
Report No. 75-0043
Contract No. NAS8-26990

(NASA-CR-144100) HALjSM LANGUAGE
SPECIFICATION (M£S Computing, Inc.) 253 p
HC:t If CSCL 09E

N76-14845

Unclas
G3/61 06781

HAL/SM LANGUAGE SPECIFICATION

November 21, 1975

Prepared for:
George C. Marshall Space Flight Center
NASA
Marshall Space Flight Center, AL 35812

~&~OMPUTIN6,INC.
Post Office Box 5183
Huntsville, AL 35805

https://ntrs.nasa.gov/search.jsp?R=19760007757 2020-03-22T18:38:17+00:00Z

•

PREFACE

This document constitutes the formal HAL/SM Language Specification,
its scope being limited to the essentials of HAL/SM syntax and semantics.
Its purpose is to define completely and unambiguously all aspects of the
language. The Specification is intended to serve as the final arbiter in all
questions concerning the HAL/SM language. It will be the purpose of other
documents to give a more informal, tutorial presentation of the language, and
to describe the operational aspects of the HAL/SM programming system.

Prepared by:

G. P. Williams, Jr.

C. Ross

Approved by:

j~/t/"'1. L. Pruitt

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I
. I
. I

I

I
I

TABLE OF CONTENTS

Section Page

1. INTRODUCTION 1

2. SYNTAX DIAGRAMS AND HAL/SM PRIMITIVES 3

2.1 The HAL/SM Syntax Diagram 4

2.2. The HAL/SM Character Set 6

2.3 HAL/SM Primitives 7

2. 3. 1 Reserved Words 7
2.3.2 Identifier s 7
2.3.3 ERP Designators 8
2.3.4 Literals 8
2.3.5 Display Control Word Value List 14

2.4 One-and Two-Dimensional Source Formats 17

2.5 Comments and Blanks in the Source Text 19

3. HAL/SM BLOCK STRUCTURE AND ORGANIZATION 21

3. 1 The Unit of Compilation 22

3.2 The TASK Block 24

3.3 PROCEDURE and FUNCTION Block 26

3.4 The UPDATE Block 28

3.5 The CRITICAL SECTION Block 30

3.6 The COMPOOL Block 32

3.7 Block Templates 33

3.8 Block Delimiting Statements 35

3.8. 1 Simple Header Statements 35
3.8.2 The PROCEDURE Header Statement 36
3.8.3 The FUNCTION Header Statement 38 \

3.8.4 The CLOSE Statement 40
i
I

i

i •
I 1

.."
!

TABLE OF CONTENTS
(Continued)

Section

3.9 Name-Scope Rules 41

4. DATA AND OTHER DECLARATIONS 43

4.1

4.2

The Declare Group

The REPLACE Statement

45

46

4.2. 1
4.2.2
4.2.3
4.2.4

Form of REPLACE Statement
Referencing REPLACE Statements
Identifier Generation
Identifier Generation with Macro Parameters

46
47
49
49

4.3

4.4

4.5

4.6

4.7

4.8

The STRUCTURE Template

The DECLARE Statement

Data Declarative Attributes

Label Declarative Attributes

Type Specification

Initialization

51

56

57

61

63

68

5. DATA REFERENCING CONSIDERATIONS 73

5. 1

5.2

5.3

Referencing Simple Variables

Referencing Structures

Subscripting

74

75

77

5. 3. 1
5.3.2
5.3.3
5.3.4
5. 3. 5

Classes of Subscripting
The General Form of Subscripting
Structure Subscripting
Array Subscripting
Component Subscripting

78
81
83
84
85

5.4 The Property of Arrayness

ii

87

Section

TABLE OF CONTENTS
(Continued)

5.4. 1 Arrayness of Subscript Expressions 87

5.5 The Natural Sequence of Data Elements 90

6. DATA MANIPULATION AND EXPRESSIONS 93

6. 1 Regular Expressions 94

6. 1. 1
6. 1. 2
6.1.3
6. 1.4
6. 1. 5

Arithmetic Expressions
Bit Expressions
Character Expressions
Structure Expressions
Array Properties of Expressions

94
99

102
103
104

6.2 Conditional Expressions 105

6.2. 1
6.2.2
6. 2. 3
6.2.4
6.2.5

Arithmetic Comparisons
Bit Comparisons
Character Comparisons
Structure Comparisons
Comparisons between Arrayed Operands

106
109
109
110
111

6.3

6.4

6.5

6.6

Event Expressions

Normal Functions

Time Value

Explicit Type Conversions

113

115

118

119

6. 6. 1
6.6.2
6.6.3
6.6.4
6.6.5

Arithmetic Conversion Functions
The Bit Conversion Function
The Character Conversion Function
The SUBBIT Pseudo- Variable
Summary of Argument Types

119
122
123
125
126

6.7 Explicit Precision Conversion

iii

128

TABLE OF CONTENTS
(Continued)

Section Page

7. EXECUTABLE STATEMENTS 129

7. I Basic Statements 130

7.2 The IF Statement 131

7.3 The Assignment Statement 133

7.4 The CALL Statement 136

7.5 The RETURN Statement 139

7.6 The DO••• END Statement Group 141

7. 6. I The Simple DO Statement 141
7.6.2 The DO CASE Statement 142
7.6.3 The DO WHILE and UNTIL Statements 143
7.6.4 The Discrete DO FOR Statement 144
7.6.5 The Iterative DO FOR Statement 145
7.6.6 The END Statement 147

7.7 Other Basic Statements 148

8. REAL TIME CONTROL 151

8.1 Jobs and MOSS 152

8. I. I The LOAD Statement 152
8. I. 2 The INITIATE Statement 152

8.2 Tasks and MOSS 154

8.3 Timing Considerations 155

8.4 The SCHEDULE Statement 156 •

8.5 The CANCEL Statement 160

8.6 The TERMINATE Statement 161

iv

TABLE OF CONTENTS
(Continued)

Section

8.7 The WAIT Statem.ent

8. 8 The ABORT Statement

8.9 The DELETE Statement

8.10 Event Control

8. 11 The SIGNAL Statement

8.12 The RESET Statement

8. 13 The ALERT Statement and Events

8.14 Data Sharing and the UPDATE Block

8.15 Resource Access Control

162

164

165

166

167

168

169

171

172

8. 15. 1
8. 15. 2

The SELECT Statement
The RELEASE Statement

172
174

9.

8.16 The UNLOCK Statement

ERROR RECOVERY AND CONTROL

176

177

9. 1

9.2

The ON ERROR Statement

The SEND ERROR Statement

178

182

10. INPUT/OUTPUT STATEMENTS

10.1 SPIOS Sequential I/O Staten;lents

183

184

10.1.1
10.1.2
10. 1. 3

The READ and READALL Statements
The WRITE Statement
I/O Control Functions

184
186
188

10.2 SPIOS Random Access I/O and the FILE Statement 190

v

TABLE OF CONTENTS
(Continued)

Section

10.3 SPIOS Channel Control and the Channel Statement 192

10.4 RTIOS ERP I/O Statements 194

10.4.1
10.4.2
10.4.3
10.4.4
10.4. 5

The AVERAGE AI Statement
The READ ERP Statement
The ISSUE Statement
The SET DISCRETE Statement
The APPLY ANALOG Statement

194
196
197
198
200

10.5 RTIOS C&D CONSOLE I/O Statements 202

10.5. 1
10.5.2
10.5.3
10.5.4
10.5.5

The CRT SPECIFICATION
The ,REQUEST KEYBOARD Statement
The DISPLAY CONTROL Statement
The DISPLAY DATA Statement
The MODIFY VARIABLE CONTROL WORD
Statement

202
203
204
205

207

10.6 RTIOS System Operator Communication I/O Statement 209

10.7 RTIOS Output to the System Log 210

11. SYSTEMS LANGUAGE FEATURES

11. 1 Introduction

11.2 Program Organization Features

211

211

211

11.2. 1
11.2.2

Inline Function Blocks
Operand Reference Invocations

211
213

11. 3 Temporary Variables 218

11.3.1
11.3.2

Regular TEMPORARY Variables
Loop TEMPORARY Variables

218
219

11.4 The NAME Facility 222

11.4. 1 Identifiers with the NAME Attribute

vi

222

Section

11.4.2
11.4.3
11.4.4

11. 4. 5
11.4.6
11.4.7
11.4.8
11.4.9
11.4.10
11.4.11

TABLE OF CONTENTS
(Continued)

The NAME Attribute in Structure Templates
Declarations of Temporaries
The "Dereferenced" Use of Simple NAME
Identifier s
Referencing NAME Values
Changing NAME Values
NAME As signment Statements
NAME Value Comparisons
Argument Passage Considerations
Initialization
Notes on NAME Data and Structures

vii

227
229

229
230
232
233
233
234
236
237

(BLANK)

viii

1. INTRODUCTION

NAL/S is a programming language developed by Intermetrics, Inc., for
the flight software of the NASA Space Shuttle program. HAL/S is intended to
satisfy virtually all of the flight software requirements of the Space Shuttle.
To achieve this, HAL/S incorporates a wide range of features, including appli­
cations-oriented data types and organizations, real time control mechanisms,
and constructs for systems programming tasks.

As the name indicates, HAL/SM is a dialect of the original HAL
language previously developed by Intermetrics (see Reference 1) and of the
HAL/S dialect, also developed by Intermetrics (see Reference 2). Changes
have been incorporated to adapt the language to the MOSS environment.

HAL/SM is a higher order language designed to allow programmers,
analysts, and engineers to communicate with the computer in a form approxi­
mating natural mathematical expression. Parts of the English language are
combined with standard notation to provide a tool that readily encourages
programming without demanding computer hardware expertise.

Data Types and Computations

HAL/SM provides facilities for manipulating a number of different
data types. Its integer, scalar, vector, and matrix types, together with the
appropriate operators and built-in functions,· provide an extremely powerful
tool for the implementation of guidance and control algorithms. Bit and
character types are also incorporated.

HAL/SM permits the formation of multi-dimensional arrays of homo­
geneous data types, and of tree-like structures which are organizations of
non-homogeneous data types.

Real Time Control

HAL/SM is a real time control language. Defined blocks of code
called tasks can be scheduled for execution in a variety of different ways. A
wide range of commands for controlling their execution is also provided,
including mechanisms for interfacing with external interrupts and other
environmental conditions.

Er ror Recovery

HAL/SM contains an elaborate run time error recovery facility which
alrows the programmer freedom (within the cons t raints of safety) to define
his own error processing procedures, or to leave control with the operating
system.

-1-

System Language

HAL/SM contains a number of features especially designed to facilitate
its application to systems programming. Thus, it substantially eliminates
the necessity of using an assembler language.

Program Reliability

Program reliability is enhanced when software can, by its design,
create effective isolation between various sections of code, while maintaining
ease of access to commonly used data. HAL ISM is a block oriented language
in that blocks of code may be established with locally defined variables that
are not visible from outside the block. Separately compiled task blocks can
be executed together and communicate through one or more centrally managed
and highly visible data pools. In a real time environment, HAL/SM couples
thes'e precautions with locking mechanisms preventing the uncontrolled usage
of sensitive data or areas of code.

The forma.1 Specification of HAL ISM is contained in Sections 3 through
10 of this document. Section 2 introduc~s the notation to be used in the
remainder.

The global structure of HAL ISM is presented in Section 3. Data declara­
tion and referencing are presented in Sections 4 and 5 respectively. Section 6 is
devoted to the formation of different kinds of expressions. Sections 7 through
10 show how these expressions are variously used in executable statements.

Section 7 gives the specification of ordinary executable statements
such as IF statements, assignments, and so'on. Section 8 deals with real
time programming. Section 9 explains the HAL ISM error recovery system
and Section 10 the HAL/SM 1/0 capability.

Finally, Section 11 is devoted to system language features of HAL/SM:.

-2-

2. SYNTAX DIAGRAMS AND HAL/SM PRIMITIVES

In this Specification, the syntax of the HAL/SM language is represented
inQthe form of syntax diagrams. These are to be read in conjunction with the
associated sets of semantic rules. Sometimes the semantic rules modify or
restrict the meaning inherent in the syntax diagrams. Together the two pro­
vide a complete, unambiguous description of the language. The syntax dia­
grams are mutually dependent in that syntactical terms referenced in some
diagrams are defined in others. There are, however, a basic set of syntactical
terms for which no definition is given. These are the HAL/SM "primitives. "

This section has two main purposes: to explain how to read syntax
diagrams, and to provide definitions of the HAL/SM primitives. Various
aspects of HAL source text which impact upon the meaning of the diagrams are
also discussed briefly.

-3-

2.1 The HAL/SM Syntax Diagram

Syntax diagrams are, essentially, flow diagrams representing the
formal grammar of a language. By tracing the paths on a diagram, various
examples of the language construct it repres ents may be created. In this
Specification, the Syntax filagrams, together with the associated Semantic
Rules, provide a complete and unambiguous definition of the HAL/SM language.
The syntax diagrams are, however, not meant to be viewed as constituting
a "working" grammar (that is, as an analytical tool for compiler construction).

A typical example of a syntax diagram is illustrated below. Following
the diagram, a set of rules for reading it correctly is given. The rules apply
generally to all syntax diagrams presented in the ensuing sections.

WAIT statement ®
Q)

j}---

11

UNTIL event exp ,

o

THE WAIT imevalue

@ example:
NOW: WAIT UNITL EVENT A & EVENT_B THEN WAIT 30 MSECS·

-4-

Rules

1. Every diagram defines a syntactical term. The name of the term
being defined appears in the hexagonal box <D. The title of the syntax
diagram ® is usually a discursive description of the syntactical term.
In the case illustrated, the language construct depicted is a particular­
ization of the syntactical term defined (a "WAlT statement" is an ex­
ample of <D).

2. To generate samples of the· construct, the flow path is to be followed
from left to right from box to box, starting at the point of juncture of
the definition box ® ' and ending when the end of the path ® is reached.

3. The path is moved along until it arrives at a black dot ®. No "backing
up" along points of convergence such as ® is allowed. A black dot
denotes that a choice of paths is to be made. The possible number of
divergent paths is arbitrary.

4. Potentially infinite loops such as <2l may sometimes be encountered.
Sometimes there are semantic restrictions upon how many times such
loops may be traversed.

5. Every time a box is encountered, the syntactical term it represents is
added to the right of the sequence of terms generated by moving along
the flow path. For example, moving along the path paralleling the
dotted line ® generates the sequence "WAIT FOR <clocI.;> <time value--;"
(see rule 7.)

6. Boxes with squared corners, such as ® ' represent syntactical terms
defined in other diagrams. Boxes. with circular ends, such as @ ,
represent HAL/SM primitives. Circular boxes, such as @ , contain
special characters (see Section 2.2).

7. In the text accompanying the syntax diagrams, boxes containing lower
case names are represented by enclosing the names in the delimiters
< >. Thus box @ becomes <time value> Upper case names are
reserved words of the language.

8. The example given at @ is an example of HAL/SM code which may be
generated by applying the syntax diagram (since some boxes such as (2)
for example, are defined in other syntax diagrams, reference to them
may be necessary to complete the generative process).

-5-

2.2 The HAL/8M Character 8et

The HAL/8M character set consists of the 52 upper and lower case
alphabetic characters, the nUDierals zero through nine, and other symbols.
The restricted character set is the set necessary for the generation of con­
structs depicted by the syntax diagrams. The extended character set includes,
in addition, certain other symbols legal in s1,1ch places as comments of com­
piler listing annotation.

The following table gives a complete list of the characters in the extended
set, with a brief indication of their principal usage.

alphabetic alphabetic special characters

A j I
I ',

B k ..,
C 1 &
D m II

operators

E n ;lF 0

G P <.,
H q > literals >
I r =
J s " operators,
K t (ERP designators
L identifier s, 1,1 +
M literals, v -
N reserved w

~r
0 words x
p y separators

Q z I
(bl~nk) }R separators

S pseudo-alphabetic
ERP designators

T - identifiers . qU delimiters
V
W ¢ text generation

X excape
additional extended- set

y numeric svmbols
Z 0,

.

[
1]

a 2 (
b 3

}c 4 identifier s

d 5 literals !
e 6 ?
f 7
g 8
h 9'
i I

-6-

2.3 HAL/8M Primitives

HAL/8M syntax diagrams ultimately express all syntactical elements
in terms of a small number of special characters and predefined primitives.
Primitives are constructed from the characters comprising the HAL/8M
restricted character set. There are three broad classes of primitives:
"reserved words, " "identifiers, " and "literals. "

2. 3. 1 Reserved Words

As their names suggest, reserved words are names recognized to have
standard meanings within the language and which are unavailable for any other
use. They are constructed from alphabetic characters alone. Reserved words
fall into two categories: keywords and built-in function names. In the syntax
diagrams, and in the accompanying text, reserved words are indicated by
upper case characters.

2.3.2 Identifiers

An identifier is a name assigned by the programmer to be a variable,
label, or other entity. Before its attributes are defined, it is syntactically
known as an <identifier>. Each valid<.identi.fier::>must satisfy the following
rules:

o the -total number of characters must not exceed 32,

o the first character must be alphabetic,

o any character except the first may be alphabetic or numeric, and

o any character except the first or the last may be a "break char­
acter" (_).

The definition of an <identifier.:> generally establishes its attributes, and, in
particular, its type. Thereafter, because its type is known, it is given one
of the following syntactical names, as appropriate:

<label>

< !! var name>

where: §

<flag>

arith (arithmetic)
char (character)
bit
event
structure

<template name>

-7-

The manner in which its attributes are established is discussed in Section 4.
The manner in which it is thereafter referenced is discussed in Section 5.

2.3.3 ERP Designators

An ERP designator is a name used to specify an External Reference
Point. The ERP designator must be a duplicate of an ERP name defined in the
Measurement and Control Definition (M&CD). The ERP designator is syntacti­
cally known as an <erp designator>. The following rules must be satisfied by
the <erp designato!'"> •

o The total number of characters must not exceed 31;

o The first and last characters must be angle brackets; the first
character being" <" (les s than) and the last character being ">"
(greater than);

o Any character except the first and last may be alphabetic or
numberic; and

o Any character except the first and last may be any of the following
symbols:

* (asterisk) - (minus)

'vi (blank) (period)

(comma) + (plus)

= (equals) / (slash)

2.3.4 Literals

Literals are groups of characters expressing their own values. During the
execution of a body of HAL code their values remain constant. Different rules
apply for the formation of literals of differing type.

Rules for Arithmetic Literals

1. No distinction is made between integer-and scalar-valued literals. They
take on either integer or scalar type according to their context. Similarly.
no distinction is made between single and double precision. Consequently.
arithmetic literals can be represented by the single syntactical form
<number>.

-8-

2. The generic form of a < numbe·r> is:

.:t ddddddd. dddddddd <exponents>

where d = decimal digit.

Any number of decimal digits to be an implementation dependent maxi­
mum, including none; may appear before or after the decimal point. The
sign and decimal point are both optional. Any number of < exponents> to
an implementation dependent maximum may optionally follow.

3. The-form of any of the < exponents'> may be

E<power>

H <power>

--2 <power>

~lO<power>

>---16 <power

where <power> is a signed integer number. The valid range of values
of <power.> is implementation dependent.

Examples:

O.123E16B-3
45.9
-4

Rules for Bit Literals

1. Literals of bit type are denoted syntactically by <bit literal> •

2. They have one of the forms shown below:

BIN < repetition> 'bbbbbbb'

where b = binary digit

OCT <repetition> '0000000'

where 0 =octal digit

HEX < repetition> 'hhhhhhh'

where h = hecadecimal digit

-9-

DEC <repetition> 'ddddddd'

where d = decimal digit

The < repetition> is optional and consists of a parenthesized positive
integer number. It indicates how many times the following string is to
be used in creating the value. The number of digits lies between 1 and
an implementation dependent maximum.

-10-

•

3. The following abbreviated forms are allowed:

OPEN;: TRUE:; ON :; BIN'l'

CLOSED:; FALSE:; OFF:; BIN'O'

Examples:

BIN'11011000110'
HEX(3)'F'

Rules for Character Literals

1. Literals of character type are denoted syntactically by <char literal> •

Z. They have one of the two following forms

ICCCCCCCI

CHAR <repetition> 'ccccccc'

where c is any character in the HAL/SM extended character set. The
<: repetition> consists of the parenthesized positive integer literal. It
indicates how many times the following string is to be used in creating
the value. The number of characters lies between zero and an imple­
mentation dependent maximum.

3. A null character literal (zero characters long) is denoted by two
adjacent apostrophes.

4. Since an apostrophe delimits the string of characters inside the literal,
an apostrophe must be represented by two adjacent apostrophes; i. e.,
the r epr e s entation of "dog 's" would be I DOG" S' •

5. Within a character literal, a special "escape" mechanism may be
employed to indicate a character other than one in the HAL/SM
extended character set. A "~" is defined to be the "escape" character
within this context. In accordance with an implementation dependent
mapping scheme, HAL/SM characters will be assigned alternate char­
acter values. Inclusion of these alternate values in a string literal
is achieved by preceding the appropriate HAL/SM character by the
proper number of "escape" characters. The specified character with
the "escape" character(s) preceding it will be interpreted as a single
character whose value is defined by the implementation•

Since "¢" is used as the "escape" character, specification of the
character "9" as a literal itself must be done via the alternate character

-11-

mechanism; i. e., an implementation will designate an alternate value for
some HALlSM character to be the character" ¢".

Examples:

'ONE TWO THREE'

'DOG' 'S'

'AB¢AD'

'AB¢¢AD'
} The implication is that ¢A and ¢¢A have been

defined as alternate characters.

Rules for Dimensioned Literals

1. Literals which are considered as dimensioned are denoted syntactically
by<dim literal>.

2. The form of dimensioned literals is:

<:: nutnber> < dimension>

where<dimension> is a set of engineering units found in Table 2-1.

Examples:

10V
4MOHM

Rules for Time Literals

1. Literals which represent time values are denoted syntactically by
<time literal> •

2. They have one of the forms shown below:

<number> DAY or <number> DAYS

< number> HR or <number:> HRS

<number> MIN or <number> MINS

<number> SEC or <number> SECS

<number> MSEC or <number> MSECS

-12-

•

Engineering Units

FUNCTION
XlOO X103 X106 X1O-3 XlO-6 X1O-12TYPE BASIC UNIT

volts dc volts VDC

volts ac/dc volt V KV MV UV
current ac/dc ampere Z MA UA

hertz HZ KHZ MHZ
frequency pulses per

second PPS KPPS
day DAY

time hour HR
minute MIN .

second SEC MSEC USEC
resistance 'ohm OHM KOHM MOHM
inductance henrv H MH UH
caDacitance farad FD UFD PtD

watt W KW MW UW
power voltage, VAR, KVA DBM

current or DBW, KVAR
Dower DB

ratio percent PCT
pounds per PSIG
square inch PSIA

PSI
pressure millimeters

of mercurv MMHG
inches of
mercurv INHG
millibars MB
inch IN
foot FT

distance meter M KM MM
nautical
mile NM
feet per FT/
second SEC

velocity meters per M/
second SEC
knot KT
mach no. MACH
dearee DEG
arcmin ARCMIN

angle arcsec ARCSEC
radian RAD MRAD
revolution REV
degrees

tempera ture centiarade DEGC
degrees
fahrenheit DEGF
meters/sec/

M/S/Sacceleration sec
feet/sec/sec F/S/S

mass arams G
Qa I Ions/mi nute GPM

flowrate CUblC feet/min CFM
pounds/hour LB/HR

Table 2-1
-13-

<number> DAYS <number> HRS<number> MINS<number>

SECS <number> MSECS or any substitution of the above forms
in this order.

When any <1 number > is zero, the associated unit may be omitted.

Examples:

3 DAYS
10 MINS 30 SECS
1 DAY 20 HRS 10 MINS 22 SECS

2.3.5 Display Control Word Value List

The display control word value list is a list of display options used to
define a display control word (a word which identifies how C&D data is to be
displayed). To form the display control word value list the display options
are specified in the following order:

<color> ,

<character size> ,

<blink data> ,

<intensity> , and

<output format> •

The display options are identified by the following forms:

ORANGE

RED

GREEN

YELLOW

-14-

BLINK

•

-15-

EBCDIC

CHARACTER

INTEGER

DECIMAL

BINARY

OCTAL

HEXIDECIMA

TIME

The display options must be specified above; however, a term may be omitted
by inserting a comma followed by the next term in the sequence.

Example:

RED" BLINK OFF" TIME

The display control word value list is denoted syntactically by <: dcw value list>.

-16-

•

2.4 One-and Two-Dimensional Sour.ce Formats

In preparing HAL source text, only the single line format may be
used. In the single line or I-dimensional format, exponents and subscripts
are written on the same line as the operands to which they refer. In the
multiple line or 2-dimensional format, exponents are written above the line
containing the operands to which they refer, and subscripts are written
below it. The second format is used by the compiler when producing the
formatted compilation listing.

Rules for Exponents

1. In the syntax diagrams, the I-dimensional format is assumed for
clarity. The operation of taking an exponent is denoted by the
operator **.

Examples:

A J >A**J

2. Operations are evaluated right to left (see Section 6. 1. 1).

Rules for Subscripts

1. In the syntax diagrams, the 2 -dimensional format is assumed for
clarity. Two special symbols are used to denote the descent to a
subscript line, and the return from it.

descent to subscript line

return from subscript line

Effectively they delimit the beginning and end of a subscript
expression respectively.

2. The I-dimensional format of a subscript expression consists of
delimiting it at the beginning by $(and at the end by a right parenthesis.

Example:

A K+2 _ A$(K+2)

-17-

3. For certain simple forms of subscript, the parentheses may be
omitted. These forms are:

o a single < number>

o a single <arith var name:> (see Section 5.3).

Example:

-18-

2.5 Comments and Blanks in the Source Text

Any HAL source text consists of sequences of HAL/SM primitives
interspersed with special characters. It is obviously of great importance
for a compiler to be able to tell the end of one text element from the begin­
ning of the next. In many cases the rules for the formation of primitives
are sufficient to define the boundary. In others, a blank character is re­
quired as a separator. Blanks are legal in the following situations:

o between two primitives;

o between two special characters; and

o between a primitive and a special character.

Blanks are necessary (not just legal) between two primitives. With respect
to string (bit and character) literals, the single quote mark serves as a legal
separator.

Comments may be imbedded within HAL source text wherever blanks
are legal. A comment is delimited at the start by the character pair / *, and at
the end by the character pair */. Any characters in the extended character
set may appear in the comment (except, of .course, for * followed by /).
There are implementation dependent restrictions on the overflow of imbedded
comments from line to line of the source text.

-19-

(BLANK)

-20-

3. HAL/SM BLOCK STRUCTURE AND ORGANIZATION

The largest syntactical unit in the HAL/SM language is the "unit of
compilation." In any implementation, the HAL/SM compiler accepts "source
modules" for translation, and emits "object modules" as a result. Each
source module consists of one unit of compilation, plus compiler directives
for its translation.

At run time, an arbitrary number of object modules are combined to
form an executable job. (A job is .executab1e within the framework of an
executive operating system, and a run time utility library.) Generally, a
job contains. three different types of object modules:

a task modules - characterized by being independently executable.

o external PROCEDURE and FUNCTION modules - characterized by
being callable from other modules.

o COMPOOL modules - forming common data pools for the
program complex.

Each module originates from a unit of compilation of corresponding type.

PRJroEDING PAGE BLANK NOT FUMED

-21-

3. 1 The Unit of Compilation

Each unit of compilation consists of a single TASK, PROCEDURE,
FUNCTION, or COMPOOL block of code, possibly preceded by one or more
block templates. Templates, in effect, provide the code block with informa­
tion about other code blocks with which it will be combined in object module
form at run time.

Syntax

unit of compilation
function- block --,

§ "1compl a-
tion task procedure

r--- '--
template ,-- block f--.

compool
block

function
I-- template f-:--

task
~ block r--

procedure
I-- template I--

function

§
{ procedure

compool
compool

~ r- task
template

Semantic Rules

1. A TASK <compilation> is one containing a < task block>. Its object
module in the program complex may be activated by MOSS (see Section
8), or by other means dependent on the operating system. The < task
block> is described in Section 3.· 2.

2. A PROCEDURE or FUNCTION <: compilation> is one containing a
<: procedure block> or<: function block>, respectively. Its object
module in the program complex is executed by being invoked by other
task, procedure, or function modules. Both <procedure block> sand
< function block> s are described in Section 3.3.

-22-

3. A COMPOOL < compilation> is one containing a < compool block>
specifying a common data pool potentially available to any TASK,
PROCEDURE or FUNCTION module in the program complex. The
< compool block> is described in Section 3.6.

