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SECTION I 

INTRODUCTION 

The Phase 1 Advanced Supersonic Technology Propulsion System Study, re-  
ported i n  Contract NAS3-16950 F l n a l  Report,  NASA CR-1.43634, covered a wide 
range of engine types  and cycles  t o  i d e n t i f y  t h e  b e s t  convent ional  and 
v a r i a b l e  cycle engine concepts. The depth of the study on any s i n g l e  engine 
type  w a s  r e s t r i c t e d  by the  quan t i t y  of engines screened. Three types of 
conventional engines were i d e n t i f i e d  as be ing  candfdatr  engines for an 
advanced supersonic commercial t r a n s p o r t  designed t o  c r u i s e  a t  Mach numbers 
of 2.2 t o  2.7. Operation a t  M=3.2 was s tud ied ,  b u t  t h e  a i r p l a n e  take-off 
gross weight (TOGW) required t o  meet t h e  range requirement: was no t  p r a c t i c a l .  
Seve ra l  va r i ab l e  engine concepts were screened,  b u t  none were considered 
s e r i o u s  candidates for continued e f f o r t .  These VCE s t u d i e s  d i d ,  however, 
i d e n t i f y  d e s i r a b l e  engine performance f ea tu re s  t h a t  would have l a r g e  payoff 
if they could be  incorporated i n t o  l e s s  complex, l i g h t e r  weight engine concepts ,  

Variable  cycle engine f ea tu re s  which had t he se  d e s i r a b l e  performance 
b e n e f i t s  were designed t o  be appl ied  t o  a low-bypass-ratio augmented mixed- 
flow conventional engine cycle  which had shown e x c e l l e n t  range capabil i ty  i n  
t h e  AST airplane.  

The Phase I1 AST study was designed t o  s e l e c t  t11e b e s t  conventional 
mixed-flow augmented turbofan engine by a paramet-ic s tudy ,  and add se l ec t ed  
v a r i a b l ~  cycle  engine f ea tu re s  t o  t h i s  convent ional  engine cycle. These 
convent iunal  and v a r i a b l e  cyc le  engines were t h e  s u b j e c t  of an engine pre- 
l iminary  design s tudy  t o  determine mechanical f e a s i b i l i t y ,  c o n f i n  weight and 
dimensions, and i d e n t i f y  t h e  necessary technology n o t  y ~ t  ava3lable.  C r i t i c a l  
engine components a l s o  were s tud ied  and incorporated. i n t o  the variable cycle  
engine desf gn. 

This  phase of t h e  advanced Supersonic Technology Propulsion System Study 
has i den t i f f  ed a va r i ab l e  cyc le  engfne concept,  the doub le-bypass VCE, which 
provides  high a i r f low t o  meet FAR P a r t  36 no i se  l e v e l s ,  and a t  the  same time 
provide  the  performance advantage of a smaller cru ise-s ize  engine which i s  
well-matched t o  the AST airplane c h a r a c t e r i s t i c s .  This VCE concept a l s o  
provides the added capab i l i t y  of e x c e l l e n t  subsonPc i n s t a l l e d  performance, 
which makes e d x t u r e  of subsonic and supersonic q e r a t i o n  a p r a c t i c a l  
considerat ion.  



SECTION I1 

RESULTS AND DISCUSSION 

This phase of the  Advanced Supersonic Technology Propulsion Study was 
made up of two b a s i c  parts: 

Def in i t i on  of b e s t  mixed-flow augmented turbofan conventiocal 
engine 

Addition of variable cycle  engine f ea tu re s  t o  the conventional 
engine and d e f i n i t i o n  of b e s t  v a r i a b l e  cyc le  engine 

The mixed-flow augmented turbofan was s e l e c t e d  f o r  t he  base l ine  con- 
veqt iona l  engine cycle  from the  r e s u l t s  o f  t h e  Phaoe I e f f o r t .  The v a r i a b l e  
cycle  engine f ea tu re s  i d e n t i f i e d  from t h e  s tudy of t h e  modulating a i r f low 
three-rotor  VCE were added t o  the  conventional englne t o  make a simple var i -  
a b l e  cycle  engine wi th  much l e s s  complexity than t h e  three- ro tor  VCE, The 
selected VCE concept r e t a i n s  the high s p e c i f i c  t h r u s t  and good superoonic 
c r u i s e  s p e c i f i c  f u e l  consumption of t h e  mixed-flow turbofan wh i l e  providing 
the added f e a t u r e s  of:  

e High airflow at  takeoff  f o r  low noise  and small  takeoff  
no i se  f o o t p r i n t  a r e a  

Small c ru i se  s i z e  f o r  b e t t e r  a i r c r a f t  performance macch 

e Exce l l en t ins ta l l edsubson icSFC from: 

- improved cycle performance 

- e l i t n ina t i~n  of i n l e t  a d d i t i v e  drag 

- reduction i n  af terhody drag 

Both t h e  base l ine  convent ional  engine and v a r i a b l e  cycle  engine de f in i -  
t i o n  u t i l i z e d  1985 technology and an fntermediate  supersonic c l u i s e  Mach 
number of 2.4. 

A b r i e f  discussion of the r e s u l t s  of t h e  Phase I1 study is gliven below. 
A comprehensive review of the study r e s u l t s  i s  given i n  the  General Discussion 
Sect ion of this repor t .  

A. Basel ine Conventional Engine Definition 

1. Spec i f i c  Ob j e c t f v e s  

Define the b e s t  conventional fixed-flow augmented turbofan cycle, measured 
by range i n  t h e  AST baaeline a i rp lane .  Confirm t h e  weight,, physical dimen- 
s ions ,  and mechanical f e a s i b i l i t y  of the s e l e c t e d  engine by a prel indnary 
design study. 



2. Approach/Ground Rules 

A matrix of  mixed-flow engines was run,  vary ing  fan p re s su re  r a t i o  (3.0 
t o  4.5),  bypass r a t i o  (0.33 t o  0.85) at an o v e r a l l  p ressure  r a t i o  of 22.5 and 
a maximum tu rb ine  r o t o r  i n l e t  temperature o f  2800° F (1538' C). Mission 
r anse  )M = 2.4) i n  the  base l ine  a i r p l a n e  was computed and the b e s t  cyc le  w a s  
s e l ec t ed .  

The study was s t a r t e d  us ing  the  fol lowing genera l  grrund r u l e s :  

AST-1 a i rp l ane  - 750,000 l>s (340,000 Kg) TOGW 

r 53,500 l b s  (237,970 n) t h r u s t  a t  r o t a t i o n  

a 12,400-feet (3780 m) balanced f i e l d  l eng th  

FAR P a r t  36 -0 t o  -5 PNdB noise  levels with 15 PNdB m ~ c h a n i c a l  
j e t  n o i s e  suppressor  

Take-off augmentation l i m l t e d  t o  1700' F (927' C) 

The b a s e l i n e  conventional engine cyc le  was defined using the above ground 
r u l e s .  A t  NASA d i r e c t i o n ,  t h  a i r p l a n e  d e f i n i t i o n  was changed to AST-2 a i r -  
p l ane  and balanced f i e l d  length was reduced. These changes were ineroduced 
a f t e r  the  base l ine  engine d e f i n i t i o n  and a t  t h e  same tine a change i n  the 
noise est imating procedure was i n t roduces  t o  be more realistic i n  computing 
FAR P a r t  36 noise l eve l s .  The new ground r u l e s  were: 

AST-2 Airplane - 762,000 l b s  (345,640 Kg) TOW 

a 61,400 Ibs (273,107 n)  t h r u s t  a t  r o t a t i o n  

a 10,500-foot (3200 m) balanced field length (BET,) 

r New noise-estimating procedure 

3. Major Rpsults  

The b e s t  conventional &xed-flow augmeated turbofan b a s e l i n e  i n  t h e  
AST-1 a i rp lane ,  12,400 f o o t  (3200 m) BFL had the following c h a r a c t e r i s t i c s :  

700 lbs/eec (318 Kg/sec) a i r f low 

4.0 f a n  pressure  r a t i o  

2925 ft/sec (892 m/sec) ~xhaust v e l o c i t y  

o PAR Part: 36 -3 PNdB traded no i se  l e v e l  

An engine prel iminary design study was completed on t h i s  engine which 
confirmed the f e a s i b i l i t y  o f  t he  mechanical design,  and a design r e p o r t  was 
completed f o r  the NASA-Lewis Research Center. 



4. Discussion 

Figure I cosnpareE the  al l -supersonic range i n  the AST-1 a i rp l ane  wi th  the  
take-off f o o t p r i n t  area Ecr t h e  t h r e e  b e s t  conventional cyc l e  engines. The 
se l ec t ed  engine cycle had t h e  best al l -supersonic range of 4350 N.M. (8056 Km) 
and a 90 PNdB take-off f o o t p r i n t  area of 16 square N.M. (30 sq Km) . Tables 
I and 2 descr ibe  the c h a r a c t e r i s t i c s  of the s e l e c t e d  baseline engine and i ts 
performance i n  t h e  b a s e l i n e  AST-1 a i rp lane .  

A t  t h i s  p o i n t  i n  the AST s tudy ,  t h e  new a i r p l a n e  (AST-2) and t h e  shorter, 
10,500-foot (3200-m) balanced f i e l d  length  were introduced. A t  the same time 
t h e  GE noise  estimating procedure was rev ised  t o  r e f l e c t  more realistic in- 
flight noise  p red ic t ions  based on up-to-date t e s t  data.  Table 3 shows the 
e f f e c t  of t h e  airplane and balmced f i e l d  length  changes on t h e  a i r f low s i z e  
and range of the baseline conver.tiona1 engine cycle ,  The take-off t h r u s t  
requirements have increased by about 15% and t h e  a i rp l ane  al l -supersonic range 
has been reduced by about 11%. When the revised GE noise estimating procedure 
was used t o  p r e d i c t  the n o i s s  l e v e l  of the  engine fox  t h e  new base l ine  air-  
plane, the  traded FAR P a r t  36 n o i s e  l e v e l  in: ceased from -2.3 PNdB t o  3-5.1 
PNdB (sea Table 4) .  Table 5 shows the r e s u l t  n£ s c a l i n g  up t h e  engine a i r -  
flow i n  order t o  lower e h a u s t  velocity an2 lyh-,:r the no i se  l eve l .  Thc engine 
size has hcreaeed by 332 t o  1070 l b a / s e c  (485 Rg/sec) and the all-supersonic 
range has been reduced by 450 N.M. 1131 Px1, Figure 2 shows the o v e r a l l  
effecr:  o f :  

9 AST-1 t o  AST-2 airplane 

o Reduced Balanced F i e l d  length 

e Revllsed noise pred ic t ion  procedure 

The baseline engine al l -supersonic range has been reduced from 4350 N.M. 
(8056 ~ r n )  t o  3470 N.M. (6426 Km), and the  90 PNdB take-off footprint: area has 
increased  from 16 square N.M. (555 sq Krn) t a  19 square N.M. (65 sq ~m). 

