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Abstract

Within the context of the restricted problem of three bodies, we
wish to show the effects, caused by varying the mass ratio of the pri-
maries and the eccentricity of their orbits, upon periodic orbits of
the infinitesimal mass which are numerical continuations of circular
orbits in the ordinary problem of two bodies. A recursive power series
_ technique is used to numerically integrate the equations of motion as
well as the first variational equations in order to gencrate a two
parameter family of periodic orbits and identify the linear stability
characteristics thereof. Seven such families are investigated with
equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the
orbits of the primaries in a range 0.0 to 0.6. Stable orbits are
associated with large distances of the infinitesimal mass from the
perturbing primary, nearly circular motion of the primaries and, to
a.slightly lesser extent, small mass ratios of the primaries. On fhe
other Ahand, unstable orbits for the infinitesimal mass are associated
with small distances from the perturbing primary, highly elliptic

orbits of the primaries and large mass ratios.




I. INTRODUCTION

In the restricted problem of three bodies one concerns himself
with the motion of a bedy, having infinitesimal mass, which is sub-
jected to the gravitational influence of two bther bodies, called the
primaries, having finite mass. The assumption is made that the body
of infinitesimal mass exerts no significant gravitational forces upon

. the two primaries but is only acted upon by them.

The case where the primaries describe circular ofbits about their
center of mass is usually referred to as the Circular Restricted Problem
of Three Bodies and has been studied by many researchers in great
detaii. Szebehely (1967) provides an excellent text and an extensive
reference source for most of the work done thfough 1966 concerning this
problem. Where the primaries describe orbits\which are ellipses, the
so-called Elliptic Restricted Problem of Three Bodies, research has
not nearly becn so ertensive. See, for example, Szebehely and Giacaglia
(1964), Danby (1964a), Bennett (1965), Lanzano (1967), and Broucke (1969).
Junqueira (Junqueira and Greene, 1970) has been treating the restricted

problem where the motions of the primaries are completely general.

It is the purpose of this paper to present a two-parameter survey of
periodic orbits in the restricted problem of threc bodies where the pri-
marics are constrained to move on circles or ellipses, and the body of

infinitcsimal mass has its motion contained within the plane defined by



o

those orbits. In particular, we wish to show the effects caused by
varying the parameters m', the mass ratio of the primaries, and e, the
eccentricity of the orbit of the primaries, upon periodic oriits of
trher first kind (Poincare, 1892); i.e., periodic orbits of the body of
infinitesimal mass which are numerical continuations of circular orbits

in the ordinary problem of two bodies.

Basically, this represents an extension to an earlier paper by
Shelus and Kumar (1970), which will hereafter be referred to as Paper A.
Since the time of that report, mathematical computations have been
improved to eliminate the several inconsistancies which were cited in
Paper ‘A. Also, the scope of that previous study has been greatly

expanded.



II. EQUATIONS OF MOTION

The equations of motion for the body of infinitesimal mass in the
planar elliptic restricted problem of three bodies (Scheibner, 1866;

Nechvile, 1926; Szebehely, 1967) arc usually presented in the following

form:
X" -2'=(1+ecos v)'1 2, © (1I-1a)
y'+ 2x' = (1 + e cos v)'l {Sf’ (11-1b)
where
1,2 2 -y u
Q=5x"+y") + + . (11-2)
: (o) 5y 12 1) By fy 2

Dimensionless units are chosen such that the unit of distance is
the variable separation between the primaries, the unit of mass is the
sum of the masses of the primaries (where p is taken to be the mass of
the less massive of the two primaries, i.e., us%—), and the unit of time
is picked so that the constant of gravitation will be unity. Primes
denote differentiation with respect to the true anumaly, v, of the orbit
of the primaries, and e is the eccentricity of that orbit. The sub-
scripts x and y of equations (II-la,b) represent differentiation of @
with respect to the indicated variable. Finally, the orthogonal axes
(x,y) are chosen so that the primaries are located on the x-axis when