4. The code block in any < compilation> except a COMPOOL< compilation>
may contain references to data in a COMPOOL<. compilation>, refer­
ences to other<. task block> s, and invocations of external <.procedure
block> s or< function block> s in other<. coznpilation> s. A <.cozn­
pilation> making such refe·rences znust precede its code block with a
block template for each such <. task block> , <. procedure block> ,
<. function block> or <. compool block> referenced. Block templates
are described in Section. 3. 7.

-23-

3.2 The TASK Block

The TASK block delimits a :main, independently executable body of
HAL/SM code.

Syntax

TASK block

task
block

,.... state:mentl-

Example:

ALPHA: TASK;
DECLARE Q;

CALL BETA ASSIGN (Q);

•
BETA: PROCEDURE ASSIGN (W);

DECLARE W;
W =W + 1;
CLOSE BETA;

CLOSE ALPHA;

Se:mantic Rules

update
I'- block

function
~block ~,

I'- procedur~l_

block

critical
- section ~

block

closing

.

r--

1. The name of the <: task block> is given by the < label> prefacing the
block.

2. The< task block> is delimited by a< task header> statement at the
beginning, and a <: closing> at the end. These two deli:miting state­
ments are described in Section 3.8. 1 and 3.8.4, respectively.

-24-

3. The contents of a < task block>. consist of a < declare group> used
to define data local to the < task block>, followed by any number of
executable <statement >s.

4. The normal flow of execution of the < statement:> s in the block is
sequential; various types of< statement> s may modify this normal
sequencing in a well-defining way.

5. PROCEDURE, FUNCTION, CRITICAL SECTION, and UPDATE blocks
may appear nested within a < task block>. The blocks may be inter­
spersed between the < statement> s of the <task block>, and with the
exception of the UPDATE and CRITICAL SECTION blocks, are not
executed in-line.

6. Execution of a < task block> is accomplished by scheduling it as a task
under the control of MOSS (see Section 8).

-Z5-

3.3 PROCEDURE and FUNCTION Blocks

PROCEDURE and FUNCTION blocks share a cornman purpose in
serving to structure HAL/8M code into an interlocking modular form. The
major semantic distinction between the two types of block is the manner of
their invocation.

Syntax

{ PROCEDURE
§ FUNCTION block

CRITICAL

§ block
r- statementt--

label)0- 1eclare
closingheader f- ~

../ group

update
Example: :-- block I-

NEW: PROCEDURE;
1 =1;
CLOSE NEW; !procedure

"- block I-

function
~

block I-

critical

--- section I--

block

Semantic Rules

1. The name of the block is given by the <: label:> prefacing the block.
The definition of a block label is considered to be in the scope of
the outer block containing the block in question. Block names must
be unique within any compilation unit.

2. The block is delimited at its beginning by a header statement char­
acteristic of the type of block, and at the end by a <: closing>. The
delimiting statements are described in Section 3.8.1 through 3.8.4.

-26-

3. The contents of the block consist of a < declare group> used to
declare data local to the block, followed by any number of executable
<statement:>s.

4. The normal flow of execution of the < statement> s in the block is
sequential; various types of <statement> s may modify this normal
sequencing in a well-defined way.

5. The block may contain further nested PROCEDURE, FUNCTION,
CRITICAL SECTION, and UPDATE blocks. The nested blocks may
appear interspersed between the <statement> s of the outer block and,
except for the UPDATE and CRITICAL SECTION blocks are not executed
in-line. A consequence of this rule is that PROCEDURE and FUNCTION
blocks may be nested within each other to an arbitrary depth.

6. Execution of a < procedure block> is invoked by the CALL statement
(see Section 7.4). Execution of a < function block> is invoked by the
appearance of its name in an expression (se,e Section 6.4).

7. In the <declare group> of a PROCEDURE or FUNCTION block which
forms the outermost code block of a < compilation unit>, some imple­
mentations may require all formal parameters to be declared before
any local data.

-27-

3.4 The UPDATE Block

The UPDATE block is used to control the sharing of data by two or more
real time processes. Its functional characteristics in this respect are described
in Section 8.

Syntax

UPDATE block

update
block statement -

update declare
closing

header - group

label: procedurE
~ block -

function
"- block r-

Semantic Rules

1. If present, the < label> prefacing the <update block> gives the name of
the block. If <label> is absent, the <update block> is unnamed.

2. The block is delimited at its beginning by an < update header> statement,
and at the end by a < closing> The delimiting statements are described
in Sections 3.8. 1 and 3.8.4.

3. The contents of the block consist of a < declare group> used to declare
data local to the < update block>, followed by any number of executable
< statement> s.

4. The normal flow of execution of the < statement> s in the block is
sequential; various types of < statement> s may modify this normal
sequencing in a well-defined way.

5. Only PROCEDURE and FUNCTION blocks may be nested within an
<updated block:-. The nested blocks may appear interspersed between
the < statement> s of the block, and are not executed in-line.

-28-

6. An <update block> is treated like a <.statement> in that it is executed
in-line. In this respect it is different from other code blocks.

7. The following < statement> s are expressly forbidden inside an < update
block> in view of its special protective function:

o I/o statements (see Section 10);

o invocations of <procedure block> s or < function block> s not
themselves nested within the <update block> ; and

o real time programming statements.

-29-

3.5 The CRITICAL SECTION Block

The CRITICAL block is used to define the beginning and end of a
CRITICAL SECTION (that section of a task for which the MOSS critical
processing mode must be invoked).

Syntax

critical CRITICAL block statemen f-
block

critical declare
~ I--leader group

.0-(label
update

) "- block -'

procedur~

'- block -

function
~ block ,...

Iclosing 1-

Semantic Rules

1, If present, the < label> prefacing the < critical block> gives the name
of the block. If <label> is absent, the <critical block> is unnamed.

2. The block is delimited at its beginning by a < critical header> statement,
and at the end by a < closing>. The delimiting statements are described
in Sections 3.8. I and 3.8.4.

3. The contents of the block consist of a < declare group>" used to declare
data local to the <critical block>, followed by any number of executable
<. statement> s.

4. The normal flow of execution of the <statement> s in the block is
sequential; various types of <statement> s may modify this normal
sequencing in a well-defined way.

-30-

5. The block may contain further nested PROCEDURE, FUNCTION, and
UPDATE blocks. The nested blocks may appear interspersed between
the <statement> s of the outer block and except for the UPDATE block
are not executed in-line. A consequence of this rule is that PROCEDURE
and FUNCTION blocks may be nested within each other to an arbitrary
depth.

6. A < critical block> is treated like a < statement> in that it is executed
in-line. In this respect it is different from other code blocks except
for the <update block> •

-31-

3.6 The COMPOOL Block

The COMPOOL block speCifies data in a common data pool to be
shared at run time by a number of TASK, PROCEDURE or FUNCTION
modules.

Syntax

COMPOOL block

Semantic Rules

compoo!
header

declare
group closing

1. The name of the block is given by the <label> prefacing the block.

2. The block is delimited at its beginning by a < compool header> state.
ment, and at its end by a < closing>. The delimiting statements are
described in Sections 3. 8. I and 3.8.4.•

3. The contents of the block consist merely of a < declare group> used to
define the data constituting the compool. In no sense is a < compool
block> to be regarded as an executable body of code.

4. The maximum number of <compool block> s existing in a program
complex is implementation dependent.

-32-

3.7 Block Templates

In a <compilation>, block templates are used to provide the outer­
most code block of the <compilation> with information concerning external
code or data blocks. Depending upon the implementation, the translation of
TASK, PROCEDURE, FUNCTION, and COMPOOL <compilation> s may
automatically generate the corresponding block templates, to be included in
other < compilation> s by compiler directive.

There are four kinds of block templates, TASK, PROCEDURE, FUNC­
TION, and COMPOOL templates, all being syntactically similar (see Section
3. l).

Syntax

r-
K

I~em~late PROCEDURE
§

FUNCTION template

COMPOOL

1 ~I closing ~0abel)-() EXTERNALT
declare

J § header group

Example:
ETA: EXTERNAL COMPOOL;

DECLARE S SCALAR;
CLOSE ETA;

Semantic Rules

1. The <; label> of the template constitutes the template name. It is the
same name as that of the code block to which the te"mplate corresponds.

2. The block template is delimited at its beginning by a header statement
identical with the, header statement of the corresponding code block,
and at the end by a < closing>. The delimiting statements are described
in Sections 3.8. 1 through 3.8.4.

3. The contents of the block template consist only of a <declare group> ,
which has the following significance:

o in a < task template>, the <declare group> contains no statements.
All information about external programs is contained in the<task
header> •

o in a < compool template> , the < declare group> is used to declare
a common data pool identical with that of the corresponding<compool
block> ;

-33-

o in a < procedure template> or < function template>, the
<declare group> is used to declare the formal parameters
of the corresponding <procedure block> or < function block>
(see Sections 3.8.2 and 3.8.3).

4. The keyword EXTERNAL preceding the header statement of the block
templete distinguishes it from an otherwise identical code block. To
a HAL/SM compiler the keyword is, in effect, a signal to prevent
the compiler from generating object code for the block and setting
aside space for the data declared.

-34-

3.8 Block Delimiting Statements

Both code blocks and block templates are delimited at the beginning
by a header statement characteristic of their type, and at the end by a
<: closing> statement. In all code blocks except for the COMPOOL block, the header
statement is the first statement of the block to be executed on entry. A COMPOOL
block, containing only declarations of data, is, of course, not executable at all.

3.8. 1 Simple Header Statements

Simple header statements are those which specify no parameters to be
passed into or out of the block. They are the COMPOOL, TASK, CRITICAL
SECTION and UPDATE header statements.

Syntax

COMPOOL
UPDATE
TASK
CRITICAL --'-'.....----eCRITICAL)-eSECTION >Q-

_~ --{ UPDATE

TASK

ACCESS

;

ACCESS

-+---IC_O_M_P_O_O_L., l---<"ff---------h---Q-

RIGID

Semantic Rules

1. The type of the code block or template is determined by the type of the
header statement, which is in turn indicated by one of the keywords
COMPOOL, TASK, CRITICAL SECTION, and UPDATE.

2. The keyword ACCESS causes managerial restrictions to be placed
upon the usage of the block in question. The manner of enforcement
of the restriction is implementation dependent.

3. The keyword RIGID causes COMPOOL data to be organized in the
order declared and not rearranged by the compiler.

3.8.2 The PROCEDURE Header Statement

The PROCEDURE header statement delimits the start of a < procedure
block> or <procedure template> •

Syntax

PROCEDURE header statement

___::J-_-{PROCEDUR-"-j-<or- --------;r-

identifier

EENTRANT

ASSIGN identifier ACCESS

-36~

example:
PROCEDURE ASSIGN (B);

Semantic Rules

1. The keyword PROCEDURE identifies the start ofa <procedure block> ,
or <procedure template>. It is optionally followed by lists of "formal
parameters" which correspond to "arguments" in the invocation of the
procedure by a CALL statement (see Section 7.4).

2. The<identifier> s in the list following the PROCEDURE keyword are
called "input parameters" because they may not appear in any context
inside the code block which may cause their values to be changed.

3. The <identifier> s in the list following the ASSIGN keyword are called
"assign parameters" because they may appear in contexts inside the
code block in which new values may be assigned to them. They may,
of course, also appear in the same contexts as input parameters.

4. Data declarations for all formal parameters must appear in the <declare
group> of the <procedure block> or <procedure template> •

5. If the<procedure header> statement does not specify the keyword
REENTRANT, then only one real time process (see Section 8) may be
executing the <procedure block> at anyone time; however there is no
enforcing protective mechanism. If the keyword REENTRANT is
specified, then two or more processes may execute the <procedure
block> "simultaneously. "

6. The keyword REENTRANT indicates to the compiler that reentrancy
is desired. However, other attributes and conditions may conflict with
this overall objective. The following effects should be noted:

o STATIC data is allocated statically and initialized statically.
There is only one copy of STATIC data which must be shared by
all processes simultaneously executing the block. Hence, in
coding REENTRANT blocks, care must be taken not to assume
that STATIC variables participate in the reentrancy.

o AUTOMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing the block
gets its own initialized copy of the data on entry into the block.
In general, all local data in a REENTRANT block should be
declared with the AUTOMATIC attribute.

o Procedures and functions defined within a REENTRANT block
must also possess the REENTRANT attribute if they too declare
local data which is required to participate in the reentrancy.

In addition, for reentrancy to be preserved, the following rules must
be observed:

-37-

o UPDATE blocks*, CRITICAL SECTIONs, and inline functions
within a REENTRANT block Inay not declare any local data,
STATIC or AUTOMATIC.

o A procedure or function called by a REENTRANT block must
itself also be REENTRANT.

7. The keyword ACCESS may be attached to the < procedure header> of
a < procedure teInplate> and its corresponding external <procedure
block>. It denotes that Inanagerial restrictions are to be placed on
which<coInpilation> s may reference the <procedure block>. The
Inanner of enforceInent is iInpleInentation dependent.

3.8.3 The FUNCTION Header StateInent

The FUNCTION header stateInent deliInits the start of a < function
block> or <function template> •

Syntax

')

FUNCTION header stateInent

type
FUNCTION \-+0.-----_-------,-1 spec

L identifier EENTRANT

example:
FUNCTION (A) SCALAR REENTRANT;

*Any use of UPDATE blocks and LOCK data should be carefully analyzed with
respect to unfavorable interactions with REENTRANT blocks.

-38~

Semantic Rules

1. The keyword FUNCTION identifies the start of a < function block> or
< function template> • It is optionally followed by a list of "formal
parameters" which are substituted by corresponding "arguments" in the
invocation of the <function block> (see Section 6.4).

2. The < identifier> s in the list following the FUNCTION keyword are
"input parameters" since they may not appear in any context inside
the <function block> which may cause their values to be changed.

3. Data declarations for all the formal parameters must appear in the
<declare group> of the < function block> or <function teInplate> •

4. A<type spec> identifies the type of the <function block> or <function
template>. A <function block> may be of any type except event. A
formal description of the type specification given by <type spec> is
given in Section 4. 7.

5. If the < function header> stateInent does not specify the keyword
REENTRANT, then only one real time process (see Section 8) may be
executing the < function block> at anyone time; however, there is no
enforcing protective mechanism. If the keyword REENTRANT is
specified, then two or more processes may execute the <function
block> "simultaneously."

6, The keyword REENTRANT indicates to the compiler that reentrancy
is desired. However, other attributes and conditions may conflict
with this overall objective. The following effects should be noted:

o STATIC data is allocated statically and initialized statically.
There is only one copy of STATIC data which must be shared by
all processes simultaneously executing the block. Hence, in
coding REENTRANT blocks, care must be taken not to assume
that STATIC variables participate in the reentrancy.

o AUTOMATIC data is allocated dynamically and initialized
dynamically. Every process simultaneously executing the block gets
its own initialized copy of the data on entry into the block. In
general, all local data in a REENTRANT block should be declared
with the AUTOMATIC attribute.

o PROCEDURES and FUNCTIONS defined within a REENTRANT
block Inust also possess the REENTRANT attribute if they too
declare local data which is required to participate in the reentrancy.

In addition, for reentrancy to be preserved, the following rules must
be observed:

o UPDATE blocks*, CRITICAL SECTIONs, and inline functions
within a REENTRANT block may not declare any local data,
STATIC or AUTOMATIC.

o A procedure or function called by a REENTRANT block must
itself also be REENTRANT.

7. The keyword ACCESS may be attached to the < function header> of a
<function template> and its corresponding external < function block>.
It denotes that managerial restrictions are to be placed on which
< compilation> s may reference the <function block>. The manner
of enforcement is implementation dependent.

3.8.4 The CLOSE Statement

For all code blocks and block templates, the CLOSE statement is the
<closing> delimiter of the block.

Syntax

closing of block

CLOSE

example:

ALL_DONE: .CLOSE;

Semantic Rules

1.

2.

3.

The <closing> ofa code block or block template is denoted by the
CLOSE keyword followed by an optional <label> . If present, <label>
must be the name of the block.

Execution of the CLOSE statement causes a normal exit from a TASK,
PROCEDURE, CRITICAL or UPDATE block, and a run time error from
a FUNCTION block. Exit from a FUNCTION block must be achieved
via the RETURN statement (see Section 7.5).

The <closing> of a TASK, PROCEDURE, FUNCTION, CRITICAL, or
UPDATE block may be labeled as if it were a <statement>. The
<closing> s of COMPOOL blocks and block templates cannot be labeled.

Any use of UPDATE blocks and LOCK data should be carefully analyzed·
with respect to unfavorable interactions with REENTRANT blocks.

-40-

3.9 Na:me-Scope Rules

By using the code blocks described, and by taking advantage of their
nesting property, the :modularization of HAL/SM<:co:mpilation> s :may be
effected. An i:mportant consequence of the nesting property is the need to
deter:mine the "na:me- scope" over which na:mes defined in a code block are
potentially known. Na:mes (i. e., <: identifier> s) to which na:me-scope rules
apply are generally either labels or variable names.

General Rules

1. The name-scope of a code block encompasses the entire contents of
the hlock including all blocks nested within it.

2. A name defined in a name-scope is known, and therefore able to be
referenced, throughout that na:me-scope, including all nested blocks not
redefining it. A name defined in a name-scope is not known outside that
name-scope.

3. Names defined in all co:mmon data pools used by a <: compilation> are
considered to be defined in one name-scope which encloses the outer­
:most code block of the <: compilation> •

Qualifications

1. The name of a code block is taken to be defined in the name-scope
i:mmediately enclosing the block. A PROCEDURE or FUNCTION label
defined at the outermost level of co:mpilation can be invoked from any­
where within the compilation.

2. The <: label> of a state:ment is effectively unknown in blocks contained
in the name-scope where the <label> is defined. This is because a
code block cannot be branched out of by using a GO TO statement (see
Section 7.7).

3. Block labels must be unique throughout a unit of compilation.

4. Under particular limited circumstances described in Section 4. 3., the
na:mes of structure template nodes and terminals need not be unique.

-41-

Example:

outer
name
scope

inner

ALPHA: TASK;
DECLARE X; -f---- X known everywhere

.~

DECLARE Y; this Y known everywhere except in BETA.

BETA: PROCEDURE; ..Eo---BETA is known everywhere;
DECLARE Y; c;" new Y known in BETA only
DECLARE Z; Z known in BETA only

name -- __
scope

CLOSE BETA;

DELTA: Y = 0;

CLOSE ALPHA;

-42-

DELTA not known in BETA

4. DATA AND OTHER DECLARATIONS

The HAL/SM language provides a comprehensive set of data types. To
encourage clarity and decrease the frequency of errors of omission, all data
is required to be declared in specific areas of a HAL compilation called
"declare groups." Occasionally the demands of a particular algorithm also
require other kinds of declarations to be made. Figure 4-1 summarizes the
relationship among the types and organizations.

-43-

HAL DATA TYPES AND ORGANIZATIONS

..

TYPES ORGANIZATIONS

** **~,

aritlunetic string array structure

* **
~ scalar >-- character '-- individual 1- array

types

~I integer I EJ combina-
"--tion of

types

*
I-- vector

special

*
I.-- matrix

l-- flag

l-- event

display
L.- control

Iword

* Component Subscripting (see Section 5.3.5) Allowed.
** Array Subscripting Allowed.

,~** Structure Subscripting Allowed.

Figure 4-1

-44-

4. 1 The Declare Group

A <delcare group> is a collection of data and other declarations. The
position of < declare group> s within code blocks and block templates has
been described in Section 3.

Syntax

declare group

declar
group

~
replace -statement

-;:.

structure
I-- template I--

declare
'-- statement

Semantic Rules

1. A <declare group> may simply be empty, or it may contain <replace
statement> s, < structure template> s, and <declare statement> s.
The form of each of these constructs is defined in this section.

2. The name-scope (see Section 3.9) of<identifier>s defined in a
< declare group> is the code block containing the < declare group>
and potentially all code blocks nested within it.

-45-

4. 2 The REPLACE Statement

The REPLACE statement is used to define an identifier text substitution
which is to take place wherever the identifier is referenced within the same
name-scope after its definition. The REPLACE statement constitutes a
"source macro" definition.

4.2. I Form of REPLACE statement

replace statement

r---{ ,

replace
statement

---:-f---{ REPLACE identifier

identifier

---C__B_Y_)-O-C text

examples:
REPLACE ALPHA BY "HI";
REPLACE BETA (X, ANGLE) BY "SIN (X ANGLE) - EXP (X)/X";

General Semantic Rules

1. The <identifier> following the keyword REPLACE is called the REPLACE
name.

2. A REPLACE name may not appear as a formal parameter in a
<procedure header> or <function header> •

3. A REPLACE name in an inner code block is never "replaced" as a
result of another REPLACE statement located in an outer code block.

4. Nested replacement operations to some implementation dependent
depth are allowed (i. e., the < text> of a < replace statement> may
contain a further < identifier> to be replaced).

-46-

Semantic Rules: Simple Replacements

1. A simple replacement is a REPLACE statement with no parameter
list following the <identifier> •

2. Whenever it is referenced, an<identifier> defined in a simple
REPLACE statement is to be replaced by < text> of the definition
as if<text> had been written directly instead of the source macro
reference. Enclosing the reference within ¢ signs (e. g., ~ALPHA¢)

makes the < text> visible in the compiler listing. .

3. <text> may consist of any HAL/SM characters except 'instances of an
unpaIred double quote (") character. A double quote character (") is
indicated within < text> by two such characters in succession (1111).

Semantic Rules:· Parametric Replacements

1. A parametric replacement is defined by a REPLACE statement with
a list of one or more parameters following the < identifier> • The
maximum number of parameters allowed is an implementation
dependent limit. Each parameter is itself a HAL/SM statement: its
name may therefore be duplicated by names used for other <identifier> s
in the name-scope containing the REPLACE statement.

2. The < text> of a parametric REPLACE statement is composed of any
HAL/SM characters except instances of an unpaired double quote (")
character. A double quote character may be indicated within <text>
by coding two such characters in succession. The <text:> may contain,
but is not required to contain, instances of the parameters of the
REPLACE statement.

4.2.2 Referencing REPLACE Statements

Syntax

parametric replace reference

,

argumentidentifier

arametric
replace
reference

-47-

Semantic Rules

1, A reference to a parametric REPLACE statement consists of the
REPLACE name followed by a series of < argument> s enclosed in,
parentheses. The REPLACE name must have been defined pre·
viously within the name-scope of the reference. The number of
<argument> s must correspond to the number of parameters of the
REPLACE statement being referep.ced. Enclosing the reference within
¢ signs (e. g., CBETA(A, B)¢) makes the < text> visible in the com­
piler listing.

2. The <argument> s supplied in a parametric REPLACE reference are
substituted for each occurrence of the corresponding parameter within
the Source macro definition's <text>. Note that if the parameter in
question does not occur within the source macro definition < text> ,
the < argument> is ineffective. <text>substitution is always completed
before parsing.

Example:

REPLACE BETA. (X, ANGLE) BY"SIN (X, ANGLE) - EXP(X)!X";

Z = BETA (Y,A.LPHA): WILL GENERATE SIN (Y ALPHA) - EXP (Y)!Y

3. In general, the <: argument> s supplied in a parametric REPLACE
reference comprise < text> separated by commas (subject to the
specific exceptions listed below). As such, they conform to the pre­
ceding semantic rules for < text> with the following emendations.

o Blanks are significant in < argument> $. Only the commas used
to separate<: argument> s are excluded from the < text > values
substituted into the ma<;ro definition.

o The <text> string comprising an<argument> may be empty. The
value substituted in such a case is a null string.

o Within each< argument> there must be an even number of
apostrophe characters (t). The effect of this rule is to require
that each character literal used must be completely contained
within a single <argument> •

o Within each< argument> there must be an even number of quotation
mark characters ("). The effect of this rule is to require that the
substitution of a nested REPLACE statement include the entire text
of the replacement within a single < argument> •

-48-

o Within each ""argument> there must be a balanced number of
left and right parentheses:' for each opening left parenthesis
there must be a corresponding right parenthesis.

o Commas are not separators between <argument> s under the
following circumstances:

within a character literal,

within REPLACE<text>, or

nested within parentheses.

4.2. 3 Identifier Generation

New identifiers may be generated by enclosing a reference to a simple
REPLACE statement within ¢ signs. The effect is to make visible in the com­
piler listing, the catenation of the REPLACE < text> with the characters
surrounding the construct. For example, REPLACE ABLE BY "BAKERII; then:

1) X =¢ABLEciYZ

becomes X = BAKERYZ

2) CALL P cABLEc(Q, R, S);-, .
becomes CALL PBAKER(Q, R, S);

¢ signs are taken in pairs, thus ~X~Y~Z~ is interpreted as~X~Y9Z{,

4.2.4 Identifier Generation with Macro Parameters

New identifiers may be generated for text substitution within a source
macro text by enclosing references to macro parameters within c signs. The

, ,
effect is the compile-time catenation of the corresponding macro argument with
the characters surrounding the c-enclosed parameter (a blank is considered as,
a character).

Example:

REPLACE ABLE(X, Y) BY
IIp = ¢Xi;QRS+Y;
CALL SUB_¢X~;II;

Then the reference ABLE(V, A) causes the following substitutions:

P = VQRS+A;
CALL SUB_V;

-49-

Enclosing the entire reference within ¢ signs, i. e., ~ABLE(V,A)~ makes
the text with the new identifiers visible in the comp~ler listing (see Section
4,2, 2),

-50-

4.3 The STRUCTURE Template

In HAL/SM, a STRUCTURE is a hierarchical organization of generally
nonhomogeneous data items. Conceptually the form of the organization is a
"tree, " with a "root, " "branches, " and with the data as "leaves." The defini­
tion of the "tree organization" (the manner in which root is connected to
branches, and branches to leaves) is separate from the declaration of a
structure having that organization. The tree organization is defined by a
<structure template:> described below. The description of the declaration

of structures is deferred to later subsections.

Figure 4-2 illustrates a typical tree organization.

Interpretations

1. The "template name" is at the root of the tree organization.

2. The named "leaves" and "forks" in the branches are at numbered
levels below the root. Leaves and forks are called "structure terminals"
and "minor structures" respectively.

3. The "tree walk" shown can provide an unambiguous linear description
of the tree organization. The. syntactical form of the < structure
template> corresponding to a tree organization calls for the names of
minor structures and structure terminals to be defined in the same
order that the tree walk passes them on the left, as indicated by the
arrow· at ~' in Figure 4-2.

4. The tree organizations of two templates are considered to be equivalent
for the purposes of various HAL/SM statement contexts only if the
tree forms are identical, and the type and attributes of all nodes in the
tree agree. An implication of this rule becomes apparent: if two
corresponding terminal nodes of otherwise equivalent structures reference
different structure template names, then the structure templates con­
tainmg these terminal nodes are not identical.

The syntactical form of a < structure template> is now given.

-51-

TREE DIAGRAM FOR A TYPICAL STRUCTURE
TEMPLATE

start of
tree walk ,/

\ ,
1
I
I
I

• . structure terminal

o minor structure

~ template name

end of
tree walk

-- - -- - -- - -.- - -- NAME

-----·---.-1

---------. 2

4

Figure 4-2

-52-

Syntax

structure template statement

STRUCTURE

DENSE

identifier

LIGNED

RIGID

--,.~--(number

General Rules

)--~dentifier .)1-----1 attributes

1. The <template name> of the <structure template> is given by the
<identifier> following the keyword STRUCTURE.

2. The operational keywords DENSE and ALIGNED denote default data
packing attributes to be applied to all< identifiers> declared with the
< structure template>. At each level of a < structure template> ,
either the DENSE or ALIGNED packing attribute is in effect, subject
to modification by use of DENSE and ALIGNED as minor <attributes> •
The choice used in the <structure template> gives the default value for

. the whole template. This packing attribute is then inherited from higher
to lowe·r levels in the structure unless the < attributes> of a minor
structure or terminal element modify the choice. Details of the
allocation algorithm used for DENSE and ALIGNED data are implementa­
tiqn dependent.

-53-

3. The keyword RIGID causes data to be organized in the sequential order
declared within the < structure template>. This attribute is then inherited
from higher to lower levels in the structure. Details of the allocation
algorithm used for RIGID are implementation dependent. (Note that
the absence of the keyword RIGID permits compiler reorganization of
data).

4. In each definition< number> is a positive integer specifying the level
of the tree at which the definition is effective.

5. The level of definition in conjunction with the order of definition is
sufficient to distinguish between a minor structure and a structure
terminal.

6. In the form <identifier::. <attributes>, <.identifier> is the. name of
the minor structure or structure terminal defined. The applicable
< attributes> are described in Section 4.5.

7. If the < attributes> specify a structure template <type spec> (see
Section 4.7), then the template of the struc.ture is being included as
part of the template being defined.

8. The minor structures and structure terminals of the template (the
forks and leaves) are sequentially defined following the colon. The
order of definition has already beenqescribed.

9. Each definition of a minor structure or structure terminal is separated
from the next by a comma.

Name Uniqueness Rules

1. The <template names> may duplicate <identifiers:> of any other kind
within a given name-scope, but may not duplicate other < template
names> .

