

MONTE CARLO CALCULATIONS OF DIATOMIC MOLECULE GAS FLOWS INCLUDING ROTATIONAL MODE EXCITATION
 LOAN COPY: RETURN TO AFWL TECHNICAL LIRRARY KIRTLAND AFB, N. M.

Kenneth K. Yoshikawa and Yukikazu Itikawa Ames Research Center Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JANUARY 1976

1. Report No.

NASA TN-8100
2. Government Accession No.
4. Title and Subtitle

MONTE CARLO CALCULATIONS OF DIATOMIC MOIECULE GAS FLOWS
INCLUDING ROTATIONAL MODE EXCITATION
7. Author(s)

Kenneth K. Yoshikawa and Yukikazu Itikawa
9. Performing Organization Name and Address

Ames Research Center, NASA
Moffett Field, Calif. 94035

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20546
3. Recipient's Catalog No.

5. Report Date

 January 19766. Performing Organization Code
7. Performing Oıganization Report No. A-6196
8. Work Unit No. 506-26-21
9. Contract or Grant No.
10. Type of Report and Period Covered Technical Note
11. Sponsoring Agency Code
12. Supplementary Notes

NOMENCLATURE

A	constants appearing in equations (23) and (25)
$A^{(\ell)}$	integral appearing in cross section (see eq. (6))
B	constant associated with intermolecular potential (eq. (23))
b	impact parameter
C	constant associated with intermolecular potential (eq. (23))
C_{α}	coefficient of wave function (eq. (13))
C_{6}	coefficient associated with R^{6} term (eq. (23))
c	molecular speed
c_{0}	rms molecule speed, $\sqrt{\frac{3 k T}{M}}$
D_{α}	transition amplitude
d	strength associated with intermolecular potential
E	kinetic energy or energy
f	distribution function
g	relative speed
K	Planck's constant divided by 2π
I	quantity given in equation (25)
$\tilde{\mathrm{K}}$	matrix whose element is defined by equation (20)
k	Boltzmann constant
m	magnetic quantum number; also molecular weight
N	number of simulated molecules within the cell
n	number density
P	transition probability
\tilde{P}	modified transition probability
Q	collision cross section

T temperature
t time
V interaction potential
W eigenenergy of the rotational Hamiltonian
$|\alpha\rangle \quad$ eigenfunction of the rotational Hamiltonian
$\Delta \tau \quad$ increment of collision time
$\delta \quad$ index of power associated with point centers of repulsion model (eq. (5)) or delta function (eq. (16))
$\lambda \quad$ quantity defined in equation
$\mu \quad$ reduced mass
$\nu \quad$ collision frequency
$\sigma \quad$ effective collision diameter
$\tau \quad$ characteristic collision time based on initial translational temperature, $1 /\left(n \pi \sigma^{2} c_{o}\right)$

X deflection angle defined in equation (1) or molecular orientation angle (eq. (22))
$\Psi \quad$ wave function
$\omega \quad$ difference eigenenergy
Subscripts:
C distance of closest approach of pair of molecules
i,j rotational states
\max maximum value
0 initial
r rotational
t total
tr translational
$\alpha \quad$ rotational state

MONTE CARLO CALCULATIONS OF DIATOMIC MOLECULE GAS FLOWS

INCLUDING ROTATIONAL MODE EXCITATION

Kenneth K. Yoshikawa and Yukikazu Itikawa*
Ames Research Center

SUMMARY

The direct simulation Monte Carlo method is used to solve the Boltzmann equation for flows of an internally exicted nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. In this study, the semiclassical transition probability model of Itikawa is investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen is examined for several different nonequilibrium initial states that are subjected to uniform mean fiow without boundary interactions.

A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium equipartition (i.e., all rotational energy states are assigned the mean energy level that obtains at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (i.e., the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). Since only uniform flow is considered, the effect of elastic collisions is ignored in the Monte Carlo simulation.

In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

INTRODUCTION

Understanding the energy balance, as well as the energy transfer mechanisms, within the internal excited states of a nonequilibrium rarefied flowing gas, is important, in indeed, to a number of problem areas within the broad categories of planetary reentry, combustion, and pollution. In this paper, results are presented on translation-rotation relaxation. Furthermore, these results are obtained by solving Boltzmann's equation by the Monte Carlo direct simulation technique, a method that has received considerable recent attention (refs. 1-11). A feature of this method is that it gives insight into the effects of relaxation on the microscopic level during molecular

[^0]collisions; in particular, the instantaneous distributions of internal states can be continuously followed.

The method is described in detail elsewhere (refs. 1 and 6-9). Briefly, the flow is computed by following in detail several thousand model molecules that are allowed to interact with each other. The coordinates of each molecule in phase space (including rotational state) are at all times known. These coordinates change only during a collision and the modeling of these intermolecular encounters is the essence of an accurate simulation. To account for these encounters, a molecule and a near neighbor are each selected at random as are also their impact parameter and deflection angles - all in a manner representative of typical molecules undergoing encounters. They are accepted for an interaction or rejected depending on a selected rule that depends on cross section and, therefore, on intermolecular potential and the relative velocity of the collision pair. Since the initial coordinates (relative velocity, impact parameter, and pair of rotational states) are known, there remains only to find the final rotational state. This is found by computing the distribution (transition probability) of all final states accessible from the known initial states. The final state is then determined by a random selection from this distribution.

The procedure for handling the "translational" interactions parallels other investigations (refs. 1 and 6-9) treating monatomic gases. The procedure described in this paper differs, however, from other investigations of the treatment of internal state interactions. These other investigations fall into four categories: (1) semi-empirical, (2) classical, (3) semi-classical, and (4) quantum mechanical. The semi-empirical models, energy sink (ref. 11), and rough spheres and loaded spheres (ref. 12), while adequate for steady flows at or near equilibrium, lack sufficient physical detail to inspire confidence in their use for highly nonequilibrium flows.

The classical models (refs. 13 and 14), although consistent with the classical direct simulation Monte Carlo procedure used here, necessarily include approximations to make the models sufficiently tractable to a study of the type that is the subject of this report. Those approximations, although yielding appropriate macroscopic behavior for a nonequilibrium gas, do not adequately describe its microscopic behavior. For example, molecular encounters can occur that violate energy and momentum conservation. One, therefore, is at a loss as to how to treat the negative energies and momentum that arise during a simulation.

Semiclassical models (refs. 10, 15, and 16) appear to be based on physically realistic criteria; however, the Pearson and Hansen model was too simplified. Although this model would not seriously violate equilibrium concepts, it was subject to slow drifts from equipartition (ref. 10) (i.e., the rotational temperature would drift from equality with the translational temperature). Although, by heuristic arguments this model could be altered to qualitatively satisfy proper interaction behavior, we have based our investigation described here on the semiclassical model of Itikawa (ref. 16). This model is founded on more rigorous concepts and, in addition, allows for treatment of molecular collisions. The model also satisfies conservation of probability.

In this paper we treat translation-rotation interactions for a uniformly flowing gas far removed from solid boundaries. In fact, we assume that the rotational relaxation does not affect the flow; we are concerned only with understanding the rotational relaxation behavior. Results are given based on calculations starting from three different sets of initial conditions:
(1) complete equilibrium, (2) nonequilibrium equipartition (distribution of energy is constant for all molecules - the energy value is based on the total energy within the rotational states at complete equilibrium that is to be uniformly distributed to each molecule; that is, total energy in rotation is physically correct but distributed incorrectly), and (3) nonequipartition (same as (2) except partition of energy within rotational states is not based on complete equilibrium). Throughout this paper the key mathematical relations essential to the Monte Carlo simulation are defined. Readers desiring a more comprehensive treatment of the method are referred elsewhere (refs. 1 and 6-9).

PROCEDURE

The essential aspects of the procedure are described in the introduction. The analytical relations peculiar to this investigation are described in the text that follows.

Selection Rule Defining the Occurrence of an Encounter

The key to an accurate simulation is the procedure for selecting the molecular pair to reach in a collision, determining whether a reaction occurs, advancing the time parameter in a systematic manner until the next collision occurs, and so on. Both the probability and time intervals are strongly dependent on collision frequency which, in turn, is dependent on the uncertain relation for intermolecular potential.

To aid this discussion, it is worthwhile to refer briefly to classical relations and how those relations depend on, for example, an intermolecular potential base and on a two-parameter repulsion between the point-center model.