v =20,




It should be recognized that the equations (II-la,b) are defined
for a pulsating, nonuniformly rotating coordinate system, where the two
primaries occupy fixed positions on the x-axis. The origin of coordin-
ates is at the center of mass of the two primaries and the larger of the
two masses is to the left of the origin. That is to say, the coordinates
of the mass 1-u is (-u,0) and those of the mass p is (1+,0). Also,
when e = 0, i.e., when the primaries describe circular orbits, the true
anomaly of the orbit of the primaries is identical to the dimensionless
time, and the equations cited reduce to those vhich are commonly used
in the planar circular restricted problem of three bodies. Therefore,
only one set of equations is needed to describe both the circular and

the elliptic restricted problems.

‘At this time one should also note the fact that the equations of
motion for the elliptic restricted problem do not admit the Jacobian
integral (Ovenden and Roy, 1960) which has been used so extensively in

studies of the circular problem.




I1I. VARIATIONAL EQUATIONS

In general, the equations of motion (II-la,b) of the previous section

can always be represented by the following system of first order differ-

ential equations
dxi . -
o fi(xl,xz,...,xn,t) i=1,2,...,n. (I11-1)

The symbol t is used to represent the independent variable instead of
v, which was used in Section II. In the elliptic restricted problem,

the fi contain only periodic functions of t.
Let us suppose that the equations (III-1} have periodic solutions:

x; = $;(6) = 8;(t+) (111-2)

The period T, of course, does not have a uniquely determined value
since any integral multiple of T is also a period of the solutions.

By allowing

xi = ¢i(t) + Ei (111-3)

to be a solution differing only slightly from the known periodic solu-
tion, we can expand (III-3) in a Taylor's series, and neglecting the
squares and higher powers of £ form the so-called first variational

equations of the system (ITI-1), i.e.,

dg,  of; of . af.
= _1 1 i )
A T o AL T S (111-4)
. e ofj .
Each of thc partial derivatives sil-ls evaluated along the reference
J

solution (I1I-2).



By the theory of Floquet (Danby, 1964a), the general solution

to cquations of the form (III-4) is

n a.t
£, = S, .(t) e’ ~ (111-5)
1 j=1 1,]

vhere the Si,j are periodic functions of t with pcriod‘T. The aj's
are referred to as characteristic exponents and the cmJ 's are char-
acteristic roots. If all of the characteristic exponents of (III-5)
are pure imaginary, the g can be expressed as the sums and products
of purely periodic terms and they will remain finite for all values
of t. When there is a real part in any one of the exponents, the &5
will become unbounded with t. It should be noted that if all of the
ciaracteristic exponents were to have negative real parts, the g
 would tend to zero as t became large. However, this cannot happen
for Hamiltonian systems since it can be shown (Pollard, 1966) that

for those types of systems, if 8 is a characteristic root, then so

mst -8.

" Following the treatment by Wintner (1947), the variational equa-

tions (I1I-4) can be expressed in matrix form, i.e.,
& = A g, (111-6)

where A is a matrix periodic in t and the £5 and the éi are each
column vectors. Dots represent differentiation with respect to the

independent variable, t. This sct of n differential equations will



be solved when any sect of n linearly independent solutions are known.
If each of these n solutions be a column of a matrix X(t), which is
called a fundamental matrix or matrizant (Danby, 1964b), it is clear

that
X(t) = A()X(t) (111-7)

Also, any linear combination of the colums of the fundamental matrix

. is also a solution. That is, Z(t) is also a fundamental matrix if
Z(t) = X(t)C (111-8)
where C is some constant n x n matrix such that det C # 0.

In particular, let us define onc special fundamental matrix,

i.e.,
a(ty,t) = X(t) [x(ty]! (111-9)

Note thatsito,to) is the identity matrix I. Setting X(to) = I, the

components of @ may be found by ordinary numerical integration and
X(t) = Q(to,t)X(tO). (I11-10)
The unique matrix Q(to,t0+T) is called the mondromy matrix of the
fundamental matrix X(t) with reference to the given period, T, of A.
The characteristic roots, cujT, of cquation (III-5) are the

roots of the characteristic equation




ln(to,toﬂ‘) -sI| =0 (111-11)

i.e., they are the eigenvalues of the mo:-”~omy matrix Q(to,tnﬂ‘).
The characteristic exponents are then

a; = .—lr.log s; = ,}e[log lsil + i arg(si+2kn)]. r(III-lZ)

Thus if isil = 1, then log ‘Si' = 0 and a; will be pure imaginary.
The t;i will therefore be bounded if all of the characteristic roots

| of (III-5) be located on the unit circle in the complex plane.