2. In a given name-scope, if a <template name> is used exclusively
in qualified structure declarations, duplications of the < identifier s> used
for nodes may occur under the following circumstances:

o Any < identifier> used for a node in one template may duplicate
an<identifier:> used for a node in another template.

o Any < identifier> used for a node in a given template may duplicate
another < identifier> used for a different node in the same template,
provided that a qualified reference can distinguish the two nodes.

3. In a given name-scope, if a template is ever used for a non-qualified
structure variable declaration, the duplications allowed under rule #2 within
that template become illegal.

-54-

Examples:

A. definition of a template Z

STRUCTURE z:
1 A SCALAR,
1 B VECTOR(4),
1 C,

2 D MATRlX(4,4),
2 E BIT(3);

A

z

1

2

B. definition of a template Y
. with Z nested within it

STRUCTURE Y:
1 F,

2 X Z-STRUCTURE,
2 G INTEGER,

1 H CHARACTER (10);
A

. 1

_.-.- 2

. 3

----- 4

C. equivalent form of template Y without nesting

STRUCTURE Y;
1 F,

2 X,
3 A SCALAR,
3 B VECTOR(4l,
3 C,
4 D MA TRlX(4, 4),
4 E BIT(3),

2 G INTEGER,
1 H CHARACTER(lb);

-55-

A

F _.- 1

_____ 2

____ 3

_____ 4

4. 4 The DECLARE State:ment

The DECLARE state:ment is used to declare data na:mes and labels
and to define their characteristics or < attributes> •

Syntax

declaration statement !
declare

,

state:men
,

- DECLARE) ('d t'£" } attributes lCr- \. 1 en 1 ler
\.

~ attributes
-0 example:

, DECLARE INTEGER, A, B ARRAY (5);

Semantic Rules

1. Each < identifier> and its following < attributes> constitute the
declaration of a data name or label. .Each definition is separated
fro:m the next by a comma.

2. The generic characteristics if any, of all < identifier> s to be declared
are given by the "factored" <attributes> im:mediately following the
keyword DECLARE. The < attributes> of a particular <identifier>
must not conflict with the factored <attributes> •

3. The na:me-scope of any of the < identifier:> s defined in a < declare
statement:> is the code block containing the < declare group> of which
the <declare statement> is a part (see Section 3.9). In any na:me-scope
all such < identifiers.> must be unique.

4. There are two for:ms of < attributes> ; data declarative, and label
declarative. The form 4eter:mines whether an < identifier> is defined
as a data na:me or a label.

-56-

4.5 Data Declarative Attributes

Data declarative attributes are used to define an<identifier> to be a
data name or part of a structure template, and to describe its characteristics.
1£< attribute-s> appears in a< declare statement> , the <identifier> defined is
a "simple variable, " or, a "major structure" with predefined template. 1£
< attributes> appears in a <structure template> " the < identifier> defined
is either a minor structure, or a structure terminal. Structure terminals have
very similar properties to simple variables.

Syntax

ARRAY

data declarative attributes

I type spec 1--
rith exp

Example:
ARRAY (5) SCALAR STATIC

,-
AUTOMATIC

STATIC
\ J

--,-

{ DENSE

{ALIGNED

RIGID

ACCESS
\.

0K LOCK (,~

l(number '\

,',

I. "t" 1" to -,e: Inl la lza lonexampl
ARRAY (5) SCALAR STATIC

General Semantic Rules

1. The< type spec:> determine·s the type and possibly the precision of
the < identifier> to which the < attributes> are attached. Type speci­
fications are discussed in Section 4.7.

2. An optional array specification can precede the < type spec>-. It
starts with the keyword ARRAY; the following parenthesized list
specifies the number of dimensions in the array, and the size of each
dimension. The number N of < arith exp> s gives the number of
dimensions of the array. <arith exp> is an unarrayed integer of
scalar expression computable at compile time. The value is rounded
to the nearest integer, and indicates the number of elements in a
dimension. Its value must lie between 2 and an imp1ementation­
dependent maximum. The maximum value of N is implementation
dependent. A single asterisk denotes a linear array, the number of
elements of which is unknown at compile time.

3. Following the~ type spec> a number of minor attributes applicable
to the <identifier:> can appear. These are:

o STATIC/AUTOMATIC - the appearance of one of these keywords
is mutually exclusive of the other. STATIC and AUTOMATIC
refer to modes of initialization of an< identifier:> , not to the
allocation of its storage (except in reentrant procedures 'I.nd
functions where these keywords refer to both allocation and
initialization). The AUTOMATIC attribute causes an <identifier:>
with the < initialization> attribute to be initialized on every entry
into the code block contair:dng its declaration. The STATIC
attribute causes such an< identifier> to be initialized only on
the first entry into the code block. Thereafter its value on
any exit from the code block is guaranteed to be preserved for
the next entry into the block. STATIC data is not reinitialized
whenever a program is reentered (executed again). Values are
preserved in this way even though a STATIC < identifier> has no·
< initialization>. Preservation of values is not guaranteed for
AUTOMA TIC < identifier>s. In the case of reentrant procedures and
functions, the STATIC attribute implies compile time allocation and static
initialization, and the AUTOMATIC attribute implies dynamic
allocation and initialization upon each entry to the block. If
neither keyword appears, then STATIC is assumed.

o DENSE/ ALIGNED - The appearance of one of these keywords
is mutually exclusive of the other. Although legal in other
contexts, the keywords are only effective when appearing as
<attributes> in a < structure template>. DENSE and ALIGNED
refer to the storage packing density to be employed when a
< structure var name> is declared using the template. If neither

keyword appears, then ALIGNED is assumed.

-58-

o ACCESS - this attribute causes implementation dependent
managerial restrictions to be placed upon the usage of the
<identifier> as a variable in assignment contexts. The
marmer of enforcement of the restrictions is implementation
dependent.

o LOCK - thls attribute causes use of the < identifier:> to be re­
stricted to the interior of UPDATE blocks, and to assign
argument lists. The < number> indicates the "lock group"
of the < identifier:> and lies between 1 and an implementation­
dependent maximum. A "*" indicates the set of all lock groups.
The purpose of'the attribute is described in Section 8. 14.

o < initialization:> - this attribute describes the manner in which
the values of an < identifier:> are to be initialized. It is
described in Section 4. 8.

o RIGID - Although legal on other contexts, the keyword is only
effective when appearing as an< attribute:> in a < structure
template:> or in a COMPOOL. It causes data to be organized
in the order it is defined within the < structure template:>

Restrictions for Simple Variables and Major Structures

1. 'The asterisk form of array specification can only be applied to an
< identifier:> if it is a formal parameter of a procedure or function.
The'actual length of the array is supplied by the corresponding

, argument of an invocation of the procedure or function.

2. An array specification is illegal if the < identifier:> is defined by the
<type spec:> to be a major structure.

3. The ACCESS attribute may only be applied to < identifier:> names
declared in a< compool block> or <compool template>. The LOCK
attribute may only be applied to< identifier> names declared in
a < compool block> , < compool template> or< program block>,
or to the assign parameters of procedure blocks.

4. The attributes DENSE, ALIGNED, and RIGID are illegal for major
structures.

5. The <initialization:> attribute may not be applied to formal parameters
of procedures and functions or any< identifier:> of EVENT or FLAG
type.

-59-

Restrictions for Structure Terminals

1. The asterisk form of array specification is not allowed.

2. The < identifier> may not be defined to be a major structure
by the <type spec>. Otherwise, the type specification is the
same as for simple variables.

3. The appearance of any minor attributes except DENSE, ALIGNED,
and RIGID is illegal. Appearances of DENSE and ALIGNED override
such appearances on the minor structure levels or On the <structure
template> name itself.

Restrictions for Minor Structures

1. The <type spec> for a minor structure name must be empty (see
Section 4.7).

2. No array specification is allowed.

3. No attributes except DENSE, ALIGNED and RIGID are allowed.
Appearances of DENSE and ALIGNED at any level of the structure
override such appearances at higher levels or on the < structure
template> name itself. The appearance of RIGID causes structure
terminals within the minor structure to be organized in the order in
which they are declared. However, RIGID at the minor structure
level will not affect the order of data within an included template
specified by a structure template < type s:pec> •

Example:

STRUCTURE Y:
1 A SCALAR,
1 B VECTOR(4),
1 D MATRIX(4, 4);

STRUCTURE Z RIGID;
1 F BIT(13),
1 G Y -STRUCTURE,
1 H CHARACTER(lO);

The.order within Z will be: F,G,H, but the order within G will
not necessarily be as declared by Y.

-60-

4.6 Label Declarative Attributes

A label declarative attribute defines an <identifier> to be a
< label> of some specific type.

Syntax

label declarative attributes
label

~ROCEDUR5 CNONHAL 8~umber }CDttributes

I
,

FUNCTION ;- type spec
../

/'
example: JOB)

FUNCTION VECTOR(4) ~ ACCESS).
NONHAL(l);

Semantic Rules

1. The form FUNCTION< type spec> is used to define the name and
type of a< function block>. Such a definition is only required if
the function is referenced in the source before the occurrence of
its block definition.

Functions requiring definition this way are subject to the following
restrictions:

o they must have at least one formal parameter, and

o none of their formal parameters may be arrayed.

The type specification of the function declared is given by <type spec>
(see Section 4.7). A function may be of any type except EVENT or
FLAG.

2. The NONHAL « number» indicates that an external routine written
in some other language is being declared. NONHAL «number>) may
be a factored attribute applied to a list of label declarations. The
<number> is an implementation dependent indication of the type of
NONHAL linkage.

3. The form JOB is used to define the name of a job. The<identifier>
being defined must be limited to eight characters or less and must be
identical to the MOSS Job ill specified in JCL. This form may only
be specified in program level declarations.

-61-

4. The keyword ACCESS may be attached to the JOB label < attribute> •
It denotes that managerial restrictions are to be placed on which
<: compilation> s may reference the job identifier. The manner of
enforcement is implementation dependent.

-62-

4.7 Type Specification

The type specification Or < type spec> provides a tneans of defining
the type (and precision where applicable) of data natnes and parts of structure
tetnplate s.

-63-

Syntax

tvoe soecification
--------,

~arith exp ~ arith exp r-o-{MATRIX

-<D-1 arith expIVECTOR)

(MATRIX ~ SINGLE\I<type)
spec /

f VECTOR
!

I
SCALAR / ~ DOUBLE "' 17 I

I
I,

INTEGER)
I

\. BIT -(i)- arith exp r-o I

~,

CHARACTE~l.- arith exp leD

(EVENT)
(FLAG)
BOOLEAN

\. /

DCW

template TRUCTURE\
name

exaInples: l(D,- rith exp f4rQ)-MATRIX(2,2)DOUBLE
Z-STRUCTURE (15)

*

-64-

General Semantic Rules

1. If<type spec:> is empty (i. e., there is no specification present) then
the interpretation is as follows:

o If the <type spec> is that of a simple variable or structure
terminal, then the implied type is SCALAR with SINGLE precision.

o The < type spec> is otherwise that of a minor structure of a
. structure template.

2. If the < type spec> is empty except for the keyword SINGLE or DOUBLE,
the implied type is SCALAR with the indicated precision.

3. The precision keywords only apply w VECTOR, MATRIX, SCALAR,
and INTEGER <type spec> S. In the last case SINGLE implies a
halfword integer, and DOUBLE a fullword integer. In the absence of
a precision keyword, SINGLE is presumed.

4. Any < arith exp> in a < type spec> is an unarrayed integer or scalar
expression computable at compile time. Its value is rounded to the
nearest integer.

Rules for Integer and Scalar Types

1. Integer and Scalar types are indicated by the keywords INTEGER and
SCALAR respectively. Note that scalar type can be indicated implicitly
as described in General Semantic Rules I and 2.

Rules for Vector and Matrix Types

1. Matrix type is indicated by the keyword MATRIX. If present, the two
<arith exp> s in parentheses give the row and column dimensions of
the matrix respectively. In the absence of such a size specification, a
3-by-3 matrix is implied.

2. Vector type is indicated by the keyword VECTOR. If present, the
parenthesized< arith exp> indicates the length of the vector. In the
absence of a length specification, a 3-vector is implied.

3. The row and column dimensions of a matrix, and the length of a vector
may range between 2 and an implementation dependent maximum.

Rules for Character Types

1. Character type is indicated by the keyword CHARACTER. A character
variable is of varying length; the parenthesized < arith exp> following
the keyword CHARACTER denotes the maximum length that the char­
acter variable may take on. A length must be specified.

-65-

2. The working length of a character data type may range from zero
(the "null" string) to the defined maximum length.

3. The defined maximum length has an upper limit which is implementation
dependent.

4. The asterisk form of character maximum length specification must be
applied to an< identifier> if it is a formal parameter of a procedure
or function. The actual length information of the character string is
supplied by the corresponding argument in the invocation of the pro­
cedure or function.

Rules for Bit and Boolean and Types

1. The keyword BIT indicates type. The following parenthesized < arith exp>
gives the length in bits. Its value may range between I and an imple­
mentation dependent upper limit.

2. The keyword BOOLEAN indicates a bit type of l·bit length.

Rules for Structure Type

1. The conditions for the< type spec> indicating a minor structure are
described in General Semantic Rule 1.

2. The phrase <template name> -STRUCTURE defines an<:identifier> to be
a major structure whose tree organization is described by a previously
defined template called < template name> .'

3. The parenthesized expression or asterisk optionally following the keyword
STRUCTURE specifies the structure to have multiple copies. The
value specifies the number of,copies, which may range from 2 to an
implementation dependent maximum.

4. The copy specification may only be an asterisk if the structure is a formal
parameter of a procedure or function. The actual number of copies is
supplied by the corresponding argument of an invocation of the procedure
or function.

5. If the < identifier> name defined is the same as the < template name> of
the template of the structure, then the structure is said to be unqualified.
Otherwise the structure is said to be qualified. Templates used for
non-qualified declarations may not contain nested structure references.
Section 5.2 contains material on some further implications of structure
qualification.

6. If the < type spec> of a function is STRUCTURE then no specification of
multiple copies is allowed.

-66-

7. If the <type spec> of a structure. terminal is STRUCTURE, then no
specification of multiple copies is allowed.

Rules of Event and Flag Types

1. The keyword EVENT indicates an event type, similar to BOOLEAN,
but which differs in that it has real time programming implications

. (see Section 8). An< identifier> of event type may not be used as an
input format parameter, nor may it be a structure terminal.

2. The keyword FLAG indicates a flag type, which is used for real time
programming (see Section 8). Flag types are not actual variables
and may only be used as described in Section 8.

3. An <identifier >.of flag types may only be declared in the declare group
in a COMPOOL block and may not be arrayed, a structure terminal,
nor used as a formal parameter.

Rules for DCW Types

1. The keyword DCW indicates a display control word type, which is used
for Control and Display console communications.

2. An <identifier> of DCW type is used to specify the color, character
size, blink status, intensity, and output format characteristics associated
with C&D display information.

-67-

4.8 Initialization

The <initialization> attribute specifies the initial values to be applied
to an < identifier>. The circumstances under which the attribute is legal
have been described in Section 4.5.

Syntax

)initial list I....,.---_--...,.-{

initialization specification

INITIAL

---=~--..-ICONSTANT

(.- ~xpression I- ~

arith exp initial list

!l

L---O---------.Jexample:
INITIAL (2#(1,3#5»

General Semantic Rules

1. The <initialization>starts with the keyword INITIAL or CONSTANT.
If it starts with CONSTANT, the value of the< identifier> initialized
may never be changed. It is illegal for< identifier> s with CONSTANT
<initialization> to appear in an assignment context.

-68-

2. The simplest form of an <initial list> is a sequence of one or more
<expression> s computable at compile time.

3. A simple <initial list> of the form given in Rule 2 may be enclosed in
parentheses, and preceded by < arith exp> #, where < arith exp> is any
unarrayed integer or scalar expression computable at compile time.
The value, rounded to the nearest integer, is a repetition factor for
the initial values contained within the parentheses. This repeated
<initial list> may itself become a component of an<initiallist>, and
so on to some arbitrary nesting depth.

4. In addition to preceding a parenthesized <initial list> , < arith exp> #
may also precede certain unparenthesized items denoted collectively
in the syntax diagram by §. These items are:

o a single literal,

o a single unsubscripted variable name,

o [<dew value list>], and

o blank (1. e., the component(s) of the < identifier> should not be
initialized).

5. The presence of an asterisk at the end of the <initial list > implies the
partial initialization of an < identifier> •

6. The order of initialization is the "natural sequence" specified in Section
5. 5.

Rules for Integer and Scalar Types

1. If the < identifier> has no array specification, the < initial list> must
contain exactly one value.

2. If the < identifier> has an array specification, then one of the following
must hold:

o the number of values in the < initial list> is exactly one, in which
case all elements of the array are initialized to that value;

o the number of values in the < initial list> is exactly equal to the
number of array elements to be initialized;

o the < initial list> ends with an asterisk, in which case the number
oevalues must be less than the number of array elements to be
initialized, and partial initialization is indicated.

-69-

3. An <expression> must be an unarrayed integer or scalar expression
computable at compile time. Type conversion between integer and
scalar is allowed where necessary.

Rules for Vector and Matrix Types

1. If the < identifier> has no array specification, then oneof the following
must hold:

o the number of values in the < initial list> is exactly one, in which
case all components of the vector or matrix are initialized to that
value;

o the number of values in the < initial list> is exactly equal to the
number of components to be initialized; or

o the < initial list> ends with an asterisk, in which case the number
of values must be less than the number of components to be
initialized, and partial initialization is indicated.

2. If the < identifier> has an array specification, then one of the following
must hold:

o the number of values in the < initial list> is exactly one, in which
all the components of all the array elements of the vector or
matrix are intitialized to that value;

o the number of values in the <initial list> is exactly equal to the
number of components of the vector or matrix, in which case every
array element takes on the same set of values;

o the number of values in the < initial list> is equal to the total
number of components in all array elements; or

o the < initial list> ends with an asterisk, in which case the number
of values must be less than the total number of components in all
array elements, and partial initialization is indicated.

3. An < expression> must be an unarrayed integer or scalar expression
computable at compile time. Type conversion between integer and
scalar is allowed where necessary.

Rules for Bit, Boolean, Event, Flag and Character Types

1. If the < identifier> has no array specification, the < initial list >must
contain exactly one value.

-70-

2. If the <: identifier> has an array specification, then one of the following
must hold:

o the number of value's in the < initial list> is exactly one, in
which case all elements of the array are initialized to that value;

o the number of values in the <initial list> is exactly equal to the
number of array elements to be initialized; or

o the <initial list> ends with an asterisk, in which case the number
of values must be less than the number of array elements to be
initialized, and partial initialization is indicated.

3. If an <identifier> of bit or Boolean type is being initialized, < expression>
must be an unarrayed< bit exp> computable at compile time.

4. If an <: identifier> of character type is being initialized, <expression>
must be an arrayed <: char exp> computable at compile time.

5. Event types may not be initialized. They are implicitly initialized to
zero or a "false 11 condition.

6. Flag types may not be initialized.

Rules for Structure Types

1. Only a major 'structure <identifier> may be initialized.

2. If the < identifier> has only one copy, then one of the following must
hold:

o the number of values in the< initial list> is equal to the total
number of data elements in the whole structure; or

o the < initial list> ends with an asterisk, in which case the
number of values must be less than the number of data elements
in the whole structure, and partial initialization is indicated.

3. If the<: identifier.>has multiple copies, then one of the following must hold:

o the total numbe'r of values in the < initial list> is exactly equal
to the total number of data elements in one copy of the structure,
in which case each copy is identically initialized;

o the number of values in the < initial list> is equal to the total
number of data elements in all copies of the structure;

-71-

a the <initial list> ends with an asterisk, in which case the number
of values must be less than the total number of data elements in
all the copie s of the 'structure, and partial initialization is
indicated.

3. The type of each < expression> must be legal for the type of correspond­
ing structure terminal initialized (see the Semantic Rules for initializa­
tion of simple vari.ables of each type).

Rules for DCW Types

1. If the <identifier:> has no array specification and is to assume a default
< dcw value list>, no <initial list> is needed. The < dcw value list:>
defaults to: GREEN, SMM, BLINK OFF, 4, and EBCDIC INTEGER.

2. If the <identifier:> has no array specification, the <initial list> must
contain exactly one <dcw value list> •

3. If the < identifier> has an array specification, then one of the following
must hold:

o the number of < dcw value list> s in the <initial list >is exactly
one, in which case all elements of the array are initialized to
that value;

o the number of < dcw value list> s is exactly equal to the number of
array elements to be initialized; or

o the< initial list:> ends with an asteriSk, in which case the number
of<dcw value list> s must be less than the number of array
elements to be initialized, and partial initialization is indicated.

-72-

5. DATA REFERENCING CONSIDERATIONS

Central to the HAL/SM language is the ability to access and change the
values of variables. Section 4 dealt comprehensively with the way in which
data names are defined. This section addresses itself to the various ways
these names can be compounded-and modified when they are referenced.

-73-

5.1 Referencing Simple Variables

In Section 4. 5 the term "simple Yariable" was introduced to describe
a data name which was not a structure, or part of one. When a simple variable
is defined in a < declare group>, it is syntactically denoted by the < identifier>
primitive. Thereafter, since its attributes are known, it is denoted syntactically
by the < § var name> primitive, where § stands for any of the types arithmetic,
bit, character, dcw, or event.

-74-

5.2 Referencing Structures

When an< identifier> is declared to be a structure, its tree organization
is that of the template whose <template name> appears in the structure declara­
tion (see Section 4.7). References to the structure as a whole (the "major
structure"), are obviously made by using the declared <identifier>, which
syntactically becomes a < structure var name>. The way in which parts of
the structure (its minor structures and terminals) are referenced depends on
whether the structure is "qualified" or "unqualified" (see Section 4.7).

o 1£ a structure is "unqualified, " then any part of it, either minor
structure or structure terminal, may be referenced by using the
name of the part as it appears in the <structure 'template> • 1£
a minor structure is referenced, the name becomes syntacti-
cally a < structure var name> • If a structure terminal is
referenced, then syntactically the name becomes a < II var name> ,
where II stands for any of the types arithmetic, bit, character, or
dcw as specified in its < attributes> in the template.

o 1£ a structure is "qualified, " then any part of it, either minor
structure or structure terminal, is referenced as follows. First
the major structure name is taken. Then starting at the template
name, the branches, of the template are traversed down to the
minor structure or structure terminal to be referenced. On
passing through every intervening minor structure, the name is
compounded by right catenating, a period followed by the name of
the minor structure passed through. The process ends with the
catenation of the name of the minor structure or structure
terminal to be referenced. 1£ a minor structure is being refer­
enced, the resulting "qualified" name becomes syntactically a
< structure var name>. 1£ a structure terminal is referenced,

then syntactically it becomes a < II var name> , where II stands
for any of the types arithmetic, bit, character, or dcw, as
specified in its < attributes> in the template.

Example:

STRUCTURE A:
1 B,

2 C,
3 E VECTOR(3),
3 F SCALAR,

2 G,
3 H BIT(l),
3 1 INTEGER,

1 J BIT(16);

DECLARE A A-STRUCTURE,
Z A-STRUCTURE;

-75-

structure template

- "unqualified"
- "qualified"

A. references to parts of structure A -

G 1 J

B. references to corresponding parts of structure Z -

Z.B.G Z. B. G.!

-76-

Z.J

5.3 Subscripting

For the remainder of this section, a data name with known < attributes>
is denoted syntactically by < § val' name> , where § stands for any of the
types arithmetic, bit, character, event, dcwor structure. It is convenient to
introduce the syntactical term < § val'::> to denote any subscripted or un­
subscripted < II Val' name> .

Syntax

variables§

arith
bit
char
structure
event
dcw

§ val' namef-4"'-------..---------r---

example:

Al TO 10
\---lsubscript

It is also useful to introduce the syntactical term <variable> as a collective
definition meaning any type of < § val' >.

Syntax

variabri
dcw val' ~

variable H event val' ~
rl bit val' ~

~ arith val' ~
Ibit pseudo- I- I val' I

-Ichar val' ~
---t structure

~val'

-77-

Semantic Rules

1. A<bit pseudo-var> is a reference to the SUBBIT pseudo-variable.
An explanation of its inclusion as a < variable> is given in Section
6. 6.4.

5.3. I Classes of Subscripting

In HAL/SM there are three classes of subscripting which may be
potentially applied to < § var name> s: structure, array, and component
subscripting.

o Structure subscripting can be applied to arithmetic, bit,
character and dcw variables which are terminals of a struc­
ture which has multiple copies. It can also be applied to the
major and minor structure variable names of such a struc­
ture. Structure subscripting is denoted syntactically by
< structure sub> •

o Array subscripting can be applied to any arithmetic, bit,
character, dcw, and event variables which are given an
array specification in their declaration. This includes both
simple variables and structure terminals. Array subscripting
is denoted syntactically by <array sub> •

o Component subscripting can be applied to simple variables and
structure terminals which have one or more component
dimensions (i. e., which are made up of distinct components).
The applicable types are vector, matrix, bit and character.
Component subscripting is denoted syntactically by <component
sub> •

The three classes of subscript are combined according to a well-defined set
of rules.

-78-

Syntax

subscript
subscript construct

~
component

sub

1'\
~ array sub :

component r--: sub

.

structure component
~ ; subsub

L() array sub -0- component
sub

example:.
l;J, K:L -0

Semantic Rules

1. The syntax diagram shows 10 different ways of combining the three
classes of subscripting. Table 5-1 shows when each of these combina­
tions is legal for simple variables and structure terminals.

2. In the case of a < structure var name> relating to a major structure
with multiple copies, or to a minor structure of such a major structure,
the following forms are legal:

S
S;

No subscript is possible if the major structure has no multiple copies.

-79-

LEGAL COMBINATIONS FOR SIMPLE VARIABLES AND STRUCTURE
TERMINALS

Interpretation of< § var name>

Unarrayed Arrayed Unarrayed Arrayed
Data Simple Simple Structure Structure
Tvoe Variable Variable Terminal CD Terminal (i)

I'-NTEGER A S S;
SCALAR none k S; S;A
DCW S;A:

VECTOR C A: S; S;
MATRIX A:C S;C 8;A:
BIT S;A:C
CHARACTER

!EVENT none A

(D It is assumed that the structure has multiple copies. If not,
corresponding columns for simple variables apply.

<component sub> ~ C

<array sub> ~ A

<structure sub> _ S

Table 5-1

-80-

Examples:

A. p
X:
L-<array

~ P is any arrayed simple variable
sub>

equivalent form-

B.

P
X

Q
X

i equivalent only if P is of integer, scalar,
_---------- or event type

,/I Q is any simple variable
<component sub>

<array sub> ----II see example A

c. R

<structure sub> IQ is any structure
[or scalar type

terminal* of integer

L<structure sub> _I R is any structure terminal*

equivalent forms-

R
X l

equivalent only if R is of unarrayed
-------------jinteger or scalar type

D. S
X;Y:Z..,..<component sub>

t Larray sub>

L <structure sub>

S is an arrayed structure terminal~'

of vector, matrix, bit, or character
type

* of a structure with multiple copies

5.3.2 The General Form of Subscripting

The three classes of subscripting, <structure sub>, <array sub>,
and <component sub>, have an identical sytactical form; however, the
semantic rules for each differ.

-81-

Syntax

component.array, and strocture subscripts

sub exp

'-- -{ *}-J

,------(# }----......

arith exp

example:
3 AT #-5

General Semantic Rules

1. A <structure sub> , < array sub>, or < component sub> consists of
a series of "subscript expressions" separated by commas. Each sub­
script expression corresponds to a structure, array, or component
dimension of the <§ var name> subscripted.

2. There are four forms of subscript expression:

o the simple index,

o the AT-partition,

o the TO-partition, and

o the asterisk.

-82-

3. The simple index form is denoted in the diagram by a single < sub exp>
Its value specifies the index of a single component, array element, or
structure copy to be selected from a dimension.

4. The AT-partition is denoted by the form<arith exp> AT <sub exp>.
The value of< arith exp> is the width of the partition, and that of
<sub exp> the starting index.

5. The TO-partition is denoted by the form <sub exp> TO <sub exp> •
The two < sub exp> values are the first and last indices respectively
of the partition.

6. The asterisk form, denoted in the diagram by *, specifies the selection
of all components, elements, or copies from a dimension.

7. A < sub exp > may take any of the forms shown. The value of # is
taken to be the maximum index-value in the relevant dimension.

8. Any< arith exp> in a subscript expression is an arrayed or unarrayed
integer or scalar expression. Values are rounded to the nearest
integer. The effect of an <arith exp> being arrayed is discussed in
Section 5. 4.