In this case, where the intermolecular potential $V(R)$ is spherically symmetric, the deflection angle of an encounter, $X(b, g)$, which depend on impact parameter b and relative velocity of approach, g, and the ℓ th moment "transport" cross section, $Q^{(\ell)}$, are given by

$$
\begin{gather*}
X(\mathrm{~b}, \mathrm{~g})=\pi-2 \int_{\mathrm{R}_{\mathrm{C}}}^{\infty}\left(\mathrm{bdR} / \mathrm{R}^{2}\right) / \sqrt{1-(\mathrm{b} / \mathrm{R})^{2}-\mathrm{V}(\mathrm{R}) /(1 / 2) \mu \mathrm{g}^{2}} \tag{1}\\
\mathrm{Q}^{(\ell)}(\mathrm{g})=2 \pi \int_{0}^{\infty}\left(1-\cos ^{\ell} \chi\right) \mathrm{bdb} \tag{2}
\end{gather*}
$$

where R_{C} and μ are the distance of closest approach and reduced mass, respectively. (For example, see chap. 8, ref. 12.) The collision frequency v is then given by

$$
\begin{equation*}
\nu=n Q^{(l)} g \tag{3}
\end{equation*}
$$

From this relation, we can compute the collision time Δt of an encounter and the elapsing time t. There results

$$
\begin{align*}
\Delta t & =\frac{2}{N} \frac{1}{v} \\
t & =\sum \Delta t \tag{4}
\end{align*}
$$

where N is the number of particles in a simulated cell. The collision frequency is not, however, accurately known in general.

In the case when the potential can be described by

$$
\begin{equation*}
\mathrm{V}(\mathrm{R})=\frac{\mathrm{d}}{\mathrm{R}^{\delta}} \tag{5}
\end{equation*}
$$

the frequency is given by

$$
\begin{equation*}
v=\pi n\left(\frac{\delta d}{\frac{1}{2} \mu}\right)^{2 / \delta} \mathrm{A}^{(l)}(\delta) \mathrm{g}^{(\delta-4) / \delta} \tag{6}
\end{equation*}
$$

If $v_{\max }$ and $g_{\max }$ are the maximum values possible in a cell then the dimensionless ratios in the equation

$$
\begin{equation*}
\left(\frac{v}{v_{\max }}\right)=\left(\frac{g}{g_{\max }}\right)^{(\delta-4) / \delta} \tag{7a}
\end{equation*}
$$

define a curve for specified values of δ. If one accepts the above relation as representative of molecular encounters, then any point in the region below the curve represents a valid encounter, and points above the curve are invalid. We can then use the relation as a "selection rule," defining whether an encounter occurs or not.

Rather than accept the above relations as completely valid, we also investigated results using the linear relation

$$
\begin{equation*}
\frac{v}{v_{\max }}=B+(1-B) \frac{g}{g_{\max }} \tag{7b}
\end{equation*}
$$

where B is an adjustable parameter that gives the best results in the case $B \simeq 0.3$. The reasons underlying this choice are described later.

Discussion of transition probabilities is given in the next section. Given the fact that a rotational transition has occurred, however, trajectories are required by the method so that the particle coordinates in phasespace can be recomputed.

Collision Dynamics

The relative velocity after the collision is obtained by knowing the rotational energy and momentum before and after a collision. These relations are classical relations given by

$$
\begin{equation*}
\left(g^{\prime}\right)^{2}=g^{2}-\frac{2}{\mu}\left(E_{r 1}^{\prime}-E_{r 1}+E_{r 2}^{\prime}-E_{r 2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\prime}=\frac{\left[g b-\left(M_{r 1}^{\prime}-M_{r_{1}}+M_{r_{2}}^{\prime}-M_{r 2}\right) / \mu\right]}{g^{\prime}} \tag{9}
\end{equation*}
$$

where $E_{r 2}$ and $M_{r 2}$ are rotational energy and momentum before a collision and a prime denotes value after a collision, the transition probabilities as well as calculation of a trajectory are based on $\left|g{ }^{\prime}-g\right| / g \ll 1$ and $\left|b^{\prime}-b\right| / b \ll 1$; that is, the relative velocities and impact parameters are only slightly perturbed as a result of the rotational transitions.

The deflection angle (eq. (1)), although also dependent on intermolecular potential, can be adequately approximated to obtain trajectory results by the infinite-rise, rigid-spherical molecule of diameter σ. Such a relation yields

$$
\begin{equation*}
x(b)=2 \cos ^{-1}\left(\frac{b}{\sigma}\right) \tag{10}
\end{equation*}
$$

To properly account for the effect of inelastic collisions, we use the following mean value:

$$
\begin{equation*}
\bar{x}(b)=\frac{\left[x(b)+x\left(b^{\prime}\right)\right]}{2} \tag{11}
\end{equation*}
$$

The derivation of the relation for rotational transition probabilities is briefly reviewed in the next section.

ROTATIONAL TRANSITION PROBABILITY

The details of the method and its applicability are discussed in reference 16. Only major derivations and results will be presented here for the purpose of direct application to the Monte Carlo simulation.

The interaction considered in the calculation of rotational transition probability is described by the reaction:

$$
\begin{equation*}
N_{2}\left(j_{1}\right)+N_{2}\left(j_{2}\right) \rightarrow N_{2}\left(j_{1}^{\prime}\right)+N_{2}\left(j_{2}^{\prime}\right) \tag{12}
\end{equation*}
$$

The calculation is based on a semi-classical theory. To make numerical calculations tractable, several approximations are made. Whether these approximations are valid is difficult to assess, except that they lead to the correct qualitative behavior in the several applications considered. The total wave function of the system is expanded in terms of a set of wave functions based on a "rotational" Hamiltonian and given by:

$$
\begin{equation*}
\psi=\sum_{\alpha} C_{\alpha}(t)|\alpha\rangle \exp \left(-\frac{i}{h} W_{\alpha} t\right) \tag{13}
\end{equation*}
$$

Here α specifies the rotational state of the molecules and W_{α} and $|\alpha\rangle$ are, respectively, the eigenenergy and eigenfunction of that state. The timedependent coefficient $\mathrm{C}_{\alpha}(\mathrm{t})$ is then determined by:

$$
\begin{equation*}
i K \frac{\mathrm{dC}_{\alpha}{ }^{\prime}}{\mathrm{dt}}=\sum_{\alpha}\left\langle\alpha^{\prime}\right| \mathrm{V}|\alpha\rangle \exp \left(i \omega_{\alpha}{ }^{\prime} \alpha^{t}\right) \mathrm{C}_{\alpha} \tag{14}
\end{equation*}
$$

where V is the interaction potential and $\omega_{\alpha} \prime_{\alpha}=\left(W_{\alpha},-W_{\alpha}\right) / K$. We separate the Hamiltonian into isotropic (spherically symmetric) and nonisotropic parts. Since our interest is in inelastic collisions, the elastic process due to the isotropic part of the potential, $\mathrm{V}(0)$, is eliminated by introducing the distorted-wave type coefficient defined by:

$$
\begin{equation*}
D_{\alpha}(t)=C_{\alpha}(t) \exp \left\{\frac{i}{h} \int_{-\infty}^{t} V^{(0)}\left[R\left(t^{\prime}\right)\right] d t^{\prime}\right\} \tag{15}
\end{equation*}
$$

where $R(t)$ is the distance separating gravity centers of the molecules at time t. The coefficient D_{α} satisfies the equation

$$
\begin{align*}
i k \frac{d D_{\alpha}{ }^{\prime}}{\mathrm{dt}} & =\sum_{\alpha}\left[\left\langle\alpha^{\prime}\right| V|\alpha\rangle-V^{\left.(0)_{\delta_{\alpha}, \alpha}\right] \exp \left(i \omega_{\alpha}{ }^{\prime} \alpha^{t}\right) D_{\alpha}}\right. \\
& =\sum_{\alpha}\left\langle\alpha^{\prime}\right| \tilde{V}|\alpha\rangle \exp \left(i \omega_{\alpha^{\prime} \alpha^{\prime}} t\right) D_{\alpha} \tag{16}
\end{align*}
$$

and the initial condition

$$
D_{\alpha}(t=-\infty)= \begin{cases}1 & \text { for } \alpha=\alpha_{0} \tag{17}\\ 0 & \text { for } \alpha \neq \alpha_{0}\end{cases}
$$

The second line in equation (16) defines the reduced matrix element $\left\langle\alpha^{\prime}\right| \tilde{V}|\alpha\rangle$.

