next examine the transient source which is more realistic,

If we assume that the transient source behavior is represented by
a portion of a sine wave (see Fig. 22a, where n is set equal to 1) the
radial pressure gradient Apr is (using Fourier integral representation
as in Eq. (50))

APr(x,t) =

2wy (—ZTrApO)r fwz sin [w'(.z,/x2+r2 - ct)] sin(21~(nw/wo) dw
Nt (x2+r2)c 0 (wz—woz)
(74)

At large w the integrand contains only periodic functions (note
2 . .
w in numerator and denominator) and appears to present convergence

problems. To avoid this we choose a smoother function (see Fig. 22b).

Since this function (COSZ(th) between —w/ZwO and +w/2wo , and zero
elsewhere) is symmetrical about + = 0 instead of anti-symmetrical, a
cosine instead of sine is needed in the basic source potential. In

cylindrical coordinates this is

g - PR s ot (Jre? - ot)] (75)

1/x2+r2

The Fourier integral representation of the radial pressure gradient now

becomes (for the true sound)

4w02(—21~rApo)r]° w cos[w'(w/x2+r2 - ct)] si_n('rrw/zwo) dw

(proz_ 2)

Ap(x,t) = (76)

t( x2+r2) c 9
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F(t)

z'h’/w
0
L 0
a) (n =1 for illustration)
F(t)
. .
-'n'/ZwO 0 ’IT/ZwO t—
b)
Fig. 22 TRANSTENT SOURCE TIME HISTORIES
a) F(t) = sin(wot) for t° < (Zw/wo)z; F(t) = 0 elsewhere
b) F(t) = cos™(wyt) for t° < (m/20,)%: F(t) = 0 elsewhere



Smoothing the ends of the source time history produces w/w2 in the
integrand for large « and improves the convergence,

For a sequence of transient sources the correlation function is

11 “o
corr, fn. T

Op (x+€,t4r) Ap (x,t) db (77)

mhaﬁ-.\bﬂe

where w/bo is the time interval between the arrival at a fixed point
of the initial impulse from one transient source and the arrival of the

initial impulse from the next transient source.

T

[ 2
. lim 16w05(1+A2P02r2) ff [ wfl sin(mu/Zwo) sin(wﬂ/Zwo)
Ne = T-OO 2 2 2
x (W 2= &) (b 2~ GF)

c (x2+r2)[(x+£)2+r2

corr,

- L
2

+ cos [w'(«&2+r2 - ctj] cos[ﬂ'(a/(ﬁf)2+r2 - clttel )] dt 4an dw

(78)

The time integration can be made immediately. As T+ o the {Q
integration involves a function oscillating rapidly about zero, and the
integral is evaluated from contributions near the singular point Q=w ,

The result is

corr, fn, =

16ub4(4A2pb2r2) ~J;2(w/ub)2 sinz(wa/Zab) cos(wy/wo) d(w/wo)
(PP [(xr )22 ] { [(w/w)?-4]?
(79)

y = 20 J(x+E)2+r2 - Jx2+r2 - CT;] (80)

where

The integral can be evaluated (see Gradshteyn and Ryshik, Ref. 17,

69

[

| i



#3.728, 7., ps 410, and let their c=b+ €, € ~0), For 0< y<7
we get

2 2 b2

- LA PO wo r

2 (F+r?) [ (x+e) e

corr, fn, =

2] [Sin(27) + 2(y-1) cos(27§] (81)

For y > 1 the correlation function is identically zero, and the
correlation function is symmetrical about y =0 . Fig. 23 (from Eq.
(81)) shows the effect of y on the correlation function,

A transient source at rest in a homogeneous fluid produces dis-
turbances which are confined completely to an expanding spherical shell.
The thickness of the shell is c¢ +times the lifetime of the source, If
the time interval, t , is zero the space interval, £ , can be chosen so
that two points separated by a distance ¢ in the x-direction are never
in the expanding shell at the same time. The correlation is then iden-
tically zero, Similar situations can arise of course when + 1is not
Zero,

It must be remembered that in a sequence of transient sources the
phase of any one source 1s assumed random relative to the other sources,
The correlation function is then not affected by interactions between

pairs of sources.

