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Abstract

Within the context of the restricted problem of three bodies, we

wish to show the effects, caused by varying the mass ratio of the pri-

maries and the eccentricity of their orbits, upon periodic orbits of

the infinitesimal mass hiiich are numerical continuations of circular

orbits in the ordinary problem of two bodies. A recursive power series

technique is used to numerically integrate the equations of motion as

well as the first variational equations in order to generate a two

parameter f-imily of periodic orbits and identify the linear stability

characteristics thereof. Seven such families are investigated with

equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the

orbits of the primaries in a range 0.0 to 0.6. Stable orbits are

associated with large distances of the infinitesimal mass from the

perturbing primary, nearly circular motion of the primaries and, to

a slightly lesser extent, small mass ratios of the primaries. On the

other hand, unstable orbits for the infinitesimal mass are associated

with small distances from the perturbing primary, highly elliptic

orbits of the primaries and large mass ratios.

i
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I. INTRDDUGTION

In the restricted problem of three bodies one concerns himself

with the motion of a body, having infinitesimal mass, rich is sub-

jected to the gravitational influence of two other bodies, called the

primaries, having finite mass. The assumption is made that the body

of infinitesimal mass exerts no significant gravitational forces upon

the tiio primaries but is only acted upon by them.

The case where the primaries describe circular orbits about their

center of mass is usually referred to as the Circular Restricted Problem

of Three Bodies and has been studied by many researchers in great

detail. Szebehely (1967) provides an excellent text and an extensive

reference source for most of the work done through 1966 concerning this

problem. Mere the primaries describe orbits ufiich are ellipses, the

so-called Elliptic Restricted Problem of Three Bodies, research has

not nearly been so extensive. See, for example, Szebehely and Giacaglia

(1964), Danby (1964a), Bennett (1965), Lanzano (1967), and Broucke (1969).

Junqueira (Jwiqueira and Greene, 1970) has been treating the restricted

problem i%fiere the motions of the primaries are completely general.

It is the purpose of this paper to present a two-parameter survey of

periodic orbits in the restricted problem of three bodies where the pri-

marics are constrained to move on circles or ellipses, and the body of

infinitesimal mass has its motion contained iithin the plane defined by
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those orbits. In particular, we wish to show the effects caused by

varying the parameters m', the mass ratio of the primaries, and e, the

eccentricity of the orbit of the primaries, upon periodic omits of

the first kind (Poincare, 1892), i.e., periodic orbits of the body of

infinitesimal mass which are numerical continuations of circular orbits

in the ordinary problem of two bodies.

Basically, this represents an extension to an earlier paper by

Shelus and Kumar (1970), which will hereafter be referred to as Paper A.

Since the time of that report, mathematical computations have been

improved to eliminate the several :hiconsistancies which were cited in

Paper A. Also, the scope of that previous study has been greatly

expanded.
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II. EQ1I11'14\S OF NK)TION

The equations of motion for the body of infinitesimal mass in the

planar elliptic restricted problem of three bodies (Scheibner, 1866;

Nechvile, 1926; Szebehely, 1967) are usually presented in the following

form:

x" - 2y' = (1 + e cos v)-1 IIx'	 (II-la)

y" + 2X' = (1 + e cos v)-1 OY,
	

(II-lb)

where

= 2 (x2 
+ y2) +
	 1 u 2 1 2 4	 u	 17T

. (II-2)

	

( (x+u) 
2+Y2
	( (x-144 )	 +Y l

Dimensionless units are chosen such that the unit of distance is

the variable separation between the primaries, the unit of mass is the

sum of the masses of the primaries (where u is taken to be the mass of .

the less massive of the tmo primaries, i.e., u^ ), and the unit of time

is picked so that the constant of gravitation will be unity. Primes

denote differentiation with respect to the true anomaly, v, of the orbit

of the primaries, and a is the eccentricity of that orbit. The sub-

scripts x and y of equations (II-la,b) represent differentiation of n

with respect to the indicated variable. Finally, the orthogonal axes

(x,y) are chosen so that the primaries are located on the x-axis when

v=0.



It should be re,agnized that the equations (II-la,b) are defined

for a pulsating, nonuniformly rotating coordinate system, where the two

primaries occupy fixed positions on the x-axis. The origin of coordin-

ates is at the center of mass of the two primaries and the larger of the

two masses is to the left of the origin. Iliat is to say, the coordinates

of the mass 1-1, is (-u , 0) and those of the mass u is (1-u 0). Also,

when e = 0, i.e., when the primaries describe circular orbits, the true

anomaly of the orbit of the primaries is identical to the dimensionless

time, and the equations cited reduce to those uh ich are commonly used

in the planar circular restricted problem of three bodies. Therefore,

only one set of equations is needed to describe both the circular and

the elliptic restricted problem:.