In keeping with the many other studies which deal with the
restricted problem of three bodies, we shall use the characteristic
roots and the cliaracteristic exponents, as defined above, to classify
the periodic orbits which we have computed. Given a periodic orpit
in the restricted problem, if all four characteristic roots be located
on the unit circle in the complex plane, the orbit will be considered
to be of the stable type, i.c., the E_l are bounded, in a linear sense.
In any other case, the orbit will bc considered to be of the unstable
type.

Now, returning specifically to the elliptic restricted problem,
if we let § = ax, § = 8y, £ = sx', and & = 8y' represent the slight
variations from a known periodic solution, we can obtain, as the first

variational cquations of the system (II-la,b), the following cxpressions:



g;(ég)_: x' (111-13a)

d(ﬁx) = 1y (111-13b)
d(&x') . 2¢ay') + (1 + e cos V1 (e(ax) + m(ay)) (1I1-13c)

t

ic(l%‘u = -2(ax") + (1 +ecos V)" [m(ax) + n(ay)]  (I1I-13d)

where
21 - Ly - st
[Gxou) 2y 215/ )Py |
[ 2
_ . 1- 3_@22.2_ (111-14a)
[(x+u-1)"+y"] (x+u-11"+y
I O )y ., s u (#u-1)y  (111-14b)

[ 2y 217 o) Bay? Lo -1 %4yP 1% (xm-1) 4y

-

1-u !
n=1- 1- 3——1———2—
- [(xsu) 2y?y ™/ 2 [ (xeu) oy

. 2 L
. (I11-14c

] [ (x+u -1)2+y2] (x+u-1)"+y




1IV. RESULTS

In this study all numerical integrations are perfomed using «
recursive pawer series technique (Steffensen, 1956; Rabe, 19015
Deprit and Price, 1965; Fehlberg, 1966; Broucke, 1969) as applied to
both the equations of motion, (I1I-1a,b), and the first variational
equations, (11!-13a,b,c,d). It is uraal to assume that the sum of
all neglected terms in each series thus computed will be smaller in
magnitude than the first term omitted and we have obtained very good
results by truncating these series after twenty terms. The last few
terms of cach series are interrogated to provide a criterion for
integration step size. The computavions were performed in double

precision on a Univac 1108 system at the NASA Manned Spacecraft Center.

The technique which is used to develope the two paramete: survey
of periodic cibits is a simple and straightforward one and can be
outlined in the following manner. As a starting point, one selects .

a circular two-body orbit for the body of infinit~siral mass about

one of the primaries, with a period equal to some integral ratio of
the orbital period of the primaries. Essentially, this is a periodic
orbit in the circular restricted problem such that u = 0. 7The initial
conditions of this first orbit are then used as initial conditions for
an orbit vhen y is new, say, 0.01. 'This new orbit will, cf course,
not be periodic under these new conditions; lowever, it will not be

very far from being so.



We use a linear differential correction technique similar to

that presented by Deprit and Price (1965) to obtain improved initial

conditions., A linearly improved solution can, in gencral, be

specified by the following Taylor's expansion:

o o (e )t
oo e (ke (),
ot (o (o () 5
oo [ (e (- (i

We desire periodicity, i.c., we require that (x+ut)T = (x+Ax)0,

()HAY)T = (Y*A)')o: (i""\-"()-r = (J'(*AP'C)O, and ().""A}")T = ().”'A).')o: and

therceforc the following equations can be formed:

o o B B G
rore @+ (Gt (h (-%’;)T%
i (@ (s (B (oo
i (e G (s [
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{IV-1a)
(IV-1b)
(IV-1c)

