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GRAVITATIONAL COLLAPSE OF A TURBULENT VORTEX
WITKE APPLICATION TO STAR FORMATION

by Robert G. Deissler

Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT
The gravitational collapse of a rotating cloud or vortex is analyzed

by expanding the dependent variables in the equations of motion in two-
dimensional Taylor series in the space variables. It is shown that the
gravitation and rotation terms in the equations are of first order in the
space variables, the pressure gradient terms are of second order, aud
the turbulent viscosity term is of third order. The presence of a tur-
bulent viscosity insures that the initial rotation is solid-body-like near the
origin. The effect of pressure on the collapse process is found to depend
on the shape of the initial density disturbance at the origin. Dimension-
less collapse times, as well as the evolution of density and velocity,
are calculated by solving numerically the system of nonlinear ordinary
differential equations resulting from the series expansions, The axial
inflow plays an important role and allows collapse to occur even when
the rotation is large. An approximate solution of the governing partial
differential equations is also given, in order to study the spacial distri-
butions of the density and velocity,
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I. INTRODUCTION

Gravitational instabilities appear to play a dominant role in the for-
mation of stars and other astronomical objects, and calculations of the
gravitational collapse of clouds (protostars) have been carried out by
a number of authors (e.g. Larson 1969, 1972, 1973, Disney et al. 1969,
Penston 1971; Tscharnuter 1975). Most of these have been numerical
solutions of the governing partial differential equations, where, except
in recent work such as that of Larson (1972) and of Tscharnuter (1975),
the effects of rotation have been neglected. But as will be seen, the
effects of rotation are of the same order as those of gravity, and are of
lower order than those of pressure gradients. In the past work boundary
conditions were assumed at a hypothetical outer boundary, where con-
ditions were generally not well known.

The present treatment differs from previous work in that the depen-
dent variables are expanded about the origin in truncated power series
in the space variables. This converts the governing partial differential
equations to ordinary differential equations in time. Aside from the faci
that the resulting ordinary differential equations are much easier to solve
than are the original partial differential equations, this procedure has
the advantage that the various physical processes are conveniently sepa-
rated into first, second, and third order effects. Moreover the introduc-
tion of boundary conditions at an outer boundary is replaced by the natural
assumption that the dependent variables and their lower order derjvatives
are finite at the origin. That is, the boundary conditions are applied at
the origin, and we dn not have to specify the extent of the gaseous cloud.

However, we still have to specify the size of the initial disturbance.



The effects of pressure are included and are found to depend on the
amplitude and shape of the initial disturbance. The effects of rotation
and of turbulent viscosity are also included in the analysis. Although
the quantitative effects of turbulent viscosity are only of third order, it
appears that the presence of the turbulent viscosity is important for in-
suring that the velocity and its derivatives are bounded at the center of
contraction and rotation.

Most of the calculations were carried out by using ordinary differen-
tial equations in the independent variable time, as described above.
However, in some of the calculations the radius was also retained as a
variable in order to investigate the spacial variations of density and
velocity.

II. BASIC EQUATIONS
The equations of motion and continuity for an axially symmetric

compressible flow can be written in cylindrical coordinates r, 6 and

Z as
au_v2_ du_oou_0dp 13
QN_V N gu_9_19P (1)
o r or 0z oJr por
av--uﬂ—uv-w—ax-l) (2)
ot or T 0z
W wW_ W _d¢ 109p (3)
ot 0z or 0z p o0z
and
p_.13 (rpu)-—(pW) 4
ot r or

where the gravitational potential ¢ is given by the Poisson equation
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2
v2p =12 (p232), 379 _ 44gp (5)
ror\ or azz

and where u, v, and w are the velocity components in the r, 6 and

z directions respectively, t is the time, p is the density, p is the
pressure, G is the gravitational constant, and D is a turbulent or vis-
cous drag term in the 6 direction. Drag terms are not shown in equations
(1) and (3) because those terms have been assumed small compared with
(or included in) the pressure gradient terms. To relate the pressure

to the density, we use the polytropic relation

p=p0,"0" (8)
or

9P yplpl'yp‘y'lﬁ (6a)

or or

where ¥ (assumed constant) is the polytropic exponent for the collapse
process. The subscripts one designate ambient values.