B Variable Cycle Engine Defind.tion 

1. Sppcif i c  Object ives  

Add selected v a r i a b l e  cycle engine f ea tu re s  t o  t h e  b a s e l i n e  conventional 
engine, and evaluate these v a r i a b l e  cycle engines,  which are identified as : 

Dual-Cycle VCE 

o Doubla-Bypass VCE 

2. Approacl~/Ground Rules 

The approach used i n  t h i s  part  of t he  s tudy  was t o  def ine  t h e  specific 
v a r i a b l e  cycle engines and eva lua t e  them based on range i n  the  baseline AST-2 
a i rp l ane  and a 90 PNdB contour take-off f o o t p r i n t  area.  



90-PNdB Footprint Arza -- sq Km 
30 GO 90 120 150 180 
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90-PNdB Foo tp r in t  Area - sq N.M, 

Figure 1. Conrentional Cycles Range - Footprints, AST-1 Airplane.  



Tublo 1. GE21/F12 Study Dl, Convcntionni Bnsoline 
Engine. 

Take-off Thrust, lbs 
N 

W,, lbs/aoc 
Kg/sec 

Fan Pressure  Ratio 

Overall Pressure  Ratio 

Maxisum Turbine Inlet  Temperature, F 
" C 

Supersonic Cruise  Turb. I n l e t  Temp., F 
O C 

Meclanical Jet Noise Suppression, PNdB 

Suppressor Design Point ,  ft/sec 
m/sec 

T~.ke-of f Exhallst Velocity,  f t / s ec  
m/sec 

FAR Part 36 Noise L e v e l ,  EPNdB 

Engine Weight, l b s  

Kg 

Maximum Diameter, inches 
m 

Engine Length, inches 
m 



Table 2 .  GE2l/F12 Study El, Conventional Baseline 
Engine, AST-1 Airplane. 

Airflow, Ibs/sec 
Kg/sec 

Take-of f T h r u s t ,  Ibs 
N 

Traded FAR Part  36 ,  EPNdI.3 

90-PNdB Take-off Footprint Area, sq NM: 
sq Km 

Range : - 
811-Supersonic, NM 

Rm 

600-Nhl fnikial Subsonic, NM 
Km 

All-Subsonic, XM 
Km 



Table 3 .  GE21/F12 Study El, Conrrentional Baseline Engine, AST-1 and AST-2 
Airplanes. 

Airflow, lbs/sec 
(Kg, secl 

Take-off Thrust, lbs 
(N) 

AST-1 Airplane 
12,400-foot 
(3780-m) BFL 

700 
(318) 

Traded FAR Part 36, P N d B  -3 

90-PNdB Take-off Footprint Area, sq NM 19 
(sq Km) (65 

Range : - 
A? 1-Supersonl.c, NM 

(Km) 

600-NM (1111 Rm) initial Subsonic, NM 4110 
(Km) (7612) 

All-Subsonic 

AST-2 Airplane 
10,500-foot 
(3200-m) BFL 



Table 4 ,  Revised Relative Velocity Impact on Baseline Engine, AST-2 
Airplane.  

Airflow, lbs/sec 
(Kg/sec) 

Take-off Thrust, lbs 
(N) 

Baseline 
(Old VR) 

805 
(365) 

Traded FAR Part 36, EFNdB -2.3 

90-PNdB Take-off Footpr in t  Area, sq NM 14.5 
(sq Km) ( 5 0 )  

Range : - 
All-Supersonic, Ni?4 

(Km) 

600-NM (1111-Kg) Initial Subsonic, NM 3720 
(Km) (6889) 

All-Subsonlc, NM 
(Kml 

Base1 i n @  
(Revised VR) 

805 
(365) 



Take-off Thrust, Ibs 
(N) 

Table 5. Baseline Engine Performance, AST-2 Airplane. 

AST-2 Airplane, 762,000-1b (345,643-Kg) TOGW 
10,500-f t (3200-rn) Balanced Field Length 
Optimized Subsonic and Transonic Climb/Acceleration 

(Scaled to Same 
Old VR Revised VR Sidel ine  EPNL) 

805 805 1070 
(365) (365) (485 1 

Traded FAR Part  36, EPNdB -2.3 i3.1 -2.5 

90-PNm Take-off Footprfnt Area, sq Nhl 14.5 2 8 
Iss Km) ( 5 0 )  (96) 

600-NhT (1111 Km) Initial Subsooic, NM 3720 3720 
(w (6889) (6889) 



90 PNdB Footpr in t  Area - Sq Km 

Figure 2 ,  Conventional Cycles  Range - Footpr in ts ,  Includes AST-2 Airplane. 



The ground r u l e s  used i n  t h i s  p a r t  of t h e  s tudy were t h e  sane as used i n  
t h e  l a s t  p a r t  o f  t he  conventional engine d e f i n i t i o n :  

a AST-2 a i rp lane  

10,500-foot (3200 m) balanced field l ength  

Revised na i se  e s t ima t ing  procednre 

3. Major Results 

A v a r i a b l e  cycle  engine concept, the double-bypass VCE, was defined which 
provides high take-off a i r f low f o r  acceptab le  FAR P a r t  36 no i se  l e v e l s  and 
take-off f o ~ r p r i n t  a reas ,  while a l s o  providing a good performance match wi th  
t h e  AST-2 airplane requirements and e x c e l l e n t  subsonic i n s t a l l e d  performance. 
Table 6 compares the improvements provided by t h e  double-bypass VCE compared 
t o  the conventional engine s i zed  f o r  t he  same n o i s e  l eve l .  

4. Discussian 

The dual-cycle VCE r equ i r e s  minimum change t o  t he  conventional engine 
cycle ,  which results i n  a s l i g h t l y  higher engine weight,  b u t  provides a 
s u b s t a n t i a l  improvement i n  subsonic i n s t a l l e d  performance. The VCE f ea tu re s  
a l s o  allow high airflow t o  b e  maintained a t  power cutback, f o r  t h e  community 
no i se  measuring s t a t i o n ,  which r e s u l t s  i n  lower noise  and a smal l  90-PNdB 
contour take-off foo tp r in t  area. T b  ~ p r o v e m ~  in subsonk performance 
saves reserve f u e l  wh5ch can he used f o r  the supersonic c r u i s e  segment. This  

added f u e l  more than makes up f o r  t he  small added weight and allows a longer  
range. Figure 3 shows the sma l l  improvement i n  range and t h e  reduct ion  i n  
take-off f o o t p r i n t  a rea  achieved by the dual-cycle VCE. 

The dual-cycle VCE does n o t  offer any s o l u t i o n  t o  the  take-off noise/  
a i r f low size dilemma caused by the  s h o r t  balanced f i e l d  length  and the  
revised no i se  es t imat ing  procedure. The dual-cycle VCE is  s i z e d  t h e  same iis 
t h e  conventional engine f o r  take-off no i se  and t h r u s t ,  and they both a r e  
penalized i n  f l i g h t  by a poor match wi th  a i r p l a n e  requirements because of t h e  
l a r g e  engine airf low.  The doubletbypass VCE provides a s o l u t i o n  t o  t h i s  
sizing problem by providing a high take-off a i r f low for des i r ed  n o i s e  and, 
a t  the same time, providing t h e  same good matching of a i r p l a n e  requirements 
obtained with smaller  engines. The double-bypass VCE a l s o  provides b e t t e r  
subsonic i n s t a l l e d  performance than the dual-cycle VCE, s i n c e  it t o t a l l y  
el iminates  i n l e t  s p i l l a g e  drag, and greatly reduces af terbody drag f o r  t h e  
subsonic c r u i s e ,  d i v e r t ,  and hold flight: condi t ions.  The exce l l en t  take-off 
noise footprint :  a reas  o f  t h e  dual-cycle VCE are r e t a ined ,  s i n c e  bo th  VCE 
concepts have t h e  a b i l i t y  t o  maintain high a i r f low at  the power cutback 
condition. Table 6 shows a comparison of range and take-off f o o t p r i n t  a r eas  
f o r  the double-bypass VCE compared t o  t h e  conventional engines s i z e d  f o r  t h e  
same noise. The al l -supersonic range and f o o t p r i n t  area a r e  compared t o  t h e  
conventional engines on F igu re  4. 



A i r f l o w ,  Ib/sec 
(Kg/sec) 

Take-off Thrust, lbs 
(N) 

Table 6 .  Double-Bypass/Dual-Cycle VCE Noise and Range. 

AST-2 Airplane, 762,000-1b (345,643-Kg) TOGW 
10,500-ft (3200-m) Balanced Field Length 

c Optimized Subsonic and Transonic CLimb/Acceleration 

Baseline 
Baseline Baselhe (Scaled t o  Same 
(Old VR) (Revised VR) Side l ine  EPNL) - VCE 

Traded FAR Part 36, EPNdB 

90-PNdB Take-off Footprint Arez, sy NhI 
(sq Km) 

Range : 
P 

Ail-Supersonic, NFiI 
(Km) 

600-NhI (1111-Km) Initial Subsonic, 3720 3720 
(Km) (6889 ) (6889) 

All-Subsonic, MI 
(Km) 



90 dB F o o t p r i n t  Area -- sq Km 
3 0 6 0 90 120 150 180 

0 10 20 3 0 40 50 60 
90-dl3 Footprint  Area - sq N.M. 

Figure 3 .  Dual-Cycle VCE Range and Foo tp r in t  I~~~provements. 



90-dB Footpr in t  Area - sq Km 

30 6 0 90 120 150 180 

0 10 20 3 0 40 50 6 0 
90-dB Footpr in t  Area sg N.hl. 

Figure 4 ,  Double-Bypass/Dual-Cycle VCE Range and Footpr in t  Improvements. 



Prel iminary design s t u d i e s  were completed and provided t o  t h e  NASA-Lewis 
Research Center on the double-bypass VCE and s e l e c t e d  components cousidered 
t o  be c r i t i c a l .  These s t u d i e s  v e r i f i e d  t h e  weight, dimensions, and mechanical 
f e a s i b i l i t y  of the double-bypass VCZ and the  c r i t i c a l  components. 