The transition probability for the process $\alpha_{0} \rightarrow \alpha$ is given by

$$
\begin{equation*}
P\left(\alpha_{0} \rightarrow \alpha\right)=\left|D_{\alpha}(t=\infty)\right|^{2} \tag{18}
\end{equation*}
$$

In a rigorous treatment, the state α depends on the rotational angular momenta, \mathbf{j}, and the projections, m, of both molecules. For the present problem, we are only interested in the probability averaged over the m states. We use Rabitz method (ref. 17) to eliminate the m-dependence of the interaction matrix (effective potential method). We solve equation (16) with:

$$
\alpha \equiv\left(j_{1} j_{2}\right), D_{\alpha} \equiv D_{j_{1}} j_{2} \quad \text { and }\langle\alpha \cdot| \tilde{v}|\alpha\rangle \equiv\left\langle j_{1}^{\prime} j_{2} \cdot\right| \tilde{v}^{\mathrm{eff}}\left|j_{1} j_{2}\right\rangle
$$

This treatment is discussed in more detail in appendix A.
We can further approximate the solution of equation (16) by introducing the exponential approximation (refs. 18-20).

$$
\begin{align*}
D_{\alpha},(\infty) & =\left\langle\alpha^{\prime}\right| \exp \tilde{K}\left|\alpha_{0}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle\alpha^{\prime}\right| \tilde{K}^{n}\left|\alpha_{0}\right\rangle \tag{19}
\end{align*}
$$

where \tilde{K} is a matrix whose element is defined by

$$
\begin{equation*}
\left\langle\alpha_{i}\right| \tilde{\kappa}\left|\alpha_{j}\right\rangle=-\frac{i}{h} \int_{-\infty}^{\infty} d t\left\langle\alpha_{i}\right| \check{V}^{\operatorname{eff}}\left|\alpha_{j}\right\rangle \exp \left(i \omega_{\alpha_{i} \alpha_{j}} t\right) \tag{20}
\end{equation*}
$$

The element of \tilde{K}^{n} is evaluated by

$$
\begin{equation*}
\left\langle\alpha^{\prime}\right| \tilde{\mathrm{K}}^{\mathrm{n}}\left|\alpha_{o}\right\rangle=\sum_{\alpha_{1} \alpha_{2}, \ldots, \alpha_{\mathrm{n}-1}}\left\langle\alpha^{\prime}\right| \tilde{\mathrm{K}}\left|\alpha_{\mathrm{n}-1}\right\rangle\left\langle\alpha_{\mathrm{n}-1}\right| \tilde{\mathrm{K}}\left|\alpha_{\mathrm{n}-2}\right\rangle . .\left\langle\alpha_{1}\right| \mathrm{K}\left|\alpha_{0}\right\rangle \tag{21}
\end{equation*}
$$

For $N_{2}+N_{2}$ we select the following interaction potential as the relavant interaction (refs. 21-22),

$$
\begin{align*}
V= & V^{(0)}(R)+V^{(1)}(R)\left[P_{2}\left(\cos x_{1}\right)+P_{2}\left(\cos x_{2}\right)\right] \\
& +V^{(2)}(R) P_{2}\left(\cos x_{1}\right) P_{2}\left(\cos x_{2}\right) \tag{22}
\end{align*}
$$

Here P_{2} is the Legendre function of order two, R is the separation distance between the two molecules as before, and X_{i} is the angle between the
directions of the inter-molecular vector and the axis of ith molecule; the two molecules are not necessarily in a single plane. V (2) induces a simultaneous rotational transition in both molecules in first order. Each term of the potential is assumed to have the form

$$
\left.\begin{array}{l}
V^{(0)}(\mathrm{R})=C \exp (-\alpha \mathrm{R})-C_{6} / R^{6} \\
\mathrm{~V}^{(1)}(\mathrm{R})=A C \exp (-\alpha \mathrm{R}) \tag{23}\\
\mathrm{V}^{(2)}(\mathrm{R})=B C \exp (-\alpha \mathrm{R})
\end{array}\right\}
$$

(See appendix A for further discussion.)
In the present calculation the trajectory $R(t)$ is determined by solving the classical equation of motion approximated by

$$
\begin{equation*}
\frac{1}{2} \mu\left(\frac{d R}{d t}\right)^{2}=E-C e^{-\alpha R}+\frac{C_{6}}{R_{C}{ }^{6}}-\frac{E b^{2}}{R_{C}{ }^{2}} \tag{24}
\end{equation*}
$$

where μ is the reduced mass of the system, b is the impact parameter, R_{C} is the distance of closest approach, and E is the kinetic energy of the relative motion. This provides a semiclassical version of the modified wave number approximation (ref. 23) with the assumption that the gradients of the attractive part of the potential and the centrifugal force are much smaller than those of the repulsive potential, in the region where most of the rotational transition takes place. The solution of equation (24) can be obtained analytically and the time integration in equation (20) can be performed readily. We have, then

$$
\begin{equation*}
\left\langle\alpha_{i}\right| \tilde{K}\left|\alpha_{j}\right\rangle=-i\left(\alpha_{i} \mid \alpha_{j}\right) I \tag{25}
\end{equation*}
$$

with

$$
\begin{aligned}
& I=\frac{\pi}{\alpha \lambda A} \operatorname{cosech}\left(\frac{\pi}{2 A}\right) \\
& \lambda=K(2 \mu \tilde{E})^{-1 / 2} \\
& A=\frac{\alpha}{2\left|\omega_{\alpha_{i} \alpha_{j}}\right|}\left(\frac{2 \tilde{E}}{\mu}\right)^{1 / 2}
\end{aligned}
$$

and

$$
\tilde{E}=E\left(1-\frac{b^{2}}{R_{C}{ }^{2}}\right)+\frac{C_{6}}{R_{C}{ }^{6}}
$$

Two important properties of the transition probability should be mentioned: the conservation of probabilities and detailed balancing. The exponential approximation self-ensures the conservation of probabilities:

$$
\begin{equation*}
\sum_{j_{1}^{\prime} j_{2}^{\prime}} P\left(j_{1} j_{2} \rightarrow j_{1} \prime^{\prime} j^{\prime}\right)=1 \tag{26}
\end{equation*}
$$

To satisfy the detailed balancing relation, we choose, as the kinetic energy E in the calculation of $\left\langle\alpha_{i}\right| \tilde{V} e f f\left|\alpha_{j}\right\rangle$, the mean value of the initial and final channel energies (i.e., $E=(1 / 2)\left(E_{i}+E_{j}\right)$). The channel energy E_{i} for the ith channel is defined by

$$
\begin{equation*}
E_{i}=E_{t}-w_{\alpha_{i}}=\left(E_{0}+w_{\alpha_{o}}\right)-w_{\alpha_{i}} \tag{27}
\end{equation*}
$$

where E_{0} is the initial relative kinetic energy and E_{t} is the total energy (which is conserved during the collision). This procedure results in a symmetry relation

$$
\begin{equation*}
P\left(j_{1} j_{2} \rightarrow j_{1} j_{2}^{\prime} ; E_{0}\right)=P\left(j_{1} j_{2}^{\prime} \rightarrow j_{1} j_{2} ; E_{0}^{\prime}\right) \tag{28}
\end{equation*}
$$

where

$$
E_{0}+W_{j_{1}} j_{2}=E_{0}^{\prime}+W_{j_{1}}{ }^{\prime} j_{2}{ }^{\prime}
$$

In order to have a properly detailed balance, we modify our result by

$$
\begin{equation*}
\tilde{P}\left(j_{1} j_{2} \rightarrow j_{1}^{\prime} j_{2}^{\prime}\right)=\frac{\left(2 j_{1}<+1\right)\left(2 j_{2}<+1\right)}{\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)} P\left(j_{1} j_{2} \rightarrow j_{1}^{\prime} j_{2}^{\prime}\right) \tag{29}
\end{equation*}
$$

for $\left(j_{1} j_{2}\right) \neq\left(j_{1} j_{2}^{\prime}\right)$, and

Here $j_{i}<$ designates the smaller of j_{i} and $j_{i}{ }^{\prime}$. These modified transition probabilities, \tilde{P}, satisfy both the detailed balancing relation and the conservation of probabilities.

The program listings for calculating rotational transition probability are presented in appendix B.

RESULTS AND DISCUSSION

Calculations were performed using three different sets of initial conditions. These initial conditions, described in the introduction, are: (1) complete equilibrium, (2) nonequilibrium equipartition, and (3) non-equipartition. The first case, equilibrium, was run to test whether the method remains in equilibrium for long computational times; that is, to verify that the model would not drift to improper internal distribution (ref. 10). The second case tests whether, indeed, the model has an internal mechanism to drive itself to equilibrium within a reasonable physical time scale. The third case provides insight into relative internal time scales to reach (1) a quasi-Boltzmann distribution characterized by a rotation temperature $\mathrm{T}_{\text {rot }} \neq \mathrm{T}$ and then (2) the time scale for this quasi-distribution to decay to equilibrium $\mathrm{T}_{\text {rot }}=\mathrm{T}$. The simulations, therefore, permit us to observe energy partitioning and the relaxation mechanisms, as well as relaxation rates. Because we are here interested only in rotational transitions that lead to a final equilibrium state, all elastic collisions have been ignored in order to expedite the calculations.