5. 3. 3 Structure Subscripting

Major structures with multiple copies, or the minor structures or
structure terminals of such structures may possess a < structure sub> •
Since there is only one dimension of multiple copies, the <structure sub>
may only possess one subscript expression. The effect of such subscripting
is to eliminate multiple copies, or at least to reduce their number.

Restrictions

1. Errors result if any index value implied by a subscript expression lies
outside the range 1 through N, where N is the number of copies specified
for the major structure.

2. If the subscript expression is a TO- or AT-partition, the width of the
partition must be computable at compile time. This is guaranteed by
enforcing the following restrictions:

o In the form < arith exp> AT < sub exp> , the value of <arith
exp> must be computable at compile time.

o In the form <: sub exp> TO <: sub exp> , the values of both
< sub exp> s must be computable at com.pile time.

-83-

Examples:

STRUCTURE A:
1 B SCALAR,
1 C INTEGER,
1 D VECTOR(6);

DECLARE A A-STRUCTURE(20);

Note: D*. 4 TO 6,

5.3.4 Array Subscripting

20th copy of A

lOth and 11th copies of A (semicolon optional)

C from 1st copy of A

D from 4th through 6th copies of A (semicolon
enforced)

components 4 through 6 of D from all copies of A

Any simple variable or structure terminal with an array specification
(see Section 4.5) may possess an < array sub>. The number of subscript
expressions in the <array sub> must equal the number of dimensions given in
the array specification. The leftmost subscript expression corresponds to the
leftmost dimension of the array specification, the next expression to the next
dimension, and so on.

Restrictions

1. Errors result if any index value implied by a subscript expression lies
outside the range 1 through N, where N is the size of the corresponding
dimension in the array specification.

2. If the subscript expression is a TO- or AT- partition., the width of the
partition must be computable at compile time. This is guaranteed by
enforcing the following restrictions:

o In the form<arith exp> AT <sub exp>, the value of <arith
exp:> must be computable at compile time.

o In the form < sub exp> TO <: sub exp>, the value of both < sub
exp> s must be computable at compile time.

-84-

Examples:

STRUCTURE P:
1 Q ARRAY(5) SCALAR,
1 R SCALAR;

DECLARE P P-STRUCTURE(lO);
DECLARE S ARRAY(5) SCALAR,

T ARRAY(5) VECTOR(6);

Q*;5

Ql;2 TO 3:

T 2 AT 2:·

Note: T*: 2 AT 2

5.3.5 Co"mponent Subscripting

5th array element of Q in all copies of P

2nd and 3rd array elements of Q in 1st copy
of P (colon optional)

4th through 5th array elements of S
(colon optional)

2nd and 3rd array elements of T (colon
enforced)

components 2 and 3 in all array elements of T

Simple variables and structure terminals of vector, matrix, bit and
character type may possess component subscripting because they are made up
of multiple distinct components.

o Those of bit, character, and vector types must possess a
< component sub> con·sisting of one sub script expression only.

o Those of matrix type must possess a <component sub> consisting
of two subscript expressions. In left to right order these repre­
sent row and column subscripting respectively.

Restrictions

L Errors result if any index value implied by a subscript expression lies
outside the range 1 through N, where N is the size of the corresponding
dimension in the type specification.

2. For bit, vector and matrix types, if the subscript expression is a TO-
or AT-partition, the width of the partition must be computable at compile
time. This is guaranteed by enforcing the following restrictions:

-85-

o In the form <arith exp> AT < sub exp> , the value of < arith
exp> must be computable at compile time.

o In the form <sub exp> TO < sub exp> , the values of both
< sub exp> s must be computable at compile time.

3. The subscript expressions of a character type need not be computable at
compile time.

Special Rules for Vector and Matrix Types

The <component sub> of a variable of vector or matrix type can sometimes
have the effect of changing its type. The following rules apply:

1. If a vector type is subscripted with a simple index < component sub> ,
then since one component is being selected, the resulting < arith var>
is of scalar type.

2. If only one of the two subscript expressions in a < component sub> of
a matrix type is a simple index, then one row or column is being selected,
and the result is therefore an <arith var> of vector type. If both subscript
expressions are of simple index form, then one component of the matrix
is being selected, and the result is an<arith var> of scalar type.

Examples:

DECLARE M MATRIX(3, 3),
C ARRAY(2) CHARACTER(8);

C I :2 TO 7

M~, 1,

character s 2 through 7 of I st array element of C

column I of matrix M (vector)

3rd component of 3rd row of M (scalar)

-86-

5.4 The Property of Arrayness

A < Ii! var name> which is· a simple variable is said to be "arrayed, "
or to possess "arrayness, " if any array specification appears in its declaration.
The number of dimensions of arrayness is the number of dimensions given in the
array specification.

A < Ii! var name> which is a structure terminal is said to be arrayed
or to possess arrayness if either or both of the following hold:

o an array specification appears in its declaration in a structure
template, or

o the structure of which <Ii! var name> is a terminal has multiple
copies.

The number of dimensions of arrayness is the sum of the dimensions originating
from each source.

Appending structure or array subscripting to a <!l var name> may
reduce the number and size of array dimensions of the resulting <Ii! var::>.

The arrayness of HAL/SM expressions originates ultimately from the
<!l var> s contained in them. It is a general rule that all arrayed < Ii! var> s

in an expression must possess identical arrayness (i. e., the number of dimensions
of arrayness, and their corresponding sizes niust be the same). Although the
forms of subscript distinguish between array dimensions, and structure copy
dimensions, no distinction between them is made as far as the matching of
arrayness is concerned.

Example:

STRUCTURE Z:
1 B ARRAY(5);

DECLARE A Z-STRUCTURE(lO);
DECLARE C ARRAY(lO, 5);

arrayness of both operands is 10, 5
C = A. B + C;

5.4. 1 Arrayness of Subscript Expressions

Any < arith exp> within a subscript may be arrayed (possess "arrayness").
Appending such subscripts to a <!l var name> may produce an arrayed operand
of the same arrayness as the < arith exp>. The following rules are applicable
to such subscript forms.

-87-

Semantic Rules

1. Any < arith exp> appearing in Syntax Diagram 22 depicting the syntax
of < structure sub>, < array sub> and < component sub> may potentially
possess arrayness, except for references to event variables.

2. If the < § var name> possessing the subscript containing the arrayed
< arith exp> is imbedded in an arrayed HAL/SM expression, then the
arrayness of the < arith exp> must match the arrayness of the expres­
sion (even if the < var name> itself does not possess arrayness, e. g.,
is a vector).

3. The evaluation of an arrayed expression can be viewed as a parallel
evaluation of the expression element by element. If the expression con­
tains an arrayed < arith exp> in a subscript, then during the parallel
evaluation the appropriate array element of < arith exp> is selected for
each evaluation.

Example:

Given the declarations:

DECLARE A ARRAY(3) INTEGER;
DECLARE B ARRAY(3,2) INTEGER;
DECLARE V VECTOR(5};

the following operands become:

VA - a 3-array
of corresponding vector components

VB - a 3x2-array

Example:

DECLARE I ARRAY(3) INTEGER,
M MATRIX(2, 2),
MA ARRAY(3) MATRIX (2,2),
MB ARRAY(2) MATRIX (2,2);

Let M.= fr·75 O. 2~] and I

=(~)0.75 1. 25

C') ("75 I. 25])
then MI '

M l , * [1. 75 0.25], ' - --
Ml, * [1.75 0.25]

-88-

- a linear 3-array of 2-vectors: subscripting has reduced M from
a matrix to a row-vector, but since I is arrayed, the entire operand
has an effective arraynes's even though M itself has not.

Let MA =. [1.0 0.0]
3.0 2.0

CD II = 2

[4.0 7. OJ CD6.0 5.0 12 = 1

[S.O 3.0 CD 13 = 1
4.0 9.0

Then MA*:I, * =
C'Z..

[3.0 Z.O])-
M2:1, * [4.0 7.0]

M3:1,* [S.O 3, 0]

is also a linear 3-array of 2-vectors: now however MA and I
both have arrayness (which correctly match). Three parallel sub­
script evaluations are effectively performed using corresponding
array elements of MA and I each time.

Note MB*:I, *

However MB*.I
l

*
. TO 2'

is illegal since the arrayness of MB does
not match the arrayness of 1.

is legal since array subscripting has been
used on I to force arrayness matching.

If MB 10.5
L<? 1

10.2 0.7l
La. 4 O. SJ

CD II = 2

then MB*:Il TO 2' *

-S9-

(

[0. 1

[0.2
0.3])012 = 1
0.7]

5.5 The Natural Sequence of Data Elements

There are several kinds of operations in the HAL/SM language which
require operands with multiple components, array elements, and structure
copies to be unraveled into a linear string of data elements. The reverse
process of "reraveling" a linear string of data elements into components,
array elements, and structure copies also occurs. Two major occurrences
of these processes are in I/O (see Section 10), and in conversion functions
(see Section 6.6).

The standard order in which this unraveling and reraveling takes place
is called the "natural sequence." By applying the following rules in the order
they are stated, the natural sequence of unraveling is obtained. By applying
the rules in reverse order, and replacing "unraveled" by "reraveled," the
natural sequence for reraveling is obtained.

Rules for Major and Minor Structure

1. If the operand is a major structure with multiple copies, each copy
is unraveled in turn, in order of increasing index. If the operand is
a minor structure of a multiple copy structure, then the copy of the
minor structure in each structure copy is unraveled in turn in order
of increasing index.

2. The method of unraveling a copy is as follows. Each structure terminal
on a "branch" connecting back to the given major or minor structure
operand is unraveled in turn. The order taken is the order of appearance
of the terminals in the structure template.

3. Each structure terminal is unraveled according to the rules given below.

Example:

STRUCTURE A:
1B,

2 C SCALAR,
2 D VECTOR(3),

1 E INTEGER;
DECLARE A A-STRUCTURE(3);

o order of unraveling of B is Bi , i=1,2,3

o order of unraveling of each Bi is Ci, Di

Rules for Other Operands

1. An operand of any type (integer, scalar, vector, matrix, bit, character,
dcw or event) may possess arrayness as described in Section 5.4. Each

-90-

dimension of arrayness, starting from the 1eftnlost is unraveled in
turn, in order of increasing index.

2. Integer, scalar, bit, character, dcw and event types are considered
for unraveling purposes as having only one data element.

3. Vector types are unraveled component by component, in order of
increasing index.

4. Matrix types are unraveled row by row, in order of increasing index.
The components of each row are unraveled in turn in order of increasing
index.

Example:

DECLARE V ARRAY(2. 2) VECTOR(3);

o order of unraveling of V is V1" *.*, . i" 1,2

o

o

order of unraveling of each Vi, *:* is Vi, j:*

order of unraveling of each Vi J".* is V. "k '
. , . 1, J:

(standard HAL/SM subscript notation used)

-91-

j = 1,2

k = 1,2,3

(BLANK)

-92-

6. DATA MANIPULATION AND EXPRESSIONS

An expression is an algorttlun used for computing a value. In HAL/SM,
expressions are formed by combining together operators with operands in a
well-defined manner. Operands generally are variables, literals, other ex­
pressions, and functions. The type of an expression is the type of its result,
which is not necessarily the same as the types of its operands.

In HAL/SM, expressions are divided into three major classes according
to their usage.

o Regular expressions appear in a very large number of contexts
through the language; e. g., in assignment statements, as
arguments to procedures and functions, and in I/O statements.
Typical regular expressions are arithmetic, bit and character
expressions. They are collectively denoted by <expression:>.

o Conditional expressions are used to express combinations of
relationships between quantities, and are found in IF statements,
and in WHILE and UNTIL phrases. They are denoted by
< condition::> •

o Event expressions are used exclusively in real time program­
ming statements.

-93-

6.1 Regular Expressions

Regular expressions comprise arithmetic expressions, bit expressions
and character expressions, together with a limited form of structure expres­
sian. As a generic form, < expression> appears in the assignment statement,
as the input arguments of procedure and function blocks, and in the WRITE
statement.

Syntax

expression

arith exp

bit exp

char exp

structure exp

Descriptions of <arith exp> , < bit exp>, <: char exp> , and <: structure exp>
are given in the following subsections.

6. 1. 1 Arithmetic Expressions

Arithmetic expressions include integer, scalar, vector, and matrix
expressions. Collectively they are known by the syntactical term <arith exp>.

-94-

Syntax

erithmetie l!txpre"ion
r------••----

------,
04---__--~~_Iarithoperand I-*-'-JL..... j

examples:
I + ~ - (K + 2)3

M. 1M • N)

Semantic Rules

An <arith exp>
infix arithmetic
minus.

is a sequence of < arith operand> s separated by
operators, and possibly preceded by a unary plus or

2. The form < > is used to show that the two < arith operand> s are
separated by one or more spaces. It signifies a product between the
< arith operand> s.

3. The syntax diagram for < arith exp> produces a sequence extensible on
the right. Any sequence produced is not necessarily to be considered
as evaluated from left to right. The order of evaluation of each operation
in the sequence is dictated by operator precedence.

4. Not all types of < arith operand> are legal in' every infix operation. Table
6-1 summarizes all possible forms, by indicating the result of each legal
operation.

-95-

LEGAL OPERATIONS BY DATA TYPE

operand. infix operator

left right. + < > •
vector vector

vector matrix

matrix vector

vector .1nteger
scalar

integer vector

matrix matrix

matrix integer

intE!9'er matrix

scalar sCalar

scalar integer scalar scalar scalar scalar t
scalar •integer scalar acalu scalar IIcalar

9integer intftCJer ateqer integer

Notes:

In operations with vector and. matrix operands, the sizes of the operands must
be compatible with the operation involved, in the usual mathematical sense.

1 Outer product.

2 Cross product - valid for 3-vectors only.

3 Dot product.

4 Every element of the vector or matrix is multiplied by the integer or
scalar.

5 Every element of the vector or matrix is divided by the integer or scalar.

6 If the right operand is literally "T" the transpose is indicated. If the
right operand is literally "0" the result is an identity matrix. If the
right operand is a positive integer number a repeated product is implied.
If the right operand is a negative integer number, repeated product of the
inverse is implied. These are the only legal forms.

7 the operands are converted to scalar before division.

8 the operation is undefined if the value of the left operand is negative, and
the value of the right operand is nonintegral.

9 the result is a scalar except if the right operand is a non-negative integral
in which case the result is integer.

Table 6-1

-96-

5. Except as noted in Rule 4, if only one operand in an operation is of
integer type, it is converted to scalar type.

6. If the two operands of an operation are of differing precision, the
result is double precision, otherwise the precision of the result is
the same as the precision of the operands. This is true in all cases
except where one operand only is of integer type. In this case the
precision of the result is the same as the precision of the non-integer
operand.

Precedence Rules

I, Table 6-2 summarizes the precedence rules for arithmetic operators.

2. If two operations with the same precedence follow each other, then
the following rules apply:

o operators **, / are evaluated right-to-left;

o all other operators are evaluated left-to-right.

3. Overriding Rules 1 and 2, the operators<:>, *, and. are evaluated so
as to minimize the total number of elemental multiplications required.
However, this rule does not modify the effective precedence order in
cases where it would cause the resultto be numerically different, or the
operation to be illegal.

An <arith operand> appearing in an< arith exp:> has the following form.

Syntax

arithmetic operand

arith conversion

normal function

arith var

number

example:
(A + B)

" DOUBLE

-97-

PRECEDENCE RULES FOR ARITHMETIC OPERATORS

Operator Precedence Operation

FIRST

** I exponentiation
<> 2 multiplication

* 3 cross-product
. 4 dot-product

/ 5 division

+ 6 addition and unary
plus

- 6 subtraction and
unary minus

LAST

Table 6-2

-98-

Semantic Rules

1. An< arith operand> may be an arithmetic'..variable, an arithmetic
expression enclosed in parentheses, a < normal function> of the
appropriate type (see Section 6.4), an <arith conversion> function
(see Section 6.6.1), or a literal <number> •

2. The precision of an <arith operand> may be converted by subscripting
it with a <precision> specifier (see Section 6.7). If the operand is
an< arith var> this is true only if it has no <subscript>. Since a
subscripted <arith var> is an example of an <arith exp> , the
< procision> specifier may be applied by first enclosing the < arith
var> in parentheses.

3. Only integer and scalar < arith operand> s may have the form <number> •

6.1.2 Bit Expressions

A bit expression is known by the syntactical term <: bit exp> •

Syntax

bit ex"........

-~-......---l bit~

example:
BlIICII,D

-99-

Semantic Rules

1. A < bit exp> is a sequence of <bit operand> s separated by bit
operators.

2. The syntax diagram for < bit exp> produces a sequence extensible on
the right. Any sequence produced is not necessarily to be considered
as evaluated from left to right. The order of evaluation of each infix
operation is dictated by operator precedence:

Operator Precedence

FIRST

CAT, I' 1
AND, &: 2
OR, I 3

LAST

If two operations with the same precedence follow each other, they
are evaluated from left to right.

3. The operator CAT (j i> denotes catenation of < bit operand> s. The
length of the result is the sum of the lengths of the operands.

4. The operators AND (&:) and OR (I)denote logical intersection and
union respectively. The shorter of the two < bit operand> is left
padded with binary zeroes to match the length of the longer.

A <bit operand> appearing in a<bit exp> has the following form.

-100-

Syntax

bit operand

bit
operand

0rC NOT)- 0bit exp

-' bit var.,

,bit literal

normal
function

bit
conversion

,

example:
BIN '11010110' bit

pseudo-var

event var

Semantic Rules

1. A <bit operand> may be a < bit var> , a < bit exp> enclosed in
parentheses, a < bit literal> , a < normal function> of bit type
(see Section 6.4), a < bit conversion> function, or a <bit pseudo­
var> (see Section 6.6. 3 and 6.6.4).

-101-

2. In addition a <bit operand> may be an <event var>
treated as Boolean (I-bit) < bit operand> s.

Events are

3. Any form of <bit operand> may be prefaced with the NOT (--,)
operator causing its logical complement to be evaluated prior to use
within an expression. Note that associating the NOT operation with
the < bit operand> syntax achieves an effect similar to placing the
NOT operator in the bit expression syntax at the highest level of precedence.

6.1.3 Character Expressions

A character expression is known by the syntactical term <char exp> •

Syntax

character expression

-.....;r--r-~--lch.r operand f--r--~!---{ II)---r--.-

example:
OIlIIlOOQ

Semantic Rules

1. A <char exp> is a sequence of operands separated by the catenation
operator CAT (II). Each operand may be a < char operand> or an
integer or scalar < arith exp> •

2. The sequence of catenations is evaluated from left to right.

3. Integer and scalar < arith exp> S are converted to character strings.

A <char operand> appearing in a <char exp> has the following form.

-102-

Syntax

ch..._ operand

-~r-------'--4----Jchar var

1-----'-1 normal function

char literal

Semantic <Rules

exampte:
(A II B)

~--l char conversion

1. A <char operand> may be a character variable, a <char exp> enclosed
in parentheses, a <char literal> a <normal function> of character
type (see Section 6.4), or a < char conversion> function (see Section
6.6.3).

6.1.4 Structure Expressions

Since there are no manipulative expressions for structure data, a
<l structure exp> merely consists of one structure operand.

Syntax

structure expression

structure var.

normal function

-103-

Semantic Rules

1. A <structure exp> consists of one structure operand which may be
either a < structure var:> , or a < normal function:> of structure
type (see Section 6.4).

6.1.5 Array Properties of Expressions

Any regular expression may have an array property by virtue of
possessing one or more arrayed operands. The evaluation of an arrayed
regular expression implies element-by-element evaluation of the expression.
For any infix operation with an array property the following must be true.

Semantic Rules

1. If one of the two operands of an infix operation are arrayed, then
evaluation of the operation using the unarrayed operand and each
element of the arrayed operand is implied. The resulting array has
the same dimensions as the arrayed operand.

2. If both of the operands of an infix operation are arrayed, then both
operands must have the same array dimensions. Evaluation of the
operation for each of the corresponding elements of the operands is
implied. The resulting array has the same dimensions as the operands.

-104-

6.2 Conditional Expressions

Conditional expressions express combinations of relationships between
quantities. The HAL/SM representation of a relation between quantities is a
<comparison>. The < comparison> s are combined with logical operators

to form conditional expressions, or <condition> s.

Syntax

conditional exp....ion

I---{& }-____

Semantic Rules

--4---,.--1 conditional operond

example:
(A>811 (A>CI

AND

1. A conditional expres sion or <condition> is a sequence of < conditional
operand> s separated by logical operators.

2. The syntax diagram for < condition> produces a sequence extensible on
,the right. Any sequence produced is not necessarily to be considered as
evaluated from left to right. The order of evaluation of each infix
operation is dictated by operator precedence:

Operator Precedence

FIRST
AND, & 1
OR, , 2

.
LAST

If two operations with the same precedence follow each other, they are
evaluated from left to right.

-105-

3. The operations AND (Bt) and OR (I) denote logical intersection and
union respectively.

A < conditional operand> appearing in a < condition> has the following form.

Syntax

conditional operand

-~>----...---------jcomparison

,--", , r--....

example:
,(A>BI

Semantic Rules

1. A <conditional operand> is either a < comparison> or a parenthesized
< condition>. The latter form may be preceded by the logical NOT (0)
operator.

2. A <comparison> is a relationship between the values of two arithmetic,
bit, character or structure operands. The result of a <comparison> is
either TRUE or FALSE, but cannot be used as a Boolean operand in a
bit expression.

6.2. 1 Arithmetic Comparisons

An arithmetic < comparison> is a comparison between two arithmetic
expressions.

-106-

Syntax

arithmetic comparison

arith exp

t---{<

arith exp

Semantic Rules

example:

I> J

1. The types of < arith exp> operand must in general match, with the
following exception: in a comparison with mixed integer and scalar
operands, the integer operand is converted to scalar.

2. If the precisions of the < arith exp> operands are mixed then the
single precision operand is converted to double precision.

3. Not all type s
comparison.

of < arith exp> are legal for every type of arithmetic
The unshaded boxes in Table 6-3 indicate all legal forms.

4. If the operands are of vector or matrix type, the <comparison> is
carried out on art element-by-element basis.

-107-

LEGAL COMPARISONS BY DATA TYPE

operator

'= .,> .,<
operands = NOT= > < NOT> NOT<

<= >=

vector ,I ,I

matrix ,I ,I

integer ,I ,Iscalar

Table 6-3

-108-

o If the <: comparison> operator is =, the result is TRUE only
if all the elemental comparisons are TRUE.

o If the <:comparison> operator is NOT= ("""1 =), the result is
TRUE if any elemental comparison is TRUE.

5. If one or both of the <: arith exp> s are arrayed then only the operators
= and NOT= (., =) are legal, and the result is an arrayed < comparison>
(see Section 6.2.5).

6.2.2 Bit Comparisons

A bit comparison is a cotp.parison between two bit expressions.

Syntax

Semantic Rules

-~---f bitoxp

example:

bit comparison

}--+----i bit exp

B"· BIN '110'

1. . If the lengths of the operands a're the same, their values are equal if
and only if they have identical bit patterns.

2. If the lengths of the operands differ, the <bit exp> of shorter length is
left padded with binary zeros to match the length of the longer before
comparison takes place.

3. If one or both of the <bit exp> s are arrayed, then the result is an
arrayed < comparison:> (see Section 6.2.5).

6.2.3 Character Comparisons

A character comparison is a comparison between two character
expressions.

-109-

Syntax

ellaractor _pari"",

cha,exp

1----1<

char exp

Semantic Rules

example:

1. If the lengths of the operands differ, the shorter operand is considered
less than the longer.

2. If one or both of the <char exp> s are arrayed then the result is an
arrayed< comparison> (see Section 6.2.5).

3. The values of the operands will conform to the character codes selected
and thus are machine dependent.

6.2.4 Structure Comparisons

A structure comparision is a comparison between two structure expressions.

-110-

Syntax

structure comparison

Semantic Rule s

structure exp 1-0+-_-\ }---+---J strueturs exp 1----

1. The tree organizations of both < structure exp:> s must be identical
in all respects.

2. The number of copies possessed by each < structure exp:> must be the
same. If the number of copies is greater than one, then the following
holds:

o If the <comparison:> operator is -, the result is TRUE only if
it is TRUE for all copies.

o If the <comparison:> operator is -, = (NOT=), the result is TRUE
if it is TRUE for at least one pair of corresponding copies.

6.2.5 Comparisons between Arrayed Operands

A <comparison> of one of the forrns described may have arrayed
operands. When one or both of the operands is arrayed, the < comparison:>
operators are restricted to = and...., = (NOT=). In any arrayed <comparison:>,
the following must be true.

Semantic Rul.es

L If one of the two operands of a <comparison:> is arrayed then evaluation
of the < comparison:> using the unarrayed operand and each element of
the arrayed operand is implied.

2. If both of the operands are arrayed, the)l both operands must have the
same array dimensions. Evaluation of the operation for each of the
corresponding elements of the operands is implied.

-111-

3. The result of an arrayed <comparison> is unarrayed. If the operator
is = then the result is TRUE only if it is TRUE for all elements of the
< comparison>. If the operator is --, = (NOT=) then the result is
TRUE if it is TRUE for at least one element of the < comparison> •

-1l2-

6. 3 Event Expressions

Event expressions appear in real time programming statements (see
Section 8), and are denoted by the syntactical term < event exp> •

Syntax

event ixpretlion

AND

. example:
ALPHA OR BETA

Semantic Rules

1. An <event exp> is a sequence of <event operand> s separated by a
subset of b1t operators. An< event exp> may not be arrayed.

Z. The syntax diagram for < event exp> produces a sequence extensible on
the right. Any sequence produced is not necessarily to be considered as
evaluated from left to right. The order of evaluation of each infix opera­
tion is dictated by operator precedence:

Operator Precedence

FIRST
AND, 8< 1
OR, I Z

LAST

If two operations with the same precedence follow each other, they are
evaluated from left to right.

-113-

3. The operators AND (&) and OR (I)denote logical intersection and union
respectively.

An < event operand> appearing in an <event exp> has the following form.

Syntax

0'itfIt operand

---;~--+---o_--i--*"---l event var

example:
-,. (A & B)

Semantic Rules

1. An <: event operand:> may be an event variable or an <: event exp>
enclosed in parentheses.

2. The arrayness of any <: event var:> must have been removed by suitable
subscripting (see Sections 5.3.3 and 5.3.4).

3. The <: event operand> may be optionally prefaced by the logical com­
plementing operator NOT h).

-114-

6.4 Normal Functions

Sections 6.1.1 through 6.1.3 have made references to normal
functions which may appear as operands in various types of < expression> s.
Normal functions comprise all those functions which are not conversion func­
tions, and fall into two classes:

o built-in functions defined as part of the HAL/SM language;

o user-defined functions defined by the presence of < function
block> s in <compilation> s.

The manner of invoking each class of function is essentially the same.

Syntax

no"",,' functlan

lIbel

h~ ••p....lon

••emplt:

Semantic Rules

SIN(2 xl
.......--1. }-_J

1, A< label> invokes execution of a function with name < label> •

2. If < label> is a reserved word which is a built-in function name then that
built-in function is invoked.

3. If a<fun~tionblock> with name< label> appears in such a name-scope
that< label> is known to the invocation, then that block is invoked.

4. If no such< function block> exists, then the < function block> is assumed
to be external to the <compilation> containing the invocation. A<func­
tion template> for that <function block> must therefore be present in
the <compilation> (see Section 3.6).

5. The type of the <normal function> must be appropriate to the type of
the <expression> containing it (see Sections 6•.1.1 through 6.1.3).

-115-

6. Each of the < expression> s in the syntax diagram is an "input
argument" of the function invocation. Input arguments are "call-by­
reference" or "call-by-value" (see Section 7.4).

7. Each input argument of a < normal function> must match the
corresponding input parameter of the function definition exactly in type,
dimension, structure function, and tree organi:;:ation, as applicable,
except for the following relaxations:

o precisions need not match, precision conversions are allowed;

o the lengths of bit arguments need not match;

o the lengths of character arguments need not match;

o implicit integer to scalar and scalar to integer conversions
are allowed;

o implicit integer and scalar to character conversions are allowed.

Input arguments may be viewed as being assigned to their respective
input parameters on invocation of the function. The rules applicable
in the above relaxations thus parallel the relevant assignment rules
given in Section 7. 3.

8. If the appearance of an invocation of a user-defined function precedes
the appearance of its <function block>, the name and type of the
function must be declared at the beginning of the containing name-scope
(see Section 4. 6).

9. Special considerations relate to arrayed input arguments to the <normal
function>. If the corresponding input parameter is arrayed, then the
arraynesses must match in all respects. In this case, the function is
invoked once. If the corresponding parameter is not arrayed, then the
arrayness must match that of the< expression> containing the function.
In this case, the < normal function> is invoked once for each array
element.