At this time one should also note the fact than the equations of

motion for the elliptic restricted problem do not admit the Jacobian

integral (Ovenden and Roy, 1960) which has been used so extensively in

studies of the circular problem.



III. VARIATIONAL )VATIONS

In general, the equations of motion (II-la,b) of the previous section

can always be represented by the follwing system of first order differ-

ential equations

dx
-^ = fi(xl,x2,...,xn,t) 	 i=1,2,...,n.	 (III-1)

The symbol t is used to represent the independent variable instead of

v, which was used in Section II. In the elliptic restricted problem,

the fi contain only periodic functions of t.

3

Let us suppose that the equations (III-1) have periodic solutions:

xi = Oi (t) = Oi (t+T)	 (III-2)

The period T, of course, does not have a uniquely determined value

since any integral multiple of T is also a period of the solutions.

By allwing

X = ¢Si (t) + E i	 (III-3)

to be a solution differing only slightly from the knoum periodic solu-

tion, we can expand (III-3) in a Taylor ' s series, and neglecting the

squares and higher powers of Ei , form the so-called first variational

equations of the system (III-1), i.e.,

dC,	 af	 af.	 af.

--at 	 axl 	+ ax2 ^2 + ... + axn	 (III-4)

Each of the partial derivatives 
3x1 is eval .uzzted along the reference

solution ( III-2).



By the theory of Floquet (Danby, 1964a), the general solution

to equations of the form (III-4) is

n	 a t
i	 L Si ^ j (t) a	 (III-S}

j=1

where the Si V, are periodic functions of t with period T. The aj's

atiare referred to as characteristic exponents and the e  's are char-

acteristic roots. I_f all of the characteristic exponents of (III-5)

are pure imaginary, the ii 
can be expressed as the sums and products

of purely periodic terms and they will remain finite for all values

of t. Wien there is a real part in any one of the exponents, the Ci

will become unbounded with t. It should be noted that if all of the

ujaracteristic exponents were to have negative real parts, the

would tend to zero as t became large. however, this cannot happen

for Hamiltonian systems since it can be shown (Pollard, 1966) that

for those types of systems, if a is a characteristic root, then so

must -6.

Following the treatment by Wintner (1947), the variational equa-

tions (I1I-4) can be expressed in matrix form, i.e.,

Ei = A(t) E ,	 (I1I=6)

where A is a matrix periodic in t and the 
C  and the Zi are each

column voctors. Dots represent differentiation with respect to the

independent variable, t. This set of n differential equations will
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be solved when any set of n linearly independent solutions are known.

If each of these n solutions be a column of a matrix X(t), which is

called a fundamental matrix or matrizant (Danby, 1964b), it is clear

that

X(t) = A(t)X(t)	 (111-7)

Also, any linear combination of the columns of the fundamental matrix

is also a solution. That is, Z(t) is also a fundamental matrix if

z(t) = X(t)C	 (I1I-8)

where C is some constant n x n mitrix such that det C ¢ 0.

In particular, let us define one special fundamental matrix,

i.e.,

a (to ,t) = X(t) [X(t0 ;]-1	(III-9)

Note that .r(t0 ,t0) is the identity matrix I. Setting X(t 0) = I, the

components of n may be found by ordinary numerical integration and

X(t) = s2(t0 ,t)X(t0).	 (III-10)

The unique matrix R(t0 ,t0+T) is called the mondromy matrix of the

fundamental matrix X(t) with reference to the given period, T, of A.

The characteristic roots, e a
• T

, of equation (III-5) are the

roots of the characteristic equation
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ln(tO't0+T) - slI - Q 	 (III-I])

i.e., they are the eigenvalues of the mo:--'--omy matrix a (ta, t^+T).

The characteristic exponents are then

«i = Plog s i = T[log Isi I + i arg(s i+2kn)]. (III-12)

Thus if Is i l = 1, then log Isi I = 0 and a i vill be pure imaginary.

The C i will therefore be bounded if all of the characteristic roots

of (III-S) be located on the unit circle in the complex plane.

In keeping with the many other studies which deal with the

restricted problem of three bodies, we shall use the characteristic

roots and the characteristic exponents, as defined above, to classify

the periodic orbits which we have computed. Given a periodic orbit

in the restricted problem, if all four characteristic roots be located

on the unit circle in the complex plane, the orbi, will be considered

to be of the stable type, i.e., the i are bounded, in a linear sense.

In any other case, the orbit will be considered to be of the unstable

type.