Equilibrium Case and Collision Frequency

Many of the physical properties for one-dimensional calculations have been based on the hyperbolic function trajectory sech(at) (ref. 15); some others are based on the effective potential, and the classical equations of motion are solved for this interaction potential including the step by step energy conservation.

Collision frequency, however, cannot be evaluated analytically for these potentials (see eqs. 1-3). It is also not feasible to use the Monte Carlo method to compute and thereby describe intermolecular potentials numerically. Nevertheless, we can semi-empirically determine a macroscopically (statistically) correct collision frequency by using the results of equation (7) for the equilibrium case; that is, we determine the most probable index of power δ in equation (7) by varying $\delta=4$ (Maxwellian molecules) to $\delta=\infty$ (hardsphere molecules). The simulation should maintain equilibrium when the proper value of δ is chosen. The effect of the parameter δ on rotational energy is sensitive to the higher velocity collisions. We find that rotational temperature increases as the parameter δ increases. Figure l shows the computed rotational temperature history from an initial equilibrium state as the value of δ is varied. The proper value for which the model (point centers of repulsion) fits close to the present model, is found to be approximately $C \simeq 0.45$, or $\delta \simeq 7.3$, where $C=(\delta-4) / \delta$. Also presented in the same figure are the results of the temperature variation obtained by using the linear selection formula of equation (7b) where the parameter B was varied from 0 to 0.5. The best value of B that satisfies this selection rule seems to be $B \simeq 0.3$. Temperature histories computed using this value $(C=0.45)$ are shown next.

In figures 2 through 7, translational and rotational temperatures for different initial conditions are plotted as functions of nondimensional
collision time. These temperatures should asymptotically approach the equilibrium values shown by the dotted line at the end of the time scale. Also shown in figure 2 for several time intervals, $t / \tau=0,5,10$, and 20 , are the translational and rotational distribution functions. The translational distribution function $f_{t r}$ is plotted as a function of molecular speed ratio c / c_{o}, where c_{o} is the rms speed defined by $\sqrt{3 \mathrm{kT} / \mathrm{M}}$. The rotational distribution function f_{r} is presented in terms of the rotational energy level j for the same collision times corresponding to the translational distribution functions. Mean collision time τ is calculated based on the initial translational temperature, kept always at room temperature $\mathrm{T}_{\mathrm{tr}} \simeq 320^{\circ} \mathrm{K}$. Note that initial equilibrium distribution functions for rotational and translational energies are selected at random from the Rayleigh and Maxwellian distributions, respectively, (their distributions, therefore, do not represent analytical functions), and all subsequent distributions evolve from the present simulation using the Itikawa model.

Throughout the testing, all distributions and temperatures represented equally valid equilibrium states. Figures $3 a$ and $3 b$ show the comparison of the Monte Carlo solutions with theoretical (equilibrium) functions for the nondimensional time at $t / \tau=15$ and 20. Since the Monte Carlo solution - the so called Klimontovich function (ref. 24) - does not, in general, present a smooth function, a mean distribution function (Boltzmann solution), time averaged over the last five collision times (from $t / \tau=15$ to 20), is shown in figure $3 c$. This mean value can be compared with the theoretical value when the gas approaches equilibrium. The agreement with theory seems to be very good.

Nonequilibrium Case

The result of the equipartition, nonequilibrium test is shown in figure 4. The gas initially starts in the equipartition state with the rotational energy of all molecules assigned the mean equilibrium energy corresponding to the level of $j=10$, and where the translational energy is specified as in the previous case. Several energy distribution functions are shown at nondimensional times of $0,1,2,3,5,20$, and 35 . The simulation again seems very good. The distribution functions for $t / \tau=30$ and 35 , and the mean distribution functions averaged over these time intervals, are compared with theoretical calculations in figure 5; once again the agreement is good. Notice that only even-numbered rotational energy levels are occupied. This follows since we have considered a homonuclear model to be initially in an even-numbered level, and we have not allowed changes in nuclear spin.

The last test investigated is for the nonequipartition and nonequilibrium case. All gases initially start with the rotational energy level of $\mathrm{j}=12$ (corresponding to a rotational temperature of $\mathrm{T}_{\mathrm{r}}=455^{\circ} \mathrm{K}$) and where the translational energy is selected at random from the Maxwellian distribution corresponding to a translational temperature of $320^{\circ} \mathrm{K}$. In figure 6, both the rotational and translational temperatures approach an equilibrium state, corresponding to a temperature of $374^{\circ} \mathrm{K}$. This occurs in an exponential manner. Transition distribution functions are shown at $t / \tau=0,1,2,3,5$, and 20 in the same figure. The present model also appears to perform very
well in this case. This is the case (initial rotational temperature higher than translational temperature) for which the modified Pearson-Hansen model failed to show satisfactory performance when extended to higher temperatures (ref. 10).

The distribution functions for $t / \tau=15$ and 20 , and the mean distribution functions of rotational and translational energy, averaged over $t / \tau=15$ to 20 , are shown in figure 7. Comparison with theoretical distributions is very satisfactory.

Notice that in both figures 4 and 6 the gas relaxes asymptotically to equilibrium. The approach is rapid initially and quite slow finally.

Of all the models tested to date, the semiclassical model of Itikawa appears most satisfactory. However, this model with 1000 molecules consumes about 100 sec of the CDC 7600 machine computing time to travel one characteristic collision time. The model, therefore, may still need further simplification to permit its practical use in the more complex molecular simulations, such as, for example, shock wave structure and gas-surface interactions.

CONCLUSION

The Itikawa model when used with the appropriate representations for collision frequency provides an adequate physical description of a homonuclear diatomic gas in rotational relaxation. This model appears to hold the most immediate promise for further application to more complex problems. However, because of the computational time required to do rigorous calculations at each Monte. Carlo collision event, subsequent investigations will require simplification of the algorithm. Nevertheless, the present model will permit one to examine the principal features of rotational effects in nonequilibrium flow of diatomic molecules, such as shock wave structure.

Ames Research Center
National Aeronautics and Space Administration Moffett Field, Calif., 94035, July 1975

APPENDIX A

INTERMOLECULAR POTENTIAL AND INTERACTION MATRIX ELEMENT

Interaction Potential

Each term of the interaction potential (eq. (23)) is assumed to be defined by the representations given in the text. The first term, $V(0)$, can be determined fairly reliably from either the result of molecular beam experiments (ref. 21) or the analysis of transport coefficients (ref. 22). These parameters are $C=3.44 \times 10^{3} \mathrm{eV}, \mathrm{C}_{6}=73.4 \mathrm{eV} \AA^{-6}$ and $\alpha=3.16 \AA^{-1}$. Unfortunately, we have little information about the anisotropy of the interaction potential for $N_{2}+N_{2}$. Therefore, we adopt the form given by $V(1)$ and $V(2)$ in equation (23), similarly as in reference 15, and regard A and B as adjustable parameters. The values employed in this report are $A=B=0.2$.

Interaction Matrix

Applying the effective potential method (ref. 17) to the interaction potential given by equations (22) and (23), we can calculate the matrix element as follows:

$$
\begin{align*}
\left\langle j_{1}^{\prime} j_{2} \prime\right| \tilde{V}^{\mathrm{eff}}\left|j_{1} j_{2}\right\rangle & =\left\langle j_{1}^{\prime} j_{2} \cdot\right| V^{\mathrm{eff}}\left|j_{1} j_{2}\right\rangle-V^{(0)}(R) \delta_{j_{1}} j_{1} \delta_{j_{2}} j_{2} \\
& =\left(j_{1} j_{2}, \mid j_{1} j_{2}\right) C \exp [-\alpha R(t)] \tag{A1}
\end{align*}
$$

$$
\left(j_{1}^{\prime} j_{2}^{\prime} \mid j_{1} j_{2}\right)=\left[\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)\left(2 j_{1}^{\prime}+1\right)\left(2 j_{2}^{\prime}+1\right)\right]^{1 / 4}(-1)^{L}
$$

$$
\times\left\{\frac { A } { \sqrt { 5 } } \left[(-1)^{j_{2}}\left(2 j_{2}+1\right)^{-1 / 2}\left(\begin{array}{ccc}
j_{1} & j_{1} & 2 \\
0 & 0 & 0
\end{array}\right) \delta_{j_{2}} j_{2}\right.\right.
$$

$$
\left.+(-1)^{j_{1}}\left(2 j_{1}+1\right)^{-1 / 2}\left(\begin{array}{ccc}
j_{2} & j_{2} & 2 \\
0 & 0 & 0
\end{array}\right) \delta_{j_{1}} j_{1}\right]
$$

$$
\left.+\frac{B}{5}\left(\begin{array}{ccc}
j_{1}{ }^{\prime} & j_{1} & 2 \tag{A2}\\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
j_{2}, & j_{2} & 2 \\
0 & 0 & 0
\end{array}\right) \sum_{m=0,2,4}(2 m+1)^{1 / 2}\left(\begin{array}{ccc}
2 & 2 & m \\
0 & 0 & 0
\end{array}\right)\right\}
$$

where $\left(\begin{array}{ccc}j_{i}{ }^{\prime} & j_{i} & j \\ 0 & 0 & 0\end{array}\right)$ is the $3-j$ symbol and $L=\max \left(j_{1}+j_{2}, j_{1}{ }^{\prime}+j_{2}{ }^{\prime}\right)$.