Pressure Gradient Correlatioh Functions for a Sequence of Transient

Sources at the Center of a Uniform Circular Jet

In order to avoid convergence problems, we adopt a smoothed time
history for the transient sources (see Fig. 22b). Since this is sym-
metrical (instead of anti-symmetrical) about t = 0 it is necessary
to modify the source potential ¢2 by taking the imaginary rather than
the real part of the complex potential (see Eq. (48)). ¢2 is then
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AR (x+6) %]
a2, 02“’041“2 l

corr, fn.e

-
(x,r) (x+¢,T)

Transient
———————————{i}—— X —>»
Sources

Fig, 23 PRESSURE GRADIENT CORRELATION FUNCTION vs » FOR TRANSIENT
SOURCES AT REST IN A FLUID OF INFINITE EXTENT

(y is a function of ¢ and v, the space and time intervals.
See Egs. (80) and (81).)
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iw'Kx iwt(KM-1)

1 (KM-1) H<1)(rw @) e 2 & K

= — I P,
f[(m 12 A 1§13, - D D11 3,0

[1- [ed®]
() (rlwaf-? (83)
@ (M- 1) -X

The radial pressure gradient is - p, ¢2

(82)

l

iwt(KM-1)

~2Aw'w /‘ (KM 1) @ (1) (ro' @) elm e dx
1.P
[KM )2 h-x? H(i)[]J () -2 Hgi)'[]JO( i]

(8)

¢2 (w t) =

For the transient source we need ¢2 (wo,t). The Fourier integral
rt
representation of this is

4ub2 o0 ¢2rt(w,t) Sin(ww/Zwo) dw
rt v o(bw “~u)
0 0
To simplify this expression let
o0
¢2rt(w,t,x2) = I.P, _{o G(K,w,t,xz) dx
(86)

o0

Bo  (Q,t+r,x +€) = I.P. J G(XK',Q,t+7,x+€) d&K°
rt 2 -0 2

The space-time correlation function for the two points (xz,r),.(x2+f,r)

is
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&

WL

w
. O .
corr, fn, = %}gg—-— prrt(ﬂ,t+r,x2+f) Apr_t(w,t,xz) dt (87)
"o
T2
2 2 % | o, ) oo
16p.“w sin(ww/2w,) sin(n 2w, )
_ P00 % 0 0 f /‘
corr., fn. = '
Qe l-F) o

TP 5 w(Li»sz— wz)

T
2
. G (K',9,t+7t,x +€) G (K,w,t,x,) dt dK*® dK 4 dw (88
v 2 T 2
- I
2

In order to perform the time integration the term containing t

is factored out, giving

a(K,@,t,%,) = &(K,w,x,) GLut(K-1) (89)
G(K" 2, be, x,+E) = g(K', ) S10t(X'M-1) eiﬂE(K'M—i)H('f/c]
The imaginary parts of G rTequired in the integrand are then
Gp(K,0,t,x,) = g (K,w,x,) cos[wt(xM-1)] + g (K,u,x,) sinfwt(kn-1)]
(90)
G (K, 0, e, x+€) = g (K',0,x,) cos[Rt(x"M-1)] cos[R(rK M-++K"¢/c)]
- g (K*,%,x)) sin[s(k'M-1)] sin[Q(k'M-rtx'¢/c)]
+ g (K" x,) sinEzt(K'M-i)] COSEQ.(rK'M—-r+K'€/C):l
+ gy (K*,0,x,) cos[Rt(kM-1)] sinfa(ck u-r+'¢/e)]
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In the integration range from —T/2 to +T/2 the anti-symmetric

parts of the integrand can be omitted. Then

GI(K',Q.,t+'r,x2+€) GI(K,w,t,xz) at =

rvha\.'\rvha

(gI(K’w’XZ) ng(K"‘Q"xz) COSB)'(TK'M"H'K"E/C)]

+ gR(K',ﬂ,xz) sin[ﬂ(rK'M-r+K'€/cX]g ) .

I
2

. f cos[wt(kM-1)] cos[t(x'M-1)] at
T

Tz

+ (gR(K,w,xz) 3gR(K',-Q,x2) cosB‘),(rK'M—ﬁK'E/c)]