The double-bypass VCE provides economic advantages over the conventional 
engines i n  t h e  AST-2 a i rp lane .  Direct Operating Gost (DOC) and R ~ t u r n  on 
Investment (ROI) f o r  the  VCE1s a r e  compared t o  convent ional  engines on 
Figures  5 and 6. At the s e l e c t e d  n o i s e  l e v e l ,  t h e  VCE shows a 3.5% improve- 
m e n t i n  DOC and a 25% iqrovernent  i n  ROI over the conventional engine a t  the 
same noise  level. A further advantage of t h e  double-bypass VCE fs t he  f u e l  
saving shown on Figure 7. Even i n  t h e  4000-N.M. (7408-Km) al l -supersonic 
c r u i s e  mission, the  VCg provides a f u e l  savfng of 25,000 I b s  (11,340 Kg). The 
addi t ion  of subsonic c r u i s e  segments provides even l a r g e r  improvements over 
the conventional engines. 

All  of the conventional and VCE concepts def ined i n  t h i s  study utilize a 
mechanical, chute-type, 15-PNdB static je t  noise  suppressor  t o  suppress t he  
t o t a l  j e t  exhaust.  The acous t i c s  section ( V I )  of t h i s  r e p o r t  discusses the 
annular nozzle  inherent  n o i s e  suppression t h a t  has been i d e n t i f i e d  i n  the 
duct-burning turbofan s c a l e  model acous t i c  t e s t i n g  done under NASA cont rac t .  
The t e s t  r e ~ u l t s  show t h a t  s t i b s t an t i a l  jet n o i s e  suppression can be obtained 
i n  a single-stream exhaust nozzle  conf igura t ion ,  very c lose  t o  the annular  
plug nozzle u t i l i z e d  i n  a l l  the cu r ren t  AST s tudy  engines,  both conventional 
and v a r i a b l e  cyc le  concepts. This annular  suppression could allow the  
e l imina t ion  of the n~echanical  j e t  exhaust suppressor  with i ts  high weight 
and complexity and provide an improvement i n  range, complexity, a i n t a i n -  
a b i l i t y ,  and reliabilf ty. 



2500-N.M. (4630-Knt) Reference Mission 

Figure 5. Double-Bypass VCE Improves Operating Cost. 

400 450 500 
1.00 

0 .99 
tn 
cd 
m 

2 
-4 
M 
E: -98 
W 
d 
(d 
I=! 
0 
.rl 
4J 
E: 
g .97 
E: 
0 
0 '. 
3 

aJ 

I I 

P 
.rl 
CI 
(d 
f-! 
0 r 

.95 

-94 

I 

AST-2 A i r -  Lane 
10,500- f t (3200-m) Balanced Field Length 

800 900 1000 1100 1200 

Sez Level Static Engine Airflow, lbs/sec 

DOC Calculated by 1967 ATA Formula 
with 30$/gal. Fuel Cost 

* 

- 

- 

Double- 
Bypass VCE 

I 
Baseline Conventional Engine 

3.5% Improvement 
in DOC 

1 



Sea Level Static A i r f X o w -  Kg/sec 

F i g u r e  6. Double-Bypass VCE Improves Return On Investment. 
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SECTION T I 1  

G E N E P !  DISCUSSION - S m Y  GROUND RULES 

The e f f o r t  required t o  balance the  AST airplane, mission requirements,  
and range, i n  t h e  eval.uation of s p e c i f i c  propulsion systems, is i l l u s t r a t e d  
i n  Figurs E. The cons idera t ion  of balanced f i e l d  length ,  a i r p l a n e  de f in i -  
t i o n ,  r egu la t ions ,  ndssion, noise, and economics must a l l  be fac tored  i n t o  
the e n g h e  s e l e c t i o n  procedure. 

Some s p e c i f i c  ground r u l e s  (Table 7) have been set  t o  de f ine  some of the 
poss ib l e  variables. M G  of these  ground r u l e s  were c a r r i e d  over from t h e  
Phaae I AST e f f o r t  (Contract NAS3-16950), and o the r s  were introduced during 
the current  Phase IT. e f f o r t  (Contract Xf53-16950 Mod. 3 ) .  T%ese new ground 
r u l e s ,  s p e c i f i c a l l y :  

Revised a i rp l ane  d e f i n i t i o n  

e Elisston reserve  d e f i n i t i o n  

Ealanced f i e l d  length  

had an impact on the conventional base l ine  engine d e f i n i t i o n  and caused a 
change i n  engine take-off s i z e  requirement and mission range In the basel ine 
a i rp lane .  These new ground r u l e s ,  along with  a change t o  more r e a l i s t i c  
in-flight n o i s e  levels i n  t h e  General E l e c t r i c  no i se  p red ic t ion  procedure, 
combined t o  increase engine a i r f l a w  s i z e  from smal l  engines,  well-matched t o  
the a i rp l ane  requirements,  t o  much ? a r g e r  and heav ie r  engines and h igher  
take-off gross weight t o  perform the baseline 4000 N.M. (7408 Km) all-super- 
sonic mission. These changes, however, d i d  fo rce  t h s  d e f i n i t i o n  of va r i ab l e  
cyc le  engine concepts that have high airflow a t  teicnoff f o r  l o w  noise and 
smal l  cruise  s i z e  ?or efficient a i rp l ane  matching. 

A summary of t h e  study ground r u l e s  t o r  t h e  Phase T and Phase I1 AST 
s t u d i e s  is given on Table 7. The Phase T- s tudy  e f f o r t  s t a r t e d ,  u t i l i z i n g  
the Phase I ground rules a s  noted; and, t h e  change t o  t h e  newly defined 
Phase I1 ground rules was made a f t e r  the i n i t i a l  b a s e l i n e  convent ional  engine 
d e f i n i t i c n  and s e l e c t i o n  of t.!; best cyc le  parameters. The remainder of t h e  
study used the Phase TI ground r u l e s ,  i nc lud ing  a l l  o f  t h e  v a r i a b l e  cycle  
engine s tud ie s .  
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Table 7. AST Study Ground Rules. 

- 
AIRPLANE CK4RACTERISTICS 

TOGiV 

Aspect Ratio 

Phase I 

750,000 lbs (340,551 Kg) 

1.7 

Phase I1 
NASA CR-132374 

762,000 Ibs (346,000 Kg) 

1.904 

S Wing 

Passengers 

Payload 

BAMNCED FIELD LENGTH 

MISSION 

Primary 

Alternate 

Economic 

RESERVES 

NOISE GOALS 

CRUISE MACH NWvIBER 

l o ,  000 ft2 (935 m2) 

234 

48,096 lbs (21,810 Kg) 

12,400 ft (3780 m) 
-. 

9969 ft2 (932 m2) 

292 

61,030 lbs (27,700 Kg) 

10,500 ft (3200 m) 

600-NM (1111-Km) I n i t i a l  
I 

All-Supersonic, 4000-NM (7410-Km) 
Subsonic Cruise 

All-Supersonic, 4000 NTri 600-Nhf (1111-Km) I n i t i a l  Subsonic Cruise 
(7410 Km) 

--- 2500 NhI (4630 Kml with 4 0 0 ~ ~ ~ 1  (741-Km) 
I n i t i a l  Subsonic Cruise 

FAR-121.648 Lockheed/TIVA Report No. LP26133 Except: 

a 30-Minute Hold at 15,000 ft (4572 m) 

o Optimized A l t / M  f o r  250-Nbf (463-Km) 
Diversion 

FAR Part 36 -0 t o  -10 PNdE FAR P a r t  36 -0 t o  -5 PNdJ3 

2.2, 2.7, 3.2 2.4 



SECTION IV 

CONVENTIONAL BASELINE ENGINE DEFINITION 

A.t the conclusion of the Phase I e f f o r t ,  the  low-bypass-ratio mixed-flow 
augniented engine was i d e n t i f i e d  as having the b e s t  range i n  the  Phase 1 air- 
plane. Even though t h e  propulsion system weight w a s  h igher  than t h e  duct- 
burning turbofan, t h e  smaller  a i r f low size and b e t t e r  supersonic performance 
more than  compensated f o r  the  weight d i f f e r e n t i a l ,  Figure 9 compares t h e  
mission range and propulsion system weight of the t h r e e  best engines from the  
Phase I s tudy .  The r e s u l t s  shown a r e  a Mach 2 . 7  supersonic cruise, but coa- 
parable  r e s u l t s  were obtained a t  lower Mach numbers. 

The Phase T I  s tudy was based on optimizing t h e  mixed-flow augmented 
turbofan c y c l e  and modifying t h i s  base c o n v e n t i ~ n a l  engine by adding va r i ab l e  
cycle eng ine  fea tures  t o  hnprove performance, The add i t i on  of these  va r i ab l e  
engine c y c l e  fea tures  w i l l  add complexity and weight ,  s o  these  f e a t u r e s  were 
measured by the range i n  the  base l ine  AST a i r c r a f t .  

A matrix of bypas. r a t i o  and fan pressure  r a t i o  was set up f o r  conven- 
t i o n a l  c y c l e  er6ines 2 a constant  ovexa l l  p ressure  r a t i o  and tu rb ine  i n l e t  
temperature (T41). This mixed-f low augmented turbofan matr ix covered the  
fo l lowing  ranges : 

a Pan pressure r a t i o  - 3.0 t o  4.5 

a Bypass r a t i o  - 0.3 t o  1.1 

The engine performance, weight, and dimensions were obtained from t h e  
AST Pa rame t r i c  Engine Computer Program i n  an 850 l b / s e c  (386 Kg/sec) a i r f low 
s i z e .  The r e s u l t s  of t h i s  constant  a i r f l ow study a r e  given on Figures 10,  
11, and 1 2 ,  which p re sen t  engine weight,  geometry, and performance as we l l  
as the important  cycle parameters at the  supersonic c r u i s e  f l i g h t  condit ion.  
Figure 13 presents  the  r m g e  performance of these engines i n  t he  850 l b / s e c  
(386 Kgjsec) a i r f low s i z e  in the b a s e l i n e  600 NIM.  (1111 Km) i n i t i a l  subsonic 
c r u i s e  mission, The b e s t  engines f o r  maxhurn range are t h e  lowest bypass 
engines a t  each fan pressure  r az io ,  In t h e  850-lblsec (386-~g/sec)  a i r f l ow 
s i z e ,  the mission r e s u l t s  of the  3.0, 3 .5 ,  and 4.0 fan pressure  r a t i o s  a r e  
about the same, but  t h e  engines have no t  y e t  been scaled t o  match the a i r -  
plane requirements. The four  base engines (3.0, 3.5, 4.0,  and 4.5 fan pres- 
sure ratio) were sca led  from 850 l b / s e c  (3.86 ~ g / s e c )  t o  680 l b / s e c  (308 Kg/ 
sec) , and t h e  three  AST missions were evaluated 111 the AST b a s e l i n e  a i rp l ane  
( ~ i g u r e  1 4 ) .  In general ,  the sma l l e s t  a i r f l ow s i z e  engines gave the  longest  
range, r ega rd l e s s  of mission type. 