APPENDIX B

PROGRAM LISTING FOR ROTATIONAL TRANSITION PROBABILITY CALCULATION

```
*DECK MAIN
    PROGRAM MAIN(INPUT,OUTPUT,TAPF5 =I NPUT,TAPEG=DUTPUT)
CROSS SECTION CALCULATION
    COMMON /LLMIT/ LLIMIN,LLIMAX,LL2MIN,LL2MAX
    DIMENSION PWAVE(20,20),SIGMA(20,20),LABCSA(16)
    DIMENSION SIG(20)
    COMMON /CM1/ PWAVE,EKIN,LIC,L2O,BIMP,NMAX,NPRINT,LIPAR,LZPAR
    COMMON /CM2/ JEL1,JEL2,LABCSA,LLMAX
    COMMON /CM3/VA,VB,IPRT1,IPRT2,IPRT 3,IPRT4
    COMMDN /CMVRI/VC,VALPHA,VC6,BBIMP,EEEE
    COMMON /CVI/ ABCC(40,40,9)
    JMAX=20
    PAI2=6.283185
C* INITIAL CLEAR OF ABCC, SHOULO BE MADF FOR EACH VA,VB
    OO 5009 I =1,40
    DO 5009 J=1,40
    DO 5009 K=1,9
    ABCC(I,J,K)=0.0
    5009 CONTINUE
    5 0 1 0 ~ C O N T I N U E ~
    DO 5016 1=1,JMAX
    DO 5016 J=1,JMAX
    SIGMA(I,J)=0.0
    PWAVE(I;J)=0.0
    5016 CONTINUE
C** INPUT ** IMPACT PARAMETER (IN ANGSTROM)
C** CALCULATION FROM 'BIMPI' TO 'BIMPF' WITH STEP 'OBIMP:
            READ(5,4) BIMPI,OBIMP,BIMPF
    4 FORMAT(3F10.0)
        IF(BIMPI.LT.O.O) GO TO 5999
C* INPUT ** CROSS SECTION CALCULATION (ICROS=1% OR NOT (O)
    READ(5,3) ICPOS
C** INPUT *& RELATIVF KINETIC ENERGY (IN EV)
    READ(5,1) EKIN
    1 FORMAT (F10.0)
C** INPUT ** INITIAL ROTATIONAL STATES
            READ(5,2) L10,L20
    2 FORMAT(2I5)
```

```
C** INPUT %** MAX NO. OF TERMS IN EXP
        READ(5,3) NMAX
    3 FORMAT (I5)
C** INPUT ** INDEX FOR PRINT OUT
        REAO(5,6) IPRT1,IPRT2,IPRT3,IPRTA
    6 FOPMAT (415)
C* INPUT** POTENTIAL FARAMETERS FUR SPHERICAL PART
C*s** V(R)=VC*EXP(-VALPHA*R)-VCG/R**6
C** V INEV, R IN ANGSTROM
        READ(5,7) VC,VALPHA,VCS
        7 FDRMAT(3F10.0)
C* INPUT** PUTENTIAL PARAMETERS FCP NON-SPHERICAL PART
        KEAD(う,5) VA,VB
        5 FORMAT(2FS.0)
C** INPUT ** WHEN IPRTSG=O, PRINT PARTIAL SUM DVER BIPP
        KEAD(כ,3) IPRTSG
C** INPUT ** LIMITATION OF PANGE DF LL,LZ
C** LI=LLMIN-LLMAX, LZ=L2MIN-L 2MAX
        READ(5,8) LIMJN,LIMAX,L 2MIN,LZMAX
        3 FORMAT(4I5)
        LLLMIN= LIMIN+1
        LLLMAX= LLMAXX+1
        LL2MIN= L2MIN+1
        LLCMAX= L2MAX+L
        JLMIN= (LLLMIN+1)/L
        JLMAX=(LLLMAX+1)/2
        J2MIN=(LL2MIN+1)/2
        J2NAX=(LL2MAX+1)/2
        WRITE(6,590U)
        1 BIMPI,DEIMP,BIMPF,
        2 ICROS.
        3 FKIN,
                                L1O,L2O,
                                NMAX,
                                IPRT1,IPRT2,IPRT3,IPRT4,
                                VC,VALPHA,VCG,
                                VA,VB,
                                IPRTSG
5900 FORMAT(1H1/5X,LOHINPUT DATA/
    1 5X,18HBIMPI,DPIMP,BIMPF/,3F10.2/
    2 5X, 6HICKOS/,I5/
    3 5x, 5HEKIN/,FLO.6/
    4 5X, 8HL 1O,L20/,215/
    5 5x, 5HNMAX/,I5/
    6 5X,24HIPRT1,IPRT2,IPRT3,IPRT4/,4I5/
```

```
    7 5X,14HVC,VALPHA,VC6/,3F10.4/
    8 5X, 6HVA,VB/,2F5.2/
    9 5X, 7HIPRTSG/, I5//1
    WRITE(6.5902) LIMIN, L1MAX, L2MIN, L2MAX
    5902 FORMAT(1HO/jX,4H LI=I4,3H - ,I4,3X,4H L2=14,3H - , I4/)
```



```
    NPRINT = NMAX-3
    BIMP= BIMPI
    IF(ICROS.EQ.O) IPRT4=0
    IF(ICRUS.FQ.O) GO TO 5500
    H3= DBIMP/3.0*PAI2
    NSUM=0
    MPRINT=0
    H3B=H3*BIMP
    CALL PROB
    5100 CONTINUE
    DO 5111 I= N1MIN,JIMAX
    0O 5111 J=J2MIN,J2MAX
    SIGMA(I,J)=SIGMA (I,J) +H3B*PWAVE(I,J)
    5111 CONTINUE
    B IMP=BIMP+DBIMP
    CALL PROB
    H4B=4.0* H3*BIMP
    DO 5112 I = J1MIN,JIMAX
    DO 5112 J=J2MIN,J 2MAX
    SIGMA(I,J)=SIGMA(I,J)+H4B*PWAVE(I,J)
    5112 CONTINUE
    BIMP= BIMP+OBIMF
    CALL PROB
    H3B=H3*8 I MP
    DO 5113 I =JIMIN,JIMAX
    DO 5113 J=J2MIN,J2MAX
    SIGMA(I,J)= SIGMA(I,J) +H3B*PWAVE(I,J)
    5113 CONTINUE
    IF(IPRTSG.EQ.1) GO TO 5120
    GO TO 5300
    5120 CONT INUE
    IF(BIMP.GT.BIMPF-0.5*DBIMP) GO TO 5200
    NSUM= NSUM+2
    GO TO 5100
    5200 CONTINUE
    MPRINT = 1
    IF(IPRTSG .EQ.0) GO TO 5400
    5300 CCNTINUE
```



```
    SMAX=0.0
    DO 5305 I = JLMIN,JIMAX
    DO 5305 J=J2MIN,J2MAX
    IF(SIGMA(I,J).GT.SMAX) SMAX= SIGMA(I,J)
    5305 CONTINUE
```



```
    LIPARO= MOD(L10,2)+1
    L2PARO= MOD(L20,2)+1
    WRITE(6,5901) BIMPI,BIMP,NSUM,LIO,L 20,EKIN
    5901 FORMAT\1H1/5X,23HCROSS SECTION FOR BIMP=F6.2,3H - ,F6.2,7H (NSUM=
        112,1H),3X,5H(L 10=I 2,1X,4HL 2O=1 L,1H),3X,5HFKIN=F13.5//3X,2HL2)
    DO 5311 JINV=J2MIN,J2MAX
    J= J2MIN+J2MAX-JINV
    L2= 2*J-3+L2PARO
C********** NORMALIZATION TO SMAX
    00 5310 I = JIMIN,JIMAX
    SIG(I)= SIGMA(I,J)/SMAX
    5310 CCNTINUE
    JF= JLMIN+15
    IF(JF.GT.JLMAX) JF= JIMAX
    WRITE(0,5911) L2,(SIGII), I=JIMIN,JF)
    5911 FORMAT(1HO,3X,I2,16(1PF6.3,1X))
    5 3 1 1 ~ C C N T I N U E ~
    WRITE(6,5912) (LABCSA(I),I=1,16)
    5 0 1 2 ~ F O R M A T ~ ( 1 H O , 4 X , 1 6 ( 3 X , I 2 , 2 X ) , 3 H ~ L 1 ) ~
            SMAX= 0.1*SMAX
            WRITE(6,5917) SMAX
    5910 FORMAT(1HO/3X,1 5HNORMALIZ FACTOR,2X,F13.5,2X,11HANGSTROM**<2)
    SEL= -SIGMA(JEL1,JEL2)
C******)**** ELASTIC
    WRITE(6,5918) SEL
    5918 FGRMAT(1HU,4X,29HTOTAL INELASTIC CROSS SECTION, 2X,E13.5)
            IF(MPRINT.EQ.1) GO TO }540
            GO TO 5l20
    5400 CCNTINUE
C******** ROTATIONAL CONSTANT INEV
    BROT=0.25L\angleE-3
    S=0.0
    SWW=0.0
    WO= BROT* FLOAT(LIO*(L 10+1)+L2O*(L2O+1))
    DO 5415 I = JlMIN,JIMAX
    LI= 2* I-3+LIPARO
    OO 5414 J=J2MIN,J2MAX
    IF(I.FQ.JELI.AND.J.EQ.JEL2) GO TO 5414
    L2= 2*J-3+L2PARO
```

```
W1= BROT* FLOAT(L1*(L1+1)+L2*(L2+1))
WW=(WO-W1)**2
SWW= SWW+SIGMA(I,J)*WW
S=S+SIGMA (I,J)
5414 CDNTINUE
5415 CONTINUE
WRITE 6,5916 ) S
```