I

2

. f sinfot(xM-1)] sinfot(x'm-1)] at
T

2

The time integration is simple and for T -~ o +the integration in

K' is obtained (as previously discussed) from the neighborhood of the

singular points. A triple integral (in K,Q,w ) remains to be deter-

mined in the expression for the correlation function.
choose to rewrite this in terms of observed frequency,
K = (w—w*)/Mw .
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As before, we

w*, noting that
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o0

16p0 wg / sin(1w/2wy) Sln(Trﬂ/Z f

corr. fn, =
2 2 . (hw 2_ 2 2<4 2

< - +
{ ( wMz ;o) gy ( Q’-ﬁg , &) cosy, + gI( QMS. » ) cosy,

* (B, 0) siny + g (B 0) Sin"z:l
( w W Q+w*

gl e w ) l:gR( M.Q. , &) cosy, - gR( N f2) cosy,

- gI( MQ ’ .Q,) s1n71 + gI( M\Q ’ !Q') Sin)’zj } dw* dfl dw

(92)
where
- 200'w (KM—1)2 @ Héi)'(rw'@) elw'KXZ
g(K’“’) = . -
[ B O S EA G OFON S FXS]
(93)

v, = @-d)(&/he) - zu*

Yo = Q+*) (€ /M) + Tw*

(2 = L1 (1D + 2(a*/w) - 1
«/1-K2 = -l‘j?‘/(Mz_i) + 2(u*/w) - («A,*2 2

KM-1 = - w*/w
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CONCLUSIONS - Part 2

A realistic picture of the near field must show disturbances
dying out as the distance from a small region occupied by transient
sources increases. The lifetime of each transient source must then
be very brief (not merely finite), and this, plus the lack of a
stationary phase approximation, requires integration over both fre-
guency and wave number. These two integrations make near-field

analysis much more difficult than far-field analysis.

A preliminary near-field analysis is made using coordinates
fixed in a permanent pulsating source (a harmonic source). This
source drifts with the fluid at the center of a uniform circular
cylindrical jet. For a Mach number of 0.5 and a Strouhal number of
0.2 the streamwise extent of substantial disturbances is appreciably

greater than for a Mach number of zero.

The near field is studied for a sequence of transient sources
at the center of a uniform circular jet. BResults here must be con-
sidered preliminary since a triple integration is performed numer-
ically., The integration seems feasible, but the accuracy of the
methods has not yet been completely explored. The preliminary
results are reasonable. Most interesting is the appearance in the
near field of the trend toward increased downstream disturbances

which is so characteristic of the far field.



Appendix A

A TWO-DIMENSIONAL CHANNEL FLOW SHOWING RESONANT AND QUASI-RESONANT PEAKS

Introduction and Discussion

It is convenient to represent a pulsating source in a Jet as the
sum of components having all possible wavelengths in the streamwise
direction. Some of these components are true waves, and some decay ex-
ponentially in the z-direction, normal to the flow. Each of these har-
monic wave forms (infinitely long in the flow direction) moves at its
own velocity relative to the source. The source itself moves with the
local fluid, so the velocity of the waveform with respect to the fluid
in any part of the idealized jet can be determined. Conversely, the
velocity of the fluid relative to the waveform is known.

If we then approximate the fluid motion in some part of the jet
by a uniform velocity flow it is tempting to study for the purpose of
illustration a conventional channel flow where one side of the channel
consists of a prescribed wavy wall, Some boundary condition must now
be prescribed for the other wall of the channel. It is not possible
to say precisely what this condition should be, However a generalized

boundary condition of the form a ¢x(x,zi) + Db ¢Z(x+y,zi) = 0 may be

used, If a =0 a flat rigid wall exists at z = Zy e If b=20

a constant pressure surface exists at z = 2 Other combinations

of a, b and y should correspond to the cinditions existing in a Jet
though these combinations are not easily found.

The energy flow across the outer boundary of the channel is ex-
amined as a function of a non-dimensionalized wavelength in the flow
direction, Various outer boundary conditions are considered. In some
cases true resonant peaks appear (the entire denominator passing through
zero). In other cases quasi-resonant peaks are evident (the dominant
part of the denominator passing through zero). This highly simplified

model therefore does show features resembling those appearing in the



complete shear layer jet, although the peaks appear in a plot of energy
flow vs. wavelength rather than in mean-square pressure vs, far-field
angle ©,

The above results are interesting and perhaps useful., However it
must be emphasized that some very important features of the jet, such
as the jet velocity relative to the ambient air and the velocity of
the acoustical source, are concealed in the generalized boundary con-
dition. This procedure could not readily be used for any quantitative
prediction of the appearance of peaks in the idealized shear-layer
Jets which we are studying, but is possibly of value as a qualitative

illustration,

Development

The development is here outlined very briefly since the problem
is comparatively simple. Only supersonic flow is considered, this being
the case of primary interest.