The 4.0 fan pressure  r a t i o  engine was the o v e r a l l  b e s t ,  when i t  was 
s i z e d  a t  700 lb/sec (318 Kg/sec) a i r f l o w  t o  meet t h e  mission cons t r a in t s  
( t h r u s t / d r a g  = 1 .2 ,  no i se  l e v e l ,  subsonic c r u i s e  t h r u s t  l e v e l ) .  The 4.0 fan  
p re s su re  r a t 5 0 ,  0.43 bypass ratio, 700 l b / s e c  (318 Kg/sec) a i r f low s ize  engine 
was s e l e c t e d  as the base l ine  convent ional  cycle. 



Mixed-Flow Duct-Burning Duct-Burning Dry-Bypass 
Augmented Turbofan Turbofan Turbo j e t  

Turbofan Fan Suppressed Fully Suppressed 

Figure 9. Advanced Supersonic Propulsion System Technology Study, PostTask VI Results, M = 2.7 AST 
Baseline hlission, 750,000-lb (340,200 Kg) TOGW. 
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Figure 11. Engine Performance in Supersonic Cruise (M = 2.32). 



Figure 12. Engine  Performance in Supersonic  Cruise (M = 2.32). 
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NOTE : - 
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Figure  14. Effect o f  Engine Cycle and Size on Mission Ranges. 



After  s e l e c t i o n  of t h e  b a s e l i n e  convent ional  engine cyc l e ,  a short study 
was conducted t o  v e r i f y  t h a t  t h e  s e l ec t ed  cyc le  pressure  r a t i o  of 22.5 was 
correct f o r  this engine. F igure  15 compares t h r u s t  and s p e c i f i c  f u e l  con- 
sumption a t  key operat ing condi t ions ,  and t h e  miesion range and propulsion 
system weights a t  th ree  cyc le  pressure  r a t i o s :  19.0, 22.5, and 25.0. Only 
very small  d i f f e r ences  i n  s p e c i f i c  f u e l  consumption and weight result from 
the changes i n  cyc le  pressure  r a t i o ,  so the  original 22.5 cyc l e  pressure  r a t i o  
was not changed. 

A. Take-off Noise and Foo tp r in t  Area 

The take-off noise and r e s u l t i n g  no i se  footpr in*  a r e a  are t h e  major 
sizing c r i t e r i a  f o r  the AST engines.  The jet noise  suppressor  technology, 
assumed take-off t r a j e c t o r y ,  and balanced f i e l d  length  requirements a l l  play 
a part i n  the dfitermination of t h e  engine a i r f low requi red  t o  meet a n o i s e  
goal, The n o i s e  f o o t p r i n t  a r e a  is a major cons idera t ion ,  perhaps more impor- 
tant  than the o v e r a l l  t raded FAR P a r t  36 n o i s e  l e v e l ,  The f o o t p r i n t  area is 
a meascre of t h e  number of people subjected d i r e c t l y  t o  the engine no i se  
dur ing  the  takeoff and landing.  For a s p z c i f i e d  PAR Par t  36 noise  l e v e l ,  a 
wide v a r i a t i o n  i n  noise f o o t p r i n t  a rea  i s  possible.  Figure 16 shows a t y p i c a l  
n o i s e  f o o t p r i n t  which Is dominated by the community noise.  The contour a l so  
is  shown f o r  a takeoff  with no power cutback, and with power cutback at the 
community measuring s ta t ion.  In t he  AST Phase I1 study,  t h e  s i d e l i n e  n o i s e  
has been made the dominant n o i s e  f a c t o r ,  rather than community o r  approach 
conditions. A s  shown on Figure 1 7 ,  with t h e  s i d e l i n e  t h e  dominant n o i s e  
source, the t raded  FAR P a r t  36 noise l e v e l  can be determined i n  d i f f e r e n t  
ways.  Set "B" has been selected, which means t h a t  s i d e l i n e  noise  can exceed 
the des i red  FAR P a r t  36 no i se  l e v e l  by 2 dB; t h e  approach no i se  l e v e l  may b e  
1 dB above; and, t h e  community must be 3 dB below the des i r ed  FAR Part 36 
noise level. 

The jet n o i s ?  suppressors on a l l  of the conventional engine cycles 
covered i n  t h i s  s ac t ion  u t i l i z e  15 PNdB jet noise  suppressors  projeceed t o  
a 1985 t e c h n o l o ~ y  l eve l .  Tes t ing  completed i n  t he  p a s t  year has demonstrated 
13 PNdB s t a t j c  j e t  no ise  suppression from a 32-chute suppressor  on a 379 
engine, The t h r u s t  c o e f f i c i e n t  demonstrated for t h i s  suppressor  conf igura t ion  
(0.92) has been used i n  this study, with 2 PNdB a d d i t i o n a l  jet noise  suppres- 
s i o n  (15 PNdB t o t a l )  assumed t o  be a v a i l a b l e  by 198C, 

Figure 18 shows the j e t  n o i s e  suppressor  design po in t  envelope as a 
function of exhaust gas ve loc i ty  (Vg). The peak suppression a v a i l a b l e  at 
any exhaust v e l o c i t y  is given by t h e  design-point envelope. The off-design 
operat ion of any point  design suppressor i s  shown by t h e  dashed l i ne s .  A 
suppressor designed f o r  a 2850 f t f s e c  (869 rnfsec) Vg would have a peak sup- 
press ion  c a p a b i l i t y  of 13.2 PNdB. I ts off-design performance at 2000 f t / s e c  
(610 m/sec) would be 6.4 PNdB. If t h e  suppressor  were designed f o r  a 2500 
f t / s e c  (762 m/sec) Vg , i ts  off-design performance would be 13.0 PNdB at  
2850 f t / s e c  (869 m/sec) Vg (about the same as the  design point suppressor  fo r  
that jet v e l o c i t y )  ; and, a t  2000 f t / s e c  (610 m/sec), its suppression l e v e l  
would be 10.8 PNdB [compared t o  6.4 PNdB for t he  design po in t  a t  2850 f t / s e c  
(869 m/sec) Vgl. The proper  s e l e c t i o n  of suppressor design po in t  jet  ve loc i ty  
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can have a l a r g e  e f f e c t  on t h e  FAR Pa r t  36 no i se  l e v e l  and t h e  foo tp r in t  area, 

The r i g h t  hand curve on Figure  18 presents  s i d e l i n e  EPNL as a func t ion  of 
engine airf low,  for four  ~ c a l e d  b a s e l i n e  conventional engines,  s i zed  f o r :  

'FAR P a r t  36 -3 PNdB - 12,490 ft (3780 m) BPL 

FAR P a r t  35 -5 PNdB - 12,400 ft (3780 m) BFL 

10,500 ft (3200 m) BE% 
I 

Figure 19 shows these r'onr engines a t  takeoff  with a balanced f i e l d  
l e n g t h  of both 12,400 f t  (3780 m) and 10,500 f t  (3200,m), f o r  both t h e  power 
cutback and no cutback operat ing condi t ions .  With t h e  j e t  noise suppressors 
designed f o r  a 2925 ftfsec (892 m/sec) design po in t  opera t ion ,  t he  12,400-ft  
(3780 m) balanced f i e l d  length engines w i l l  no t  meet t h e  FAR P a r t  36 -3 o r  
-5 PNdB community noise l e v e l  goa l .  !L'he 10,500-ft (32004)  balanced f i e l d  
l e n g t h  engines d m o s t  meet t h e  FAR P a r t  36 -3 PNdB goal ,  bu t  w i l l  no t  meet 
FAR P a r t  36 -5 PNdB. When the suppressor  is designed for a 2500-ft/sec 
( 7 6 2 4 / s e c )  design po in t ,  and operated off-design as shown on Figure 18, f o r  
both the s i d e l i n e  and community measuring poin ts ,  aJ.1 the 10,500-ft: 13200-m) 
balanced f i e l d  length  engines meet: FAR P a r t  36 -5 PNdB, and t h e  12,400-ft 
(37SC-m) balanced field lengLh engines meet FAR Part 36 -3 PNdB. With no 
power cutback, the  engines w i l l  nor meet the communiry noise  goals  :or e i t h e r  
balanced f i e l d  length ,  

A similar reduct ion  i n  100 PN&d contour f o o t p r i n t  area and c losure  dis- 
tance is rea l i zed  by proper s e l e c t i o n  of the j e t  no ise  suppressor design 
p o i n t ,  

FAR P a r t  36 -3 t o  -5 PNdB no i se  goals  and reasonsbie  1G0 PNdB contour 
f o o t p r i n t  a reas  and closure d i s t ances  can be a t t a i n e d  with the proper se lec-  
t i o n  of the jet noise suppressor design point: and u t i l i z i n g  power cutback a t  
t h e  community measuring poin t .  

Figure 20 shows a s i m i l a r  a n a l y s i s  f o r  t h e  same engines a t  the approach 
ope ra t ing  condi t ion ,  In  t h i s  ope ra t ing  condit ion,  the j e t  noise  suppressors 
are not deployed, since lower exhaust ve loc i ty  and j e t  no i se  can be  obtained 
by maintaining h igh  engine a i r f l ow and opening t h e  exhaust nozzle  t o  o b t a i n  
t h e  required opera t ing  t h r u s t .  The l2,4PO-f t (3780-m) balanced f i e l d  length  
engines can meet the FPR P a r t  36 -3 PNdB approach noise  goal ,  and the 10,500- 
f t  (3200-ml balance f i e l d  length  engines can meet the lower approach noise 
level  goal of FAR Part 36 -5 PNdB. 

 he^ approach condit ion could be the  l i m i t i n g  noise opera t ing  condi t ion  
Lf t r a d e d  FAR Part 36 noise l e v e l s  lower than FAR P a r t  36 -5 PNdB are des i red ,  
The aerodynamic noise of t h e  a i r p l a n e  with gear and f l a p s  i n  t h e  landing 
conf igura t ion  may set the  lowest FAR Part 36 no i se  l e v e l  that can b e  obtained,  
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The e f f e c t  of balanced f i e l d  length  and take-off no i se  l e v e l  Is pr imar i ly  
a funct ion of engine a i r f low s i z e  and exhaust: v e l o c i t y  t o  give a requi red  
t h r u s t  l e v e l  t o  meet balanced f i e l d  length  and noise  l e v e l s  with a given jet 
no i se  suppressor  technology. kL the a i r f l ow v a r i e s  t o  meet these  c o n s t r a i n t s ,  
the engine weight and t h r u s t  l e v e l s  a t  the  requi red  ope ra t ing  condi t ions  a l s o  
vary,  Figure 21  presents  t h e  AST mission range f o r  varying a i r f low s i z e ,  
n o i s e  l e v e l ,  and balanced f i e l d  length.  The sma l l e s t  engines (higher noise 
and longer balanced f ie16  l eng th )  give t h e  longes t  range i n  the  AST b a s e l i n e  
a i rp l ane  regard less  of mission type. The h ighe r  a i r f l ow requi red  t o  meet 
sho r t e r  f i e l d  length3 and lower no i se  l e v e l s  r e s u l t s  i n  reduced range o r  
higher  gross  weight t o  meet a requi red  range. 