The drag term D arises mainly because of the effects of turbulence,
the effect of molecular viscosity usually being comparatively small for
the high Reynolds numbers in astronomical systems. For our present
purposes it should be sufficiently accurate to represent the effects of
turbulence by a uniform turbulent viscosity ¢ as in Deissler and

Perlmutter (1960). Thus we write

D=-¢l2(2V Y\, 2 ¥ (1)
or\or r/ r\or r
In Deissler and Perlmutter it is supposed that ¢ is determined by the

shear, and an estimate of its value is given by using a modification of
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von Karman's similarity theory. It is shown there that for v propor-
tional to r~! (large radial flow)

€= -'-‘;- rvy (8)
where k is the Karman constant, and ry and v, are respectively the
radius and tangential velocity at the outer edge of an initial disturbance
to be speciﬁed\. From the experiments cited in Deissler and Perlmutter,

K2 /271/20 (9)

In the present case, v lies between values given by an r"1

and an
r variation, so that ¢ as determined by shear will tend to be lower than
the value given by equation (8), We will retain equation (8) in the present
study as an upper limit for ¢ as determined by shear. Other effects such
as normal strain (Deissler 1968, 1972) and gravitational instabilities will
tend to offset the decrease in ¢ associated with decreased shear, so that
equation (8) may give a reasonable estimate. As will be shown, the
effects of turbulent viscosity are quite small so that the exact value used
for ¢ is not critical.

The set of equations (1) to (9) is determinate, and its solution will
be considered in the next section.

III. SOLUTION BY TAYLOR SERIES
We can expand the dependent variables, u, v, w, p and ¢ (repre-

sented by x) in two-dimensional Taylor series about r = z = 0, truncated

after terms of third order in r and z, as

_ 1. .2 1. .2
x-x0+xrr+xzz+-2-xrrr +xrzrz+-£xzzz
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+= x'rrrr to Xrrzr z+2)‘rzzrz + Xzzz (10)

where

_ _ (2 2%x
Xg = Wy X ( >"=3’ Xpg = ( z>r=g’ etc.

=0 or oro

We take the r and z axes as axes of symmetry, so that the dependent

variables are symmetric or antisymmetric about those axes. Then

(see Fig. 1)
u(r, -z) = u(r, z) w(r, -z) = -w(r, z)
u(-r, z) = -u(r, z) w(-r,z) = w(r, z)
u(-r, -z) = -u(r, z) w(-r, -2z) = -w(r, z)
p(r, -z) = p(r, z) @(r, -2z) = ¢(r, 2)
p(-r, z) = p(r, z) ¢(-r,2) = ¢(r, 2)
p(-r, -2) = p(r, 2) ¢ = (-1, -2) = ¢(r, 2)

The vortex rotates about z, so that

v(-r,z) = -v(r, z)
v(r, -z) = v(r, z)
v(-r, -z) = -v(r, z)

If we impose these symmetry conditions on equation (10), we get

usur+ ; U rd 4 -;— U, rz? (11)
1 1

V=V . Verr T r +-§ Vizz rz? (12)

W=W,2+ ;wrrz r2z + %1- V02 23 (13)

1
n=po+§p,r x'2+-z;pzz 2 (14)
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¢=¢0+§¢rr r2+§<pzz 22 (15)