5916 FORMAT (1HO, $4 \mathrm{X}, 2$ وHTUTAL INELASTIC CRCSS SECTION, 2 X, E13.5)
WRITE(6,5917) SWW
5917 FORMAT (1HO/4X,27H***** SUM OF PCORCT $\# * * * *, 3 X, 4 H S W W=E 13.5 /)$
GO TO 5010
5500 CONTINUE
IF(BIMP.LT.O.O) GO TO 5010
CALL PROB
IF (BIMF.GE.BIMPF-0.5*DBIMP)GOTO 5010
5501 CONTINUE
$B I M P=B I M F+D R I M P$
GC TO 5500
5999 CONTINUE
STOP
END

```
#DFCK PRCB
    SUBROUTINE PRJB
C*#**####* MAIN PROGRAM FOR THE CALC. OF TRANS. PROB.
    CCIMMON /LLMIT/ LLIMIN,LLIMAX,LL2MIN,LL2MAX
    DIMENSION PODO(20,20),PEVN(20,20),PWAVE(20,20)
    DIMFNSION AKSUMO(20,20),AKSUM1(20,20)
    DINFNSION LABCSA(16)
    CCMMON/MVI/ AMATRX(20,20,9)
    COMMON /MV2/ VBB,VAA,BROT,ETOT,BRC,VVALP
    COMMON /CMVRI/ VC,VALPHA,VCG,BIMP,EEEE
    COMMON /MVZ/ NCOUNT
    COMMON /CMI/ PWAVF,EKIN,LIO,L20,BBEB,NMAX,NPRINT,LIPAR,LLPAR
    COMMON /CM2/ JELI,JELZ,LABCSA,LLMAX
    COMMON /CM3/ VA,VB,IPRTL,IPRT2,IPRT 3,IPRT4
    ICLOCK=0
    BIMP=BBBB
    JMAX=20
    LMAX= 2*JMAX-2
r********* REDUCEO MASS IN AMU
    RMASS= 14.02
C******** ROTATIONAL CONSTANT IN FV
    BROT=0.2512E-3
```

```
    VVALP=0.045723*VALPHA/ SQRT(RMASS)
    VAA = 0.4472136*VA
    VBB=0.2*VB*0.6298283
    ETOT= EKIN+FLOAT(L1O*(L10+1)+L20*(L20+1))*BROT
    EB=ETOT/BROT
    EBL= SQRT(EB)
    LLMAX= INT(EBL)+1
    IF(IPRF1.EQ.1) GO TO 11
    WRITE(6,901) BIMP,LIO,L2O,EKIN,ETUT,L.LMAX,EB,VC,VALPHA,VCG,VA,VB
    901 FORMAT(1H1,5X,5HBIMP=F6.2,5HANGST,5X,6H(L1O=I2,5H L 2O=I2,2H ),
    1 5X,5HEKIN=E13.5,3HEV ,3X,5HETOT=E13.5,3X,6HLLMAX=12,
    2 3X,3HEB=F8.2/6X,3HVC=F10.2,2X,7HVALPHA=F8.3,2X,4HVC6=F7.2,2X,
    3 3HVA=F7.2,2X,3HVB=F7.211
    11 CONTINUF
    IF(LLMAX. GT. LMAX) LLMAX= LMAX
    IF(LLIMAX.GT. LLMAX) LLIMAX = LLMAX
    IF(LLZMAX.GT.LLMAX) LI 2MAX= LLMAX
    DC 18 I= 1, JMAX
    DO 18 J=1, JMAX
    PEVN(I,J)=U.O
    PODD(I,J)=0.0
    PWAVE(I,J)=0.0
    AKSUMO(I,J)=0.0
    AKSUMI(1,J)=0.0
    DO 16 M=1,9
    AMATRX(I,J,M)=0.0
    16 CONTINUE
    18 CONTINUE
    LL1O= L10+1
    LL2U=L2O+1
    JFLL=(LL1O+1)/2
    JELZ=(LL20+1)/2
    LLPAR= MOD(L1O,2)+1
    L2FAR= MOD(L20,2)+1
    IF(LIPAR.LT.LLIMIN) LIPAR= LLIMIN
    IF(L2PAR.LT.LL2MIN) L2PAR= LL2MIN
    CLO= FLOAT((2*L10+1)*(2*L20+1))
    PEO=0.0
C***#****** N=1
    N=1
    LLII= LL1O
    LL2I=LL20
    NCCUNT = 0
    DD 59 K=1.9
    CALL VMATRX(LLII,LL2I,K)
```

```
    59 CONTINUE
    LL1FMN= MAXO(LL10-2,L1PAR)
    LLIFMX= MINO(LLL10+2,(LLIMAX)
    LL2FMN= MAXO(LL20-2,L2PAR)
    LL2FMX= MINO(LLL2O+2,LL2MAX)
    K=1
    JJII=(LLII+I)/2
    JJI2=(LL2I+1)/2
    DO 64 I =1,3
    LL2F=LL2O-4+2*I
    00 63 J=1,3
    LLIF= LL10-4+2*J
    IF(LL2F.LT.1.OR.LL1F.LT.1) GO TO 62
    JJF1= (LLLF+1)/2
    JJF2= (LL2F+1)/2
    AKSUMO(JJF1,JJF2)= AMATRX(JJI1,JJI2,K)
    62 K=K+1
    63 CONTINUE
    6 4 \text { CONTINUE}
    TCTPW= 0.0
    TCTPC= 0.0
    00 74 LLIF=LLIFMN,LLIFMX,2
    DO }73\mathrm{ LL2F=LL2FMN,LL2FMX,2
    JJFI=(LLIF+1)/2
    JJF2=(LL2F+1)/2
    POCD(JJFL,JJF2)= AKSUMO(JJF1,JJF2)
    PEVN(JJF1,JJF2)=0.0
    IF(LLIF.FQ.LLII.AND.LL2F.FQ.LL2I) PEVN(JJFL,JJF2)=1.0
    PWAVE(JJF1,JJF2)= PODD(JJF1,JJF2)**2*4.0+PEVN(JJF1,JJF2)**2
    P = PWAVE (JJF1, JJF 2)
    LOL=LLIF-1
    LO2=LL2F-1
    IF(IPRT2.EQ.1 ) GO T0 72
    PCORCT= P
    WRITE(6,902) N,LO1,LO2,P,PCORCT,PODD(JJF1,JJF2),AKSUMO(JJF1,JJF2)
902 FORMAT(1HO,2X,2HN=I 2,3X,5H L1F=I2,2X,5H L2F=I2,5X,6HPWAVF=E13.5,
    1
    3x,7HPCORCT=E13.5,3X,5HPODO=E13.5,5X,6HAKSUM=E 13.5)
72 CONTINUE
    TOTPW=TOTPW+P
73 CONTINUE
7 4 \text { CONTINUE}
    IF(IPRT1.EQ.1) GO TO }7
    WRITE(6,904) N, TOTPW,ICLOCK,NCOUNT,TOTPC
75 CONTINUE
    IF(NMAX.EQ.1) GO TO }30
```