Noe,, returning specifically to the elliptic restricted problem,

if Ive let C1 = nx, ^ = Ay, C3 = Ax', and C4 = ay' represent the slight

variations from a known periodic solution, we can obtain, as the first

variational equations of the system (II-la,b), the following expressions:



d(
`^ = sx'	 (III-13a)

dPA )_ Lyl	 (III-13b)

d(ta' = 2
(Ay') + (1 + e cos v)

-1 
WAX) * m (eY)l	 (III-13c)

t

d(-^^ _ -2(ex') + (1 + e cos v)-1 [m(Lx) * n(Ay)) 	 (III-13d)

where

1c = 1-	
1 

u 1- 3— (X*u) 2

[ (x+u ) *Y ^^
(x*u)2+y2

-	
u

1 z	 (x+u-1)2	 (III-14a)- J
[(x+u-1)2+y2]3

2
(x+u-112+y2

M =	 1 u (x*u)	 + u  (x	 	̂ (III-14b)

(x^+ ^[t	 )	 Y J (X*u^(	 Y

-	 +

(X*1^	 1 )[	 Y J	 +u 1) +Y^(x

n=1-
2 

CX2*y[ (x*u ) *Y l
Y2	 (III-14c)

[ (X+p -1) +y ] (X*u 
-1) 

+Yl
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In t'iib stud' :,11 tmaerical integrations are perftmn ,-d using I

rccursit-c poacr scr t s tcchniquc (Stc•ffc •iis(m, 1456; 1Zabe, 1961 ;

Doprit and Price, 1065; Yehloorg, 1066; BroueLe, 706 9 ) as applied to

loth the equations of motion, (lI-la,b), and the first variational

equat ions, (l l l 13a,b,c,1) . It is u- eta-1 to assure that thn, SLIM of

all neglected tents in each series thus comput:d will be Smaller in

magnitude than the first term omitt^d and ti:e ha%c obtained vcry goad

results by t rimcating these series after t-wenty tem . 7l,c last fc-"

tents of each series are iuterrorated to provide a criterion Sur

integration stem si-c. The comhutalioiis iscre perfon.._d in double

precision on it Univac 1105 system at the *AS% Mai,ned Spacecraft Center.

111e technique which is used to develope the tti:o paramete, survey

of poriodic cubits is a slriple and straightfor,%ard ore: and can be

outlined in the following mintier.  As a st-cling point, one selects

a circular tv.-O-body orbit for the 1y,)dy of introit-sir-al nxiss about

o0e of the primaries, with a perioJ equal to some integ ral ratio of

the orbital period of the priimries. Essentially, this is a periodic

orbit. in the circul.-a restricted problem such that u = 0. "Ihe initial

conditions of this first orbit are then useJ as initial conditions for

N11 orbit t•,iten a is ne•.:, say, 0.01.	 '11:is near: orbit ^^:i11, c; course,

not by periodic tuulrr these new car.Jitron:,; ho%:crcr, it 011 not be

vc^y fir frost; he;ing so.



We use a linear differential correction te&Aque similar to

that presented by Deprit and Price (1965) to obtain improved initial

ca di.tions. A linearly improved solution can, in general, be

specified by the following Taylor's expansion:

(x+Ax) = xt	 XU taxC 
+(^X-

0 tLy© +	 tx0 +(j'xy cy0

(y+AY) - Y + ^ - Ax + 2v Ay + =̂-- Ux + t ^ - LY (IV-1b)t 	 t	 2x0 t 0	 2y0 	0	 °x0 t 0	 . ^y 0 t 0

(x+4x) t = xt +	 Lx0 + 
ay ey

0 +	 ax0 +	 tLyO (IV-lc)
 0	 O	 'O

(Y+ AY) t = Yt + 2x0 LX0
 + °y0 

aY0 
+ (;UY0 ^k

0
 + 2Y0 

t00 • (IV-1d)

We desire periodicity, i.c., we require that (x+&x) T = (x+Ax)0,

(Y+AY4 --e (Y+AY) 0 1 (x+nx)T = (x+tx) O , and (y+ey) T = O+Ay) 01 and

therefore the following equations can be formed:

x0-XT _	 -1 AX  +	 TAyO + 	 4j	 40+ Y 40 	(IV-2a)^^
1k;	 ^ 0^	 0^ 	 0^

YO-YT 
= 	 .LxO + [Ok- T 1 ``YO + ^'^^0 + b

O
—	 N-2bAY( 	)0^ 	 C	 }T 0

x0 -x j, 
= ` 0 

T`^0 + (}0}fAV3 + r-^ j.^.-1 4Y 0 + (^ J^ 0	 (rJ-Zc)

Y0-}T 10^^0 + O^TUhO + COI' 0 j \^T-1O
	 (IV-2d)

0
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where each of ^ I.ne partial derivatives are obtained through the numer -

ical integration of the first variational equations. These equations,

(S-2a,b,c,d), can be solved to provide the corrections which are to

be applied to the previous initial conditions and the process can be

repeated in_an iterative way until the initial conditions of the per-

iodic orbit are reproduced to the desired tolerance. For all orbits

which are presented here, initial conditions after one period are

}	 reproduced to at least 1 part in the twelfth decimal place. Of course,
E

at the same time, we are able to classify this new periodic orbit as

being "stable" or "unstable" using the characteristic exponents as

described in the previous section. The entire procedure can then be

{ repeated where u is nowincreased to, say, 0.02. In this manner per-

iodic orbits are obtained for increasing values of the mass ratio of

the primaries. Remember that all orbits so far described are for the

circular restricted problem, i.e., e = 0.