Consider first the gravitational potential ¢. Substituting equa-
tions (14) and (15) in (5) gives, for coefficients of ro
2(;9rr + Q= 411Gp0 (16)
The relation between Ppr and ¢,, Can be considered as a boundary
condition for ¢. For that boundary condition we set Ppp = Pz that is
we assume spherical symmetry for ¢ ‘near the origin. Larson (1972)
found that his results were not sensitive to the particular boundary condi-

tions used for ¢. Thus equation (16) becomes

From equations (15) and (17),

3¢ 21 Gpyr (18)
or 3

and
i‘g = éj_r Gpoz (19)
oz 3

Substituting equations (11) to (14), (18) and (19) into equations (1) to (9),
and equating the sums of the coefficients of like powers of r and z to
zero gives the following system of nonlinear ordinary differential equations:

du

_roy2_ 2 l4r Gpy, - yplpiypg'zprr (20)
dt 3
dv v,r

r_ 11
"&'t" - 2“rvr + 15 Verr (21)
dw
-;tg T wg ) % Geg - 'yplpiypg'zpzz (22)



dp
0. 204U, - PV, (23)
dt
dprr 4
& =" 3 PoVrrr = Prr¥y = Po¥rrz ~ PrrVy (24)
o,y
at = ~2PVypy " 20,58y = Po¥ 327 - 30,2%5, (25)
du
rrr _ -Y y-3 2
at =2V, Vorr = fplppr - 37(7'2)1319 1P0 Prr (26)
du
rZZ _ _ . -y ¥-3
et 2V Vpgg = plpgy = 2W U, - Y2010 PG TP LR, (27)
dv
rrer _ :
—=- fu v .. -2V UL (28)
rzz _
dt - 2urvrzz - 2vrurzz - 2w z'rzz (29)
dw

- -y v-3
o 2U Wy = DWW - YO -20PyPY Py PPy (30)

¥ 2z
dt
The set of equations (20) to (31) results from retaining terms through

third order in r and z in equations (11) to (14), (18) and (19). That is,

- -y, v-3 2
= - 4szzzz - 37(7'2)p1p1 po Pzs (31)

equations (20) to (31) form a third order set of equations. If, on the
other hand, we retain only terms of first order in r and z, we get
the following first-order set:

du
=-u2+vf.--‘-1-£Gpo (32)
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R "”
dw
zZ _ 2 _4n
PR o
0. 20,U_ = PaW (85)
0°r 072

dt
If we retain terms through second order in equations (11) to (14),
(18), and (19), we get the following second-order set of equations:

du

r_.2 2 _4n -y v-2
== Vp - Uy - = Gpg - YP1Py Py Py (36)
dt 3
v,
_d_t- = ‘2urvr (37)
dw

z2_ 2 4n =Y Y-2
%= -w, - =2 Gy - 1PypY PG Py, (32
dt 3
dpo
_9_. 20qu,. - PV, (39)
dt
40y
a Wrply = Prp¥y (40)
—(_if_z = = 25U = 3PV, “41)

Several interesting observations can be made by comparison of the firet,
second, and third order sets of equations. Examination of the first order
set (eqs. (32) to (35)) shows that gravitational and rotational forces (last
two terms in eq. (32) and last term in (34)) appear when first-order
terms are retained in the series expansions in r and z. The second-
order set (eqs. (36) to 41)) contains in addition, pressure gradient terms
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(last terms in eqs. (36) and (38)). Finally, if third-order terms are
retained in the series expansions (eqs. (20) to (31)), a turbulent vis-
cosity term appears (last term in eq. 21)). Another way of saying this
is that gravitational and rotational terms appear in the equations when
only first spacial derivatives (“r’ A and wr) are present at the origin,
pressure gradient effects require, in addition, second spacial deriva-
tives (prr and p and turbulent viscosity effects require the presence

at the origin.

22)

of the third spacial derivative Verr
Before we can solve the set of equations (20) to (31) numerically,
we must set conditions at an initial time, say at t = 0. We set the initial

radial and axial flows equal to zero in the vicinity of the origin, so that

o_.0 _ 0 __O0__0 __0 _
U = U S Uy Wy S W =Wy =0 (42)

where the superscripis zero indicate values at t = 0. Also we take the
angular velocity w=v as initially uniform near the origin, so that

vg = w0 (43)
and
o _.0 _
Verr = Vpzz = 0 (44)

Finally, we specify the initial density in the vinicity of the origin.
For doing this, we introduce an initial disturbance of radius r such
that for z=0,