$N=2$
C＊＊＊＊＊＊＊れれ 100

100 CCNTINUE

NC CUNT $=0$
N2＝2＊N－2
LL2IMN＝MAXO（LL20－N2，L2PAR；
LL2IMX＝LL20＋N2
IF（LLZIMX．GE．LLMAX）LL2IMX＝LLMAX
DO 149 LL2I＝LL2IMN，LLZIMX， 2
JJI2＝（LL2I＋1）／2
$E B 2=S Q R T(E B-F L O A T(L L 2 I-L) * 2)$
LLMAX1 $=\operatorname{INT}(E B 2)+1$
$L L 1 I=L L 10+N 2$
JJII＝（LLII＋1）／ 2
If（LLMAXI．GE．LLIMAX）LLMAXI＝LLIMAX
IF（LLII．GT．LLMAXI）GO TO 130
DC $114 K=5,8,3$
CALL VMATRX（LLII，LL2I，K）
114 CONTINUE
DC $119 \mathrm{~K}=3, Ч, 3$
CALL VMATRX（LLII，LL2I，K）
119 CCNTINUE
IF（LLII－2．LT．1）GO TO 125
AMATRX（JJI1，JJI2，4）＝AMATRX（JJIL－1，JJI2，ó）
$K=4$
IF（LL2I．FQ．LL2O－N2．OR．LL2I．EQ．LL20＋N2）CALL VMATRX（LLII，LL2I，K）
AMATRX（JJIL，JJI2，7）＝AMATRX（JJI1－1，JJIZ＋1，3）
$K=7$
IF（LL2I．EQ．LL20＋N2－2．OR．LL2I．EQ．LL20＋N2）（AL．L VMATRX（LLLI，LLLI，K）
IF（LL2I－2．LT．1）G门 TO 130
AMATRX（JJIL，JJI2，1）＝AMATRX（JJIl－1，JJI2－1， 9 ）
$K=1$
IF（LL2I．FQ．LL2O－N2＋2．OR．LL2I．EQ．LLCO－NZ）CALL VMATRX（LLII，LLZI，K）
125 CONTINUE
IF（LL2I－L．LT．1）GO TO 130
AMATRX（JJIL，JJIL，2）＝AMATRX（JJIL，JJI2－1，8）
$K=2$
IF（LL2I．EQ．LL20－N2）CALL VMATRX（LLII，LL2I，K）
130 CONTINUE
LLII＝LLIO－N2
JJII＝（LLII＋1）／2
If（LLII．LT．LIPAR）GOTO 149
DO $134 K=5,8,3$
CALL VMATRXILLII，LLZI，KI
134 CONTINUE

```
            DO 139 K=1,7,3
            CALL VMATRX(LL1I,LL2I,K)
    139 CONTINUE
            AMATRX(JJIL,JJI2,6)= AMATRX(JJIIL+1,JJI2,4)
            K=6
            IF(LL2I.EQ.LL20-N2.OR.LL2I.EQ.LL20+N2) CALL VMATRX(LLII,LL2I,K)
            AMATRX(JJIL,JJ12,9)= AMATRX(JJI1+1,JJI2+1,1)
            K=S
            IF(LL2I.EQ.LL2O+N2-2.OR.LL2I.FQ.LL2O+N2) CALL VMATRX(LLII,LL2I,K)
            IF(LL2I-2.LT.1) GOTO 149
            AMATRX(JJIL,JJI2,2)= AMATRX(JJIL,JJI<-1,8)
            K=2
            IF(LL2I.EQ.LL2O-N2) CALL VMATRX(LLII,LL2I,K)
            AMATRX(JJIL,JJI2,3)= AMATRX(JJI1+1,JJI2-1,7)
            K=3
            IF(LL2I.EQ.LL2O-N2+2.OR.LL2I.FQ.LL2O-N2) CALL VMATRX(LLII,LL2I,K)
    149 CONTINUE
C********** 150
    LLIIMN= MAXU(LL1O-N2+2,LIPAR)
    LL1IMX= LLIO+N2-2
    IF(LLIIMX.GE.LLIMAX) LLIIMX= LLIMAX
    OC 199 LL1I=LLIJMN,LLIIMX,2
    JJIL=(LLLI+L)/2
    EB2= SQRT(EB- FLOAT(LLLI-1)**2)
    LLMAX1=INT(EB2)+1
    LL2I= LL2O+N2
    JJ12=(LL2I+1)/2
    IF(LLMAX1.GE.LL2MAX) LLMAXI= LL2MAX
    IF(LL2I.GT.LLMAXI) GO TO 180
    DO 164 K=5,9
    IFILLII.EQ.LL1O+N2-2.ANO.K.FQ.6) GOTO 163
    CALL VMATRX(LLII,LLZI,K)
    GO TO 164
    163 CONTINUE
    AMATRX(JJIL,JJI2,6)= AMATRX(JJIL+1,JJI2,4)
    164 CONTINUE
        IF(LL2I-2.LT.1) GO TO 175
    AMATRX(JJI1,JJI2,2)= AMATPX(JJI1,JJI2-1,8)
    AMATRX(JJI1,JJI2,3)= AMATRX(JJI1+1,JJI2-1,7)
    IF(LLII-2.LT.1) GO TO 180
    AMATRX(JJIL,JJI2,1)= AMATRX(JJI1-1,JJI2-1.9)
    175 CONTINUE
    IF(LLII-2.LT.1) GO TO 180
    AMATRX(JJII,JJI2,4)= AMATRX(JJI1-1,JJ12,6)
    180 CONTINUF
```

```
    LL2I=LL2O-N2
    JJI2=(LL2I+I)/2
    IF{LL2I.LT.L2PAR) GO TO 199
    DO 184 K=5,6
    IF(LLII.EQ.LLIO+N2-2.AND.K.EQ.6) GO TO 183
    CALL VMATRX(LLII,LL2I,K)
    GO TO 184
    183 CONTINUE
    AMATRX(JJII,JJ12,6)= AMATRX(JJI1+1,JJI2,4)
    184 CONTINUE
    DO 189 K=1,3
    CALL VMATRX(LLII,LL2I,K)
    189 CONTINUE
    AMATRX(JJI1,JJI2,8)= AMATRX(JJIL,JJI2+1,2)
    AMATRX(JJIL,JJI2,9)= AMATRX(JJIL1+1,JJI2+1,1)
    IF(LLII-2.LT.1) GO TO 199
    AMATRX(JJI1,JJI2,4)= AMATRX(JJIL-1,JJI2,6)
    AMATRX(JJI1,JJI2,7)=AMATRX{JJI1-1,JJI2+1;3)
C*********** }19
    199 CONTINUE
        LLIFMX=LL1O+2*N
        LL2FMX=LL2O+2*N
        LL1FMN= LL10-2*N
        IF(LLIFMN.LT.LIPAR) GO TO 201
        LL11=LL1FMN+2
    200 CONTINUE
    LL2FMN=LL2O-2*N
    IF(LL2FMN.LT.L2PAR) GO TO 202
    LL22= LL2FMN+2
    GO TO 205
    201 CONTINUE
    LLIFMN= LIPAR
    LL11= L1PAR
    GO TO 200
    202 CONTINUE
        LL.2FMN=L2PAR.
        LL22= L2PAR
    205 CONTINUE
    LL22F=LL2FMX-2
    IF(LL2FMX.LE.LL2MAX) GO TO 206
    LL2FMX= LL2MAX
    LL22F= LL2MAX
    206 CONT INUE
    DO 249 L.2=LL22,LL22F,2
    LL11F=LLLFMX-2
```

```
            EB2= SQRT(EB- FLOAT(L2-1)**2)
            LLMAXI= INT(EB2)+1
            IF(LLMAXI.GE.LLIMAX) LLMAXI= LLIMAX
            IF(LLIFMX.GE.LLMAXI) LLIIF= LLMAXI
            DO 248 Ll= LL11,LL11F,2
            K1=1
            K2= 0
            L22=L2-2
            LII= L1-2
            IF(LL.LF.L2PAR) L22= L2PAR
            IF(LI.LE.LIPAR) LII= LIPAR
            IF(L2.LE.L2PAR) KI=4
            IF(LI.LE.LIPAR) K2=1
            K=K1
            JI=(LI+1)/2
            J2=(L2+1)/2
            AK= AKSUMO(J1.J2)
            L2P2=L.2+2
            DO 219 LL2= L22.L2P2,2
            K=K+K2
            L1P2=L1+2
            DO 218 LL1=L11.L1P2.2
            JJl=(LLL+1)/2
            JJ<=(LL<+1)/2
            AKSUM1(JJl,JJ2)= AK*AMATRX(J1,J2,K)+AKSUM11 JJl,JJ2)