It can b e  concluded t h a t  t h e  engines s i z e d  t o  meet t h e  s h o r t e r  balanced 
f i e l d  length have lower n o i s e  l e v e l s  beeause they reach a h igher  a l t i t u d e  
over the  community noise-measuring station. The h igher  a i r f l ow and weight ,  
however, result in  a lower mission range i n  t h e  base l ine  a i rp l ane .  

The f i n a l  s e l ec t ion  of t h e  conventional base l ine  mixed-flow augmented 
turbofan engine (GE21/~12 Study B-1) s i z e d  f o r  t he  AST-1 a i rp l ane  and a 
12,400-Et (3780-m) balanced f i e l d  length  Is shown on Table 8. The phys ica l  
c h a r a c t e r i s t i c s  of the  s e l e c t e d  engine are s h o ~ m  on Table 9, 

B, Ef fec t  of Ground Rule Changes on Conventional Basel ine Engine 

A t  this poin t  i n  the  program, the  ndw AST-2 a i r p l a n e  and t h e  10,500-ft 
(3200-m) balanced f i e l d  l eng th  requirement were evaluated,  using the  s e l e c t e d  
base l ine  conventional engine. Table 1 0  compares the  AST-1 and AST-2 a i rp l anes  
at the same 10,500-ft (3200-m) balanced f i e l d  length ,  Since t h e  low speed 
c h a r a c t e r i s t i c s  of t he  a i rp l anes  are s i m i l a r ,  t he  t a k e - ~ l f  ( r o t a t i o n )  t h r u s t  
l e v e l s  are t h e  same f o r  the same balanced f i e l d  length .  The change i n  bal-  
a c e d  f i e l d  length  from 12,400 f t  (3780 m) t o  10,500 f t (3200 m) , however, 
increased t he  take-off thrust requirement from 53,000 lbs (237,968 N) t o  
61,400 lbs (273,107 N) f o r  bo th  a i rp l anes .  The combination of the  inc rease  
i n  balanced f i e l d  length and base l ine  a i r p l a n e  take-off gross  weight (TOGW) 
reduced the  range of the AST-2 a i rp l ane  from t h a t  of t h e  AST-1 a i r p l a n e  by a 
s u b s t a n t i a l  amount. Table 11 gives a d i r e c t  comparison of the  combined e f f e c t s  
of the change i n  base l ine  a i r p l a n e  d e f i n i t i o n  and balanced f i e l d  l eng th  re- 
quirements on the a i r c r a f t  range, The AST-2 airplane, with  t h e  reduced bal -  
anced f i e l d  length ,  has from 300 t o  400 N.M. (556 t o  741  Km) l e s s  range i n  
a l l  the  s tud ied  missions than the AST-1 a i r p l a n e  wi th  the longer  balanced 
f i e l d  length .  The impact on economics of t h i s  change i n  ground r u l e s  is  n o t  
t h a t  d r a s t i c ,  since the  payload (passengers) has  been increased  by 25% i n  
t h e  AST-2 a i rp l ane ,  

C. E f f ec t  of In-Flight Noise Predic t ions  on Engine Size and Aircraft Range 

During t h e  AST study, a c o u s t i c  d a t a  became a v a i l a b l e  from many d i f f e r e n t  
sources which ind ica ted  that t h e  i n - f l i g h t  n o i s e  p r e d i c t i o n  method used i n  
the AST study up t o  t h a t  t i m e  was o p t h i s t i c .  Analysis of t h i s  flight-type 
d a t a  showed t h a t  the impact of a more r e a l i s t i c  jet no i se  p red ic t ion  method 
would be from 4 t o  6 PNdB h ighe r  i n - f l i g h t  n o i s e  than previously assumed. 
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Table 8, GE2l/F12 Study B-1 onvont ional  Basel ine Engine, 
AST-1 Airplane.  

750,000-lb (340,200-Kg) TOGIV 

12 ,400- f t  (3780-Km) Balanced Field Length 

Airflow, lb/sec 
(Kg/sec) 

Take-of f Thrust, l b s  
N 

Traded FAR Part  3 6 ,  EPNdB 

90-PNdB Take-off Footprint  Area, sq NM 
sq Km 

Range : 

All-Supersonic,  NM 
Km 

600-NM (1111-Km) I n i t i a l  Subsonic, NM 
Km 

All-Subsonic,  HM 
Km 



Table  9. GE21/F12 Study B - l  Conventional Basel ine Engine. 

Take-of f Thrust,  Ibs 
N 

W,, lbs/sec 
Kg/sec 

Fan Pressure Ratio 

Overal l  Pressure Ratio 

Max. Turbine I n l e t  Temperature, O F 
C 

Supersonic Cruise Turb. Inlet Temp., O F 
C 

Mechanical Jet Noise Suppression , PNdB 

Suppressor Design Poin t ,  ft/sec 
m/sec 

Take-off Exhaust Veloci ty,  ff/sec 
Wsec  

FAR Part 36 Noise  Level ,  PNd3 

Engine Weight, lbs  
Kg 

Maximum Diameter, inches 
m 

Engine Length, inches 
m 



Table 10. Comparison of AST-1 t o  AST-2 Airplanes, 10,500-ft (3200-m) 
Balanced F i e l d  Length. 

AST- 1 

Passengers (2341, l b s  
(2341, K6 

Passengers (2921, IbS 
(292), Xrn 

Structural Weight, 1bs 
Kg 

Baseline TOGW, I b s  
Kg 

Engine + Fuel  Weight, Ibs 
Kg 

Take-off Thrust, Ibs 
N 

Community Cutback Thrust Requirement, Ibs 
N 

Altitude at Community Cutback Point ,  ft 
m 

Transonic  Drag Higher 



Table 11. GEl2/F12 Study B-1 Conventional Baseline Engine, Effect o f  
Airplane Definition and Balanced Field Length. 

Airflow, lbs/sec 
Kg/ see 

Take-off Thrust, lbs 
N 

Traded FAR Part 36, EPNdB 

90-PNdB Take-off Footprint Area, sq NM: 
sq Km 

Range : 

All-Supersonic, Nbl 
Ilm 

600-NM (1111-Km) Initial Subsonic, NM 
Km 

All-Subsonic, NM 
Km 

AST-1 A/C 
12,400-f t 
(3780-m) BFL 

AST-2 A/C 
10,500-f t 
(3200-m) BFL 



( see  Section VL - Acoustics),  The r e v i s i o n  of t he  jet no i se  p red ic t ion  method 
t o  include t h e  more r e a l i s t i c  r e l a t i v e  v e l o c i t y  (VR) e f f e c t  is shown on Table 
12. The same base l ine  convent ional  engine i n  the  AST-2 a i r p l a n e  has  increased  
i n  noise  l e v e l  by about seven dB, and the  take-off f o o t p r i n t  a r ea  has doubled. 
In order t o  meet FAR P a r t  36 no i se  l e v e l s ,  t he  exhaust ve loc i ty  must be 
reduced and t h e  engine a i r f l ow increased,  Figure 22 shows the r e l a t i o n s h i p  
between j e t  v e l o c i t y ,  fan pressure r a t i o  (LPCPR), and discharge temperature.  
The o r i g i n a l  base l ine  conventional engine w a s  sized t o  give 2925 f t / s e c  
(892 m/sec) jet velocity and augmentation up to t he  maximum suppressor  tempar- 
a t u r e  of 1700' F (927' C ) .  This  s i z i n g  gave about 108 EPNL s i d e l i n e  n o i s e  
with the o l d  no i se  p red ic t ion  method. With the  new no i se  p red ic t ion  method, 
the  ve loc i ty  must be reduced t o  t h e  2500-ft/sec (762-m/sec) range which re- 
qu i r e s  a fan pressure  r a t i o  a t  takeoff  of 3 t o  3.5. F igure  23 shows t h a t ,  
w i th in  a range of exhaust nozz le  t h r u s t  c o e f f i c i e n t s  of 0.9 t o  0.95 for a 
suppressed configurat ion,  t h e  a i r f low s i z e  requi red  t o  meet the  t h r u s t  
requirement w i l l  be  about 1100 l b / s e c  (499 Kg/sec) w i th  an exhaust v e l o c i t y  
c l o s e  t o  2300 f t / s e c  (701 m/sec). Since a h igh  fan pressure ratio o f  about 
4.0 i s  des i r ed  f o r  range cons idera t ions ,  t h e  fan  opera t ing  l i n e  i s  lowered 
f o r  takeoff t o  obta in  the des i r ed  low fan  p re s su re  r a t i o .  This does have a 
s i d e  bene f i t  of e l iminat ing the need f o r  an augmented t akeo f f ,  although t h e  
augmentor s t i l l  is necessary t o  give best c l imb/acce lera t ion  performance. 

The e f f e c t  of r e s i z ing  t h e  conventional base l ine  engine t o  ob ta in  about 
t h e  same o v e r a l l  no ise  l e v e l  wi th  the new noise-estimating procedure is  shown 
on Table 13. !the nominal a i r f l o w  s i z e  has increased  f rom 805 l b s / s e c  (365 Kg/ 
sec) t o  1070 l b s / s e c  (485 ~ ~ / s e c ) .  This increased s i z e  and weight has  
reduced the al l -supersonic range by 450 N.M. (833 Km) and t h e  o the r  missions 
with increased  subsonic c r u i s e  requirements by up t o  750 N.M. (1339 Km) , 

Figure 24 summarizes, i n  curve form, t h e  changes i n  t h e  convent ional  
baseline engine supersonic range and take-off f o o t p r i n t  a r ea  f o r  t h e  combined 
e f f e c t  of :  

e 12,400-ft (3780-m) t o  10,500-ft (3200-m) BFL 

o Old t o  new noise-estimatfng procedure 



Table 12, Revised Relat ive  Velocity Impact on Base l ine  Engine, AST-2 
Airplane, 762,000-lb (345,643-Kg) TOGW, 10,500-f t (3200-m) 
Balanced F i e l d  Length, Optimized Subsonic and Transonic 
CL imb/AcceXeration, 

Baseline, Base1 i n e ,  
Old VR Revised VR 

Airflow, lb / sec  
Kg/sec 

Take-off Thrust, lbs 
N 

Traded FAR Part 36, EPNdB -2.3 6 . 1  

90-PNdB Take-off Footprint Area, sq NM 14.5  28 
sq Km 50 9G 

Range : 

All-Supersonic, NM 
Km 

600-NM (1111-Km) I n i t i a l  Subsonic, NM 3720 
Km 6889 

All-Subsonic , NM 
Km 
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Figure 22. Noise and t h e  Cycle. 