Example:

DECLARE X ARRAY(4) SCALAR;

[X] = SIN([X]); SIN evaluated once for each element of X

ADD FUNCTION (P) SCALAR;
DECLARE P ARRAY(4) SCALAR;

-116-

RETURN PI+PZ+P3;

CLOSE ADD;

[x] =[X] + ADD([X]);
ADD evaluated once only: formal
parameter P has same arrayness as
argument X. [ADD must be defined before
it/! invocation].

Note: [] enclosing a variable name indicates that it has been declared to be
arrayed.

-117-

6.5 Time Value

Certain Real Time Control and Input/Output Statements require a
time specification. The syntactical term <: time value> is used to define
that time specification.

Syntax

time
literal

arith var

examples:
. START-TIME
50 HRS 15 MINS

Semantic Rules

1. The <:time literal> define? a particular time in any combination of
days, hours, minutes, seconds, or milliseconds.

2. The <:arith var> always defines a particular number of milliseconds.

-118-

6.6 Explicit Type Conversions

The limited implicit type ·conversions offered by HAL/SM are described
elsewhere in the Specification (see Sections 6.1.1 and 7.3). HAL/SM contains
a comprehensive set of function-like explicit conversions, some of which
also have the property of being able to shape lists of arguments into arrays
of arbit:Eary dimensions. For this reason, conversion functions are some­
times referred to as "shaping functions." HAL/SM contains conversion
functions to integer, scalar, vector, matrix, bit and character types.

6.6. 1 Arithmetic Conversion Functions

Arithmetic conversion functions include conversions to integer, scalar,
vector, and matrix types.

Syntax

arithmetic convenion function

}-r-~----------,rl expression

example:
INTEGERZ•Z (4# I +J)

General Semantic Rules

1. The keyword INTEGER, SCALAR, VECTOR, or MATRIX gives the
result type of the conversion.

2. The conversion keyword is optionally followed by a < preCISIon>
specifier giving the precision of the result (see Section 6.7), and by
a < subscript> specifying its dimensions.

-119-

3. The conversion has one or more <expression> s as arguments.
The total number of data elements implied by the argument(s) are
shaped according to well-defined rules to generate the result. The
data elements in each <:expression> are unraveled in their "natural
sequence" (See Section 5.5). The result of doing this for each
argument in turn is a single linear string of data elements. This
string is then reformed or "reraveled" to generate the result.

4. Any < expression> tnay be preceded by the phrase<: arith exp> #, where
<arith exp> is an unarrayed integer or scalar expression computable
at compile titne. The value of <:arith exp> is rounded to the nearest
integer and must be greater than zero. It denotes the number of titneS
the following <: expression> is to be used in the generation of the result
of the conversion.

5. The nesting of <: arith conversion> s is subject to implementation
dependent restrictions.

Semantic Rules: INTEGER and SCALAR

1. If INTEGER or SCALAR are unsubscripted, and have only one
unrepeated argument of integer, scalar, bit, or character type,
then if the argument is arrayed, the result of the conversion is
identically arrayed.

2. If INTEGER or SCALAR are unsubscripted, and Rule 1 does not
apply, then the result of the conversion is a linear (I-dimensional)
array whose length is equal to the total number of data ele:ments implied
by the argu:ment(s).

3. If INTEGER or SCALAR are subscripted, the form of the <: subscript>
must be a sequence of « arith exp> s separated by commas. The number
of < arith exp> s is the dimensionality of the array produced. Each
<: arith exp> is an unarrayed integer or scalar expression computable
at compile time. Values are rounded to the nearest integer and :must
be greater than one. They denote the size of each array dimension
produced. Their product must therefore match the total number of data
'elements itnplied by the argument(s) of the conversion.

4. INTEGER and SCALAR may have arguments of any type except structure.

5. The precision of the result is SINGLE unless forced by the presence
of a <: precision> specifier.

-120-

Semantic Rules: VECTOR and MATRIX

1. In the absence of <subscript:> VECTOR produces a single 3-vector
result; MATRIX produces a single 3-by-3 matrix result. The number
of data elements implied by the argument(s) must therefore be equal
to 3 and 9 respectively.

2. VECTOR and MATRIX cannot produce arrays of vectors and matrices.
Consequently, <subscript~may only indicate terminal subscripting.

3. In VECTOR the < subscript:> must be an <arith exp:>. < arith exp>
is an unarrayed integer or scalar expression computable at compile
time.' Its value is rounded to the nearest integer, and must be greater
than one. It denotes the length of the vector produced by the conversion•

. It must therefore match the total number of data elements implied by
the argument(s) of the conversion.

4. In MATRIX the form of the < subscript> must be:

< arith exp> , < arith exp>

Each< arith exp> is an unarrayed integer or scalar expression com­
putable at compile time. Values are rounded to the nearest integer,
and must be greater than one. They denote the row and column
dimensions respectively of the matrix produced by the conversion.
Their product must therefore match the total number of data elements
implied by the argument(s) of the conversion.

5. VECTOR and MATRIX mll-Y have arguments of integer, scalar, vector,
and matrix type only.

6. The precision of the result is SINGLE Unless forced by the presence of
a < precision> specifier.

Examples:

DECLARE X ARRAY(2, 3) SCALAR,
• V VECTOR(3j;

•
INTEGER([X])

INTEGER([X], [X])

SCALAR(V)

result is 2,3 array of integers

result is linear 12-array of integers

result is linear 3-array of scalars

-121-

INTEGER2, 6(2#[X])

MA TRIX(3#V)

result is 2,6 array of integers*

result is 3-by-3 matrix, each row being
equal to V

vector of length 6

Note: A variable enclosed in [] denotes that it is arrayed.

6.6.2 The Bit Conversion Function

Conversion to bit type is carried out by the BIT conversion function.

Syntax

bit conversion function

example:
BIT (I +JI

General Sema.ntic Rules

1. The keyword BIT denotes conversion to bit type.

2. The conversion has one argument of integer, scalar, bit or character
type. If the argument is arrayed, the result of the conversion is
identically arrayed.

Semantic Rules: Without <radix>

1. Conversions of the argument proceed according to standard conversion
rules. The length of the resulting bit string is a fullword, and the
significant data is right justified within the word.

* For example:

Let[X] =G~ ~1

1. Argument 2# [Xl is "first unraveled, " i. e. ,
[,1 2 3 4 5 6 I ,I 2 3 4 5 6, 1

2. Linear string is then "reraveled" into 2x6 array:
n.23456!
L!.23466J

-122-

Z. A <subscript> represents component subscripting upon the results of
the conversion. A <subscript> has the same semantic meaning and
restrictions in the current context as it does in the subscripting of
bit <variable> s (see Section 5.3.5).

Semantic Rules, With <radix>

1. The single argument of the <radix> version of the BIT conversion
must be a < char exp>.; A < radix> specifie s a radix of conversion,
and has one of the following syntactical forms:

@HEX
·@DEC
@OCT
@BIN'

(hexadecimal)
(decimal)
(octal)
(binary)

Z. . The <char exp> must consist of a string (or array of strings) of digits
legal for the specified <radix>, otherwise a run time error occurs.
The conversion generates the binary representation of the digit string.

3. During conversion, if the length of the result is too long to be repre­
sented in an implementation, left truncation occurs'.

Examples:

DECLARE X ARRAY(Z, 3) SCALAR;

•
•
BIT([X])

BITl TO 16([X])

BIT@HEX('FACE')

result is a Z, 3 array of bit strings

same as above except that only bits 1 through
16 of each array element are taken

result is bit pattern of hexadecimal digits
represented by argument

Note: A variable enclosed in [] denotes that it is arrayed.

6. 6. 3 The Character Conversion Function

Conversion to character type is carried out by the CHARACTER conver-
sion.

-lZ3-

Syntax

character conversion function

CHARACTER J-o+-----------~

example:
CHARACTERt>HEX (8)

General Semantic Rules

bitexp

expression

1. The keyword CHARACTER denotes conversion to character type.

2. The conversion has one argument of integer, scalar, bit, or character
type. If the argument is arrayed, the result of the conversion is
identically arrayed.

Semantic Rules: ·Without <radix>

1. A <subscript>, represents component subscripting upon the results
of the conversion. It has the same semantic meaning and restrictions
in the current context as it does in the subscripting of character
< variable> s (see Se;::tion 5. 3. 5).

Semantic Rules: With <radix>

1. The single argument of the <radix> version of the CHARACTER con­
version must be a < bit exp>. A <radix> specifies a radix of
conversion, and has one of the following syntactical forms:

@HEX
@DEC
@OCT
@BIN

(hexadecimal)
(decimal)
(octal)
(binary)

2. The value of < bit exp> is converted to the representation indicated
by the <radix>, left padding the value with binary zeros as required.
The result is a character string consisting of the digits of the repre­
sentation.

-124-

Examples:

DECLARE X ARRAY(2, 3) SCALAR;

.
CHARACTER([X])

CHARACTER2[(X])

CHARACTER@DEclBINllOllOl')

result is a 2,3 array of character
. strings.

same as above except that only the
second character of each array
element is taken.

result is decimal representation
of the bit pattern of the argument.

Note: A variable enclosed in [] denotes that it is arrayed.

6.6.4 The SUBBIT Pseudo-Variable

The SUBBITpseudo-variab1e is a way of making the bit representation
of other data types directly accessible without conversion. It may appear in an
assignment context (see Section 7.·3) as well as part of an <expression>. It
is denoted syntactically by < bit pseudo-var >.

Syntax

SUBBIT pseudo-va,lable

-~-{ SUBBIT J-,r-----------r--{

example:

SUBBIT6 TO 8 CKI

Semantic Rules

1. The keyword SUBBIT denotes the pseudo-variable.

-125-

2. SUBBIT has one argument only. If it appears in an assignment
context, the argument must be a <variable>. If it appears as an
operand of a bit expression, the argument must be an < expression>

3. The argument may be of integer, scalar, bit or character type, and
may optionally be arrayed.

4. The effect of SUBBIT is to make its argument look like an operand of
bit type. (If the argument is arrayed, then it looks like an arrayed
bit operand.)

5. A <subscript> represents component subscripting upon the pseudo­
variable. It has the same semantic meaning as if it were subscripting
a bit variable (see Section 5. 3. 5).

6. The length of the argument in bits may in some implementations be
greater than the maximum length of a bit operand. Let the maximum
length of a bit operand be N bits. If SUBBIT is unsubscripted, only
the N leftmost bits of the machine representation of the data-type of
the argument are visible. If the representation is less than N, the
number of bits visible is equal to the length of the particular data
a-rgument.-

7. Partitioning subscripts of SUBBIT may make between 2 and N bits
from the representation of the argument type visible at any time (i. e. ,
the partition size is ::: N.) The partition size must be known at com­
pile time. If the representation is less than the specified partition
size, binary zeros are added on the left.

8. In an assignment context, SUBBIT functions may not be nested within
SUBBIT functions. Neither may they appear as assign arguments, or
in READ or READALL statements.

Example:

DECLARE P SCALAR DOUBLE;

SUBBlT33 TO 64(P) bits 33 through 64 of the machine representation
of P look like a 32-bit bit variable.

bits 1 through 32 are invisible.

6. 6.5 Summary of Argument Types

The checkmarks in Table 6-3 indicate the legal argument types for
each conversion function.

-126-

LEGAL CONVERSIONS

conversion argument type

function integer scalar vector matrix bit character

INTEGER , , , , , ,
SCALAR , , , , , ,
VECTOR , , , ,
MATRIX , ,
BIT
BIT with
<rad1)

Table 6-4

-127-

6.7 Explicit Precision Conversion

The precision specifier may be used to cause explicit precision
conversion of integer, scalar, vector, and matrix data types.

Syntax

precision specifier

Semantic Rules

--3---(@)----0...---(SINGLE

1, If<precision> is specified as a subscript to an < arith operand> (see
Section 6.1, 1), a conversion to the precision specified takes place.

2. If <precision> is specified as a subscript to an <: arith conversion>
then the result of the conversion is generated with the indicated
precision.

3. If referring
a fullword.

to integer type, SINGLE implies a halfword,
The interpretation is machine dependent.

-128-

and DOUBLE

7. EXECUTABLE STATEMENTS

Executable statements are the building blocks of the HAL/SM
language. They include assignment, flow control, real time programming,
error recovery, and input/ output statements. Syntactically a statement of
the above type is designated by < statement>. The manner of its integra­
tion into the general organization of a HAL/SM compilation was discussed
in Section 3.

-129-

7. 1 Basic Statements

All forms of < statement> except the IF statement and certain forms
of the ON ERROR statement (Section 9. 1), fall into the category of a
<basic statement> •

Syntax

basic statement

statement

__-,;) ---41 basic statement

Any<basic statement>, unless it is imbedded in an IF statement or ON
ERROR statement, may optionally be labeled with any number of < label> s.
Not all forms of <basic statement> are described in this Section. Real time
programming statements are described in Section 8, error recovery state­
ments in Section 9, and input/ output statements in Section 10.

-130-

7. Z The IF Statement

The IF statement provides for the conditional execution of segments of
HAL/SM code.

Syntax

I' icall"."

IF J > 0 THEN K = 1;
ElSE K = 2;

Semantic Rules

1, The IF statement, unless it is imbedded in another IF statement or in
an ON ERROR statement, may optionally be labeled with any number
of <label> s.

Z. The option to label the < statement> or< basic statement> of an IF
statement is disallowed.

3. If< bit exp> appears in the IF statement, then it must be Boolean
(i. e., of I-bit length).

4. If the < condition> or < bit exp> is TRUE then the < statement> or <basic
statement> following the keyword THEN is executed. If<bit exp>
is arrayed then it is considered to be TRUE only if all its array elements
are TRUE. Execution then proceeds to the <statement> following the
IF statement.

-131-

5. If the <condition> or<bit exp> is FALSE then the <statem.ent>
or<basic statem.ent> following the keyword THEN is not executed.
If the ELSE clause is present then the < statement> following the
keyword ELSE is executed instead, and then execution proceeds to
the < statem.ent> following the IF statem.ent. If the ELSE clause is
absent, execution m.erely proceeds to the next <statem.ent >.

Note: If the ELSE clause is present, a <basic statem.ent> rather than a
< statem.ent> precedes the keyword ELSE. A nested IF statement therefore
cannot appear in this position, thus preventing the well-known 'dangling
ELSE' problem..

-132~

7.3 The Assignm-ent Statement'

The assignment statement is used to change the current value of a
<variable> or list of <variable> s to that of an expression evaluated in the
statement.

Syntax

assignment statement

variable

example:
ETA, KAPPA • LAMBDA + 1:

General Semantic Rules

1. A <variable> may not be an event variable, a dew variable or an
input parameter of a procedure or function block.

2. The effective order C)f execution of an assignment statement is as
follows:

o amy subscript expressions on the left-hand side are evaluated,

o the right-hand side <expression> is evaluated, and

o the values of the left-hand side <variable> s are changed.

3. If the < expression;> on the right-hand side is arrayed, then all the
<variable> s on the left-hand side must be arrayed. The number of
dimensions of arrayness on each side must be the same, and corres­
ponding dimensions on either side must match in size.

4. If the < expression> on the right-hand side is not arrayed then it is
still possible for one or more<:variab1e> s on left-hand side to be
arrayed. If more than one <variable> is arrayed, the arraynesses
must match in the sense of General Semantic Rule 3, above. The

-133-

single unarrayed value will be assigned to every element of arrayed
targets.

5. Generally, the type of the<expression:>must match the types of the
<variable> s on the left-hand side. Specific exceptions to this rule
are listed below. The type of an assignment is taken to be the same
as the type of the <variable> whose value is being changed.

Semantic Rules: Integer and Scalar Assignments

1. The following implicit type conversions are allowed during assignment:

o Assignment of an integer < expression> to a scalar <variable>
is allowed. Depending on the implementation this may cause
loss of decimal places of accuracy.

o Assignment of a scalar <expression> to an integer <: variable>
is allowed, causing rounding to the nearest integral value.
This may cause a run time error if, in any implementation,
the scalar has too large an absolute value to be represented
as an integer.

2. If the left- and right-han,d sides of a scalar assignment have differing
precisions, precision conversion is freely allowed. Conversion from
DOUBLE to SINGLE precision implies truncation of an implementation
dependent number of binary digits fiomexponent, mantissa, or both.

Semantic Rules: Vector and Matrix Assignments

1. The < expression> Inust normally be a vector or matrix expression
with the same type and dimension(s) as the <variable> s on the left­
hand side. One relaxation of this rule is permitted. Matrix or
vector < variable> s may be set null by specifying literal zero for
the <expression>. In this case only, both matrices and vectors of
any dimension(s) may appear mixed in the list of <variable> s.

2. If the left- and right-hand sides of an assignment have differing
precisions, precision conversion is freely allowed.

Semantic Rules: Bit Assignments

1. If the length of the bit < expression> is unequal to that of the left-hand
side bit < variable> , then the result of the <: expres sion> is left­
truncated if it is too long, or left-padded with binary zeros if it is
too short.

-134-

2. The effect of a left-hand side <variable> being a <bit pseudo-var >
is described in Section 6. 6.4.

Semantic Rules: Character Assignments

1. Assignment of an integer or scalar <expression> to a character
<variable> is allowed. During assignment the integer or scalar value

is converted to a character string.

2. If<variable> is a character variable with no component subscripting,
then:

o If the length of the < expression> is greater than the declared
maximum length of the <variable> , the <expression> is
right-truncated to that length. The <variable> takes on its
maximum length.

o If the length of the < expression> is not greater than the declared
maximum length of the < variable>, then < variable> takes on
the length of the < expression> •

3. If < variable> is a character variable with component subscripting,
then:

o If the length of the <expression> is greater than the length
implied by the component subscript, then it is right-truncated
to the implied length.

o If the length of the < expression> is less than the length implied by
the component subscript, then it is right-padded with blanks to
the implied length.

o After assignment the < variable> takes on the length implied
by the upper index of the component subscript, or retains its
original length, whichever is the greater. If the upper index of
the subscript implies a length greater than the declared maxi­
mum for that < variable> , right-truncation to the maximum
length occurs.

o If the lower index is greater than the length of the <variable>
before assignment, then the intervening gap is filled with blanks.

Semantic Rules: Structure Assignments

1. An< expression> can only be a < structure exp>. The tree organization
of the structure operands on both sides of the assignment must match ex­
actly in all respects. The sense in which tree organizations of two struc­
tures are said to match is described in section 4. 3.

-135-

7.4 The CALL Statement

The CALL statement is used to invoke execution of a procedure. The
PROCEDURE block may be in the same <compilation> as the CALL statement
or external to it.

Syntax

CALL .tlIla-.t

-4-~_-__--_---4 CALL

Semantic Rules

example:
CALL EPSILON CA' B) ASSIGN (e);

1. CALL< label> invokes execution of a procedure with name < label> •

2. If a <procedure block> with name <label> appears in such a name­
scope that < label> is known to the CALL statement, then CALL
< label> invoke s that block.

3. If no such<procedure block> exists, then the <procedure block>
is assumed to be external to the < compilation> containing the CALL
statement. A < procedure template> for that < procedure block>
must therefore be present in the <: compilation> (see Section 3.6).

4. Each of the < expression> s is an "input argument" of the procedure
call.

-136-

.

5. Each of the <variable> s is an "assign argument" of the procedure
call. Only assign arguments may have their values changed by the
procedure. If <variable> is subscripted, it must be restricted in
form to the following:

o No component subscripting for bit and character types.

o If component subscripting is present, < variable> must be
subscripted so as to yield a single (unarrayed) element of
the <variable> •

o If no component subscripting is present, but array subscripting
is, then all arrayness must be subscripted away.

6. Assign arguments are "call-by-reference." Input arguments are
either "call-by-reference" or "call-by-value." (In this context
" call-by-reference" means the arguments are pointed to directly.
"Call-by-value" means the value of an input argument, at the invocation
of a procedure, is made available to the procedure.)

7. Each assign argument must match its corresponding procedure block
assign parameter exactly in type, precision, dimension, arrayness,
structure tree organization, and DENSE and REMOTE attributes, as
applicable. CHARACTER lengths are an exception; the declared
le.ngths need not match. The reason is that character types are of vary­
ing length and the actual length is available at execution. If an assign­
ment argument has the LOCK attribute, then the following must apply:

o If it is of lock group N, then the corresponding assign parameter
must be of lock group N, or *.

o If it is of lock group'*, then the corresponding parameter must
also be of group *.

8. Bit type identifiers which are part of structure variables and have the
DENSE attribute may not be used as ASSIGN arguments of a CALL state­
ment•. All other types of structure terminals with the DENSE attribute may
be used as ASSIGN arguments. See Sections 4.3 and 4. 5 for further expla­
nati-on of the DENSE attribute•. Note, however, that an entire structure
with the DENSE attribute may be passed provided that template matching
rules .are observed•

9. A <dcw val'> or an <event var> may not be "assign arguments" of the
proceduz:e call.

10. For input arguments, the following relaxations of rules 7 and 8 are per­
mitted:

-137-

o precisions need not match,

o the lengths of bit arguments need not match,

o the lengths of character arguments need not match,

o implicit integer to scalar and scalar to integer conversions
are allowed,

o implicit integer and scalar to character conversions are
allowed, and

o matching of the attributes DENSE and REMOTE is not required.

Input arguments may be viewed as being assigned to their respective
input parameters on invocation of the procedure. The rules applicable
in the above relaxations thus parallel the relevant assignment rules
given in Section 7.3.

11. If an as sign argument is a structure terminal or a minor structure
node (but not if it is a major structure) and if the structure possesses
multiple copies, then the number of copies must be reduced to one by
subscripting.

Example:

STRUCTURE Z:

1 A,
2 C CHARACTER (80)
2 B VECTOR,

1 D INTEGER;
DECLARE ZZ Z-STRUCTURE (20);

CALL X ASSIGN (ZZ,

t
legal

ZZ.A, ZZ.A.B,
I~__--'t

illegal

-138-

7.5 The RETURN Statement

The RETURN statement is used·xo cause return of execution from a
TASK, PROCEDURE, or FUNCTION block. In the case of the FUNCTION
block it also specifies an expression whose value is to be returned.

Syntax

~"basicy
RETURN_

-~---,r------""""\!R~E~TU~R~N~-r----I~;)--

IJlImple:

DONE: RETURN ZETA;

General Semantic Rules

1, The effect of the RETURN statement is to cause normal exit (return
of execution) from a TASK, CRITICAL, PROCEDURE, or FUNCTION
block. (Also see the CLOSE statement, Section 3.8.4).

2. An <expression> may only appear in a RETURN statement of a
<function>. Its value is the returned value of the function, and is
evaluated prior to returning.

3. An <expression> must match the function: definition in type and
dimension, with the following exceptions:

o the lengths of bit expressions need not match,

o the lengths of chara"cter expressions"need not match,

o implicit integer to scalar and scalar to integer conversions
are allowed, and

o implicit integer and scalar to character conversions are allowed.

The return of the function values may be viewed as the assignment of
the < expression> to the .function name. The rules applicable in the
above exceptions thus parallel the relevant assignment rules given in
Section 7.3.

-139-

4. An <expression> must always appear in RETURN statements of
<function block> s. Execution must always end on logically
reaching a RETURN statement of such a block, and not by logically
reaching the delimiting CLOSE statement.

-140-

7. 6 The DO••• END Statement Group

The DO••• END statement group is a way of grouping a sequence of
<statement::> s together so that they collectively look like a single <basic
statement>. Additionally, some forms of DO••• END group provide a means
of executing a sequence of < statement> s either iteratively, or conditionally,
or both.

Syntax

DO END statement group•••

,-
critical
section block-

procedure
basic block ~

statement

function
~ block I-

Lo-
update

~block

end

- do statement statement

example:
'--

statement
l-

. DO WHILEJ>O;
J = J - 1;

The DO••• END statement group is opened with a < do statement> and closed
with an <end statement>. In between may appear any number of <statement> s
interspersed as required with FUNCTION, PROCEDURE, CRITICAL SECTION,
or UPDATE blocks. The form of the <do statement> determines how the
<statement> s within the group are executed.

7.6.1 The Simple DO Statement

The simple DO statement merely indicates that the following sequence
of< statement> s comprising the group is to be viewed as a single<basic
statement>. The sequence is executed once only.

-141-

Syntax

DO

7. 6. 2 The DO CASE State:ment

The DO CASE state:ment indicates that in the following sequence of
<state:ment> s co:mprising the group, only one specified < state:ment> is to

be executed.

Syntax

.,.......:::...f--r------..,-(COCAS.)-i_"'ith_'X.---,~~--_-J---"-

.~ '0')1'-,..-..mcn-,J
oamp":
ALPHA: 00 CASE J. I,

Se:mantic Rules

1. An <arith exp> is any unarrayed integer or scalar expression. The
value of a scalar expression is rounded to the nearest integer before
use.

2. Let the value of<arith exp> be denoted by K. If K is greater than
zero, but not greater than the nu:mber of < state:ment> s in the group,
then the Kth < state:ment> of the group is executed.

3. If the value of K is outside the range defined in Rule 2, and no ELSE
clause appears in the DO CASE state:ment, then a run ti:me error occurs.

-142-

4. If the value of K is outside the range defined in Rule 2, but an
ELSE clause does appear, the < statement> following the ELSE
keyword is executed inst!lad of one of those in the group. The
option to label < statement> is disallowed.

5. The presence of any code block definition in the group of <statement> s
does not change the K-indexing of the < statement> s.

7. 6. 3 The DO WHILE and UNTIL Statements

The DO WHILE and UNTIL statements cause repeated execution of
the sequence of <statement> s in a group until some condition is satisfied.

Syntax

DO WHILE ond UNTIL ,ta_nlS

IxampJl:
DO WHILE I > 0;

Semantic Rules

1. There is no semantic restriction on <condition>. A<bit exp> must
be Boolean and unarrayed (i. e., of I-bit length). The < condition>
or < bit exp> is reevaluated 'every time the group of < statement> s is
executed.

2. In the DO WHILE version, the group of < statement> s is repeatedly
executed until the value of < condition> or<bit exp> becomes FALSE.
The value is tested at the beginning of each cycle of execution. This
implies that if <condition> or <bit exp> is initially FALSE the group
of <statement> s is not executed at all.

3. In the DO UNTIL version, the group of< statement> s i.s repeatedly
executed until the value of <: condition> or <: bit exp> becOlnes TRUE.
The value is not tested before the first cycle of execution. On the
second and all subsequent cycles of execution, the value is tested at
the beginning of'each cycle. Use of the UNTIL version therefore
guarantees at least one cycle of execution.

-143-

7.6.4 The Discrete DO FOR Statement

The discrete DO FOR statement causes execution of the sequence of
<statement> s in a group once for each of a list of values of a "loop
variable. II The presence of a WHILE or UNTIL clause can be used to cause
such execution to be dependent on some condition being satisfied.

Syntax

di""'18 DO FOR ,..,omen,

--~-r--"""-~..,.....{ DO FOR arith exp I-r-~

----------------r--I .,
WHILE conditioR

bit exp

exarnple:

Semantic Rules

DO FOR I - 10, 20 WHILE J > 0;

1. An<arith var> is the loop variable of the DO FOR statement. It may
be any unarrayed integer. or scalar variable.

2. The maximum number of times of execution of the group of <statement> s
is the number of <arith exp> s in the assignment list.

3. An< arith exp> is an unarrayed integer or scalar expression.

4. At the beginning of each cycle of execution of the group the next <arith
exp> in the list (starting from the leftmost) is evaluated and assigned
to the loop variable. The assignment follows the relevant assignment
statement rules given in Section 7.3.

-144-

5. Use of the WHILE or UNTIL clause causes continuation of cycling of
execution to be dependent on the value of <condition> or <bit exp> •

6. There is no semantic restriction on < condition>. A <bit exp> nlUst
be Boolean andunarrayed (i. e., of I-bit length). The <condition>
or < bit exp> is reevaluated every time the group of < statement> s
is executed.

7. If the WHILE clause is used, cycling of execution is abandoned when
the value of <condition> or <bit exp> becomes FALSE. The value is
tested at the beginning of each cycle of execution after the assigmnent
of the loop variable. This implies that if<condition> or <bit exp>
is l!'ALSE prior to the first cycle of execution of the group, then the
group will not be executed at all.

8. If the UNTIL clause is used, cycling of execution is abandoned when the
value of < condition> or <bit exp> becomes TRUE. The value is not
tested before the first cycle of execution. On the second and all sub­
sequent cycles of eJCecution, the value is tested at the beginning of each
cycle after the assignment of the loop variable. Use of the UNTIL
version, therefore, always guarantees at least one cycle of execution.

7.6.5 The Iterative DO FOR Statement

The iterative DO FOR statement is similar in intent and operation
to the discrete DO FOR' statement, except that the list of values that the loop
variable may take on is replaced by an initial value, .a final value, and an
optional increment.