At any point in the above procedure, after a periodic orbit has

been commuted, we can hold the mass ratio constant and, instead, increase

the eccentricity of the orbit of the primaries fi-om 0.0 to 0.01, say.

The same iteration procedure is then invoked and the result is a periodic

orbit in the elliptic restricted problem with e = 0.01. The eccentricity

of the orbit of the primaries can tl:en be increased to 0.02 and the

process again repeated. Thus, starting from a circular orbit in the

circular restricted problem with u = 0, we can move along increasing

eccentricity of the orbit of the primaries, or increasin g, u, to any

desires: value in this step-by-step iterative manner.



been computed, it is possible to extrapolate to better approximations

of the initial conditions of the next orbit by making use of the initial

conditirms of previous orbits. As Broucke (1969) has pointed out, this

has allowed for a pronounced reduction in the number of iterations which

are required to arrive at the next orbit. A different two parameter

"family" of periodic orbits is produced by starting front the very begin-

ning of the procedure with another circular two-body orbit-and then

preceding in a similar way.

This report presents the findings for several of these two param-

eter families of periodic orbits in the restricted problem of three

bodies: It is convenient to divide these families into two groups,

i.e., one group of orbits which enclose both of the primaries and a

second group of orbits uh ich enclose only one of the primaries (usually

the more massive of the two). We shall discuss each of these two groups

separately.

a• Orbits encircling both primaries

For the cases where the orbits of the inTinitesimal mass encircle

both of the primaries, four distinct families have been generated having

periods of 41T, 6n, 8n, and 107, uh ich correspond to periods that are t%'o,

three, four, and five times, re.;pectively, the period of the primaries.

{

Therefore, these families have been identified by the ratios 2/1, 3/1,

4/1, and 5/1. Within each family, a particular periodic orbit is

identified by e, the eccentricity of the orbit of the primaries, and u,



the mass of m2 , i.e., the primary ub ich is located to the right of

the origin. The "stable-unstable" analysis is summarized in Tables

III, and IV wherein the letter S signifies that an orbit is

"stable", and U, "unstable". Typical orbits are plotted in Figures

1, 2, 3, and 4; for clarity, these illustrations depict the orbits

in a barycentric, inertial coordinate system, not in the rotating-

pulsating system ub ich has been used for the numerical integrations.

All of the orbits idrich were computed for the two families iden-

tified by the ratios 2/1 and 3/1 are of the unstable type, in the sense

which has been defined in Section III. These two families evolve from

circular orbits in the ordinary problem of two bodies which have radii

of approximately 1.587... and 2.080..., respectively. To illustrate

the nature of these two families of orbits we have deemed it necessary

only to compute orbits for mass ratios up to 1/3 (11<0.25) and eccen-

tricities of the orbits of the primaries in a range 0.0 to 0.1.

The situation is someubat more interesting uhen we consider the

family of orbits identified by the ratio 4/1. These orbits have

evolved from a U;u-body circular orbit having a radius of approximately

2.519... . They are located farther from the binary system than

either of the first two families discussed and orbits have been computed

for the full range of mass ratios, i.e., 0.0 to 1.0. For small values

of the eccentricity of the orbits of the primaries, the orbits of the

infinitesimal mass are linearly stable for all mass ratios. At eccen-

tricity 0.02, those orbits computed for nkass ratios of the primaries
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in excess of about 1/3 (u>0.25) prove to be of the unstable type.

r For an eccentricity of the orbit of the primaries of 0.03, only the

orbit for a mass ratio 1/99 (04.01) is of the stable type. All

other orbits which have been computed for this family are linearly

unstable.

Finally, we have the family of orbits identified by the ratio

S/1. The orbits of this family have evolved from a circular two-body

orbit having a radius of approximately 2.924...	 All of these orbits

are of the stable type. The full range of mass ratios was considered

and the largest value of the eccentricity of the orbit of the primaries

was 0.09. It is hypothesized that these orbits will eventually evolve

F	 into linearly unstable orbits as the eccentricity is increased further,

however, some diffiailty has been met in numerically continuing this

family of orbits and further wort: along these lines is required.

b. Orbits encircling one primary

Proceding now to the cases where the motion of the body of infini-

tesimal mass encircles only one of the primaries, we are confronted

with a slightly different situation. Because it is necessary that the

orbital period of the infinitesimal mass be restricted to that which

is an integral ratio of the orbital period of the primaries, the body

of infinitesimal mass must circulate about one of the primaries (while

being perturbed by the other) some integral numbers of times during

one orbital period of the prirorics. Three such families have been

gcneratecl having, of course, periods of 2,; : We have identified them

by the ratios 1/12, 1/6, and 1/3, i.e., the infinitesimal body will



complete twelve, six, and three circuits, respectively, about its pri-

mary while the primaries complet one circuit.