2
- Apo[l ) (s )"] +py (45)
ry

and for r=0,
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2
00 = ap” [1 (i\n:} 40y (46)
rl/!

where Apo is the magnitude of the initial density fluctuatinn at the origin
and n is an integer =2. This initial density distribution is convenient,
since its shape at the origin can be altered by varying n, and since it
gives the ambient density Pq at ry Moreover it gives zero density
gradient where the density becomes ambient at ry, 80 that the distribution
given by equations (45) and (46) joins smootl.ly with the uniform ambient
distribution outside of ry- For r=2z=0,

p" = pg = 800 + o, (47)

and
0.
Py =0
in agreement with equation (14). Taking the second derivatives of
equations (45) and (46) and setting r =z = 0, we get

0
p2r=pgz=-4%9- for n=2 (48)
1
and
pgr s pgz =0 for n.> 2 (49)

IV. NUMERICAL RESULTS AND DISCUSSION
The set of equations (20) to (31) was solved numerically, subject to
the initial conditions at t = 0 given by equations (42) to (49). Before
carrying out the solution, the equations and initial conditions were con-
verted to dimensionless form. For example, equation (20) can be

written as



-

du
r_ ‘2 *9 4n * * * *'y-z *
dt
where
* u * v
ur = _I., vr =_r
wo wo
« P
t = wot, po =—g
Py
* Gpl * P1
G = Byt
wo P1T1 wd
* TyPry
Ppr <
Py

Similar dimensionless equations are obtained from equations (21) to (31)
and the initial conditions. As before, the superscripts z.rc indicate values
at t = 0, the subscripts zero indicate values at r = z = 0, and the sub-
scripts one designate constant ambient values. Thus the dimensionless
dependent variables can be written as functions of a dimensionless time,

a gravitational parameter, and a pressure parameter. That is,
] * ¥ *
ur = f(t ,G ,pl) (51)

Similar equations are obtained for the other dependent variables. Dimen-
sionless quantities other than those in equation (51) can, of course, be
used in their place, 80 long as the same total number of variables appears
on the right side. For instance by intermultiplying t‘, G‘ and p;, we get
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0

Gl/zp}/2t=G*1/2t*, w = 1

*

Gl/zp%/z G 1/2

and

*
P _pl
Gpir% G*

so that in place of equation (51) we have

u 0 p
_% =1 Gl/zpl/zt, - 2w1 ’ 1 (52)
w . G / pl/z Gp%r%

When written this way, we can think of the dependent variables as fun-
tions of a dimensionless time, a rotational parameter, and a pressure
parameter. Note that in equation (52) the rotation is confined to one
parameter, in contrast to equation (51) where, instead, gravity occurs
in only one parameter. In both cases the pressure is confined to one
parameter.
a) Uniform Initial Density Distribution
Consider first the case where the initial disturbance at the origin

ap?

is zero (see eqs, (45) and (46)). That is, the density is initially
uniform as in Larson's (1972) rotating case. However, the present case
differs from that of Larson because he assumed that the radial velocity
remains zero at an outer boundary. For Ap0 = 0, equations (48) and

(49) indicate p = 0 initially, regardlees of the value of n in

rr = Pzz
equations (45) and (46). But if Prr and P, a8 well as the radial veloc-
ity are initially zero near the origin (eq. (42)), equations (20) to (31)

indicate that those quantities will remain zero. Numerical solution of
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the equations confirmed this; small disturbances (round off errors) did
not grow with time. Thus, if the initial density s uniform (ap° = 0),
the pressure and turbulent viscosity terms in equations (20) to (31) will
be zero at all times, and the equations reduce to the first-order set
given by equations (32) to (35).

Calculated results for an initially uniform density are plotted in
figures 2 to 4. A modified Gear method (Windmarsh 1974) was used for
the numerical computations. In agreement with the preceding discussion
the results are independent of pressure-gradient and turbulent viscosity
effects. This is true regardless of the value of the polytropic exponent v.
The density changes comparatively slowly over a considerable time span
and then begins to change rapidly. For each value of the rotation param-
eter there is a particular dimensionless time, designated the collapse
time, for which the density and other dependent variables at the origin
increase without limit, That is, the rotating cloud or vortex tends to
collapse at that time to form a star. The collapse time increases with
angular velocity w because the centrifugal field produced by the rotation
tends to prevent collapse.