Syntax

lterltive DO fOR. itllWiillftt

-:T-'-r-------.t""-\ DO FOR

lrilb""p-------r<.....----------"""""M
WHILE h-i

DO FOR I • 1 TO 3!1 BY 2 UNTIL J < 0;

-145-

Semantic Rules

1. An <: arith var> is the loop variable of the DO FOR statement. It may
be any unarrayed integer or scalar variable.

2. Each<: arith exp> is any unarrayed integer or scalar expression. All
are evaluated prior to the first cycle of execution of the group.

3. Unless a BY clause appears in the DO FOR statement, the value
assigned to the loop variable prior to the Kth cycle of execution is one
greater than its value on the K-lth cycle.

4. If a BY clause appears in the DO FOR statement, the value assigned to
the loop variable prior' to the Kth cycle of execution is equal to its
value on the K-lth cycle plus the value of<: arith exp> following the
BY keyword (the "increment").

5. Assignment of values to the loop variable follows the relevant assign­
ment rules given in Section 7.3. In particular, if the loop variable
is of integer type, and an initial value or increment is of scalar type,
the latter will be rounded to the nearest integer in the assignment
process. The effect of the loop variable assignment is identical to
that of an ordinary assignment statement: the loop variable will retain
the last value computed and assigned when the DO statement execution
is completed.

6. After the value of the loop variable has been changed, it is checked
against the value of the <:arith exp> following the TO keyword (the
"final value").

7. If the sign of the increment is positive, the next cycle is permitted to
proceed only if the current value of the loop variable is less than or
equal to the final value.

8. If the sign of the increment is negative, the next cycle is permitted to
proceed only if the current value of the loop variable is greater than or
equal to the final value.

'9. If the WHILE clause is used, cycling of execution is abandoned when
the value of <: condition> or<: bit exp> becomes FALSE. The value
is tested at the beginning of each cycle of execution after the assign­
ment of the loop variable. This implies that if<: condition> or <bit
exp> is FALSE prior to the first cycle of execution of the group, then
the group will not be executed at all.

10. If the UNTIL clause is used, cycling of execution is abandoned when
the value of <: condition> or <: bit exp> becomes TRUE. The value is
not tested before the first cycle of execution. On the second and all

-146-

subsequent cycles of execution, the value is tested at the beginning
of each cycle after the a.ssigmnent of the loop variable. Use of the
UNTIL version therefore always guarantees at least one cycle of
execution.

7.6.6 The END Statem.ent

The END statem.ent closes a DO••• END statem.ent group.

Syntax

END stllll...,at

END

example:
END LOOP;

Sem.antic Rules

1. If <label:> follows the END k.eyword, then it m.ust m.atch a <label:> on
the < do statem.ent:> opening the DO••• END group.

2; The <end statem.ent:> is considered to be part of the group, in that
if it is branched to from. a < statem.ent:> within the group, then
depending on the form. of the opening <do statem.ent:>, another cycle
of execution of the group m.ay begin.

-147-

7.7 Other Basic Statements

Other < basic statement> s are the GO TO, "null," EXIT, and
REPEAT statements.

Syntax

GO TO :'nuU",EXIT and REPEAT statements

label

---l-r--------.......tr'*"-------~-------4__(;
label

e.ample:
ONE: DO FOR I • 1 TO 10;
TWO: DO FOR J • 37 TO 43;

IF B',J • FALSE THEN REPEAT ONE
END'

END; .•

Semantic Rules

EXIT

REPEAT label

1. The GO TO < label> statement causes a branch in execution to an
executable statement bearing the same <label>. The latter statement
must be within the same name-scope as the GO TO statement. A GO
TO statement may not be used to cause execution to branch into a
DO•.• END group, or into or out of a. code block.

2. The "null" statement (where no syntax except pos sible < label> s
precede the terminating semicolon) has no effect at run time.

3. The EXIT statement is legal only within a DO••• END group or within
nested such groups. The form EXIT <label> controls execution
relative to the enclosing DO••• END group whose <DO statement>
bears <label>. The forPi EXIT controls execution relative to the
innermost enclosing DO••• END group. Execution is caused to branch
out of the DO••• END group specified or implied, to the first executable
statement after the group.

4. The REPEAT statement is legal only within a DO••• END group opened
with a DO FOR, DO WffiLE, or DO UNTIL statement, or within
nested such groups. The form REPEAT < label> controls execution

-148-

relative to the enclosing such group whose <DO statement:> bears
< label>. The form ,REPEAT controls execution relative to the
innermost such group. Execution is caused to abandon the current
cycle ,of the DO••• END group. H the conditions of the opening
<DO statement>are still satisfied, the next cycle of execution

begins normally.

5. Code blocks (procedures, functions, etc.) may appear within DO•••
END groups. However, EXIT, REPEAT, and GO TO statements
may not be used to cause execution to branch into or out of such code
blocks.

-149-

(BLANK)

-150-

..

8. REAL TIME CONTROL

HAL/SM contains a co:mprehensive facility for creating a :multi-tasking
job structure in a real ti:me progra:m:ming environ:ment. MOSS controls
loading and initiation of job!> and at run ti'me controls the execution of tasks
held in a task queue. HAL/SM contains state:ments which load and initiate

-jobs, schedule tasks (enter the:m in the task queue), ter:minate Jobs and tasks
(re:move· the:m fro:m the task queue), and otherwise direct MOSS in its con-
trolling function. HAL/SM also contains :means whereby the use of data or
resources by :more than one task at a ti:me is :managed in a safe, protected
:manner at specific localized points within the tasks •

-151-

8. 1 Jobs and MOSS

Under MOSS a job may be linked, loaded, and/ or initiated through
the use of MOSS Job Control Language. Also, an executing job may request
that another job be loaded, initiated, and/ or terminated. In HAL/ SM the
LOAD statement, the INITIATE statement, and the TERMINATE statement
specify the job conditions mentioned above.

8. 1. 1 The LOAD Statement

The LOAD statement specifies that a particular job should be loaded
from the Job Load Library to External Paging Memory under MOSS control.

Syntax

LOAD statement

----,+---,-----...----<l~--'--f'__L_O_A_D_ ___./ -(label)-0-

Semantic Rules

label 4lxarnple:
LOAD JOB1V23l;

1. The <label> following LOAD must be limited to eight characters and
must be declared with the JOB label attribute.

2. The <: label> following LOAD must identically match the job name
of a job in the MOSS Job Directory

8. 1.2 The INITIA TE Statement

The INITIATE statement specifies MOSS execution of a particular
job that has been previously loaded.

-152-

Syntax

INITIATE statement

--J---r----__----_r--{ INITIATE label

Semantic Rules

label example:
INITIATE TRAJECTY;

1. The< label> following INITIATE m]1st be limited to eight characters
and must be declared with the JOB label attribute.

2. The < label> following INITIATE must identically match the job
name of a job in the MOSS Job Directory•

.-153-

8.2 Tasks and MOSS

In HAL/SM, a task maybe scheduled for execution and placed in the
task queue. Each task in the MOSS task queue is at any instant in one of a
number of states. For the purposes of this section, the following states are
defined: (These states are not necessarily definitive of those actually exist­
ing in MOSS.)

o Active - a task is said to be in the active state if it is actually
in execution. Depending on the implementation it may be
possible for several tasks to be in execution simultaneously.

o Wait - a task is said to be in the wait state if it is ready for
execution but MOSS has decided on a priority basis that its
execution should be delayed or suspended.

o Ready - a task is said to be in the ready state if it is in either
the active or the wait states.

o Stall - a task is said to be in the stall state if some as yet
unsatisfied condition prevents it from being in the ready state.

The occurrence of a task being brought into the active state for the first time
is called "initiation. "

Execution of a CLOSE or RETURN statement at the task level, or a
TERMINATE task statement at any level causes termination of the task and
return to MOSS. Execution of a TERMINATE job statement causes termination
of the task and the job when all other tasks in the job have terminated.

-154-

..

8.3 Timing Considerations

In the HAL/SM system, ·MOSS contains clocks measuring elapsed
time. Time is measured in milliseconds. HAL/SM contains several
instances of timing expressions which in effect make reference to these
clocks.

Absolute time may be expressed relative to one of two time scales,
Greenwich Mean Time (GMT) or Mission Elapsed Time (MET). Alternatively,
time may often be expressed relative. to the present time, depending on the
syntax of a specific statement.

The syntactical term < clock > may be used to specify either Greenwich
Mean Time or Mission Elapsed Time.

Syntax

CLOCK SPECIFICATION

GMT

MET

8.4 The SCHEDULE Statement

Tasks are scheduled (placed in the task queue) by means of the
SCHEDULE statement. The statement has many variant forms and offers
the following features:

o A task may be scheduled so that MOSS immediately places
it in a ready state.

o Conditional execution of a task may be specified so that a
task will be required to wait for certain specified conditions
to be satisfied before the task can be considered ready for
execution. Such conditions include:

single or multiple events combined in a logical
expres sion,

a specified period of elapsed time,

a clock time,

combinations of the above.

Combinations may specify either that the events are not to be
considered until after some period of elapsed time or until
after some clock time, or that a period of time must elapse
after the events are satisfied.

o Up to 256 byte~ of data may be passed to the scheduled task.

-156-

Syntax.

SCHEDULEstatement

_.....::.:~---------.."SCHEDULE label

label

time value

expression time value

L(WHEN)- event exp \. THEN .. WAIT)- time value

REPEAT AFTER time value

example:
SCHEDULE IOTA;
SCHEDULE DELTA (PARMS) AT GMT 31000, REPEAT AFTER 50 MINS;

-157-

Semantic Rules

1. SCHEDULE< label> schedules a task with the name <label>, as
defined in the JCL task statement, placing a new task with name
< label> in the task queue. Unless otherwise specified, MOSS
puts the new task in the ready state immediately after execution of
the SCHEDULE statement.

2. The phrase IN< time value> is used to cause the task to be put in
the stall state for a fixed time duration. The< time value:> is evaluated
once at the time of execution of the SCHEDULE statement. If the value
is not greater than zero then the task is put immediately in the ready
state if no other conditions are specified.

3. The phrase AT< clock> < time value> is ·used to cause the task to be
put in the stall state until a fixed clock (GMT or MET) time. The
< time value> is evaluated once at the time of execution of the
SCHEDULE statement. If the value is not greater than the current
clock time, then the task is put immediately in the ready state unless
otherwise specified.

4. The phrase WHEN < event exp> is used to cause the task to be put
in the stall state until some event condition is satisfied. Starting from
the time of execution of the SCHEDULE statement (or after the time
delay specified in an AT or IN phrase (if specified)), the <event exp>
is evaluated at each "event change point" (see Section 8.10) until its
value becomes TRUE. At that time the task is placed in the ready
state unless otherwise specified. If the value of <event exp> is TRUE
upon execution of the SCHEDULE statement, then the task is immediately
put in the ready state unless otherwise specified.

5. The phrase THEN WAIT <time value:> is used to cause the task to be
put in the stall state for a fixed clock duration following the satisfaction
of any previous conditions. The< time value> is evaluated once at the
time of execution of the SCHEDULE statement. If the value is not
greater than zero then the task is put immediately in the ready state.

6. The SCHEDULE statement has no effect on the specified task and an error
is issued if that task has already begun execution, or in the case of a
periodic task, has not been cancelled. However, if a conditional
SCHEDULE statement has been previously issued for a task and has not
been satisfied), then the current SCHEDULE command replaces the
previous one.

7. A task.cannot transmit m.ore data than can be contained in the area
specified (to a maxim.um of 256 bytes) via the JCL for the receiving task.
If too much data is specified, the receiving task is not initiated and an
error is issued to the sending task.

-158-

8. When a conditional SCHEOULE command is issued for a periodic task,
the non-periodic conditions are required to be satisfied prior to the
first execution only. S~bsequent scheduling of the task is based on
the <time value> specified in the AFTER clause.

9. The REPEAT phrase of the SCHEDULE statement is used to specify
a task which is to be executed cyclically by MOSS. If the REPEAT
phrase is not qualified, then cycles of execution follow ·each other with
no intervening time delay. To cause execution of consecutive cycles
to be separated by a fixed intervening time delay, the qualifier AFTER
< time value> is used. The <time value> is evaluated once at the

.time of execution of the SCHEDULE statement. If the value is not
greater than zero then no time delay results.

-159-

8.5 The CANCEL Statement

Cancellation of a task implies the removal of the specified task from
the task queue upon termination. Cancellation may only be the result of
executing a CANCEL statement.

Syntax

CANCEL _mont

-~~-,.--_---o.r--{CANCEL)-...---....---r-{

example:
FINISHING: CANCEL ETA, NU;

Semantic Rules

1. CANCEL< label> causes cancellation of the task <label>. The
CANCEL statement can be used to cancel any number of tasks
simultaneously.

2. If the CANCEL statement has no <label>, cancellation of the task
executing the CANCEL statement is implied.

3. If at the time of execution of the CANCEL statement, a task to be
cancelled has not yet been initiated, then the task is merely removed
from the task queue. This applies to both cyclic and non-cyclic tasks.

4. If at the time of execution of the CANCEL statement, a task to be
cancelled has already been initiated, then the following ensues. If
the task is non-cyclic and it has already been initiated, the CANCEL
statement has no effect. If the task is cyclic, then the task is cancelled
at the end of the current cycle of execution.

5. If at the time of execution of the CANCEL statement, the specified
task is not in the proper state to be cancelled, a runtime error will
result.

-160-

8. 6 The TERMINATE Statement

This statement allows the user to signal the completion of execution
. to MOSS of the currently executing task and optionally signal completion of
execution of the job to which it belongs.

Syntax

TASK

TERMINATE statement

example:
STOP: TERMINATE TASK;

JOB

_J-.......__---..,-{.rERMINATE }----<.{

Semantic Rules

1. TERMINATE TASK causes the· termination of the task executing the
TERMINATE statement.

2. TERMINATE JOB implies task termination. Other tasks within the
job are allowed ·to proceed to completion. No new task belonging to
the job associated with this task is permitted to begin execution.

-161-

8.7 The WAJ.T Statement

The WAJ.T statement allows the user to cause MOSS to place a task
in the stall state until some condition is satisfied.

Syntax

basic WAJ.T statement

statement

j
I' WAJ.T "\

~ f

} time
: label ~ FOR) value

clock

. 0-
- -'"L(uNTIL5=jevent exp ~TIfEN XWAlT >l:.n;:.p

example:
NOW: WAJ.T UNTIL EVENT_A & EVENT_B, THEN WAIT 30 MSECS;

Semantic Rules

1. The WAIT FOR < time value> ver sian specifies that the task executing
the WAIT statement is to be placed in the stall state for a clock dura­
tion fixed by the value of the < time value>. The < time value> is
evaluated once at the time of execution of the WAIT statement. If
the value is not greater than zero, the WAIT statement has no effect.

2. The WAIT FOR < clock> < time value> version specifies that the task
executing the WAIT statement is to be placed in the stall state until a
clock time fixed by the value of the< time value>. The < time vahie>
is evaluated once at the time of execution of the WAIT statement. If the
value is not greater than the current clock time, the WAIT statement
has no effect.

-162-

3. The WAIT UNTIL <event exp> version specifies that the task
executing the WAIT statement is to be placed in the stall state until
an event condition is satisfied. Starting from the time of execution
of the WAIT statement, or after the time delay 9}!lecified in a FOR
phrase (if specified), the < event exp> is evaluated at every "event
change point" until its value becomes TRUE, whereupon the task is
returned to the READY state if no THEN WAIT < time value> phrase
is specified. If the value of< event exp> is TRUE upon evaluation,
then the phrase has no effect.

4. The phrase THEN WAIT < time value> is used to cause the task to be
put.in the stall state for a fixed clock duration following the satisfaction
of any previous conditions. The <time value> is evaluated once at the
time of execution of the WAIT statement. If the value is not greater
than zero then the process is put immediately in the ready state.

·5. Although each of the phrases of this statement are optional, at least
one must be specified.

6. When a task suspends its execution with the WAIT statement, all
resources that it has selected are automatically released (see Section
8. 15).

-163-

8.8 The ABORT StatelTIent

The ABORT statelTIent allows the user to cause any task in the salTIe
job to be aborted, or the entire job to which the task belongs to ·be aborted.

Syntax

ABORT statelTIent

JOB

labellabel

exalTIple:
STOP-X: ABORT TASK-X;

+---,:,..,.----......-----........ "-_A_B_O_R_T-.-/I--t-t '-.T_A_S_K_--,H-O-

SelTIantic Rules

1. The ABORT JOB version specifies that the task executing the
statelTIent and all other tasks within the job are i=ediately aborted.

2. The ABORT TASK version specifies that the task executing the
statelTIent is to be ilTIlTIediately aborted.

3. The ABORT <label> version specifies one or lTIore tasks within the
salTIe job are to be aborted. The <: label> lTIust be the nalTIe of a task
as defined in the Task statelTIent in the JCL.

-164-

8. 9 The DELETE Statement

The DELETE statement p:rovides a means through which a task may
terminate its execution and release its Main Memory or terminate the job to
which it belongs and remove it, from EPM.

Syntax

-----,~-r----....----_....._{ DELETE

JOB

TASK

DELETE statement

label

example:
DELETE JOB;

Semantic Rules

1. The DELETE TASK form will cancel a periodic task.

2. DELETE TASK also implies task terminate and all of the actions
performed at task termination will be executed for DELETE TASK.

-165-

8. 10 Event Control

Although a formal specification of event variables, flags, and event
expressions has already been given in Sections 4 and 6.3, the specification
has not yet made their purpose clear in the context of real time programming.
Superficially, event variables are closely akin to Boolean variables in that
they are binary valued. However, the user may not directly assign a value
to an event variable; this can only be done by MOSS in response to the occur­
rence of a particular event which the event variable is monitoring, or in
response to the execution of a RESET statement referencing the event
variable.

Event variables are used to monitor the activity of events. The
particular event that is being monitored at any given point in time is assigned
to an event variable via the ALERT statement. Unassigned (unalerted) event
variables or alerted event variables for which the event has not occurred have
a value of zero (or FALSE or OFF). The value of the event variable is set to
one (TRUE or ON) by MOSS when the event occurs.

There are three basic categories of events:

o Task termination

o Program flags

o RTIOS data bus state changes

The concept of a task termination event is self-explanatory. Data bus state
changes will be described with the ALERT statement. Program flags are
basically user defined even~s which may be set (i. e., caused to occur) when
a task executes a SIGNAL statement referencing the particular program flag(s)
which the progranuner wishes to use to indicate a particular situation has
occurred. This allows the programmer to use the event mechanism as a
form of inter-task conununication and synchronization via the SCHEDULE and
WAIT statements.

When an event occurs, any event variables which happen to be alerted
to that event are set to one (any number of event variables may be alerted
to an event at any given time). The occurrence of the event removes the
assignment of the event variable(s) to the event; however, the event variable
retains the ON value until the event variable is realerted to the same or another
event, o·r until the event variable is explicitly RESET by the programmer.

-166-

8.11 The SIGNAL Statement

The SIGNAL statement permits the programmer to "cause" the
occurrence of a programmer defined event by signaling a program flag.
Any event variables alerted to the flag variable will be set to one (or TRUE
or ON).

Syntax

SIGNAL statement

flagSIGNAL

label

example:
L: SIGNAL BETA, IOTA;

-167-

8. 12 The RESET Statement

The RESET statement causes the value of an event variable to be set
to zero.

Syntax

RESET statement

event var

example:
CLEAR EM: RESET EV 1, EV2, EV3;

Semantic Rules

1. The value of an event variable is set to zero, independent of whether
the event variable was previously one or zero, or whether it had been
previously alerted or not.

2. If an event variable has been alerted to an event and then RESET before
the occurrence of the event, the alert is no longer in affect (i. e. ,
MOSS ceases to as sodate the occurrence of the event with the event
variable).

-168-

8.13 The ALERT Statement and Events

The ALERT statement enables a task to specify that a particular event
is to be monitored and its occurrence recorded in a particular event variable.

Syntax

ALER T statement

.......-+..,.....- --...---1 ALERT event var B-i event

arith exp

~--I relational
op

TERMlliA­
TION

flag

erp .
...!'-~-tf-~\ designator

(
~> ltime value I

clock) V 1;J .1---.---I!
e.xamp1e:

ALERT ALPHA TO TERMINATION OF TASK_A;

-169-

Semantic Rules

1. Unassigned (unalerted) event variables or event variables for which
the event has not occurred have a value of zero. When the event to
which an event variable is alerted occurs, the event variable is set
to a value of one.

2. The occurrence of an event removes the assignment of all event variables
which are alerted to it (the value of the event variable remains one
until the event variable is either realerted or explicitly RESET).

3. The < event > which is TERMINATION of <label> is signaled by MOSS
when the task named < label> terminates.

4. The <event > which is <flag> occurs when a task SIGNALs that
particular program flag.

5. R TIOS data bus state changes are signaled by MOSS when the indicated
< erp designator> or <clock> meets the conditions indicated.

6. The kinds of conditions which can be specified as <event> s for RTIOS
data bus state changes depend on the type of the < erp designator> or
< clock> and is implementation dependent.

-170-

8.14 Data Sharing and the UPDATE Block

The UPDATE block provides a controlled environment for the use of
data variables which are shared by two or moreHAL/SM tasks. If controlled
sharing of certain variables is desired, they must possess the LOCK(N)
attribute, where N indicates the "lock group" of the variable (see Section 4. 5).
LOCKed variables may only be used inside UPDATE blocks. A LOCKed
variable appearing inside an UPDATE block is said to be "changed" within the
block if it appears in one or more statements which may change its value (the
left-hand side of an assignment for example). It is said to be "accessed" if
it only appears in contexts other than· the above.

A formal specification of the UPDATE block appears in Section 3.4. The
manner of operation of an UPDATE block is implementation dependent, but is
such as to provide certain safety measures.

Operational Rules

1. If two tasks both require variables from the same lock group to be
changed, then the first task entering its UPDATE block must complete
execution of the block before the other task can enter its own UPDATE
block. The second task is placed in a stall state for the duration.

2. If one task entering an UPDATE block requires a variable(s) with the
attribute LOCK(*) to be changed, then the situation is equivalent to
one in which the task requires use of a variable from every lock group.

3. If only one of the tasks ·requires a variable of a lock group to be changed,
the other merely requiring it to be accessed, then depending on the
implementation, either Rule 1 or 2 holds, or some overlap in execution
of the two tasks'UPDATE blocks is allowed. The nature of such overlap
must be such as to provide exclusive .use ·of the lock group by the task
requiring its change between the point where the variable is changed
and the close of the UPDATE block.

4.· If both tasks only require a variable of the same lock group accessed,
then execution of the two tasks' UPDATE block may be allowed to over­
lap depending upon implementation.

5. If there are several simultaneous conflicts in using shared variables
because of the participation of more than two tasks, or more than one
lock group, then the most restrictive of Rules 1 through 4 required is
applied to resolve the conflicts.

-171-

8. 15 Resource Access Control

MOSS allocates resources on a job basis according to each job's
requirements as specified in MOSS Job Control Language. Once allocated
to a job, a resource is accessible to all tasks within the job, but only in a
controlled manner. Access to a given resource must be explicitly requested
before use by a task to insure against conflicts among tasks in using the
resource. Resources for which .access must be requested include the
following:

o channels,

o system/job cO!Il1'llon data modules (one or more COMPOOLS), and

o system/job common serially reusable program modules (one
or more COMSUBS).

There are two statements in HAL/SM, the SELECT and RELEASE
statements, which specify this resource control,

8. 15. 1 The SELECT Statement

The SELECT statement must be used by a task to gain access to a
resource before the resource Inay .be used.

-172-

Syntax

label

SELECT

DSD

DATA

,__,_sd select

list

data select
list

prog select
list

XC LUSIVE

{

dSd
where !l = data.

prog

-~~---,--l!l select
element

SHARED

FILE READ

WRITE

AND - WRITE

data
prog

label

where !l =

LEAVE

REWIND

COMMON

DISP

JOB

SYSTEM

example:
SELECT FILE CHANNEL (2) UPDATE, DISP = LEAVE;

Semantic Rules

1. The term DATA specifies a MOSS system or job common data module.
This module may be one or more linked HAL/SM COMPOOLS identi­
fied by the COMPOOL <label> as sodated with one of them.

Z. The term PROGRAM specifies a MOSS system or job common
serially reusable program module. The module may be one or more
linked HAL/SM COMSUBS identified by the COMSUB < label> associated
with one of them.

3. The < label> following COMMON must specify the name of the data
or program module •. The < label> must have been declared as a
COMPOOL or COMSUB name.

4. Requests for access to additional units of a particular type of resource
already held by a task are rejected. All previously granted access
rights to units of a particular resource type must first be released,
and a single new request for all required units of the resou,rce type
issued.

5. Requests for access to resources of different types must be issued
in the following order or a run time error will occur. (All previously
granted access rights to resource types of a higher or equal order
number must first be released before issuing a request for access
rights to units of a particular resource type.)

1 - channels and files

Z - system/job common data modules

3 - system/job common serially reusable program modules

6. All resources which are SELECTed by a task are released upon entry
to an UPDATE block (see Section 8.14).

7. If neither EXCLUSIVE or SHARED is specified, EXCLUSIVE shall be
assumed.

8.15. Z The RELEASE Statement

The RELEASE statement may be used by a task to release access of
a resource.

-174-

Syntax

RELEASE statement

FILE

CHANNEL number

e.xample:
RELEASE DATA_124;

Semantic Rules

label

'-----------(,)---_-- -J

1. The <label> following RELEASE must specify the name of a data
or program module to be released. The <label> must have been
declared as a COMPOOL or COMSUB nam.e.

2. Releasing a CHANNEL or FILE does not "close" the channel or file.

-175-

8.16 The UNLOCK Statement

A load m.odule may be locked in Main Memory under MOSS by using
the prepaging option in MOSS JCL.

The UNLOCK statement in HAL/SM provides a means for unlocking
a locked module, permitting its contents to become dynamically pageable.

Syntax

UNLOCK statement

---7'7-r----------<"'r-(UNLOCK),-.........--\ ,-_la_b_e_l ___

Semantic Rules

(label)
example:

UNLOCK MODULE_I, MODULE_5;

1. The< label>must reference a module that is allocated to the job of
the calling task.

2. The<label> must have been identified as a COMPOOL, PROCEDURE,
FUNCTION, or COMSUB name.

-176-

9. ERROR RECOVERY AND CONTROL

References to so-called 'run time errors' have been made elsewhere
in this Specification. Such errors arise at execution time through the
occurrence of abnormal hardware or system software conditions. Each
HAL/SM implementation possesses a unique collection of such errors. The
errors in the collection are said to be "system-defined." In any implementa­
tion every possible system-defined error is assigned a unique "error code. "
In addition, a number of other legal error codes not assigned to system-defined
errors may exist. These can be used by the HAL programmer to create
"user-defined" errors. All run time errors, both system- and user-defined,
are classified into "error groups." The error code for an error consists of
two positive integer numbers, the first representing the error group to which
it belongs, and the second uniquely identifying it within its group. The method
of classification is implementation dependent.

At run time an Error Recovery Executive (ERE) senses errors, both
system-defined and user-defined, and determines what course of action to
take. For every error group, a standard system recovery action is defined
which the ERE will take unless error recovery has been otherwise directed
by the user. Depending on the error and the implementation, the standard
system recovery action may be to terminate execution abnormally, to execute
a fix-up routine and continue, or to ignore the error. For system-defined
errors, an implementation may define restrictions on the possible actions
which the programmer may specify in lieu of the standard system action for
certain errors.

In a real time programming context, every task in the task queue has
a separate, independent "error environment" which is continuous from the
time of initiation of the task to the time of its termination. At any instant
of time the "error environment" ofa task is the totality of error recovery
actions in force at that time for all possible· errors. At the time of initiation
of the task, the standard system recovery action is in force for all errors.

HAL/SM possesses two error recovery and control statements. The
ON ERROR statement is used to modify the error environment of a task at
any time during its life. The SEND ERROR statement is used for the two-fold
purpose of .creating user-defined error occurrences, and simulating system­
defined error occurrences.

-177-

9.1 The ON ERROR Statement

The ON ERROR statement is used to change the error environment
prevailing at the time of its execution. It can change the error recovery
action for one selected error code, for one selected error group, or for all
groups simultaneously. There are two basic forms of the statement: ON
ERROR and OFF ERROR.

Error environment modification operates according to HAL/SM
name-scope rules. If an ON ERROR with a given error specification is
executed in a particular code block, . then the modified recovery action remains
in force until one of three things happens:

o the modification is superseded by execution of a second
ON ERROR with the same error specification,

o the modification is removed by execution of an OFF ERROR
with the same error specification, the. recovery action thereupon
reverting to that in force on entry into the code block, or

o the modification is automatically removed Py exit from the
code block.