The "stable-unstable" results for these three families are sum-

marized in Tables V, VI, and VIJ , kfiere, again, the letter S siG ifies

a "stable" orbit and U an "unstable" one. Typical orbits are plotted

in Figures 5, 6, and 7. These illustrations depict the orbits in an

inertial system, hotaever, unlike the plots for the previous four families

of orbits, the origins here are at the primary rather than at the center

of mass.

The orbits of the family identified by the ratio 1/12 evolve from

a circular two-body orbit of approximate radius 0.19078..., such that

the body of infinitesimal mass encircles its primary exactly twelve

times during 271 units of dimensionless time. As is expected, these

orbits are stable for the entire range of crass ratios when the eccen-

tricity of the orbit of the primaries is small. Only when this eccen-

tricity reaches 0.49 do some orbits (for large mass ratios of the pri-

maries) become unstable. As the eccentricity continues to increase,

orbits become unstable for smaller mass ratios until, at e = 0.53, all

mass ratios of the primaries produce unstable orbits for the body of

infinitesini.al mass.

Continuing to the family of orbits identified by the ratio 1/6,

we see that these orbits evolve from a two-body circular orbit of

radius 0.30285..., with the infinitesimal mass now encircling its

primary exactly six times in 2n units of time. In this case, orbits

become unstable at smaller orbital eccentricities (e = 0.17) of the



primaries than the previous family discussed, i.e., compare Tables V

and VI. Also, note that the dependence of instability upon mass ratio

is far more gradual, such that it is only at e = 0.23 that orbits of

the infinitesimal mass become unstable for all mass ratios of the

primaries,

To conclude this survey we now consider the family of orbits iden-

tified by the ratio 113. The orbits of this family have evolved from a

circular two-body orbit of radius 0.48074... . The body of infinitesimal

mass encircles its primary only three times in a period of 2- units of

time. All orbits which have been computed prove to be of the unstable

type, except for a few cases. One group of orbits, for K = 0.23 through

t = 0.5, are stable for e = 0.0; these orbits become unstable as a is

increased to 0.02 or greater. Another series of orbits, for e = 0.59 to

0.65, are stable for µ = 0.01 only, and all become unstable when p is

increased to 0.02 or more. Some difficulties in obtaining convergence

to orbits for large mass ratios and high eccentricities were encountered

for this family. These cases are identified in Table VII by the symbol "?".
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V. DISCUSSION

The application of the circular restricted problem of three bodies

to Solar System dynamics has been most important. Very obvious, of

course, has been the study of: 1) the equilibrium points L4 and L5 in

the Sun-Jupiter-Trojan asteroid configuration; 2) the motion of the

Earth-Moon system as perturbed by the Sun; and 3) more recently, the

motion of an artificial space vehicle in the Earth-Moon neighborhood.

Somewhat Tess frequently, see for example Kiang and Struve (1956) and

Kopal (1959), the circular restricted problem has been applied to the

dynamics and the evolution of close binary systems.

In the study which I-been begun in Paper A and which has been

continued here, the philosophy for generating periodic orbits in the

restricted problem of three bodies is perhaps somewhat different than

that normally assumed in work of this type. We wish to consider this

survey of orbits in a discussion of the problem concerning the exis- -

tetce of low mass Earth-like objects in the vicinity of double stars.

The components of binary star systems generally describe noncircular

orbits and their mass ratios exceed those of Jupiter-Stui (-,0.001) and

Moon-Earth (-,0.01). It has been pointed out by Kumar (1967) that it

is unlikely that Earth-like objects will stu vive over long periods of

E

	 time within such binary star systems; a small Earth-like object may

survive in the vicinity of a double star only if it is located close

to one or to the other of the two components, or, if it is located far

from both stars.



These remarks must also apply to double star systems in which

ore of the components is a "dark" companion. Table VIII giti-es a

summary of the observed data for these systems. Note the highly

elliptic orbits and the large mass ratios of the components. The

dark companions in these systems have been identified with stars of

very low mass which have become completely degenerate objects, or

black dwarfs, without going through normal stellar evolution (Kumar,

1963; 1967). As has been remarked, small Earth-like objects may not

srrvive over long periods of time in systems such as Lalande 21185,

unless they are located in very special positions relative to the two

primary components.

The results of this survey has at least offered first order sup-

port for this hypothesis, to the extent that the dynamics of small

masses within binary systems can be satisfactorily modeled by the

restricted problem. Seven families have, so far, been obtained.