Another effect of the rotation is that for large initial angular veloc-
cities wo, the density at the center Pg can decrease before it increases,
as in figure 2. This is again because of the centrifugal field associated
with the rotation which tends to throw the gas outward, in opposition to
the gravitational field. Figure 4 shows that for the larger dimensionless
ahgular velocity, the radial flow near the center is outward (ur is posi-
tive) until shortly before the collapse time. On the other hand the flow

near the center in the axial direction (z-direction) is always inward
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(wz is negative) because of gravitational attraction and the absence of
centrifugal effects in the axial direction. This inward axial flow is in
fact the main reason that collapse can eventually occur even when the
radial flow is outward for awhile. When the radial flow is outward, tie
angular velocity at the origin w decreases with time as in figure 3.
This decreases the centrifugal force field so that the radial flow can
become negative (ur becomes negative), and collapse eventually occurs.
But if it were not for the axial inflow during this time, the gravitational
field would be weakened to such an extent because of the decreased den-
sity, that collapse would not occur. Although figure 2 indicates that the
density at the origin Po can decrease because of the radial outflow,
that decrease is not nearly as great as is would be if the axial inflow
were absent. Thus, the collapse process for a rotating cloud can be
much more complicated that it is for w =0,

In order to investigate the spacial variations of the density and veloc-
ity, and to give somewhat more confidence in the series solution for
r =z =0 plotted in figures 2 to 4 an approximate numerical solution of
the original partial differential equations was obtained. To reduce the
number of independent spacial variables to one, and thus to hold the re-
quired computation time within reasonable limits, the solution was ob-
tained for z =0, Then w=0, and we set

2 ow) = pE ~ 28 (ow/52)
Z

r=z=0 (53)
9z r (du/or)

r=2=0

in equation (4), where p had been taken outside of the derivative sign
because, by symmetry, dp/or =0 at z=0, Equation (53) is exact if the
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flow toward or away from the origin is spherically symmetric ((aw/ az)r=z___0
= (du/ ar)rzzzo). It also gives a consistent result for r =2z =0 for
spherically nonsymmetric flow, since (equation (11)) u/r approaches
du/dr at the origin. Finally it is consistent for no axial flow (dw/9z = 0).
For (ow/ az)r=z=o in equation (53) we use equation (34) since, as men-
tioned previously, equation (22) reduces to that equation for uniform initial
density. We take the gravitational potential ¢ as spherically symmetric
in order to give results consistent with those for the series solution. (In
the series solution ¢ was taken to be spherically symmetric at the

origin (eq. (17)). Again we note that Larson's (1972) work indicates that
this assumption should give good results. Equation (5) gives, for ¢

spherically symmetric,

w %[r o(£)£2de (54)
or r2 ‘ )

0
As in the case of the series solution we apply all of the boundary condi-
tions at the origin. Equations (11) to (14) show that we can use for bound-
ary conditions, u=v=w= azv/ar2 =9gp/or=0, atr=2=0,

Equations (1), (2), (4), (6) to (9), (34), (53) and (54) were solved
numerically by an improved Euler method with increments for r/r1 of
0.01, except near r = 0 where increments of 0.005 were used. To give
results comparable with those for the series solution in figures 2 to 4,
the density and angular velocity were taken as initially uniform, and u
as initially zero. (For the series solution those initial conditions were
applied only in the vicinity of r = z = 0). Results for wo/ (Gl/ 2p%/ 2) =1,

pl/(prrﬁ) =0.1, and ¥ =5/3 are plotted against r/r1 in figures 5 to 7.
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For comparison with the series solution, densities at r =z =0 are also
plotted in figure 2. The agreement is satisfactory.