(1Iv-1d)

(IV"' Za)

(Iv-2b)
(Iv-2¢)

(1v-2d)




where each of “ne partial derivatives arc obtained through the numer-
jcal integration of the first variational equations. These equations,
(.V-2a,b,c,d), can be solved to provide the corrections which are to
bé applied to the previous initial conditions and the process can be
repeated in an iterative way until the initial conditions of the per-
iodic orbit are reproduced to the desired tolerance. For all orbits
which are presented here, initial conditions after one period are
reproduced to »at least 1 part in the twelfth decimal place. Of course,
af the same time, we are able tc classify this new periodic orbit as
being ''stable'" or 'unstable' using the characteristic exponents as
described in the previous section. The entire procedure can then be
repeated where y is now increased to, say, 0.02. In this manner per-
iodic orbits are obtained for increasing values of the mass ratio of
thg primaries. Remember that all orbits so far described are for the

circular restricted problem, i.e., e = 0.

At any point in the above procedure, after a periodic orbit has
been computed, we can hold the mass ratio constant and, instead, increase
the eccentricity of the orbit of the primaries from 0.0 to 0.01, say.
The same iteration procedurc is then invoked and the result is a periodic
orbit in the elliptic restricted problem with e = 0.01. The eccentricity
of the orbit of the primaries can then be increased to 0.02 and the
process again repeated. Thus, starting from a circular orbit in the
circular restricted problem with v = 0, we can move along increasing
eccentricity of the orbit of the primaries, or increasing y, to any

desired value in this step-by-step iterative manner.




In progressing along either e or u, once a mmber of orbits has
been computed, it is possible to extrapolaté to better approximations
of the initial conditions of the next orbit by making use of the initial
conditicns of previous orbits. As Broucke (1969) has pointed out, this
has allowed for a pronounced reduction in the number of iterations which
are required to arrive at the next orbit. A different two parameter
“"family'" of periodic orbits is produced by starting from the very begin-
ning of the précedure with another circular two-body orbit. and then

proceding in a similar way.

This report presents the findings for several of these two param-
eter families of periodic orbits in the restricted problem of three
bodies: It is convenient to divide these families into two groups,
i.e., one group of orbits which enciose both of the primaries and a
second group of orbits which enclose only one of the primaries (usually
the more massive of the two). We shall discuss each of these two groups

separately.

a. Orbits encircling both primaries

For the cases where the orbits of the infinitesimal mass encircle
both of the primaries, four distinct families have been generated having
periods of 4w, 6n, 8, and 10w, which correspond to periods that are two,
three, four, and five times, re.pectively, the period of the primaries.
Therefore, these families have been identified by the ratios 2/1, 3/1,
4/1, and 5/1. VWithin cach family, a particular periodic orbit is

identified by e, the eccentricity of the orbit of the primaries, and y,



" the mass of m, i.e., the primary vhich is located to the right of
the origin. The "stable-unstable" analysis is summarized in Tables
I, II, III, and IV wherein the letter S signifies that an orbit is
"'stable", and U, "unstable". Typical orbits are plotted in Figures
1, 2, 3, and 4; for clarity, these illustrations depict the orbits
in a barycentric, inertial coordinate system, not in the rotating-

pulsating system which has been used for the numerical integrations.

A1l of thé orbits which were computed for the two families iden-
tified by fhc ratios 2/1 ond 3/1 are of the unstable type, in the sense
which has been defined in Section III. These two families evolve from
circular orbits in the ordinary problem of two bodies which have radii
of approximately 1.587... and 2.080..., respectively. To illustrate
br_thc naturc of these two families of orbits we have deemed it necessary
oﬁly to compute orbits for mass ratios up to 1/3 (2 <0.25) and eccen-

tricities of the orbits of the primaries in a range 0.0 to 0.1.