Total Corrected Airfloir., iT26, Kg/sec 

Figure 23. Total Corrected A i r f l o w  Versus Jet  Velocity at Liftoff. 

300 4GO 500 
3000 

- 900 

- 
AST-1 and AST-2 Baseline airplanes 
have similar requirements up to  
l i f t o f f .  

- 
- 

.. 

- - 

C) 

BOO 3 
0 
tn '. < 2500 
2 
,-I 
"1 
0 

4J 
W 

d 
o 
D 

CFG = 0.9 P, 
ct 

P, 
rt 

CFG = 0.95 
700 2: 

% 
m 

+ 
al 

X 
C, 
4 
0 
0 
.-I ,. zoo0 
-v 
a 
b 

609 700 800 900 1000 1100 1200 1300 1400 
Total Corrected Airflow, W2R, lb/sec 

rt 
0 - h 
H 

- 
4 

- 
61,400 lbf (273,107 N) - -? 

UJ 
10,500 BFL (3200 m) - 600 

- 

- 
Range of Current Suppressors - 

- 
- - 
- I 1 1 I 

500 



Table 13. Baseline Engine Performance, AST-2 Airplane, 762,000-1b (345,643-Kg) mGW. 

Scaled ! I, Same 
Old VR Revised VR Sidel ine EPNL - 

A i r f l o w ,  lbs/sec 
Kg/sec 

Take-of f Thrust, l b s  
N 

Trvded FAR Part 36, EPNdB -2.3 f - 5 . 1  -2.5 

90-PNdB Take-off Fcotprint Area, sq Ml 14.5 
sq Km 5 0 

Range : 
All-Supersonic, Nhl 

Km 

600-Nh1 (1111-Km) Initial Subsonic, NM 3720 
Km 6889 

All-Subsonic, NM 
Kin 



Figure 24. Conventional Cycle Range and Footprints. 



SECTION V 

VARIABLE CYCLE ENGINE DEFINrTION 

The previous sec t ion  of t h i s  r e p o r t ,  covering t h e  d e f i n i t i o n  and se lec-  
t i o n  of t h e  b a ~ e l i n e  AST convent ional  engine,  i l l u s t r a t e d  t h e  e f f e c t  of  Lase- 
l i n e  a i rp l ane  c h a r a c t e r i s t i c s ,  reduct ion i n  balanced f i e l d  l eng th  require-  
ments, and r e a l i s t i c  exhaust jet noise p red ic t ions  on engine a i r f l o w  s i z e ,  
The r e s u l t i n g  increase  i n  engine s i z e  has caused a poor match with a i r p l a n e  
c h a r a c t e r i s t i c s  and l a r g e  i n s t a l l a t i o n  p e n a l t i e s  i n  inlet and af terbody drag 
a t  p a r t - t h r o t t l e  operat ion.  

The v a r i a b l e  cycle engine concepts, based on t h e  convent ional  b a s e l i n e  
rnixed-flaw lo1.q-bypass turbofan,  were designed t o  improve the  part-powex in-  
s t a l l e d  s p e c i f i c  f u e l  consumption by reducing i n l e t  and af terbody drag ( see  
Figure 25). A t  t h e  same t i m e ,  t h e  good supersonic performance of the base- 
l i n e  engine was not  changed. 

A. Dual-Cycle VCE Def in i t i on  

The Dual-Cycle VCE concept requi res  minimum a d d i t i o n a l  complexity t o  t h e  
base l ine  conventional cycle ,  b u t  i t  does reduce p a r t - t h r o t t l e  i n s t a l l a t i o n  
l o s s e s  at only a small engine weight penal ty.  Figure 26 i l l u s t r a t e s  t h e  
engine a i r f l ow/ th rus t  c h a r a c t e r i s t i c s  of the conventional base l ine  cycle 
and t h e  Dual-Cycle VCE. The conventional base l ine  engine matches t h e  i n l e t  
a t  the tnaxinum dry power condi t ion  (100%); b u t ,  as t h e  engine is t h r o t t l e d  
back t o  part-power t h r u s t ,  the  engine a i r f l ow i s  reduced. This reduct ion  i n  
a i r f l o r ~  a t  t he  required cruise t h r u s t  level  (Ao/A,) is rep resen ta t ive  of t h e  
i n l e t  add i t i ve  drag, S imi la r ly ,  Figure 27 shows t h a t ,  as the engine is  
t h r o t t l e d  back, t h e  exhaust nozz le  a r ea  requirement i s  reduced and t h e  
~ g , l / A ~ ~ ,  ratio is reduced r e s u l t i n g  i n  h igh  af terbody drag. These same 
f i gn re s  a l s o  show the dual-cycle VCE c h a r a c t e r i s  t i c s  , A s  t he  dual-cycle VCE 
is  t h r o t t l e d  back t o  i ts  r equ i r ed  pzrt-power t h r u s t  requirement,  t h e  VCE 
Eeaturcs allow t h e  i n l e t  flow t o  remain cons tan t  over a s u b s t a n t i a l  range of 
reductd t h r u s t .  A t  some thrust p o h ~ t ,  eztermined by the low pressure  t u rb ine  
opera t ing  condit ions,  t he  i n l e t  flow aust. a l s o  be  reduced. Since t h r u s t  i s  
b e h g  reduced a t  a constant  a i r f l ow,  t h e  exhaust v e l o c i t y  i s  lower than  t h e  
conventional engine and t h e  exhaust nozzle area is l a r g e r  a t  a comparable 
t h r u s t  level. This increases  t h e  A g , l / A m .  r a t i o  snd r e s u l t s  i n  lower 
af terbody drag, Figure 28 shows t h e  a c t u a l  v a r i a t i o n  of i n l e t  and a f t e r b o i y  
drag with a reduct ion i n  un ins t a l l ed  t h r u s t  (part-power operat ion)  f o r  both 
the conventional engine and dual-cycle VCE. I f  the opera t ing  t h r u s t  require-  
ment was 50% of maximum, t h e  dual-cycle i n l e t  drag would b e  about one t h i r d  
of t h e  conventional cycle  i n l e t  drag, and about t h r e e  q u a r t e r s  of t he  a f t e r -  
body drag. A s  the  subsonic po r t ion  of the AST mission inc reases ,  t h i s  w i l l  
r e s u l t  i n  a large f u e l  saving. 

The dlrsl-cycle VCE f e a t u r e s  do not improve t11c i n t e r n a l  cyc l e  per for -  
mance at the s r~bsonic  f l i g h t  condi t ions ,  as shown on Figure 29. The advan- 
tage of the dual-cycle VCE is  i n  the  i n s t a l l e d  performance during subsonic 
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Figure 25. Installation Losses. 
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Figure 27, VCE Base Engine Cycle Comparisons, Equnl Airflow J i z e ,  Relative 
Exhaust Area/Thrust Relationships at M 0.95/35,000 ft (30,668 m). 
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Figure 28. VCE Base Engine Cyc le  Comparisons, Equal A i r f l o w  Size,  Instal-  
lation Losses at M 0.95/35,000 ft (10,668 m), H o t  Day. 
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Figure 29. VCE Base Engine Cycle  Comparisons, Equal A i r f l o ~ v  Size, Uninstalled Per- 
formance at h1 0.95/35,000 ft (10,668 m), Hot Day. 



f l i g h t  operat ion as shown on Figure  30, A t  a 50% i n s t a l l e d  t h r u s t  operat jng 
condi t ion ,  t h e  i n s t a l l e d  s p e c i f i c  f u e l  cansumption is  about 8% lower than the 
same s i z e  conventional engine. 

The dual-cycle VCE shows a a l i g h t  improvement i n  the  al l -supersonic 
range over the  conventional engine i n  the  AST-2 a i rp l ane .  The better sub- 
son ic  performance reduces t h e  r e se rve  f u e l  requirement and makes more mission 
f u e l  ava i l ab l e ,  which makes up for the smal l  weight penal ty for t h e  VCE 
f e a t u r e s .  Figure 31 compares t h e  a l l - supersonic  range and take-off f o o t p r i n t  
a r e a  of the  dual-cycle VCE and t h e  convent ional  base l ine  engine, The dual- 
cyc l e  take-off f o o t p r i n t  a r ea  is  smaller  than t h e  conventional engine base- 
l i n e .  This reduct ion  i n  f o o t p r i n t  a r ea  is  provided by v a r i a b l e  cyc le  
f e a t u r e s  which allow t h e  engine t o  hold take-off a i r f low a t  the community 
measuring s t a t i o n ,  which reduces the exhaust j e t  v e l o c i t y  at  the required 
t h r u s t  and gives lower community noise.  