Figure 5 shows that the vortex collapses in a nonhomologous (non-
similar) fashion in agreement with the results of Larson (1972). A
difference between our results and those of Larson is that the latter showed
the formation of a ring of mass for rotating flow, rather than a concen-
tration at the center. (It will be seen later however that our results for
Apo < 0 are somewhat similar to Larson's results.) It is not clear
whether this difference is due to a différence in boundary conditions
(Larson assumed u =0 at an outer boundary), to the numerical techniques
used, or to the inclusion of turbulent viscosily effects (with v = a2v/ ar2
= 0 at the center) in the present calculations. It is of interest that
Tscharnuter (1975), using conditions similar to those of Larson, but a
numerical technique differing from both that of Larson and the present
paper, obtained a concentration of mass at the center.

The density distributions in figure 5 remain flat near the center of
the vortex, This flatness is a carry over from the initially uniform
density distribution. It is in agreement with equations (24), (26), (28)
and (30), which show that for uniform initial p, u, w, and w,p will re-
main uniform near the origin (prr remains zero), as discussed earlier.
Also figures 6 and 7 show that v and u remain linear near the origin,
as they should if the first-order set of equations (32) to (35) is to give a
description of the collapse process. (As discussed previously, the set
of equations (20) to (31) reduce to the set (32) to (35) in the present case.)

Figures 6 and 7 show that the variations of u and v with r are

nearly linear for a considerable time span (beginning at t = 0). In the
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case of u this is partly because, for a slowly varying density, the
gravitational force is nearly linear in r (eq. (54)). The only other term
in equation (1) which is important at early times is the vz/r term,
which is also nearly linear in r. Thus for early times with p = P1s

equation (1) integrates to

2
u= u)o L Gp1 rt (55)
3 .
and equation (2) gives
2
v=|1 +(%£ Crp1 - wo)tz wor (56)

both of which are linear in r. For larger times the variations of u and
v become highly nonlinear and tend to develop peaks. In the case of u
this is evidently because the mass becomes concentrated near the origin

2 outside of the

and the gravitational force is nearly proportional to r~
mass concentration. Inside of the mass concentration the density is
uniform so that the gravitational force, and thus u, are still proportional
to r. The peakedness of the v profiles in the vicinity of the peaks of
the u curves is due to the fact th-t for large u, v approaches a 1/r
variation (invicid vortex solution).

To determine the effect of turbulent viscosity on the results, curves
for that quantity set equal to zero are plotted dashed in figure 6 for com-
parison with the curves for nonzero turbulent viscosity. The differences
are slight, In particular the good agreement near the origin indicates
that the effect of turbulent viscosity on the angular velocity at the origin

(w = vr) is zero. This is in agreement with the series solution, where

the turbulent viscosity term drops out for the present case (uniform
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initial p). For times larger than those shown, the effect of turbulent
viscosity in the vicinity of the peak may become greater, but the effect
on the angular velocity at the origin should still be zero.

The result that the turbulent viscosity has no effect on the angular
velocity at the origin may seem to be contrary to experience. For
instance when the arms of a whirling skater are retracted or extended
they exert a tangential force on the skater's trunk and thus change the
angular velocity of the latter. In that case the tangential force is neces-
sary for changing the angular velocity of the trunk. The difference be-
tween that case and the rotating cloud (where a tangential force or
turbulent viscosity is not necessary) appears to be that in the latter the

‘radial velocity extends all the way to the center and is zero only at the
center. In order to check a case which was comparable to that of the
skatexr, u was set equal to zero for r/r1 between 0 and 0.1, It was
found that the angular velocity at the center changed with time only when
the turbulent viscosity was nonzero.