Each has evolved from a circular orbit in the ordinary problem of two

bodies, and each orbit encloses one or both primaries. Stable orbits

tend to be associated with large distances of the infinitesimal mass

from the perturbing pri.marl, nearly circular motion of the primaries

and, to a slightly lesser extent, small mass ratios of the primaries.

Unstable orbits tend, on the other hand, to be associated with small

distances from the perturbing primary, highly elliptic orbits and

large mass ratios.



These results, then, are in keeping with the hypothesis (at

least in a linear sense) that low mass objects in binary system

will be in "stable" orbits when they are located far from both

primary components of the system or when they are located very

near to one of the primaries, provided that the eccentricity of

the orbit of the primaries is not too large.
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TABU: I

Linear stability characteristics fc-, orbits of family 2/1

f
i
µ

.00 .01 U2 .03 .04 .05 .06 .07 .08 .09 .1

.01 u u u u U u u u u U U

.02 U u u u u u u u u u U

.03 u u u u u u u u u u U

.OAS u u u u u u IT u U u u

.05 u u u U u u u u u u

.06 u u u U u u u U u u U

.07 u u u u u u u u u u u

.08 u u u u u u u U u u u

.09 u u u u u u u u u u u

.1 u u u u u u U u u u u

.11 'J u u u u u u u u u u

.12 U u u u U u u u u u u

.13 u u u u u u u u u u u

.14 L' u u u u u u u u u u
• .15 u u u u u u u u u u u

.16 u u u u u u u u u u u

.17 u- u u u u u u u u u u

.18 u u u u u u u u u u u

.19 u u u u u u u u u u u

.2 U u u u u lT u u u u u

.21 u u u u u u u u u u U

.22 u u u u u u u u u u u

.23 u u u u u u u u u u u

.24 u u u u u u u u u u u

.25 u u U U u u u u U u u

1'0=.EDXG 
PAGE "LAW NOT Fajft



TARIZ II

Linear stability* characteristics for orbits of fayiIj 3/1

µ
.00 .01 .02 .03 .04 .05 .06 .07 .08 .09	 .1

.01 u u u u u u u u u u u

.02 u u u u u u u u u u u

.03 u u u u u u u u u u u

.04 u u u u u u u u u u u

.05 u u u u u u u u u u u

.06 u u u u u u u u u u u

.0( u u u u u u u u u U u

.06 u it u u u u u u u u u

.09 u u u u u u u u u u u

.1 u u u u u u u u u u u

.11 u u u u u u u u u u u

.12 u u u u u u u u u u u

.13 u u u u u u u u u u u

.14 u u u u u u u u u u u
•	 .15 u u u u u u U u u u u

.16 u u u u u u u u u u u

.17 u u u u u u u u u u u

.18 u u u u u u U u u u u

.19 u u u u u u u u u u u

.2 u u u u u u u u u u u

.21 u u u u L u u u u u u

.22 u u u u u u u u u u u

.23 u u u u u u u u u u u

.24 u u u u u u u u u u u

.25 U u u u u u 11 u u u u

s

;i



Tmul IXT

Umax at-&-billty r-Mm.-teria. ties for orbits of Afamdiy 4/1

oi c2 o3 o4 o5 o6 o7 . cB .t .1

OIL 5- S 3 S u u u u u u u
.02 a S u u u u u u u u

•	 .03 S 9 S U- u u u u u u u
.04 S 3 C, u u u u u u u u
05 S 8 S u u u u u u u u

.0-6 S a 8 u u u v u u u u
Ifff S S S u u u u u u u u
OB S S S u u u u u u u u

- 09 a S 3 u u u u u u u u
.1 S 3 3 u u u u u u u lu

.31 S a 8 u u u u u u u u
-3 S S u u u u u u u u
8 S S u u u u u u u u
8 S 8 u u u u u u u u

.15 S 3 S u u u u u u a u

.16 3 ICS, u u u u u u u u

.17 3 S S u u u lk I u u u u
3 S S u u u u u u u u

.19 8 S S u u u u u u u u

.2 S S S u u u u u u u u

.21 8 S S u u u u u u u u

.22 S S 3 u u u u u u b u

.23 S 3 3 u u u u u u u u

.24 S S S u u u u u u u u
•25 S S u u u u u u u u u

.26 S 3 u u u u u u u u u

.27 S S u u u u u u u u u

.28 3 S u Tj u u u u u u u

.29 S S u u u u u u u u u

.3 3 S u u u u u u u u u

.31 S S u u u u u u u u u

.32 S S u u u u u u u u u
•33 S 8 u u u u u u u u u
..Vl S S u u u u u u u u u
.35 3 S u u u u u u u u u

.36 S S u U u u u u u u u
S 3 u u u u u u 11 u u

35 S S u u u u u u u u u
.39 S S u u u u u u u 17 u
A S S u u u u 0 u u 11 u
A A S S u u u

0 11 u u i1 u
S S u u u U u u u u u
5 3 u u u u u u u u u
S0 S u u u u u u '0 u u

. 4 5 S S u u u u u u u u u

• 146 S S u U u u V u u u u
1-7 u u u u u Li0 e. tj u u u 11 u u u

tj u tl u u u u

-L



TABLE N .