~17 8-

Syntax

ON ERROR 1bt.I'Mnt

ON .rror spec

---i(AND }--r{ SIGNAL)l----l(flag,)}---l0~--'-----

Ixamp'-;
ERRONEOUS: ON ERRORs IGNORE AND SET IOTA;

ON

-179-

.rror ,pee

Semantic Rules

1. The ON ERROR statement consists of two parts: a specification of
an error action to be taken by the ERE, preceded by an <error spec>
specifying the error number, error group or groups to which the
action is to apply.

2. There are three forms of < error spec:> , for specifying either all
error groups, or a selected error group, or a selected error code.

o The form of <error spec> without subscript is used to specify
all error groups.

o The subscript construct< number> with optional following
colon is used to specify a selected <error group>. The value
of < number> is restricted to the set of error group numbers
defined for a particular implementation.

o The subscript construct <number> : < number> is used to
specify a selected error code. The leftmost <number> designates
the error group number; the rightmost <number> the selected
error number within the group. Values are restricted to the set
of error codes defined for a particular implementation.

3. The form ON ERROR •••• specifies the modification of the error
recovery actions for the given < error spec;>. OFF ERROR ••••
specifies the removal of a modification previously activated in the same
name-scope for the same < error spec>. If no such modification exists,
the OFF ERROR is effectively a no-operation.

4. The presence of the IGNORE clause specifies that in the event of
occurrence of a specified error, the ERE is to take no action other
than allow execution to proceed as if the error had not occurred. The
IGNORE action may not be permitted for certain errors.

S. The presence of the SYSTEM clause specifies that in the event of the
occurrence of a specified error, the ERE is to take the standard system
recovery action.

6. The form ON ERROR <statement> specifies that < statement> is
to be executed on the occurrence of a specified error. <statement:>
may not possess statement labels. After execution of<statement> ,
execution normally restarts from the executable statement following
the ON ERROR statement. Execution of <stateme';'t>itseif may of
course modify this.

-180-

7. It is important to note that the form ON ERROR •••• < statement> is
itself a < statement> while other forms of ON ERROR are <basic
statement> s. The form ON ERROR ••• <statement> may therefore
not be the true part of an IF••• THEN•••ELSE statement.

8. If an ON ERROR possesses a SYSTEM or IGNORE clause, it may also
possess an additional SIGNAL clause. The purpose is to cause a
specified program flag to be signaled on the occurrence of a specified
error. Its semantic rules are the same as those described for the
corresponding SIGNAL statement in Section 8. 11.

9. The forms ON ERROR. •• < statement> and ON ERROR ••• IGNORE
may not be allowed for .certain errors.

Precedence Rule

In a code block the action specified by an ON ERROR is only superseded
by another if the two < error spec> s are of identical form. Similarly an
OFF ERROR nullifies the effect of a previous ON ERROR only if the two
< error spec> s are of identical form. However, different forms of< error
spec> may involve the same error group or error code. It is logically possible
for up to three ON ERROR's, each with a different form of < error spec> as
described in Rule 2 above, to be active simultaneously and involve the same
error code. The ON ERROR precedence order for determining the recovery
action in the event of an error occurrence is as follows:

<error spec>
Ji;rror subscript
Specification construct Precedence

LAST

all groups - 1

selected group {<number> :} 2
<number>

selected error <number!> : <number> 3
code

FIRST

-181-

9.2 The SEND ERROR Statement

The SEND ERROR st;atement is used to announce a selected error
condition to the ERE. If the error selected is I system-defined' then in
effect that error is being simulated.

Syntax

SEND ERROR statement

-~+-r---"'----""'-(SENtlERROR

oxample:
SEND ERROR 15;

Semantic Rules

1, A <number:> : <number:> is a subscript construct consisting of two
unsigned integer literals. The leftmost <number:> designates the
error group to which the selected error condition belongs. The right­
most number denotes the error number within the designated group.
Values are restricted to the set of error codes defined for a particular
implementation. If the error code corresponds to a system-defined
error, then that error is simulated by the ERE. Simulation of certain
system-defined errors may not be permitted.

2. The action taken by the ERE after announcement of the selected error
condition is dictated by the error environment prevailing at the time of
execution of the SEND ERROR statement.

-182-

10. INPUT/OUTPUT STATEMENTS

The HAL/SM language provides for two types of I/O: Standard
Peripheral I/O Support (SPIOS) and Real Time I/O Support (RTIOS). Within
SPIOS there are two forms: sequential I/O with conversion to and from
external character string representation; and random-access record-

. oriented 1/O. Within R TIOS there are four forms: Standard External
Reference Point I/O (ERP I/O); Control and Display Console I/O (C&D I/O);
system operator communication; and output of data to the system log.

All HAL/SM SPIOS is directed to one of a number of input/output
"channels." These channels are the means used to interface HAL/8M
software with standard peripheral devices in the run time environment. In
the implementation each channel is assigned a unique unsigned integer
identification number.

Most HAL/SM RTIOS is directed to one or more external reference
points (ERP's). Statements which reference ERP's provide the capabilities
necessary for controlling and using real time devices attached to the data
bus of the Data Management Subsystem (DMS).

The Control and Display Console I/O statements are directed toward
the Multifunction Display System (MDS) which is a specialized group of ERP's.
These statements may be used for transmission of display information and
MDS programs to the MDS and for receiving information from the MDS.

System Operator Communication I/O statements and System Log
Output statements are directed toward devices dedicated for their purpose and
are not directed toward ERP's.

-183-

10.1 SPIOS Sequential I/O Statements

All sequential I/O in HAL/SM is to or from character-oriented files.
HAL/SM pictures these files as consisting of lines of character data similar
to a series of printed lines or punched cards. An "unpaged" file simply
consists of an unbroken series of such lines. In a "paged" file the lines are
blocked into pages, each a fixed, implementation dependent number of lines
in length. The choice of paged or unpaged file organization for each sequential
I/O channel is specified in an implementation dependent manner.

HAL/SM pictures the physical device as moving across the file a
read or write "device mechanism" which actually performs the data transfer.
The device mechanism has at every instant a definite column and line position
on the file. The action of transmitting one character to or from the file is
followed by the positioning of the device mechanism to the next column on the
same line. When the end of the line is reached the device mechanism moves on
to the first (leftmost) column of the next line.

The HAL/SM sequential I/O statements are the READ, READALL,
and WRITE statements. Within these statements I/O control functions can be
used to cause explicit positioning of the device mechanism on the file.

10.1.1 The READ and READALL Statements

The sequential input of data is accomplished in HAL/SM by employing
either a READ or a READALL statement. The choice depends upon the format
of the character input and the conversions (if any) which are to be performed.
A READ statement is used wherever data in a standard external format is to
be input; the READALL is used wherever arbitrary character string images are
to be input without conversion.

Syntax

READ end READALL stBtb"""b

exampJe:
READ(4) LINE (SI. DELTA.,

-184-

General Semantic Rules

1. A <number> is any legal I/O channel number.

2. An< i/o control> is any legal I/O control function used to position
the device mechanism explicitly.

3. Unless overridden by explicit < i/o control> before the first< variable> ,
the device mechanism is automatically moved to the leftmost column
position and advanced to the next line prior to reading the first <variable> •
A SKIP, LINE, or PAGE·d/o control> before the first< variable>
overrides the automatic line advancement. A TAB or COLUMN<i/o
control> overrides the automatic column positioning.

4. An unexpected end of file reached during the reading of data from the
input file causes a run time error.

Semantic Rules: READALL Version

1. A< variable:> may be any character or structure variable in an
assignment context. This specifically excludes input parameters of
functions and procedures. If it is of structure type, all the terminals
of the template it references must be of character type. In this case,
also no nested structure template references are allowed.

2. If < variable:> is an array or structure, each element thereof is filled
sequentially in its "natural sequence. "

3. Data is read from the input file character by character from left to
right, each < variable> element being filled in turn. Filling of an
element is completed either when the end of a line on the file is reached,
or when the element has reached its declared maximum length, whichever
happens sooner.

Semantic Rules: READ Version

1. A< variable:> is any variable which may be used in an assignment
context. This specifically excludes input parameters of functions and
procedures.

2. If < var:i.able > is a vector or matrix, or an array or structure, each
element thereof is filled sequentially in its "natural sequence. "

3. The device mechanism (subject to<i/o contro!» scans the input file
left to right, from line to line, looking for fields of contiguous charac­
tel'S separated by commas, semicolons or blanks. Each field found is
in turn transmitted and converted from its standard external format to
an appropriate HAL/SM data value. Fields may not cross line boundaries

-185-

except when reading character strings.

4. A semicolon field separator encountered during a normal sequential
scan to fill a variable element terminates the READ statement as
follows:

o The current variable element is left unchanged.

o All remaining< variable> s in the statement are unchanged.

o All remaining control functions in the statement are ignored.

The < i/o control> functions can force the device mechanism over
the semicolon without causing early termination.

5. A null field is transmitted whenever a comma or a semicolon is
detected when data is expected. This occurs when a comma or semi­
colon is:

o preceded by a comma or semicolon, or

o preceded by one or more blanks following the last comma or
semicolon.

A null field causes the corresponding variable element to remain
unchanged following transmis sion.

6. Fields are assumed to be in a standard external format matching
the type of each corresponding type of variable element. A mismatch
between standard external format a,nd element type causes a run time
error.

10.1.2 The WRITE Statement

The sequential output of data is accomplished in HAL/SM by employing
the WRITE statement.

-186-

Syntax

WRITE statement

Semantic Rules

example:
WRITE 161 ALPHA, SKIP (2), BETA;

1. A <number> is any legal I/O channel number.

z. An< i/o control> is any legal I/O control function used to position
the device mechanism explicitly. .

3. There are no semantic restrictions on < expression>.

4. If < expression:> is of vector or matrix type, or is an array or
structure, then each element thereof is transmitted sequentially in
its "natural sequence. "

5. Unless overridden by explicit < i/o control> before the first< expression> ,
the device mechanism is automatically moved to the leftmost column
position and advanced to the next line prior to transmitting the first
<expression>. A SKIP, LINE, or PAGE<i/o control>before the
first < expression:> overrides the automatic line advancement. A
TAB or COLUMN< i/o control> overrides the automatic column
positioning.

6. Each element in turn is converted to its standard external format
before being transmitted to the output file.

-187-

7. Between the transmission of two consecutive elements, the .device mecha­
nism is moved to the right by an implementation dependent number of
columns. If a TAB or COLUMN <i/o control:> separates two con­
secutive <expression:> s then this overrides the automatic movement
between transmission of the last element of the first < expression:> and
the first element of the second<expression> .

8. When a line has been filled to the point where the next converted output
field will not fit in the remaining columns, a wrap-around condition
occurs. The actions taken in such a case are implementation dependent.

10.1.3 I/O Control Functions

An I/O control function is introduced into a READ, READALL, or
WRITE statement tocause explicit movement of the device mechanism. Note
that the interpretation of each I/O control function differs depending upon
whether the file is paged or unpaged.

Syntax

1/0 control flInctlon

arith exp

example:
COLUMN (1+2)

Semantic Rules

1. An <:arith exp> is an unarrayed scalar or integer arithmetic expression
specifying a value to the control function. The value is treated as an
integer: scalar values are rounded to the nearest integer prior to
use. In the following rules, let the value of <arith exp> be denoted
by K.

-188-

2. TAB (K) specifies relative movement of the device mechanism across
the current line by K character positions (columns). Motion is to the
right (increasing column index) if K is positive, to the left if K is
negative. Positioning to negative or zero column index values, or
to a positive index greater than an implementation dependent
maximum causes a run time error.

'3. COLUMN (K) specifies absolute movement of the device mechanism
to colum K of the current line. Values of K may range from I to an
implementation dependent maximum value. Column indices outside
the legitimate range cause run time errors.

4. SKIP (K) specifies line movement relative to the current line of the
file. A positive value of K will cause forward movement. Subject to
implementation and hardware restrictions, backward movement is
indicated by a negative value of K. Error conditions will be indicated
if a skip causes movement past either end of the file, or movement
in violation of any implementation restriction on the direction of the
skip.

5. LINE (K) specifies line movement to a specified line number, K. Two
interpretations occur depending upon whether the file is paged or
unpaged.

o Paged files - LINE (K) advances the file unconditionally. K may
not be less than 1 or greater than the implementation and hardware
dependent number of lines per page, otherwise an error condition
will be indicated. If K is not less than the current line number,
the new print position is on the current page; if K is less than
the current line number, the device mechanism is advanced to
line K of the next page.

o Unpaged files - LINE (K) positions the device mechanism at some
absolute line number in the file. On input K must be greater than
zero, but not greater than the total number of lines in the file. On
output, K must merely be greater than zero. In either case,
values outside the indicated ranges cause run time errors. Depend­
ing on the implementation, values of K causing backward move­
ment may be illegal.

6. PAGE (K) is only applicable to paged files and specifies page movement
relative to the current page. If K is positive the movement is forward,
toward the end of file. Depending upon the implementation, negative
page values mayor may not be legal. The line value relative to the
beginning of the page remains unchanged.

-189-

10.2 SPIOS Random Access I/O and the FILE Statement

Random access I/O is handled by means of the FILE statement. In
this access method individual records on a file may be written, retrieved, or
updated. A unique "record address" is used to specify the particular record
on the file referenced.

Syntax

FILE statements

--4-J FILE

example:
FILE(3.J+21 = ALPHA, TO '000:

Semantic Rules

1. The statement is an output FILE statement if <file exp:> is on the left
of the as signment. If < file exp> is on the right, then the statement
is an input FILE statement.

2. A<file exp> specifies the random access I/O channel and record
address to be referenced. A < number> is any legal random access
channel number. An< arith exp> is any unarrayed integer or scalar
expression. If the expression is scalar, its value is rounded to the

-190-

•

nearest integer before use. A run time error occurs if its value
is not a legal record address.

3. Any record on a random access file may·be transmitted by a FILE
statement.

4. In the input FILE statement, <.variable> is any variable usable in an
assignment context. This specifically excludes input parameters of
FUNCTION and PROCEDURE blocks. Moreover, <variable> is also
subject to the following rules:

o No component subscripting for bit and character types.

o If component subscripting is present, <variable> must be
subscripted so as to yield a single (unarrayed) element of the
< variable> •

o If no component subscripting is present, but array subscripting
is, then all arrayness must be subscripted away.

o BIT type structure terminals which have the DENSE attribute
may not be used, due to packing implications. However, an
entire structure with the DENSE attribute may be used.

o If the <variable> is a structure terminal or a minor structure
node (but not if it is a major structure) and if the structure
possesses multiple copies, then the number of copies must be
reduced to one by subscripting.

5. In the output FILE statement, there are no semantic restrictions on
< expression> •

6. Compatibility between data written by an output FILE statement, and
later reference to it by an input FILE statement is assumed. The
exact interpretation of compatibility is implementation dependent.
In general, the FILE statement transmits binary images of the internal
data forms, so that compatibility will be guaranteed if the < expression>
of th!" output FILE statement and the < variable> of the input)!ILE
statement have the same data type and organization•

-191-

SPACE

10.3 SPIOS Channel Control and the Channel Statement

Certain I/O operations are common to all channels independent of
whether sequential or random access I/O is being used. These operations
may be performed using the Channel Statement.

Syntax

CHANNEL statement

---;;:r---r--......,----or---(CHANNEL.)-0-(number)-0---
label

,....---(BACKSPACE

~-.I.-el--l arith exp
'----_/

---t--fREWIND

l---\UNLOAD

END

CLOSE

FILE

example:
CHANNEL (3) REWIND;

-192-

Semantic Rules

1. An<arith exp> specl:tliJes the number of files to be forward spaced or
backspaced. If it is omitted, a default value of one is used. Its value
must be greater than zero, otherwise a run time error is generated.

2. UNLOAD may only be used on tape files. If used for any other device
type, a run time error is generated.

3. REWIND and BACKSPACE may only be used on unpaged channels.

4. The CLOSE FILE operation yields an end-of-file and deallocation of
the file.

-193-

10. 4 R TIOS ERP I/O Statements

ERP 1/o statements are used to interface with the following types of
ERP's:

0 Discrete Input (DI)

0 Discrete Output (DO)

0 Analog Input (AI)

0 Analog Output (AO)

0 Record Input (RI)

0 Record Output (RO)

The ERP I/O statements have several forms which are determined
by the type of ERP to which they are directed. All ERP I/O statements are
specified using the ERP names defined in the Measurement and Control
Definition (M&CD). The HAL/SM system uses the specified ERP name and
the M&CD to validate the type of ERP I/O statement being used and the data
passed to or from the specified ERP.

10.4.1 The AVERAGE AI Statement

The AVERAGE AI statement provides a method of averaging several
analog (AI) measurements from the same ERP. This statement is used
whenever a simple mathematical average - the sum of the measurements
divided by the number of times read - is required.

-194-

Syntax

AVERAGE AI statement

AVERAGE arith exp READINGS

ASSIGN

variableerp
de'signator

example:
AVERAGE 3*PRESENT READINGS O:!f<CMG 3Z> AND SAVE AS GIM3;

Semantic Rules

1. An <arith exp> is an unarranged scalar or integer arithmetic expression
specifying the number of readings to be used. The value is treated as an
integer; scalar values are rounded to the nearest integer prior to use.

2. A <variable> is any variable usable in an assignment context. This
specifically excludes input parameters of FUNCTION and PROCEDURE
blocks. Moreover,<variable>is also subject to the following rules:

o No component subscripting for bit and character types.

o If component subscripting is present, < variable> must be
subscripted so as to yield a single element of the <variable> •

o If no component subscripting is present, but array subscripting is,
then. all arrayness must be subscripted away.

-195-

o BIT type structure terminals which have the DENSE attribute
may not be used, due to packing implications. However, an
entire structure with the DENSE attribute may be used.

o If the <variable> is a structure terminal or a minor structure
node (but not if it is a major structure) and if the structure
possesses multiple copies, then subscripting must reduce the
copies to one.

10.4.2 The READ ERP Statement

The READ ERP statement acquires ERP data and stores it as internal
program data.

Syntax

READ ERP statement

MEASURE

SENSE

erp
;---r--lde signator

ASSIGN

variable

example:
MEASURE <: THRUST> AND SAVE AS T15;

-196-

Semantic Rules

1. If more than one < erp designator> is specified, all ERP's designated
must be of the same ERP type.

2. The term "DELTAS" only applies to ERP' s of type AI.

3. Two<variable> s or a single <variable> array of two elements must
be specified for AI DELTAS.

4. If more than one < variable> is specified, there must be exactly the
same-number of <variable> sand <erp designator> s.

5. A <: variable> is any variable usable in an assignment context, This
specifically excludes input parameters of FUNCTION and PROCEDURE
blocks. Moreover, <: variable> is also subject to the following rules.

o No component subscripting for bit and character types.

o If component subscripting is present, < variable> must be
subscripted so as to yield a single element of the <variable> •

o If no component subscripting is present, but array subscripting is,
then all arrayness must be subscripted away.

o BIT type structure terminals which have the DENSE attribute may
not be used, due to' packing i:mplication. However, an entire
structure with the DENSE attribute may be used.

o If the <variable> is a structure terminal or a :minor structure node
(but not if it is a :major structure) and if the structure possesses
:multiple copies, then subscripting :must reduce the copies to one.

10.4.3 The ISSUE Statement

The ISSUE state:ment allows for the trans:mission of a Record Out (ROJ.
The record is limited to an i:mple:mentation dependent size.

-197-

Syntax

ISSUE statement

ISSUE

-(TO)-(de~flnato~}------iOI---
example:

ISSUE BILL TO <RECORD 1> ;

Semantic Rules

variable

bit literal

number

1. If multiple values (i. e., variables or literals) are specified, no <variable:>
may be arrayed. Also the multiple copies must have the same type and
attributes with the exception that character strings may be variable length.

2. Multiple copies of < bit literal> must be of the same length.

10.4.4 The SET DISCRETE Statement

The SET DISCRETE statement allows for setting or pulsing a Discrete
Output (DO).

-198-

Syntax

SET DISCRETE statement

erp
r--'-;ldesignator

variable

bit literall-!,...e....,..,--------------,...-{

number time value

example:
SET <ENGINE THRUST:> TO MAXIMUM

Semantic Rules'

1. If the DO is to be pulsed, only one < erp designator:> may be specified.

2. If multiple values (i. e., variables or literals) are specified, no <variable:>
may be arrayed, also, there must be a one to one correspondence between
each < erp designator::> and < variable:> specified.

3. If an arrayed <variable:> is specified, there must be an array element for
each <erp designator> specified.

4. When the TO phrase is omitted the < erp designator:> is said to be self­
defining and its value is retrieved from the on-line M&CD.

-199-

10.4.5 The APPLY ANALOG Statement

The APPLY ANALOG statement provides the means for producing an
analog output (AO) and/or an AI delta. The value of the AO may be set once,
pulsed, or ramped.

Syntax

APPLY ANALOG statement

APPLY

,-----0 ..

dim literal

label arith erp)

time
value

Semantic Rules

1. If multiple values (<: dim literal> and/or<=: arith exp>) are specified, a
one to one correspondence must exist with an <: erp designator> •

2. Exactly two values must be specified when statement is SEND (or APPLY)
AI DELTAS.

3. Only one <:erp designator> may be ramped or pulsed. In either of these
cases, only one value may follow SEND or APPLY.

-200-

4. The value following RAMPED TO or UNTIL specifies the maximum
(or minimum if first value negative) to which the <erp designator> is
to be ramped.

-201-

10.5 RTIOS C&D Console I/O Statements

The C&D Console I/O statements allow communication with the MDS
by sending and receiving information to and from a portion of the MDS memory
known as the display buffer. This buffer is subdivided into units identified as
CR T (Cathode Ray Tube) pages. Each I/O statement is directed toward one
CR T page in the display buffer.

The Control and Display Console I/O statements provide means to:

o request data from a CRT page,

o control CRT pages,

o transmit background and add on display information to CRT
pages,

o transmit and execute MDS programs on CRT pages,

o update background display information, and

o update MDS program data.

10.5.1 The CRT SPECIFICATION

In order to expedite the definition of a CRT page of the display buffer,
the syntactical term < crt spec> is introduced.

Syntax

CRT SPECIFICATION

number

example:
< CRT 2-2>

Sernantic Rules

1. The < number> following CRT identifies the C&D console being accessed;
whereas, the<number> following - identifies the page being accessed.

2. A < number> is a positive integer in each case.

-202-

10.5.2 The REQUEST KEYBOARD Statement

The REQUEST KEYBOARD statement allows data to be requested
from a particular CRT page. The statement m.ay be used in conjunction with
the DISPLAY DATA statement to carry out a tutorial from a C&D console.

Syntax

~1'"'""" r\.REQUEST

REQUEST KEYBOARD statem.ent

char
v'ar

bit
var

examplel
REQUEST ENTRY FROM <KEYBOARD> AND SAVE AS YAWXI;

Semantic Rule s

1. The CRT page from. which data is returned is identified as the master
page. There is only one m.aster page per job.

2. If the AND POST <bit var> portion of the statem.ent is om.itted and no
data is available for response to the request, the requesting task is
placed in an autom.atic wait with no notification to the task.

3. The <bit var> in the AND POST clause must be Boolean (i. e., BIT (1».

-203-

10.5.3 The DISPLAY CONTROL Statement

The DISPLAY CONTROL statement provides the interface to effect CRT
page control. The statement allows requests for CRT page allocation/deallocation,
CRT page clear, and page selection. If the requested page is not available, the
request fails. Also a combination of the VIDEO/STROKE commands enables
television reception and display data to reside simultaneously on a specified CRT.

Syntax

DISPLAY CONTROL statement

basic r('\
SELECT

statement

~ CLEAR "\

KVIDEOI .~

KVIDE02 Y l(STROKE
\. TO)-

crt

'-0-spec

to(labe~
KALLOCATE

{DE- '\
ALLOCATE..!

example:
DEALLOCATE <CRT 2-9>;

Semantic Rules

1. If no <crt spec:> is identified, the default value is the master CRT page
which has been assigned by the C&D Subsystem to the particular job being
executed.

-204-

2. As noted on the syntax diagram., the m.aster page m.ay not be allocated
or deallocated.

10.5.4 The DISPLAY DATA Statem.ent

The DISPLAY DATA statem.ent provides for the output of inforrn.ation to
a CRT page. This includes:

o Form.atting and displaying background data com.prised of text
and/or vectors.

o Providing an update option for variable data in. background
displays.

o Providing an add on message capability with optional variable
data.

o Initiation of MDS display program. execution.

o Providing an update option to supply data parameters to MDS
display programs.

-, .1

-205-

Syntax

DISPLAY DATA statement

~GROUN~l
, (ADDm01-----.1--~----------,- --- - ---

I TO crt
spec

dentifier

UPDATE rj--<[!-di!e;;n)jt:!ffBi~e:ir)--i-f::.~~~Ll-t~==:lir<

la

r--------------I/>--------__--,
(ilLINK).... TATU

LINE umbe

'----------------(, .

TEXT

Idcwf-<F ~ari}; I
UlUmbe:¢-var OR able J'..

example: DISPLAY PGMTPI TO <CRT2-1>:

-206-

Semantic Rules

1. The < identifier> specifies the MDS display program name. This name
must comply to implementation dependent restrictions.

2. If TO <crt spec> is omitted, the master page is assumed.

3. The< label> following UPDATE must reference a previously defined
DISPLAY DATA statement.

4. If BLINK STATUS is not specified, no blinking is assumed. However,
this may be overridden by any <dcw var> which is included in the
DISPLAY DATA statement.

5. Any < number> specified must be a positive integer.

6. When a < dcw var> is used with TEXT or VECTOR, it represents a
text control word for which the output format and variable data width are
not applicable.

7. A "/" is an end-of-lineindicator which may be used as a carriage return
signal.

10.5.5 The MODIFY VARIABLE CONTROL WORD Statement

The MODIFY VARIABLE CONTROL WORD statement provides a method
for real time modification to variable control words. The specifications which
may be changed are the color, character size, intensity, output format, and
blink status.

Syntax

MODIFY VARIABLE CONTROL WORD statement

---<3-.~--------~-{MODIFY

label

dcw
var

_{ dcw
- value list

example:
MODIFY VARCW6 =YELLOW, 10MM, BLINK OFF, 6;

-207-

Semantic Rules

1. The < dew var> must identify a variable control word.

2. Any options omitted in the <dew value list> will default to the previous
values of the <dew var> •

-208-

10.6 RTIOS System Operator Communication I/O Statement

.An I/O sta.tement is provided to enable a task to communicate with the
system operator. The statement is directed toward a system operator console.

Syntax

WRITE TO OPERATOR statement

---'-:t-r--------..--(DISPLAY)--{ TO)--(OPERATO~ _ _

label

char var

--i char exp I:--'---------....-------------~_{
example:

DISPLAY TO OPERATOR I TASK TERMINATED';

Semantic Rules

1. If the ACCEPT REPLY IN < char var> cla';se is specified, the task
executing the statement is .placed in a wait state until the system
operator supplies a reply.

-209-

10.7 RTlOS Output to the System Log

Information may be entered into the system log by using the Output To
System Log statement.

Syntax

WRITE TO SYSTEM LOG statement

--=t-----c;-l-abel--)r--(LOG >-i char exp

example:
LOG 'TASK #5 EXECUTING';

-210-

11.

11. 1

SYSTEMS LANGUAGE FEATURESI

Introduction

The systems language features of HAL/SM are described in this section.
The features presented here are in three sections. A new program organization
feature is provided by "Inline Function Blocks." A data-related feature of this
systems language extension is the concept ot "TEMPORARY variables. 11 The
NAME Facility concerns a new concept in HAL/SM, the addition of NAME
variables pointed to data or blocks of code.

The information contained in this section constitutes an extension of
material presented earlier. Accordingly, many of the syntax diagrams presented
here are modified versions of earlier diagrams reflecting the extended features.

11. 2 Program Organization Features

The addition of Inline Function Blocks to HAL/SM extends the inforrra tion
presented in Section 3 concerning program organization. Inline functions are a
modified kind of user function in which invocation is simultaneous with block
definition.

11.2. 1 Inline Function Blocks

The HAL/ SM Inline Function Block isa method of simultaneously defining
and invoking a restricted version of the ordinary user function construct. Its
primary purpose is to widen the utility of paraIlletric REPLACE statement
described in Section 4.2. Its appearance is generally in the forIll of an operand
of an expression.

1 The title indicates that the usage of these constructs is more suited to systems
progralllllling than to applications programIlling. The prograllllller is warned
that unrestrained and indiscriminate use of certain of these constructs can
lead to software unreliability.

-211-

Syntax

FUNCTION

{

arith

§ bit
char
struct

type spee

statement

;~-- ---

declare group

update block

~Iosing

example:
IF X ~= Y THEN R = FUNCTION VECTOR;

DECLARE A,B;
A~3X+Y;

B = XI'! 1

RETURN VECTOR(A,B,O);
CLOSE;

Semantic Rules

1. The syntactical form is actually equivalent to that of a function block
except that:

o The < § inline function:> has no label,

o The < § inline function:> has no parameters, and

o The < § inline function:> definition becomes an operand in an
expression.