The origin of the x,z coordinate system is fixed in the mean plane
of the channel's prescribed wavy wall (see Fig. 1A). The flow direction

is x, the normal direction z. The flow obeys the equation

wP-)g -, =0 (A-1)

where M is the undisturbed constant Mach number (M > 1) and @ 1is
the velocity potential. The prescribed wavy wall is at =z = 0, the
outer boundary of the channel is at z = Zi' Let

(A-2)

1l
o

¢z = A sin(kix) at =

and let
a ¢X(X’Zi) b ¢Z(X+79Z1) =0 at =z = 2 (a-3)
where A prescribes the amplitude and k1 the wave number of the wavy
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N ——

Outer Boundary

a ¢x(x,zi) + b ¢Z(x+r,zi) = 0;7

Z=Zi
2 =
(m _1)¢xx - ¢Zz 0 M>1
é
\ * T N

Prescribed Wavy Wall

Fig. 1A THE TWO-DIMENSIONAL CHANNEL
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wall, a and b are arbitrary constants and y permits an arbitrary
phase displacement between ¢x and ¢z at z = Zy

The following expression for @ satisfies the partial differential
equation (A-1) and the boundary conditions (A-2) and (A-3):

_ __A . . .
g = o {3 51n(kix) s1n(kzz) +[ ]3 s1n(k1x) cos(kzz)

2

abk1
+ cos(k17) cos(kix) cos(kzz) (A-4)
kZ
where
2_ . 2,2
k," = k,“(M°-1)

—

tL ]12 + B2 cosz(kiy) sinz(k221)¥

[ ]1 = [(aki/kz) cos(kzzi) - b sin(k17) sin(kzzi)]1 (A-5)
k2 abk
[ ]3 = [%(bz - a? ;15 ) Sin(2k2Z1) - —;—l sin(k170 cos(Zkzzi)]3
2 2

It is convenient to examine the energy flow (relative to coordin-
ates fixed in the fluid). This is independent of z and is given by
(- pMc ¢x ¢Z) , p being the mass density of the fluid and c¢ the speed

of sound., This is the local value, and any convenient z (e.g. 2z = 0)

may be used. If we define by E the mean energy flow per unit area,
then

_ AZab k12 cos(kiy) pMc
2 k2 il
where { | is defined in Eq. (A~5) and b may be set equal to unity
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without loss of generality.
For a specific example let M = 2 and (kiy) = 0. Then k,” =k,

and

E* _ 2B = a (A—?)

) 2 2 . 2
AMc a” cos (kizi) + sin (kizi)

For a =1 the flow pattern is precisely that which occurs for an
infinite fluid flowing past a wavy wall, and E¥ = 1. If a is large
(eeg. a = 10) then a% cosz(kizi) is generally the dominant term in

the denominator, but passes through zero for (klzl) = %, %g, etc,
Thus quasi-resonant peaks appear near these (klzi) values, If a is

small (e.g. a = 0.1) then sinz(kiz is generally dominant but quasi-

1)
resonant peaks appear near (klzi) =0, 1, 211, elcC.
As a -+ the outer boundary of the channel approaches a constant

pressure surface and true resonances at (kizl) = g, %?, etc., are

approached. As a -0 the outer boundary becomes a plane rigid wall,

and true resonances at (kizi) =0, 1, 21, etc., are approached.
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Appendix B

THE HEATED THREE-LAYER TWO-DIMENSTONAL JET

The problem considered is that sketched in Fié. 13, but the three
layers shown now have different temperatures and densities., Outside the
jet (Region (:)), the amblent air has temperature T_, corresponding
density Pys and speed of sound c, In the outer layer of the jet (Region

these quantities are T,, sy C and in the central high velocit
1* P1 v

1!
layer (Region (:)) they are T, pps Cpe

If the velocity of the Jet in Region (:) is U1 and the velocity in
Region (:) is UO’ then the corresponding Mach numbers indicated in Fig.