Linear stability characteristics for orbits of family 511•
a

A

I

.00 . ()1 .02 .03	 .04 .05 .06 .07 .08	 .09	 .1
-

.01 S S S S	 S
-

S S S S	 S
OR S S S S	 S S S S S	 S

.03 S S S S	 S S S S S	 S

.04 S S S S	 S S S S S	 S

.05 S S S S	 S S S S S	 S

.06 S S S S	 S S S S S	 S

.07 S S S S	 S S S S S	 S
_	 .08 S S S S	 S S S S S	 S

.09 S S S S	 S S S S S	 S

.1 S S S S	 S S S S S	 S

17. S S S S	 S S S S S	 S
.12 S S S S S S S S S S
.13 S S S S S S S S S S
.1k: S S S S S S S S S S
.15 S S S S S S S :, S S

.16 S S S S S S S S S S

.17 S S S S S S S S S S

.18 S S S S S S S S S S

.19 S S S S S S S S S S

.2 S S S S S S S S S S

.21 S S S S S S S S S S

.22 S S S S S S S S S S

.23 SS `' S SS S SS
A

S
.24 S S S S v S S S S S
.25 S S S S S S S S S S

.26 S S S S S S S S S S

.27 S S S S S S S S S S

.28 S S S S S S S S S S

.29 S 5 S S S S S S S

.3 S S S S S S S S S S

.31 S S S S S S S S S S

.32 S. S S S 3 S S S S S

.33 S S S S S S S S S S

.34 S S S S S S S S S S
•35 S S S S S S S S S S

.36 S S S S S S S S S S

.37 S S S S S S S S S S

.38 S S S S S S S S S S

.39 S S S S S S S S S S

.11 S S S S S S S S S

.41 S S S S S S S S S S

.42 S S S S S S S S S S

.43 S S S S S S S S S D

.44 S S S S S S S S S S

.45 S S $ S S S S S S S

.46 S S S S S S S S S S

.47 S S S S S S S S S S

.48 S S S S S S S S S

. l} S 8 r
Q

S S S S S S

.5 S .J J ,7 S S 13 ti S .C./	 _

ii



TABLE V.

Linear stability characteristics for orbits of family 1/12.

.00 .10 .20 .30 .40 .45 .49 .50 .51 .52 .53- .60

101 S S S S S S S S S S u	 u
.02 S S S S S S S S S S u	 u
.03 S S S S S S S S S S u
z04 S S S S S S S S S S u
.05 S S S S S S S S S S u
.o6 S S S S S S S S S S u
.07 S S S S S S S S S S Tj

.o8 S S S S S S S S S S u

.09 S S S S S S S S S S u
11 S S S S S S S S S S u
.11 S S S S S S S S S S u
.12 S S S S S S S S S S u
.13 S S S S S S S S S S u
.14 S S S S S S S S S S u
.15 S S S S S S S S S S u
.16 S S S S S S S S S S u
.17 S S S S S S S S S S u
.18 S S S S S S S S S u
.19 S S S S S S S S u u
.20 S S S S S S S S u
.21 S S S S S S S S u
.22 S S S S S S S S
.23 S S S S S S S S
.24 S S S S S S S S
.25 S S S S S S S S
.26 S S S S S S S S
.27 S S S S S S S S
.28 S S S S S S S S
.29 S S S S S S S S
.30 S S S S S S S S
.31 S S S S S S S S
.32 S S S S S S S S
.33 S S S S S S S S
.34 S S S S S S S S
.35 S S S S S S S u
.36 S S S S S S S u
.37 S S S S S S S u
.38 S S S S S S S u
.39 S S S S S S S
.4 S S S S S S S
.41 S S S S S S S
0 112 S S S S S S S
0 113 S S S S S S S
* ii !E
045