The dual-cycle VCE shows s l i g h t  mission improvements over  the baseljxie 
conventtonal engine, bu t  i t  s t i l l  requi res  t h e  same penal ty  i n  weight because 
of the a i r f low s iz ing  f o r  take-off noise.  The double-bypass VCE concept can 
provide  a s o l u t i o n  t o  the high  take-off a i r f l ow f o r  no ise  cons jda re t ioz  and, 
et t h e  same t i m e ,  provide a b e t t e r  match for the  a i r c r a f t  fliph: cn~uracter- 
i s t i c s ,  Phys ica l  c h a r a c t e r i s t i c s  of the dual-cycle VCE a r e  5:. *7-!7L O!I Tabbe 124- 

B . Double-Bypass VCE Def in i t i on  

The double-bypass VCE concept: provides high take-of f a i r f  IT;>- t o  provide 
t h e  required t h r u s t  a t  acceptab le  FAR P a r t  36 n o i s e  l e v e l s  and c r u i s e  charac- 
t e r i s t i c s  t h a t  better match the airplane performance requirements,  This VCE 
concept saves approximately 10% i n  engine weight compared t o  a conventional 
engine s ized  f o r  t h e  same take-off ncise l e v e l .  The double-bypass VCE has 
t h e  same subsonic advantages a s  t h e  dual-cycle VCE, bu t  it  i s  e f f e c t i v e  a t  
even lower subsonic c r u i s e  powcr s e t t i n g s .  Figure 32 shows r h e  engine a i r -  
f low/ thrus t  r e l a t i onsh ip  f o r  t h e  dual-cycle VCE with t h e  double-bypass VCE 
added, The double-bypass VCE can hold subsonic c r u i s e  airflow constant: down 
t o  approximately 502 maximum dry t h r u s t ,  which i s  c lose  t o  the AST-2 a i r c r a f t  
subsonic c r u i s e  requfrement. This means that the inlet: spillage drag can 3 e  
el iminated f o r  t h i s  f l f g h t  condi t ion .  Figure 33 shows t h a t  t h e  exhaust 
nozz le  a r ea  a l s o  i s  increas ing  beyond t h a t  of t he  dual-cycle VCE, and the 
afterbody drag reduct ion will. be s i g n i f i c a n t .  F igure  34 shows t h e  i n l e t  
addit ive drag and afterbody drag reduct ions that are poss ib l e  with t h e  double- 
bypass VCE. A t  t he  50% t h r u s t  opera t ing  p o i n t  f o r  subsonic c r u i s e  operat ion,  
the  i n l e t  drag is  reduced t o  zero ,  and t he  t h r u s t  loss due t o  af terbody drag 
i s  reduced by about one t h i r d .  These reduct ions  i n  i n s t a l l a t i o n  drag can 
improve the range capab i l i t y  of t h e  AST-2 airplane s u b s t a n t i a l l y  i f  an i n i t i a l  
subsonic c r u i s e  is  u t i l i z e d ;  even t h e  a l l - supersonic  range is a f f ec t ed ,  s i n c e  
t h e  good subsonic performance of the double-bypass VCE w i l l  reduce t h e  f u e l  
reserves t h a t  must be c a r r i e d .  Figure 35 shows t h a t  t he  double-hypass VCE 
concept improves t h e  i n t e r n a l  performance of t h e  cyc le  about 2% when compared 
t o  e i t h e r  t h e  conventional engine o r  t he  dual-cycle VCE, A t  t h e  same a i r f low 
size, Figure 36 shows t h a t  the improved cyc le  performance and t h e  reduct ion 
i n  ins ta l l . a t ion  lo s ses  has  r e s u l t e d  i n  the double-bypass VCE 5 n s t a l l e d  spt:clfic 
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Figure 30. VCE Base Engine Cycle Comparisons, Equsl Airflow Size, 
Insta l led  Performance at M 0.95/35,000 Ilt (70,668 m) , 
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Table 14. Variable Cycle Engine Phys ica l  C h a r a c t e r i s t i c s ,  Dual-Cycle. 

Take-off Thrust, lbs 
N 

W,, lbs/sec 
Kg/sec 

Fan Pressure Ratio 

Overall Pressure  Ratio 

Maximum Turbine I n l e t  Temperature, F 
" C 

Supersonic Cruise Turbine I n l e t  Temp., O F 
C 

Mechanical Jet Noise Suppression,  PNdB 

Suppressor Design Point, ft/sec 
m/ se c 

Take-off Exhaust Velocity, ft/sec 
m/ sec 

FAR Part  36 Noise Level., EPNdB 

Engine Weight, Ibs 
Kg 

Maximum Diameter, inches  
cm 

Engine Length, inches 
cm 



4 0 5 0 60 70 8 0 9 0 100 
Percent Uninstalled Thrust ,  Dry 

Figure 32. VCE Base Engine Cycle Comparisons, Equal Alrfloiv Size, Engine 
Airflow/Thrust Relationships et 31 0.95/35,000 f t  (10,668 m). 
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Figure 33.  VCE Base Engine Cycle Comparisons, Equal A i r f l o w  Size, Relative 
Exhaust AreajThrust Relationships at M Cl.95/35,000 ft (10,668 m). 
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Figure 34. VCE Base Engine Cycle Comparisons, Equal Airflow Size,  Instal- 
].ation Losses at &I 0.95/35,000 ft (10,668 m) , H o t  Iby. 
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Figure 35. VCE Base Engine Cycle Cnmpa~isons, Equal Airflow Size, Uninstalled Per- 
formance a t  hl 0.95/35,0,1# - (10,668 m) , H o t  Day. 



f u e l  consumption being about 4% b e t t e r  than t h e  dual-cycle VCE, and about 13% 
bet ter  than t h e  conventional base l ine  engine. However, when t h e  engines are 
s i z e d  f o r  equal  take-off n o i s e  (Figure 371, even more improvement is obtained 
( approxha te ly  16%) s ince  t h e  minimum s f c  p o i n t  f o r  t h e  double-bypass VCE has 
moved t o  a lower t h r u ~ t  which is b e t t e r  matched t o  the  a i r p l a n e  requirement. 
F igu re  38 shows t h a t  improvemen: a l s o  i s  obtained a t  the  ho ld - f l i gh t  condi t ion ,  
although t h e  very  low t h r u s t  requirement s t i l l  r equ i r e s  opera t ion  f a r  up t h e  
th rus t - s f c  curve,  and the  operatfng s f c  is  s t i l l  high.  The supersonic  in- 
s t a l l e d  performance f o r  t h e  double-bypass VCE i s  shown on Figure 39. T h i s  i s  
close t o  t h e  same performance seen i n  t he  convent ional  b a s e l i n e  engine, b u t  
some difFerences are seen because of a s l i g h t l y  d i f f e r e n t  component match i n  
the double-bypass VCE. Improvements above t h i s  have been i d e n t i f i e d  and w i l l  
be implemented in the  next  con t r ac t  phase. 

Figure 40 shows a comparison of the al l -supersonic range and t a k e - ~ f f  
f o o t p r i n t  a r ea  f o r  the engine types  s tudied ,  The double-bypass VCE has a 
s u b s t a n t i a l  advantage i n  t h e  al l -supersonic range over both t h e  dual-cycle 
VCE and the conventfonal engine because of i ts  2ower weight f o r  t h e  same 
take-off noise size.  The double-bypass and dual-cycle VCE both have a low 
take-off f o o t p r i n t  a rea  because of t h e i r  a b i l i t y  t o  maintain high a i r f low at  
the commun:.ty noise-measuring s t a t i o n .  Table 15 shows t h e  evolu t ion  of no i se  
p red ic t ion  merhods on the conventional engine a i r f l ow s ize  and t h e  improve- 
ments offered by the double bypass VCL, The improvement in range, as more 
subsonic opera t ion  is  requi red ,  becomes very large a s  t h e  l i m i t  of all-sub- 
s o n i c  operat ion is  reached. 

The double-bypass VCE d e f i n i t i o n  assumed t h a t  t h e  conversion of t h e  b e s t  
convent ional  engine cycle t o  t h e  variable cycle  engine would no t  compromise 
the cycle ,  To confirm t h a t  t h e  match of components i n  t he  VCE d i d  no t  change 
the i n s t a l l e d  performance, a s tudy was performed a t  two d i f f e r e n t  fan  pressure  
r a t i o s  [but the  same overall  pressure  r a t i o  (22.5)],  and t h e  r e s u l t i n g  engines 
were compared i n  t h e  AST a l l - supersonic  mission. Figure 4 1  compares t h e  in- 
s t a l l e d  thrust and s f c  a t  supersonic c r u i s e  at fan pressure  r a t i o s  (LPCPR) of 
3 .7 ,  4.0 (Base), and 4.5. The highes t  fan pressure  r a t i o  ( 4 . 5 )  has s l i g h t l y  
b e t ~ e r  i n s t a l l e d  s f c  a t  t h e  requi red  t h r u s t .  A t  subsonic c r u i s e ,  Figure 42 ,  
t h e  3.7 LPCPR i s  t h e  b e s t ,  bu t  t h e  4.5 LPCPR i s  poor. Figure 4 3  shows t h e  
effect of fan  pressure  r a t i o  on take-off gross  weight and range f o r  t h ree  AST 
miss ions ,  Except f o r  the al l -subsonic mission, the v a r i a t i o n   is^ fan  pressure  
has about a +1% e f f e c t .  However, i f  we inc lude  t h e  take-off 90-PNdB f o o t p r i n t  
area as a measuring parameter (Figure 44) toge ther  with t h e  al l -supersonic 
r ange  i n  the AST-2 a i rp lane ,  t h e  4.0 LPCPR base double-bypass cyc le  i.s t h e  
best compromise f ~ i  range and f o o t p r i n t  a rea .  Phys ica l  c h a r a c t e r i s t i c s  of t h e  
double-bypass VCE a r e  shown on Table 16. 

Return on Investment (ROI)  and Direct  Operating Cost (DOC) f o r  both t h e  
conventional base l ine  engine and t h e  double-bypass VCE were ca l cu la t ed  i n  
accordance with  the Contract Work Statement. The calculat iorr  ground r u l e s  are 
given i n  Table 17 ,  and were used f u r  a s e r i e s  of engine sizes t o  show the 
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Figure 36. VCE Basc Engine Cycle Comparisons, Equal Airflow Size,  
Ins ta l led Perf ormalice at hf 0.95/35,000 f t (10,668 m) , 
H o t  Day. 
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Figure 37. VCE Base Engine Comparisons, Equal Noise Sizing Criteria, Installed 
Performance at hl 0.95/35,000 f t (10,668 rn) , Hot Day. 
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m Figu re  38. VCE Base Engine Comparisons, Equal Noisc Sizing Criteria, Installed Performance 
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Figure 33. Performance Potent ia l  at Supersonic Cruise. 
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Figure 40. Double-Bypass/Dual-Cycle VCE Range and Footprint Improvements. 



Airflow, lbs/sec 
Kg/ se c 

Take-off T h r u s t ,  L b s  
N 

Table 15. Double-~ypazs/Dual-Cycle VCE Noise and Range. 

o AST-2 Airplane 

762,000-lS (345,643-Kg) TOW 

10,500-f t (3200-m) Balanced Field Length 

Optimized Subsonic and Transonic Climb/Acceleratfon 

Baseline, 
Baseline, Baseline Scaled to Same 
Old VR Revi sed  VR Sideline EPNL VCE 

Traded FAR P a r t  36, EPNclB -2.3 +5.1 -2.5 -2.5 

90-EPNdB Take-off Footprint Area, sq NM 14,5 28 
sq Km 50 96 

Range : 

All-Supersonic, NM 
Km 

600-NnI (1111-Km) I n i t i a l  Subsonic, Nhl 3720 3720 3 170 3560 
Km 6889 6889 5871 6593 

All-Subsonic, NlCI 
Km 
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Figure 41. Effec t  of LPC Pressure Ratio on Supersonic Performance. 