The situation is somewhat more interesting when \;re consider the
family of orbits identified by the ratio 4/1. These orbits have
evolved from a two-body circular orbit having a radius of approximately
2.519... . They are located farther from the binary system than
cither of the first two families discussed and orbits have been computed
for the full range of mass ratios, i.e., 0.0 to 1.0. For small values
of the eccentricity of the orbits of the primaries, the orbits of the
infinitesimal mass are linearly stable for all mass ratios. At eccen-

tricity 0.02, thosc orbits computed for mass ratios of the primaries



in excess of about 1/3 (1>0.25) prove to be of the unstable type.
For an cccentricity of the orbit of the primaries of C.03, only the
orbit for a mass ratio 1/99 (=0.01) is of the stable type. All
other orbits which have been computed for this family are linearly

unstable.

Finally, we have the family of orbits identified by the ratio

5/1. The orbits of this family have evolved from a circular two-body
orbit having é radius of approximately 2.924... . All of these orbits
are of the stable type. The full range of mass ratios was considered
and the largest value of the eccentricity of the orbit of the primaries
was 0.09. It is hyﬁothesized that these orbits will eventually evolve
into linearly unstable orbits as the eccentricity is increased further,
however, some difficulty has been met in numerically continuing this

family of orbits and further work along these lines is required.

b. Orbits encircling one primary

Proceding now to the cases where the motion of the body of infini-
tesimal mass encircles only one of the primaries, we are confronted
with a slightly different situation. Because it is necessary that the
orbital period of the infinitesimal mass be restricted to that which
is an intcgral ratio of the orbital period of the primaries, the body
of infinitesimal mass must circulate about one of the primaries (vwhile
being perturbed by the other) some integral numbers of times during
onc orbital period of the primarics. Three such families have becn
generated having, of course, periods of 2:. We have identified them

by the ratios 1/12, 1/6, and 1/3, i.c., the infinitcsimal body will



complete twelve, six, and three circuits, respectively, about its pri-

mary while the primaries complet one circuit.

The “stable-unstable" results for these three families are sum-
marized in Tables V, VI, and VI1I, where, again, the letter S signifies
a "stable" orbit and U an "“unstable" one. Typical orbits are plotted
. in Figures 5, 6, and 7. These illustrations depict the orbits in an
inertial system, however, unlike the plots for the previous four families
of orbits, the origins here are at the primary rather than at the center

of mass.

The orbits of the family identified by the ratio 1/12 evolve from
a circular two-body orbit of approximate radius 0.19078..., such that
the body of infinitesimal mass.encircles its primary exactly twelve
times during 2r wnits of dimensionless time. As is expected, these
orbits are stable for the entire range of mass ratios when the eccen-
fricity of the orbit of the primaries is small. Only when this eccen-
tricity reaches 0.49 do some orbits (for large mass ratios of the pfi-
marics) become unstable.” As the eccentricity continues to increase,
orbits become unstable for smaller mass ratios until, at e = 0.53, all
mass ratios of the primaries produce unstable orbits for the body of

infinitesimal mass.

Continuing to the family of orbits identified by the ratio 1/6,
we sce that thesc orbits evolve trom a.two-body circular orbit of
radius 0.30285..., with the infinitesimal mass now encircling its
primary exactly six times in 2n units of time. In this case, orbits

become unstable at smalier orbital cccentricities (e = 0.17) of the



primaries than the previous family discussed, i.e., compare Tables V
and VI. Also, note thét the dependence of instability upon mass ratio
is far more gradual, such that it is only at e = 0.23 that orbits of
the infinitesimal mass become unstable for all mass ratios of the
primaries.

To conclude this survey we now consider the family of orbits iden-
tified by the ratio 1/3. The orbits of this family have evolved from a
circular two-ﬁody orbit of radius 0.48074... . The body of infinitesimal
mass encircles its primary only three times in a period of 2= units of .
time. All orbits which have been computed prove to be of the uistable
type, except for a few cases. One group of orbits, for » = 0.23 through
#‘= 0.5, are stable for e = 0.0; these orbits become unstable as e is
increased to 0.02 or greater. Another series of orbits, for e = 0.59 to
0.65, are stable for » = 0.01 only, and all becomc unstable when p is
increased to 0.02 or more. Some difficulties in obtaining convergenct
to orbits for large mass ratios and high eccentricities were encountered

for this family. These cases are identified in Table VII by the symbol "?'".