S S S S S S S
S S S S S S u

.h6 S S S S S S u

. 1+7 S S S S S S u

. 118 S S S S S S u0
119 S S S S S S u

S S S S S S 11



r .00 .10 .16 .17 .18 .19 .20 .21 .22 .23 .24 .25 .26 .27 .30 •40

.01 s s s s s s s s s s s s s u u u

.02 s s s s s s s s s s s s s u u u

.03 s s s s s s s s s s s s s u u u

.04 s s s s s s s s s s s s u u u u

.05 s s s s s s s s s s s s u u u u

.o6 s s s s s s s s s s s s u u u u

.07 s s s s s s s s s s s s u u u u

.08 s s s s s s s s s s s s u u u u

.09 s s s s s= s s s s s s s u u u u

.1 s s s s s s s s s s s s u u u u

.11 s s s s s s s s s s s s u u u u

.12 s s s s s s s s s s s u u u u u

.13 s s s s s s s s s s s u u u u u

.14 s s s s s s s s s s s u u u u
,15 s s s s s s s s s s s u u u
.16 s s s s s s s s s s s u u u
.17 s s s s s s s s s s s u u u
.18 s s s s s s s s s s u u u u
.19 s s s s s s s s s s u u u u
.2 s s s s s s s s s s u u u
.21 s s s s s s s s s s u u u	 a
.22 s s s s s s s s s s u u u
.23 s s s s s s s s s u u u u
.24 s s s s s s s s s u u u u
.25 s s s s s s s s s u u u u
.26 s s s s s s s s s u u u u
.27 s s s s s s s s u u u u u
.28 s s s s s s s s u u u u
.29 s s s s s s s s u u u u
43 s s s s s s s s u u
.31 s s s s s s s u u u
.32 s s s s s s s u u u
.33 s s s s s s s u u u
.34 s s s s s s s u u u
•35 s s s s s s u u u
.36 s s s s s s u u u
•37 s s s s s s u u u
.38 s s s s s s u u u
.39 s s s s s s u u u
.4 s s s s s u u u U
0 111 s s s s s u u u U
. 1+2 s s s s s u u u u
.43 s s s s s u u u u
. 11•'1 s s s s u u u u
. 115 s s s s u u U U
.4G s s s s u u u U
0 117 s s s s u U 11
. !fix s s s u U u V
. 119 s s s U u u U
.5 S s s U U U ti
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TABLE V11

Linear stability characteristics for orbits of family 1f3

.0 .01 .02 .1 .2 .3 .4 .5 .6

s	 .01 u u u u u u u u S
.02 u U U U U U U u u
,03 U u 11 u u U u u u
.04 u T3 u u u u u u u

.05 U. u u u u u u u u

,06 u u u u u u U u u
.07 U U U u U u u u U
.08 U u u u U u u u U
.09 u u u u u u u u u
11 u u u u u u u u ?

.11 u u u u u u u u ?

.12 u u u u u u u U ?

.13 u U u U u u u u U

.14 u U U u U u U U U

.15 U u u U u u U U U i

.16 u u u u u u u u u

.17 u U u u U U U U U

.18 U U U u U u u U u
=_

.19 S u u U U U U U U
"	 .2 S U u u u u u u U

.21 S u U U U U U U U

.22 S u U u U u u u U

.23 S U U u u u U u u
=	 .211 s u u u u u u u u

.25 S U u U u U ? U U

.26 S U u u u U ? u u

.27 S u U U u u ? u U

.28 S 1i U u U u ? u u

.29 S u U U U U ? u u
63 S U U u u ? ? u U

:31 S u u u U ? ? u u
.32 S U- U U U ? ? U U
•33 S u u u u ? ? IT U
.3 11 S u u u u ? ? u U
.35 S IT u u IT u ? u U
.36 S u u U U u ? u u
•37 S u U U U U ? u U
938 S U u U U U ? U U
.39 S u U u u IT ? u u
. 11 S u u u U U ? U u
. 141 S U U u U U ? U U
4 1+2 S u U U U U ? U U
0 113 S U U U U U ? ? u

S u u IT U IT ? ? u
. 1 + 5 S U U u U U IT ? U
• 1+ 6 S IT IT u U U U ? 1,
• 4 7 S U IT U U U lJ ? IT
all's S IT IT U U U 11 ? ;• -

• 119 S U IT lI 11 1J li ? l;
•5 :; U U 11 U lJ lI
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TABME VIII

Data for systems containing unseen companions

Star m' a Reference

BD +20"2465 1/I2 0.6 Reuyl ( 1943)
Lalande 21185 1135 0.3 Lippincott (1960)

Barnara's star 0.011 0.75 van de Kamp (19"

61 Cygni 1/25 0.5 Deutsch (1964)

Ci 2354 0.094 0.9 Lippincott (1967)

8D +6 398 1/13-1/14 0.6 Lippincott (1969)

Tj Cas 0.044 - van de Kamp (1969b)

Ci 2347 0.057 0.2 Bieger (1964)

Mass ratio of secondary to primary.
*-* Eccentricity of apparent orbit.



FI(LTPXE CAPTIONS

Figure 1. Typical orbits for family 2/1.

Figure 2. Typical orbits for family 3/1.

Figure 3. Typical orbits for family 4/1.

Figure 4. Typical orbits for family 5/1.

Figure S. Typical orbits for family 1/12.

Figure 6. Typical orbits for family 1/6.

Figure 7. Typical orbits for family 1/3.
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