2. The semantic rules for an < § inline function:> block definition are the
same as those for the < function block:> definition described in Section
3.3, subject to restrictions listed below.

-212-

3. A< Ii inline function> may not contain the following syntactical forms:

o

o

o

All forms of I/O statements,

All forms of reference to user-defined PROCEDURE and
FUNCTION blocks, and

Real Time and Error Recovery and Control statements.

4. A <8 inline function> may not contain any form of nested blocks. The
following block forms are thus excluded:

o < function block> definitions, and

o < procedure block> definitions,

o <update block>, and

o Further nested < 8 inline function> s.

5. In use, the following semantic restriction holds:<: 8 inline function> s
may not appear as operands of the subscript or exponent expressions.

6. The < 8 inline function> falls into one of the following four categories:

o <arith inline> - <type spec> specifies an inline function of an
arithmetic data type: SCALAR, INTEGER, VECTOR or MATRIX.

o < bit inline> -< type spec> specifies an inline function of a bit
type: BOOLEAN or BIT.

o < char inline> - < type spec> specifies an inline function of the
CHARACTER data type.

o < struct inline> - < type spec> specifies an inline function with
a structure type specification.

The use of inline functions as operands of HAL/SM expressions is
discussed in Section 11.2.2.

11.2.2 Operand Reference Invocations

lnline Function Blocks are always invoked at the point of their definition
as operands of< expression> s. Similar modifications of several syntax diagrams
from Section 6 add these features to arithmetic, bit, and character operands, and
to structure expressions.

_213-

Syntax of Arithmetic Operand

stith var

number

stith exp

arithmetic operand

,.---1-;;;;;;-;;-"f-------..,

normal function prec,i,ion.

aritt! conversion

atith inlina

Setnantic Rules

1. This syntax diagratn is a systetns language extension of the arithmetic
operand diagratn in Section 6.1. 1. The setnantic rules of Section 6. 1. 1
apply to this revised diagratn.

2. An <0 arith inline> is an inline function block which has an arithmetic
< type spec> in its header statetnent.

-214_

Syntax of Bit Operand

bit operand

bit
operand

r<D-i bit exp IrC NOT } .CD--

bit var-
1

r bit literal
./

normal
function

bit
conversion

bit
pseudo-var

bit inline

event var

-215-

Semantic Rules

1. This syntax diagram is a systems language extension of the bit operand
diagram in Section 6. 1.2. The corresponding semantic rules found in
Section 6. 1. 2 also apply to this revised diagram.

2. A <bit inline> is an inline function block which has a bit string (BOOLEAN
or BIT) <: type spec> in its header statement.

Syntax of Character Operand

character operand

_-"~ --++- -1 char var

!'---lnorm~l function 1---1

char literal

!'---{ char conversion 1---1

....._-{char in line 1-_-"

Semantic Rules

1. This syntax diagram is a systems language extension of the character
operand diagram in Section 6.1.3. The corresponding semantic rules
found in Section 6.1.3 also apply to this revised diagram.

2. A <: char inline> is an inline function block which has a CHARACTER
<type spec> in its header statement.

-216-

Syntax of Structure Expression

structure expression

structure
expression

I I
I

structure var. I

,'"' r normal I
-;:::T I function I

I . r I
I

structure In me I

Semantic Rules

1. This syntax diagram is a systems language extension of the structure
expression diagram found in Section 6.1. 4. The semantic rules found
in Section 6. 1. 4 also apply to this revised diagram.

2. A <:struct inline:> is an inline function block which has a structure
<: type spec> in its header statement.

-217-

11. 3 Temporary Variables

The extension of HAL/SM data concepts to include a TEMPORARY
variable form for use within DO groups is defined within the systems language
facilities. The object of incorporating the TEMPORARY variable is to
increase the optimization and efficiency of the object code produced by the
compiler. Depending upon the details of the object machine, a temporary
variable might be stored in a CPU register or a high-speed, .scratchpad memory
location rather than in the slower main storage. Coding efficiency may also
be achieved with temporary variables because the instructions needed to access
register or scratchpad memory values are generally more compact. Since the
existence of a temporary variable is confined to· a DO group (from DO header
statement to the END statement), these forms become highly localized control
variables.

11.3.1 Regular TEMPORARY Variables

Regular TEMPORARY variables are declared in TEMPORARY statements
following the DO statement which begins a DO ••• END statement group and
preceding the first executable statement of the DO '" END statement group. The
following diagram is a systems language extension of the DO••• END statement
group in Section 7.6.

Syntax

DO ••• END statement group

I~asicstatement
I"" temporary

t- r- statement

l
statement

I do end I--- Istatement statement

H update

~block

~
function

I-'
block

procedure
I-"- block

-218-

Semantic Rule

1. The TEMPORARY declaration may be included as part of any DO
group except a DO CASE group. Use of TEMPORARY variables
within nested DO groups of a DO CASE is allowed.

The TEMPORARY statement is a special purpose data declaration
used to create TEMPORARY variables for general use within the DO group
syntax as described above. Its form compares very closely to that of the
DECLARE statement in Section 4.4.

Syntax

-~+--f,;;';';;';:~}-I-:====-::---lr-L~Kl.~nl~ifj~"J 8ttributn

atttibutat

Semantic Rules

1. In the <temporary statement>, <attributes> may define the < identifiers>
to be of any data. type except EVENT, DCW, or FLAG.

2. The <attributes> may only specify type, precision and arrayness.

3. No minor attribute is legal.

4. The name of < identifier> may not duplicate the name of another
<. identifier> in the same name-scope (procedure, function, or other

block) or of another temporary in the same DO ••• END group.

11.3.2 Loop TEMPORARY Variables

The Loop TEMPORARY variable form is used in the context of the DO
FOR group and is declared by its specification in a DO FOR statement. The
following two syntax diagrams are modifications of the discrete DO FOR and the
iterative DO FOR syntax diagrams.

-219-

Syntax

Syntax

dilcrltte 00 FOR with loop TEMPORARY variable indole

DO FOR

arith 8XP

WHItE condition

bit elCp

DO fOR

I'etat'''' 00 FOR with loop TEMi'ORARY ~l~le il\du

-220-

Semantic Rules

1. All the semantic rules for DO FOR statements which are given in
Section 7.6.4 and 7.6.5 apply as well to the corresponding loop
TEMPORARY forms. Additional rules for loop TEMPORARY
variables are given below.

2. The loop TEMPORARY variable is defined in the DO FOR statement;
a lo.op TEMPORARY variable is always a single precision INTEGER
variable.

3. The scope of the loop TEMPORARY is the DO FOR group of the
DO FOR statement which defines the variable.

4. The< identifier> name used for the loop TEMPORARY may not.
duplicate the name of another< identifier> in the same name-scope,
nor may it duplicate the name of another TEMPORARY variable in the
same DO • •• END group.

-221-

11.4 The NAME Facility

This section gives a definitive description of the HAL/SM NAME
facility. This facility is designed to fill the system programmer's need
for a "pointer" construct. Its basic entity is the NAME identifier: a
NAME identifier "points to" an ordinary HAL/SM identifier of like attri­
butes. The "value" of the NAME identifier is thus the location of the iden­
tifier pointed to. (An "ordinary" identifier is a HAL/SM identifier without
the NAME attribute).

11.4.1 Identifiers with the NAME Attribute

Identifiers declared with the NAME attribute become NAME identi­
fiers. NAME identifiers may be declared with the following data types:

INTEGER
SCALAR
VECTOR
MATRIX
BIT
BOOLEAN
CHARACTER
EVENT
STRUCTURE
DCW
TASK
PROCEDURE
FUNCTION

The following diagram is an extension of the DECLARE statement
syntax diagram in Section 4.4. The modification shows how the keyword
NAME is used in such a declaration to state the NAME attribute.

S tax

....mp!.;
DECLARE ALPHA NAME VECTOR 171;

-222-

Semantic Rules: Data NAME Identifiers

1. Arrayness Specification - in general the arrayness specification of a
NAME identifier must match that of the ordinary identifiers pointed
to, in both number and size of dimensions.

2.. Structure Copy Specification - in general the number of copies of a
NAME identifier of a structure type must match that of the ordinary
identifier s pointed to.

3. The use of the "*" array specification or structure copies specifica­
tions is eacluded from delcarations of NAME formal parameters.

4. Structure Type - if a NAME identifier is a structure type it may only
point to ordinary identifiers of structure type with the same structure
template.

Examples of data NAME variables

DECLARE X ARRAY(3) SCALER,
Y ARRAY (4)
Z NAME ARRAY(4j SCALER;

DECLARE P EVENT;
DECLARE EVENT, V, VV NAME;

Z may point to Y but not X

5. For any unarrayed character string name variable, the "*"
form of maximum length specification may be used. This
is an extension of the use of the "*" notation which applies
now in general to character name variables as well as to
formal parameters.

-2.23 -

General Semantic Rules

1. The following < attribute> s apply to the NAl'v:IE variable itself and
bear no relationship to the ordinary identifier which is pointed to
at any given time during execution:

o The <initialization> attribute (if supplied) refers to the in­
itial pointer value of the NAl'v:IE variable itself.

o STATIC/AUTOMATIC refer to the mode of initialization of
the NAl'v:IE variable itself on entry into a HAL/SM block.

o DENSE/ALIGNED apply to the actual NAl'v:IE variable when
it is defined by inclusion in a structure template.

All other legal attributes describe the characteristics of the ordinary
variables to which the NAl'v:IE variable may point. Except as noted
below, these other attributes must always match the corresponding
attributes of the ordinary variables to which the NAl'v:IE variable
points; compilation errors will ensue if this is not the case.

2. The ACCESS attribute is illegal for NAl'v:IE variables; its absence
does not prevent NAl'v:IE identifiers from pointing to ordinary identi­
fiers with the ACCESS attributes and matching is not required in
this case.

3. There must still be consistency between declared type, attributes,
and factored attributes just as is the case for ordinary identifiers
as described in Section 4 of this Specification.

Examples:

DECLARE VECTOR (3) DOUBLE LOCK(2), X, Y NAME;
DECLARE P NAME TASK;

Y may point to X
P points to a,ny task block

-224-

NONHAL

The Label Declarative Attributes available for use in declaring NAME
identifiers which point to HAL/SM block forms have been extended to in­
cludetiheTASKkeyword. The following syntax diagram is a modification
of the Label Declarative Attributes diagram in Section 4.6.

Syntax

label declaratlve.attribute

-...:..+---...-----{ PROCEDURE }----..,....t
'--_-/

TASK

, name
\ initialiution ~

I STATIC
\. J

(AUTOMATIC"

(
DENSE "'~

r ALIGNED)

-225~

Semantic Rules: Label NAME Identifiers

1. An<initialization> , STATIC or AUTOMATIC, DENSE or ALIGNED
may only be applied to the <label declarative attributes> of identifiers
with the NAME attribute. They are properties of the NAME and not
of the identifiers pointed to.

2. The following rules apply to NAME <identifiers> of the PROCEDURE
type:

o Procedure NAME variables may only point to procedures de­
fined external to the compilation and therefore for which
there exists a block template in the same <unit of compilation> •

o Only external procedures without input or ASSIGN parameters
may be the objects of NAME <identifiers> s.

o The NONHAL attribute is not allowed for NAME identifiers
of the PROCEDURE type.

3. The following rules apply to NAME <identifiers> of the FUNCTION
type:

o Function NAME variables may only point to functions defined
external to the compilation a·nd therefore for which there
exists a block template in the same <unit of compilation> •

o Only external functions without input parameters may be the
objects of NAME identifiers.

o The NONHAL attribute is not allowed for NAME identifiers
of the FUNCTION type.

4. The following rules apply to NAME <identifiers> of the TASK type:

a The NAME <identifier> of a task type always points to a TASK
block.

o The only form of TASK label declarations allowed are those with
the NAME attribute.

o The task NAME < identifier> must always point to an external
TASK block name; therefore a block template is required for
each TASK which may be referenced by a NAME value.

-226-

Example of label NAME identifiers:

F: EXTERNAL FUNCTION;

··CLOSE
Fl: TASK;

DECLARE PSI NAME FUNCTION;

··F2: FUNCTION;

··CLOSE;

PSI may point to F but not F2

11.4.2 The NAME Attribute in Structure Templates

The NAME attribute may appear on any structure terminal of a
structure template. The following syntax diagram shows how the keyword
NAME is used to state the NAME attribute. This diagram is a systems lan­
guage extension of the Structure Template diagram.

Syntax

- - --ri

STRUCTURE

number

~ructur. template ltatement

identifier

identifiet

}------

attributes

In general, the rules governing the formation of the structure template remain
unchanged (see Section 4. 3).

-227-

General Semantic Rules

1. Restrictions on attributes discussed in Section 11.4.1 generally also
apply to structure terminals with the NAME attribute.

2. No < initialization> may be applied to terminals; neither may the
attributes STATIC/AUTOMATIC appear.

3. NAME identifiers of any type (including task procedure and function)
may appear as structure terminals. Note that the NAME of an EVENT
may appear in a structure even though the EVENT itself may not.

Semantic Rules: Nested Structure Template References

1. Nested structure template references are special instances of
structure terminals. The manner of their incorporation into struc­
ture template definitions is as described in Section 4. 3 via the
<type spec> •

2. Such references are permitted to use the NAME attribute. If the
NAME attribute is present, the following points are to be noted:

o Specification of multiple copies is still not permitted.

o The reference may be to the ·structure template being de­
fined (and of which the reference is a part). The implica­
tions of this are discussed later.

-228-

Examples of structure NAME identifiers:

STRUCTURE A:
1 X NAME TASK,
1 Y SCALAR,
1 Z NAME SCALAR,
1 ALPHA NAME A-STRUCTURE;

DECLARE P A~STRUCTURE;

DECLARE PP NAME A-STRUCTURE;

P.Z" is a NAME identifier which may point to P. Y

PP is a NAME identifier which may point to P

PP. Z is a NAME identifier which may point to P. Z which
is itself a NAME identifier pointing somewhere.
This is an instance of double indirection.

p. ALPHA is a NAME identifier of A-structure type.
The consequences of this are discussed later.

11.4.3 Declarations of Temporaries

No identifier declared in a TEMPORARY statement may possess the
NAME attribute. No such identifier of structure type may have a template
which contains one or more stl"ucture terminals bearing the NAME attribute.

The "Dereferenced" Use of Simple NAME Identifiers

Simple NAME identifiers are those which are not parts of structure
templates.

If a simple NAME identifier appears in a HAL/SM expression as if it
were an ordinary identifier, then the value used in computing the expression
is the value of the ordinary identifier pointed to by the NAME identifier.
Similarly, if a" simple NAME identifier appears on the left-hand side of an
assignment, as if it were an ordinary identifier, then the value of the right­
hand s,ide is assigned to the ordinary identifier pointed to by the NAME identi­
fier. These are examples of the "dereferenced" use of NAME identifiers.

Whenever a NAME identifier appears in a HAL/SM construct as if it
were an ordinary identifier, the dereferencing process (to find the ordinary
identifier pointed to) is implicitly being specified. Specifically this still
takes place when a subscripted NAME identifier appears as if it were an
ordinary identifier. Here the dereferencing takes place first, and then the
subscripting is applied to the ordinary identifier pointed to:

-229-

Examples of dereferenced NAME variables

DECLARE VECTOR(3), X, Y NAME
DECLARE P NAME PROCEDURE;
Q: PROCEDURE;

•
CLOSE;

•

if Y points to X, and P to Q then -

CALL P;

Y = Y*Y;

Means call Q.
Puts the cross product
of X with X in X.
Puts the third element of
X into the first element.

A special construct to be described in Sections 1l.4.5 and 1l.4. 6 is required
to reference or change the value of a NAME identifier (as opposed to refer­
encing or changing the value to which it points).

11.4.5 Referencing NAME Values

The value of a NAME identifier is referenced or changed by using the
NAME pseudo-function. This pseudo-function must also be used in order to
gain access to the locations of ordinary HAL/SM identifiers. The locations
or values so indicated will be called NAME values. The necessity also
arises for specifying Null NAME values.

The following syntax diagram shows both the NAME pseudo-function
construct as used for referencing NAME values, and the construct for speci­
fying Null NAME values.

Syntax

name reference

NULL

sub name id

. NAME

sub id

NULL

-230-

Semantic Rules

1. A <sub id> is any ordinary identifier, except an input parameter, a
minor structure, an identifier declared wi!:h CONSTANT initializa­
tion, or an ACCESS-controlled identifier to which assignment
access is "denied" or not asked for. A <sub name id> is any NAME
identifier.

2. Either of the above forms may possibly be modified by subscripting
legal for its type and organization. Note, however, the following
specific exceptions:

o No component subscripting is allowed for bit and character
types.

o If component subscripting is present, <sub id> or
< sub name id> must be subscripted so as to yield a single
(unarrayed) element.

o If no component subscripting is present, but array subscript­
ing is, then all arrayness must be subscripted away.

Example:

DECLARE V NAME ARRAY(3) VECTOR;

NAME (V*: 1) is illegal since it violates the
second exception of semantic
rule 2 above.

3. Any <sub id> must have the ALIGNED attribute.

4. NAME <identifier> s may not be declared with the ACCESS attribute
(see Section 11.4.1, rule 2). This does not, however, imply that
the NAME facility is independent of the ACCESS control: NAME
references to <sub id> s with implementation dependent ACCESS re­
quirements for <sub id> are satisfied.

5. If <sub id> is unsubscripted, the construct delivers the location of the
ordinary identifier specified. If it is subscripted, the construct de­
livers the location of !:he part of the specified identifier as determined
by the form of the subscript. Subscripting can change the type and
dimensions of < sub id> for matching purposes.

-231-

6 0 If < sub n;iLme id> is unsubscripted, the construct delivers the value
of the NAME identifier specified. If it is subscripted, the value of
the NAME identifier is taken to be the location of an ordinary
identifier of compatible attributes, and the subscripting accordingly
modifies the location delivered by the construct.

7. The two equivalent forms NULL and NAME (NULL) specify null
NAME values.

Examples:

DECLARE X SCALAR,
V VECTOR (3)
NX NAME SCALAR
NV NAME VECTOR (3);

o

NAME (X)
NAME(NX)

NAME (V2)

NAME (NV3)

yields the location of X.
yields the value of NX (i. e. the
location pointed to by NX).
yields the location of the second
elem.ent of V.
yields the location of the third
element of the vector pointed to by
NV.

11.4.6 Changing NAME Values

The value of a NAME identifier is changed by using the NAME
pseudo-function in an assignment context. The following syntax diagram
shows the NAME pseudo-function used for assigning NAME values:

Syntax

NAME

-232-

name id

Semantic Rules

1. A <nameid> specifies any NAME identifier except an input pararne­
ter, whose NAME value is to be changed. A < name id> may not be
subscripted (except as noted in Section 11.4.6).

Example:

DECLARE X NAME MATRIX;

NAME (X) in assignment context specifies that a
new value is to be given to X.

11.4.7 NAME Assignment Statements

The NAME assignment statement is the construct by which NAME
values are assigned into NAME identifiers.

Syntax

Semantic Rules

name assign

name assignment statement

name reference

1. The <name reference> and <name assign> must possess arguments
whose attributes are compatible in the sense described in Section 11.4. 1.

11.4.8 NAME Value Comparisons

The values of two <name reference> s may be compared to one
another.

-233-

Syntax

name conditionsr expression

Semantic Rules

name reference

NOT =

-,=

'----{ =)----'

name reference

1. This <comparison> may be used in any syntax where other forms of
<comparison> may be used, for example in a <conditional operand>
or as the <: condition> controlling a DO WHILE.

Z. Both <name reference> s must possess arguments whose <attributes>
are compatible in the sense described in Section 11.4.1.

Examples:

DECLARE X SCALAR,
NX NAME SCALAR:

•
•

NAME(NX)=NAME(X) ;

•

value of NX is location of
X (NX points to Xl.

IF NAME{NX)=NULL THEN RETURN;

if NX points nowhere,
then re turn.

11. 4.9 Argument Passage Considerations

NAME values may be passed into procedures and functions provided
that the corresponding formal parame ters of the blocks in question have the
NAME attribute. The following two syntax diagrams are systems language

-234-

extensions of the earlier <normal function> and <call statement> syntax
diagrams.

Syntax

name reference

expression

labal

Syntax

CALL

name r,f.rene.

expression

--------__-------------------J

variable

name assign

ORIGINAL PAGE IS
OF POOR QUALITY

-235-

Semantic Rules

1. The formal parameters corresponding to <name reference::> or
<name assign> arguments of these block invocations must possess

the NAME attribute.

2. The attributes of <name reference::> and <name assign:> arguments
supplied in the <normal function:> reference or <call statement>
must be compatible with those of the formal parameters in the same
sense as described in Section 11.4. 1.

3. If the argument of the procedure or function invocation is not a
<name reference:> then the corresponding formal parameter must
not have the NAME attribute.

Examples:

DECLARE Xl SCALAR,
X2 NAME SCALER;

P: PROCEDURE(A, Bl ASSIGN(C, Dl;
DECLARE SCALAR, A NAME,

B,
C NAME,
D;

NAME(C) = NAME(A)
NAME(C) = NAME(B); illegal - B is an input

parameter
CLOSE;

•
NAME(X2) = NAME (Xl);
CALL P (NAME(Xl), Xl) ASSIGN(NAME(X2), Xl);

11. 4. 10 Ini tializa tion

NAME identifiers may be declared with initialization to paint to some
particular identifier. The form of NAME initialization is as follows:

-236-

Syntax

Semantic Rules

INITIAL

NAME Initialization attribute

name ~8renC8

1. The argument of the <name reference:> must be a previously declared
<sub name id:> or <sub id:> with <attributes:> compatible with the

NAME identifier being declared.

2. Subscripts are illegal in NAME initialization.

3. Uninitialized NAME identifiers will have a NULL NAME value until
the first NAME assignment.

4. The argument of a <name reference:> may not itself possess the
NAME attribute.

11. 4.11 Notes on NAME Data and Structures

The previous sections have introduced the various syntactical forms
and uses of the NAME attribute, <name assign:> s, and <name reference:> s.
The use of these NAME facilities with structure data merits further explana~

tion since the implications of the various legal combinations are not always
immediately apparent. Therefore, the purpose of this section is to continue
further discussion of various aspects of NAME and structure usage by pro­
viding several examples.·

Structure Terminal References

Consider the structure template and structure data declaration below:

STRUCTURE A:
1 C SCALAR,
1 B NAME A-STRUCTURE;

DECLARE A-STRUCTURE, Zl, Z2, Z3;

-237-

Z1. B is a NAME identifier of A-structure type: its NAME value may be set
to point to Z2 by the assignment:

NAME (Z1. B) = NAME (Z2);

If this is done then it is legal to specify Z 1. B. C as a qualified structure
terminal name. The appearance of B in the qualified name causes an implicit
dereferencing process to occur such that if Z 1. B. C is used in a dereferen­
cing context, the ordinary structure terminal actually referenced is Z2. C.
If the NAME value of Zl. B is changed by

NAME(ZI. B) = NAME(Z3);

. then the appearance of Zl. B. C.in a dereferencing context causes Z3. C to be
referenced.

Pictorially

Now ZI. B. B is itself in turn a NAME identifier of A-structure type,
so that if the NAME assignment

NAME (Z1. B. B) = NAME (Z2);

is executed, then Z2. C may be referenced by using the qualified name
Z 1. B. B. C in a dereferencing context.

Pictorially

-238-

· Clearly this implicit dereferencing in qualified names can extend chains
of reference indefinitely. A pal,"ticular consequence is the creation of a closed
circular chain~ If the following NAME assignment statements:

NAME (Zl. B) = NAME (Z2);
NAME (Zl. B. B) = NAME (Zl);

are executed, then pictorially the following closed loop is set up:

Care must clearly be taken when using this implicit multiple dereferencing,
so that all links in the chain have previously been set up.

Implications of Subscripting Structure Terminals

Using the same A-structure template as before, the following
declarations are legal:

DECLARE A-STRUCTURE (3), Yl, Y2, Y3, Y4;

One or more copies of Yl. C may be referred to by subscripting, for example:

Yl. C (optional semicolon for clarity)
2 AT 2;

Note that now Yl. B is a NAME identifier of A-structure type with 3 copies.
One or more copies of it may therefore be assigned a NAME-value at one
time. For example:

NAME (Yl. B2 AT 2) = NAME (Y22 AT 1) ;

In this assigmnent, the left-hand side has arrayness: two copies of the Yl
structure. As a result, two values will be defined by the statement. However,
the right-hand side has no arrayness, because the object pointed to is Y22 AT l'

-239-

This is a two copy section of the structure Y2, with a unique starting location.

Pictorially

Notice that in the above NAME assignment a subscripted <name id>
appears as argument of the left-hand side NAME pseudo-function. - Subscripts so
appearing are legal only if they can have the interpretation exemplified.
The subscripting employed must also be unarrayed, as was mentioned earlier.

Further indirection may then be set up: thus f01 example:

NAME (Y 1. B. B 2) = NAME (Y3 1);

Here the subscript 2 on the left-hand argument refers to copies of YI (this
can be its only interpretation). Hence, by virtue of the fact that Y1. B2 has
previously been set up to point to Y2 1, this -assignment causes Y2. B I to
point to Y3 1•

Arrayness will appear on both sides of a NAME Assignment Statement
only when the assigned reference terminals of both sides possess the NAME
attribute within structure variables with copies.
Consider the template:

STRUCTURE AA:

I C NAME SCALAR,

I D NAME VECTOR;

and the declaration:

DECLARE AA-STRUCTURE (3), YYI, YY2;

-240-

•

•

If the terminal element YY2. D is assigned to the terminal element YYl. D.
the NAME assignment is arrayed since both sides contain three copies.

Thus:

NAME (YYI. D) = NAME (YY2. D) ;

causes the name values of YY2. D found in the three copies of YY2 to be
transferred to the corresponding name variables in YYl. D. All the usual
rules governing arrayed assignments apply in this case.

Manipulating Structures Containing Name Terminals

Since the NAME attribute may be applied to structure terminals, a
definition of operations performed on such NAME terminals in ordinary struc­
ture assignments, comparisons and I/O ope rations is required. The following
general rules are applicable:

o For assignment statements and comparisons involving structure
data with NAME terminals, operations are performed on
NAME values without any de referencing.

Examples:

STRUCTURE IOTA:

I LAMBDA NAME VECTOR,

I KAPPA SCALAR;

DECLARE ALPHA IOTA-STRUCTURE(lO);

DECLARE BETA IOTA-STRUCTURE;

ALPHA4 = BETA;

As a part of this assignment, the vector identifier (or
NULL) pointed to by BETA, LAMBDA becomes the
vector identifier pointed to by ALPHA. LAMBDA4 as
if a <name assignment statement> had been used.

-241-

IF ALPHA5 = BETA THEN CALL QUE UPDATE;

In this IF statement, the structure comparison between
the two variables (ALPHA5 and BETA) is performed
terminal by terminal as usual. For the NAME terminal
LAMBDA of each structure operand, the effect is the
same as if a <name comparison::> had been used;
Equality for the corresponding NAME terminals exists
if they both point to the same ordinary identifier.

o For sequential I/O -Operations, all NAME terminals are
totally ignored. Name terminals can take part in FILE I/O.

Examples:

STRUCTURE OMICRON:

1 ALPHA SCALAR,

1 BETA ARRAY (25) INTEGER SINGLE,

1 GAMMA NAME MATRIX(lO, 10);

STRUCTURE TAU:

1 ALPHA SCALAR,

1 BETA ARRAY(25) INTEGER SINGLE;

DECLARE X OMICRON-STRUCTURE;

DECLARE Y TAU -STRUCTURE;

READ(5) X;

The structure variable X is an OMICRON-STRUCTURE,
whose template includes the NAME of a 10 x 10 matrix
(GAMMA). Only the ordinary terminals are transferred from
Channel 5 by this READ operation --- the value of • X. ALPHA
and the 25 values required for X. BETA. The NAME terminal
X. GAMMA is ignored.

-242-

•

•

(

,

READ(5) Y;

The structure variable Y is a TAU-STRUCTURE,
whose template omits the NAME terminal GAMMA found
in the OMICRON-STRUCTURE, but is otherwise identi£al•
The effect of this READ statement is the same as the pre­
vious statement as far as Channel 5 is concerned --- one
value is read for Y. ALPHA and 25 value s are read for
Y. BETA.

-243-

BIBLIOGRAPHY

1. 'The Programming Language HAL - A Specification' Document
#MSC-01846, Intermetrics, Inc., June, 1971.

2. 'HALlS Language Specification, I Document #IR-6104, Intermetrics,
Inc., June 15, 1974.

-244-

•

•

•