V. DISCUSSION

The application of the circular restricted problem of three bodies
to Solar System dynamics has been most important. Very obvious, of
course, has been the study of: 1) the equilibrium points L, and L in
the Sun-Jupiter-Trojan asteroid configuration; 2) the motion of the
Earth-Moon system as perturbed by thc Sun; and 3) more recently, the
motion of an artificial space vehicle in the Earth-Moon neighborhood.
Somewhat iess frequently, see for example Huang and Struve (1956) and
Kopal (1959), the circular restricted problem has been applied to the

dynamics and the evelution of close binary systems.

In the study which ’haéth,t#en begun in Paper A and which has been
continued here, the.phi}.qgoph);' for generating periodic orbits in the
restricted problem of three bodies is perhaps somewhat different than
that normally assumed in work of this type. We wish to consider this
survey of orbits in a discussion of the problem concerning the exis--
terice of low mass Earth-like objects in the vicinity of double stars.
The components of binary star systems generally describe noncircular
orbits and their mass ratios exceed those of Jupiter-Sun (~0.001) and
Moon-Earth (~0.01). -It has been pointed out by Kumar (1967) that it
is unlikely that Earth-like objects will survive over long periods of
time within such binary star systems; a small Earth-like object may
survive in the vicinity of a double star only if it is located close
to one or to the other of the two components, or, if it is located far

from both stars.
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These remarks must also apply to double star systems in which
one of the components is a 'dark" companion. Table VIII gives a
summary of the observed data for these systems. Note the highly
elliptic orbits and the large mass ratios of the components. The
dark companions in these systems have been identified with stars of
very low mass which have become completely degenerate objects, or
black dwarfs, without going through normal stellar evolution (Kumar,
1963; 1967). As has been remarked, small Earth-like objects may not
sirvive over long periods of time in systems such as Lalande 21185,
unless they are located in very special positions relative to the two

primary components.

The results of this survey has at least offered first order sup-
port for this hypothesis, to the extent that the dynamics of small
masses within binary systems can be satisfactorily modeled by the
restricted problem. Seven families have, so far, been obtained.

Each has evolved from a circular orbit in the ordinary problem of two
bodies, and each crbit encloses one or both primaries. Stable orbits
tend to be associated with large distances of the infinitesimal mass

from the perturbing primary, nearly circuiar motion of the primaries

and, to a slightly lesser extent, small mass ratios of the primaries.
Unstable orbits tend, on the other hand, to be associated with small

distances from the perturbing primary, highly elliptic orbits and

large mass ratios.



These results, then, are in keeping with the hypothesis (at
least in a linear;sense) that low mass objects in binary systems
will be in "stable" orbits when they are located far from both
primary components of the sYstem or when they are located very
near to one of the primaries, provided that the eccentricity of

the orbit of the primaries is not too large.
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TABIE I

Iinear stability characteristics fc~ orbits of family 2/1
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TABLE 11

Linear ctebility characteristics for orbits of family 3/1
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TABLE III
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Linear stebility charecteristics for orbits of fami
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TABLE VI.

Linear stability characteristics for orbits of family 1/6.
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TABLE

Linear stability characteristics for orbits of family 1/3
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TABLE VIII

Data for systems contaiuing unseéen companions

Star m! ¥ e *x Reference
BD +20°2465 1/12 0.6 Reuyl (1945)
Lalande 21185 1/35 0.3 Lippincott (1960)
Barnerd's star  0.011 0.75  van de Kamp (1559a)
61 Cygni 1/25 0.5 Deutsch (1960)
ci 2354 0.09%4 0.9 Lippincott (19€7)
BD +6°39%8 1/13-1/14 0.6 Lippincott (1969)
n Cas 0.04k - van de Kamp (1969b)
Ci 2347 0.057 0.2 Bieger (1964)

* Mass ratio of secondary to primary.
¥*% Eccentricity of apparent orbit.
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