Perhaps the most 1mportant effect of turbulent viscosity is that it
enables the assumed initial solid-body-like rotation to be realized. In the
absence of a turbulent viscosity the v profile could be arbitrary, and
there would be no assurance that y and its spacial derivatives are finite
at the origin, as required for the series solution. The presence of the
eddy viscosity however provides a tangential stiffness, so that the assumed
wheel flow can be attained, particularly near the origin. Figure 6 and
equation (56) show that once an initial wheel flow is established, it can
remain for a considerable time, even in the presence of small radial

flows.
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b) Nonuniform Initial Density Distributions

Consider first the case where Apo #0 and n > 2 in equations (45)
and (46). Then equation (49) shows that P, and p,, are initially zero,
and equations (20) to (31) show that they will remain zero for the initial
conditions used herein. Thus, as in the case of Ap0 = 0, the set of third-
order equations (20) to (31) reduces to the first-order set (32) to (35).
The results for this case will therefore be similar to those for uniform
initial density at the origin, although pg will be different (for the same
ambient density pl). The discussion for uniform initial density applies
to the non-uniform case when n > 2 in equations (45) and (46), at least
to the present order of approximation. Density evolution curves for
Apo/p1 =0.1 (pg/p1 =1, 1) are plotted in figure 8. As expected, these
curves, as well as those for the velocity components (not shown), are
similar to those for Apo/p1 = (0, They are independent of pressure and
the polytropic exponent 7.

Dimensionless collapse times for various values of rotation parameter
and 'Apo/pl are plotted in figure 9. We note that the curves for Apo #0
could be obtained by multiplying the ordinates on the latter by
(1 + Apo/pl)'l/2 and the abscissas by (1 + Apo/p1 )l/zu The collapse
times are of the same order of magnitude as the free-fall times, in
agreement with the results of Larson and others.

To determine the effect of a non-uniform initial density profile on the
profiles at later times, the governing partial differential equations were
solved by the method and approximations used for the uniform initial
density case in figure 5. The results are shown in figure 10, where p/p1

is plotted against r/'r1 for various dimensionless times, and for n = 4
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and Apo/pl = +0.1 in equations (45) and (46). The rest of the parameters
are the same as those in figure 5, Comparison of figures 5 and 10 indi-
cates that the initial density profile can have a large effect on the evolution
of the profiles. Inparticular the curves for Apo/p1 = -0.1 (Fig. 10(b))
show the development of a pronounced peak away from r =0, These
profiles are somewhat similar to those of Larson (1972) for rotating flow
and uniform initial density. In the present case the effect does not seem
to be entirely due to rotation, because when v was set equal to zero, the
curves, although considerably altered, still showed the development of
a peak away from r = 0. This concentration of mass in a ring may break
up into a binary star system (Larson, 1972). For all three cases the values
of azp/ arz at r= 0 remained zero, as they should according to the series
solution for these cases.

We still have to consider the case where n =2, p; >0, and 200 0
in equations (45) and (46). This is the only case for which Ppp and p,,,
according to the present third-order solution, are not equal to zero, so
that we have to consider the full set of equations (20) to (31). The pressure
and the polytropic exponent 7y, as well as the turbulent viscosity, may
have an effect on quantities at r =z = 0 for this case.

Results for n = 2, pl/ (Gp%r%)= 1, Apo/p1 = 10.1, and ¥ =1 and
5/3 are plotted in figure 11. First, second, and third order approximations
for the evolution of densities at the origin are shown. (For the previous
cases where n > 2 or Apo = 0, the three approximations were of course
identical.) The fact that the second and third order approximations are
nearly the same, particularly for ¥ =1 (optically thin case), indicates

that the third order approximation gives quite accurate results. The

dashed curves for the first approximation are also the curves for zero
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pressure (zero temperature for nonzero density) for the three approxi-
mations, Results for small pressures were essentially the same as
those for zero pressure, indicating that the results for zero pressure are
stable. The effect of pressure for positive Apo is to slow up the collapse
process, since the pressure-gradient force is away from the center. (The
pressure gradient is in the same direction as the density gradient, accord-
ing to eq. (6a).) For negative Apo the opposite trend occurs. Increasing
the value of ¥ or of Apo amplifies these effects. Tne turbulent viscosity
term in equation (21), a third-order term, was found to be negligibly small
in most cases.