Installed Thrust,  N/1000 

35 40 45 5 0 55 60 65 7 0 

Installed Thrust, lb/1000 

Figure 42. Effect of LPC Pressure Ratio on Subsonic Perforinance. 
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Figure 43. Double-Bypass VCE Cycle Study, E f f e c t  of  LPC Pressure Ratio on TQGW and 
Range. 



Figure 44. Double-Bypass/DuaJ-Cycle VCE Range and Footprints. 
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Table 16. GE21/J9 Study B-l Double-Bypass Variable Cycle Engine. 

Take-of f Thrust, Ibs 
N 

W,, lbs/sec 
Kg/sec 

Fan Pressure Ratic 

Overa l l  Presoure Ratio 

Maximum Turb ine  I n l e t  Temperature,  " F 
0 

S u p e ~ s o n i c  Cruise T u r b i r e  I n l e t  Temperature,  * F 
O C 

Mechanical Jet Noise Suppress ion ,  PRdB 

Suppressor  Design Point, Pt/sec 
m/sec 

Take-off Jet V e l o c i t y ,  f t / s e c  
m/sec 

FAR P a r t  36 Noise Leve l ,  EPNd3 

Engine Weight, Ibs 
Kg 

Maximum Diameter, inches 
cm 

Engine Length, inches 
cm 



e f f e c t  of the engine noise  s i z i n g  or, the AST a i rp lane  economics. As shown in 
the ground rules, the mission ~ O T  the economic s tudy  is  2500 N,M, (4630 ~ m )  
with a 400-N.M. (741-Km) i n i t i a l  subsonic segment. The TOW for each cngine 
size is the TOGW f o r  the 400-N.M. ( 7 4 0 8 - h )  al l -supkrsonic mission. Figure 
45 shows the relattve direct operating cos t  (DOC) of the  t?un6le-bypass VCE 
coapared t o  the  baseline conventional engine over a Tarxge of engine a i r f low 
sizes from 800 t o  1200 Ibs (363 t o  544 Kg/sec). A? %:it luwer airflow sizes, 
the VCE provides a 2% improvement i n  DOC; and, a t  : ? ~ e  ai r f low s i z e  matchee + . J  

the  AST-2 airplzne take-off balanced f i e l d  length and noise  levels, i c  in- 
creases t o  a 3.5% improvement. A similar trend is s h m n  f o r  r e t u r n  on invest- 
m e n t  (ROT) i n  Figure 46 ,  A t  the low airf low, the  improvement is  very small; 
but ,  at the AST-2 take-ofE condi t ions ,  a 25% improvement i n  ROI is cbta ined ,  
The double-bypass VCE provi2es ano ther  advantage i n  us ing  less f u e l  for a 
given AST missi ;n than t h e  conventional engine. Figure 47 sE.rms a conparison 
of t o t a l  fuel used by the VCE and by a conventional engine i n  two AST uiss ions .  
The fuel saved by the VCE is impressive, even in the all-supersonic mission. 
A s  subsonic  ration is added t o  the requirement, the p e r c e n t  improvement 
increases r a p i ~ l y  , The double-b ypass /dual-cycle VCE provides a better a l l -  
s u p e r s c ~ i c  range, a much b e t t e r  sutu.~nic/supersonic range, and o f f e r s  l a rge  
improvements i n  economic factors* a l l  a t  a reasonable 7sise  level .  



Table  17. AST Economics. 

UAfT COSTS 

- Airframe - NASA Formula 

- Engine - GE Phase I Parametric Estimates 

DIRECT OPERATING COST (DOC) 

- 196'7 ATA Formula Modified for 30$/gallon Fuel C o s t  and 30% Engine 
Spares 

RETURN ON INVES!MENT (ROX) 

- NASA Contract  NAS3-16950 Work S-kateizent Modified Purchase P r i c e  
for 30% Engine Spares 

e MISSION FOR ECONOMIC STUDY 

- 25C0-Nhl (4G30-Km) wi th  400-NM (741-Km) Initial Subs4 , : .: Segment 
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Figure 45. Double-Bypass VCE Improves Operating Cost. 
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Figure 46. Double-Bypass VCE Improves Return on Investment. 
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Figure 47. Mission F u e l  Saved by the Double-Bypass VCE. 
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SECTION KC 

ACOUSTICS 

A. In t roduct ion  

As part of the  NASA Contract NAS3-16950, var ious  s t u d t e s  were made i n  
acous4-ics t o  b e t t e r  def ine  t h e  no i se  s i g n a t u r e  of var ious AST candidate  
engines as w e l l  as t o  update the AST no i se  p red ic t ion  procedure t h a t  was 
used based on t h e  l a t e s t  a v a i l a b l e  da t a .  These st .dies included p red ic t ing  
n o i s e  contours f o r  AST-engj.3~-powered a i r c r a f t ,  ~ . s v i d i n g  approximate pre- 
d i c t i o n s  based on d a t a  not  y e t  included i n  t h e  k5T noise  p red ic t ion  procedure 
c o r r e l a t i o n s ,  p red ic t ing  i n  d e t a i l  t h e  no i se  of the f i n a l  AST engine (includ- 
ing t h e  p red ic t ing  of suppression from treatments  which could be  placed in t h e  
eng ine ) ,  and providing acous t i c  expe r t i s e  i n  evaluat ing unconventional engtnes 
and high-risk o r  h ighly  complex component designs including annular  e f f e c t s .  

In  updating t h e  p red ic t ion  procedure, the major changes occurred i n  rhe 
p r e d i c t i o n  of f l i g h t  e f f e c t s  and d i r e c t i v i t y  and EPNL determinaition. 

F l i ~ h t  E f fec t s  

A major s tudy  was undertaken t o  better determine the LXfghC eZ'i.;ts on 
jel: noise .  Both h i s t o r i c  data and recent  t e s t  r e s u l t s  vere usrd jir3:iuding 
d a t a  from the F106, Learjet, Olympus on the VFTB, Ber t in  k e r b t r a i n ,  NASA- 
Ames Wind Tunnel, and the GE/JENOTS Free Jet F a c i l i t y ,  Ele old ;nebhod used. 
was t h e  SAE method, i . e . ,  p r ed ic t ing  j e t  no i se  at the  re lat ive ve iuc i ty .  
This d e l t a  was appl ied  t o  a l l  angles  of t he  s t a t i c  jet i i ~ ~ r . t f v i t y .  This 
r e s u l t e d  in an overopt imizat ion of maximut. angle  PNL and I'NL-to-EPNL con- 
version (see Figure 48).  I n  add i t i on ,  s t a t i c  jer suppression :?as appl ied  
us ing  t h e  maximum angle d e l t a  pred ic ted  a t  a l l  angles (Figure 4 9 ) .  

The new procedure p red ic t s  maximum angle  f l i g h t  efEccts from Figure 50 
(1/2 of t h i s  va lue  i f :  suppressed),  and inc ludes  the change fn d i r e c t i v i t y  
from s ta t i c  t o  f l i g h t  f o r  suppressed and unsuppressed cases .  

These changes r e su l t ed  i n  a 2- t o  4-EPNdB increase  I n  predic ted  no i se  
a t  s i d e l i n e  unsuppresusd, and a 3- t o  6-EPNdB increase  suppressed, 

C .  Annular E f f e c t s  

The AST pred ic t ion  procedure does no t  p re sen t ly  differentiate between 
p lug  and conica l  nozzles ,  and it c a l c u l a t e s  noise  from a coannular system 
by determining t h e  noise  from each s tream sepa ra t e ly  and adding them, 
Recently,  t e s t s  were conducted a t  JENOTS under the Duct-B~irnfng Turbofan 
(DBTF) Contract wieh NASA (NAS3-18008). These t e s t s  showed dramstic  reduc- 
t i o n s  i n  noise  r e l a t i v a  t o  a con ica l  nozzle both wi th  and without  suppressorb 
(Figure 51). In addi t ion ,  it appears t h a t  t he  core  flow i s  no t  necessary t o  
achieve  the s r~ppress ion  (Pigure S 2 j .  Tnis may i n d i c a t e  substantial reduclionu 
from h i ~ h - r a d i u s - r a t i o ,  single-flow, plug nozzles;  however, t h i s  i s  s t i l l  under 
s t u d y  , 
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Figure 48. Comparison of Stat fc  and Flisht Conical Nozzle Noise Characteristics, 



AST Jet Noise Prediction - Old Method Vs. New Method 
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Figure 49. AST Jet Noise Prediction, Old Method Versus New Method. 
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Figure 5 0 .  Unsuppi+essed Jet Noise Flight Effects  at peak Angle. 
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Figure 51. Duct-Burning Turbofan Scale  Model Test, Preliminary Results. 
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Figure 52. Duct-Burning Turbofan Scale Mcdcl T e s t ,  Prel iminary Results, Effect of Eliminat- 
ing Core Flow on Unsuppressed Coannular Nozzle. 

I 



D . Conclusions and Recommendations 

The recent major study undertaken on f l i g h t  effects increased  predic ted  
n o i s e  by as much as 6 EPNdB with a jet suppressor;  howev-r, t h i s  is  based on 
a somewhat l imi t ed  s e t  of data f o r  the suppressed caee. I n  order  t o  a r r i v e  
a t  the bes t  poss ib le  pred ic t ion  f o r  f l i g h t  e f f e c t s ,  ana lys i s  w i l l  cont inue 
on existing da ta  including "Free ~ e t  ." The f r e e  jet d a t a  must: have an 
accu ra t e  transformation t o  f l i g h t  before  they can be used with f u l l  confidence. 
In add i t i on ,  high ve loc i ty  jet: suppressor  data w i l l  b e  taken a t  JENOTS and on 
the  YF17 t o  b e t t e r  understand suppressor  flight effects, 

From the l im i t ed  data analyzed t o  da t e  on the DBTF program i t  appears 
t h a t  s i g n i f i c a n t  reduct ions can be obtained from this type of system. Thrust 
losses s t i l l  must be determined f o r  these  nozz les ,  and f l i g h t  d a t a  a r e  nec- 
essary  t o  determine f l i g h t  e f f e c t s .  

Continuing emphasis will be placed on i n - f l i g h t  d i r e c t i v i t y  a s  well as 
suppressor nozzle  f l i g h t  e f f e c t s  t o  achieve the lowest poss ib l e  no i se  for 
AST engines,  while  s t i l l  holding a high p red ic t ion  accuracy. Work w i l l  con- 
t i nue  on other components t o  ensure t h a t  they remain low as compared t o  the 
j e t ,  