13 are defined with respect to ambient temperature:

M, = U,/c
1 1 a (B—i)

M, = Uo/ca

Standard thermodynamic relationships give also

2
1 s _Cla
2
Pa 1 ©1
2
T c
PO
M A - _.12_ (B-2)
rs To <o
We further define
' =
w W/Ca
Ky = ki/w' » K, = kz/w' (B-3)
B 2. 2
K = K, K,

If the analysis described earlier in the report is modified to allow

for the different temperatures of the three layers, Eq. (11) becomes
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2 2
< 2 4(Ta/T1) N

N 202 2 2, 2.2
(1_M1K1) [K —(ca/ci) ] Di +F'1' Dz

(B-4)

where the previous definitions of N, Di’ D2 given by Eq. (12) for the
symmetric case and Eq. (14) for the anti-symmetric case retain their
previous forms but the parameters therein defined by Eq. (13) for the

unheated jet now become

o' = w'(az—al)a/‘Kz—(ca/ci)2

&' = u'(zs—ai)J Kz—(ca/cl)2
(B-5)
V. AN CERNES
#1 (1—M1K1)2\/ Kz_(ca/ci)z
e (To/Ty) cha/co)2[1+K1(MO—M1)]Z-Kz
2
[1+K1(MO—M1)]2 J K2—(ca/ci)2
and @, defined for the unheated jet in Eq. (8), becomes
a = w'ayle, /o)LL, (myu,) Pk (3-6)

Comparison indicates that the statements made for the unheated jJet
2
1

then is normally the dominant term of the denominator for large K , and

are still applicable. That is, for very large K, ”1' is small, D

spilkes in the far-field pressure distribution will be found at the zeros

of D1 s+ These occur for the symmetric case when

tanhe' = p,' tana (B3-7)
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which is identical in form to Eq. (15a), but o, #y's @ are now
defined as in Egs. (B-5), (B-6); the anti-symmetric case leads again
to Eq. (15b) in form but with the modified parameters above,

Analytically, then, the heated Jjet case appears little different
from the unheated case. The magnitude of |§|2 is decreased by the
numerator factor (Ta/Ti)z' The location of the spikes (in ©) and the
range of values of K1 where spikes may be expected has changed (i.e.
Fig. 14D must be modified to accomodate the new definition of a and
K2 > (ca/ci)2 }, but otherwise the problem is qualitatively similar to
the unheated case.

When one considers an actual numerical example, however, the shift
in the Ki—range where spikes are possible can be of major significance.
The occurrence of spikes for this configuration requires, as pointed
out earlier in the report, that a be real (corresponding to a wave-
type solution in the cgntral high-velocity part of the jet) when IKi'
is large* (exponential-type solutions in the outer layer of the jet).
Heating the jet can have the effect of shifting the Ki—range where a
is real away from the very high values of lKll. Fewer spikes may then
be encountered, or possibly only pressure peaks of moderate magnitude.

An example may serve to clarify these points. Consider a jet with

My = 2.9 al/az 0.6777

M, = 1.5 S 0.2

1 T

For the unheated jet (T,=T,=T ) a is real for 180° > 6 > 121,76° (and
also for 104,86° > 6 > 0, but this part of the 6-range produces no spikes
and so is not of interest here). Within the range of interest a in-
creases with increasing 6 from a =0 at © = 121.76o to a = at

6 = 131.81° (the Mach angle corresponding to My = 1.5 ); a then
decreases with further © increase to a = 228,61° at 6 = 180° . Within

this a-variation, an infinite number of solutions of kq. (B—?) is possible,

* As before, numerical solutions are considered only for the plane y = 0,

where K2 =0 and K = IK1
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However, if the jet is heated so that To = BTa ’ T1 = 2Ta » the
velocities remaining as above, it is found that e is real for 180° >
0 > 148,89° (and for 102.47° > 6 > 0, which is less of interest). In
this range 2 <K, < 3.01 ¥, That is, Ky
and only moderate pressure peaks are encountered, Also, a increases
with increasing 6 from a=0 at © = 148,89° to a = 63.60° at

6 = 1800. With this limited range of ae-variation permitted, not more

takes on only moderate values,

than one solution (if any) of Eq. (B-7) is probable.
Thus a velocity distribution which resulted in an infinite number of

spikes in the far-field pressure distribution for the source in the un-

heated jet has at most one somewhat moderate pressure peak when the jet

is heated with the temperature ratios indicated. This change is probably
related to the fact that the actual (local) Mach number of the jet,

based on local temperature, is greatly reduced. (Of course, one can
find examples where the Mach number and temperature ratios are such that

multiple spikes will occur for the heated jet also.)

o —— . S g " o S T s S P = o A A A8 o (o S o S S Sk e (e i S i G Y D R e S P S G R S S o

* Recall that K, = cosG/(1+M1 cos8).
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