The solid curve for ¥ = 5/3 in figure 11(a) indicates that contraction
stops after a maximum density is reached. The curves for ¥ =1, as
well as those for ¥ = 5/3 in figure 11(b), however, show a strong tendency
for collapae to continue, In the latter cases the gravitational force appar-
ently increases faster than the resisting (for positive Apo) pressure-
gradient force. These trends, except those for ¥ = 5/3 and a negative
Apo in figure 11(b), are in agreement with simplified analyses which
indicate that only for ¥ < 4/3 will collapse occur (e.g. Schatzman 1972).

.For a negative Apo the pressure-gradient force can aid, rather than
hinder the collapse process so that it does not seem surpfising that there
can be a strong tendency for collapse to occur in that case, even for

y = 5/3, Of course as discussed earlier, for uniform initial density

( 800 = 0), or for n > 2 in equations (45) and (46), that is, if 3%p/dr°
at the center is initially zero or negligibly small, our series solution
indicates that collapse can occur regardless of the values of » and of

pressure parameter. Thus if the initial disturbance can be approximated
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by equations (45) and (46) the pressure and 7, according to the present

third order analysis, should have an effect on the collapse process at the
origin only for a rather special case, that is, for n=2 and 4p #0.
I should like to acknowledge the work of Frank Molls on the

numerical solutions of the differential equations in the present paper.
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Figure 1. - Time ewlution of angulasr velecily at center of
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Figure 4, - Time evolution of radial and sxisl velocity de-
rivatives at center of woriex for various values of rots-
tion perameter. Der I and angular velacity near cen-
ter are initislly unih.m, and radial and sxial velocities
nesr cenier are inltislly 2er0, Results are independent
of pressure, polytrapic mponent, snd turbulent viscos-
Hy effects.
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Figure 6. - Development of tangential velocity profile in vortex.
D16 2} e 1. py16ofrr 0.1, yo 85, Density and
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ter of vortex are independent of pressure, pokstrapic &-
ponant, and turbulent viscosity effects,



*sj30d Kysosia Juaing

-am pue ‘Juavodxd HdoJikjod ‘aanssaJd jo Juapuadepu)| aJe sjns

Y "0saz Kjjeiliu) e Jajud) Jeau S3|)|J0{A [RlXE DU [Pl pue

‘usopun Kfeuy si U2 Jeau Aot seinbuy  (9y) pue (sp)

suoyenbd L1 2 CU “uoleMINY KIsuap |eniuy pue Rsweaed uot)
-2)04 Jo uoyouny € se peyoid sawp asde|jod ssAuOLSUAWIG - 6 2anby4

(2021196
9 A ¥ £ 2

1
L ! | | L

_\\\\\\I.

10 —
0
10-

E_aeq ]

*51234a KJ1S00SIA Jud|ngLny pue

“yuauodxe sdoajkjod ‘ainssald jo Juapuadapu} aJe s)inNsay "0Jaz

AgeIuL 3JB J3;u3D JE3U SAIJII0[3A [e1Xe PUE [eipe) pue ‘wio)

-un Kjjenuy sy Jajua Jeau Kidojaa sejnbuy  “(9p) pue (Sy) suoll

-enbd Ul 2 <u pue 0= l4) 0y -sapue.ed uolelos o sanjea
SNOLIBA JOJ X31JOA JO JS)JU3I Je AJISUaP JO UOIINIoAd 3wl - '8 asnbiy

1
Vatn?
7L 01 g 9° v 2 0
i | | { | | U
-

LT}

S
Aty

$°1

sawy as&ij0) — ~—— o
suojjenba jepuaJsaytp leyed —--——
{suopienba jeyyuaseyp Areupio)
uoIN|os SN



b Jasl

E-5525

1000

00 gizgyiz,

(8) a9%1p; = 0.1 in equations (45) and (46).

Figure 10. - Development of density profile in vortex, n=4
in equations (45 and (46). W6t zp}'z) =1 plltcpfrf) .
0.3. v =53 Angular velocity is initially uniform, and
radial and axial velocities ars initially zero, Results near
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