            K=K+1
    218 CONTINUE
    219 CONTINUE
C********** PRINT OF AMATRX
            IF(N.LT.IPRT3) GU TO 248
            LOL=LI-1
            L02= L2-1
            IF(L2.GE.LLLZF-1.AND.(L2O+2*N.LE.LLMAX+2) GO TO 220
            IF(LI.GE.LLLLF-1.AND.LLIO+2*N.LE.LLMAX+2) GO TO 220
            IF(L2.EQ.LL22.AND.LL20-2*N.GE.L2PAR-2) GO TO 220
            IF(LI.EQ.LL11.AND.LLIO-2*N.GE.L.IPAR-2) GO TO 220
            GC TO 248
    220 CONTINUE
            WRITE(6,906) LOL,LO2
    906 FORMAT(1HO,5X,15HCHECK OF AMATRX,5X,3HL1=12,2X,3HL2=I2)
            WRITE(6,907) (AMATRX(Jl,J2,J),J=1,9)
    O07 FORMAT(1H,2X,9E13.5)
    248 CONTINUE
    249 CONTINUE
C********** 250
```

```
        LL 1FMX= LL10+2*N
        TOTPW= 0.0
        L)O 299 LL2F=LL2FMN,LL2FMX,2
        LL11F= LL1FMX
        EB2= SQRT(EB- FLOAT(LL2F-1)**2)
    LLMAXI= INT(EB2)+1
    IF(LLMAXL.GE.LLIMAX) LLMAXI= LLIMAX
    IF(LLIFMX.GE.LLMAXI) LLIIF= LLMAXI
    DO 298 LLIF=LLIFMN,LL1IF,2
    JJF1=(LLLF+1)/2
    JJF2=(LL2F+1)/2
    AKSUM1(JJF1,JJF2)= AKSUM1(JJF1,JJF2)/ FLOAT(N)
    IF(MOD(N,2).NE.O) GO TO 294
    AKSUML(JJF1,JJF2)= -4.0*AKSUM1(JJF1,JJF2)
    PEVN(JJF1,JJF2)= PEVN(JJF1,JJF2)+ AKSUM1(JJF1,JJF2)
    PWAVE(JJF1,JJF2)= PDOD(JJF1,JJF2)** 2*4.0+PEVN(JJF1,JJF2)**2
    GO TO 295
    294 CONTINUE
    PODO(JJF1,JJF2)= PODD(JJFL,JJF2)+ AKSUM1(JJF1,JJF2)
    PWAVE(JJF1.JJF2) = PODC(JJF1,JJF2)**2#4.0+PEVN(JJF1,JJF2)**L
    295 CCNTINUE
    P= PWAVE(JJFL,JJF2)
    LOL=LLIF-1
    LO2=LL2F-1
C********** PRINT OF PWAVE
    IF(N.LE.NPRINT) GO TO 297
    IF(P.GE.O.IE-4) GU TO 296
    IF(LLIF.EQ.LLIFMN) GO TO 296
    IF(LLIF.GT.LLILF-2) GOTO TO 296
    GC TO 297
296 CONTINUE
    PCORCT = P
    WRITE(6,902) N,LOL,LO2,P,PCORCT,PO[ID(JJFL,JJF2),AKSUMI(JJF1,JJF2)
297 COATINUE
    TOTPW= TOTPW+P
    AKSUMO(JJF1,JJF2) = AKSUM1(JJF1,JJF2)
    AKSUML(JJFL,JJF2)=0.0
    298 CCNTINUE
    299 CONTINUE
    PE1=PWAVE(JEL 1,JEL2)
    PE10= ABS((PE1-PE0)/PE1)
    IF(IPRT1.EQ.I) GO TO 3904
    WRITE(6,904) N,TOTPW,ICLOCK,NCOUNT, TOTPC
904 FORMAT (1HO//2X,8H***** N=I 2,5X,13HSUM OF PWAVE=E13.5,
    15X,7HICLOCK=I10,3HSEC,5X,7HNCOUNT = I 10,5X,6HTOTPC=E13.51
```

```
3904 CONTINUE
    IF(ABS(TOTPW-1.0).LT.O.1E-3.AND.PELO.LT.O.1E-3) GO TO 300
    IF(N.EQ.NMAX) GO TO 300
    N=N+1
    PEO= PEL
    GC TO 100
    300 CONTINUE
C********** ELASTIC
    DELST1= PEVN(JEL1,JEL2)
    DELST2= -2.0*PODD(JFL1,JEL2)
C********** FINAL PRINT
    MPRINT=0
    LIPARO= MOD(L.10,2)+1
301 CONTINUE
    WRITE(G,901) BIMP,LIC,L2O,EKIN,ETOT,LLMAX,EB,VC,VALPHA,VCG,VA,VB
    WRITE(6,910) N,TOTPW,ICLOCK,TOTPC
    910 FORMAT(1H,5X,5HNMAX = I2, 2X,6HTOTPW=E13.5, 2X,6HCLOCK}=15,3HSEC
        1 2X,6HTOTPC =E13.5//3X,2HL21
            IMN= LL2FMN
            I MX = LL 2FMX
            IF(MOD(LL2FMX-L2PAR,2).NE.0) IMX= LL2FMX-1
            DO 319 I =IMN,IMX,2
            LL2F=IMX+IMN-I
            J2= (LLL2F+1)/2
            LLIIF= LLIFMX
            EB2= SQRT(EB- FLOAT(LL2F-1)**2)
            LLMAXI= INT(EB2)+1
            IF(LLMAX1.GE.LLIMAX) LLMAXI= LLIMAX
            IF(LLIFMX.GE.LLMAXI) LLIIF=LLMAXI
            J1NX=(LL|IF+1)/2
            J1NX1= J1MX
            JIMN= (LIPAR+1)/2
            IF(JIMX-JIMN.GT.15) JIMX= J1MN:+15
            L02=LL2F-1
            WRITE(6,G11) LOL,(PWAVE(JI,J2),JL=JlMN,J1MX)
911 FORMAT(1HO/3X,I2,16(1PFG.3,1X))
            IF(MPPINT.EQ.1) GO TO 319
    LMIN2= MINO(L20,LO2)
    CLIO= FLOAT(2*LMIN2+1)
    DO 318 J1= J1MN,J1MX1
    LOL= L*J1-3+LIPARO
    LMINL= MINU(LIO,LOI)
    CLI= CL10* FLOAT(2*LMIN1+1)
    P= PWAVE(J1,J2)
    PCCRCT= CLI/CLO*P
```

```
        TOTPC= TOTPC+PCORCT
        PWAVE(J1,J2)= PCORCT
    318 CONTINUE
    319 CONT INUE
        LABCSA(1)= L1PAR-1
    DO 320 I=2,16
    LAECSA(I)=LABCSA(1)+(I-1)*2
    320 CONTINUE
    WRITE(6,91<) (LABCSA(J),J=1,16)
    912 FCRMAT (1HO,4\lambda,16(3X,I2,2X),3H L1)
    IF\MPRINT.EQ.1) GO TO 9906
C********** PRINT OF PCORCT WITH PELASTIC MODIFIED
    PWAVE(JEL1,JEL2)=1.O-TOTPC+PWAVE(JEL1,JEL2)
    IFIIPRT4.EQ.1) GO TO 1000
    MPRINT=1
    GO TO 301
    9906 CONTINUE
    WRITE(6.9909) TOTPC
    9709 FORMAT(1HO/2X,35H2****OCORCT WITH ELASTIC MOOIFIED,5X,
    1 7H(TOTPC=E:13.5.2H )/)
    1000 CONT INUE
                            PWAVE(JEL1,JEL2)= PWAVE(JEL1,JEL2)-1.0
            WRITE(6,9911) DELSTL,DELST2
```



```
        1 2X,3HD2=E 13.5)
        RETURN
    END
~DECK VMAT
    SUBROUTINE VMATRX(LLI,LL2,K)
    COMMON /MV1/ AMATRX(20,20,9)
    COMMON/MV2/ VBB,VAA,BROT,ETOT,BRC,VVALP
    COMMON/CMVRI/VC,VALPHA,VCE,BIMP,EIJ
    COMMON /MV3/ NCOUNT
    COMMON /CV1/ ABCC(40,40,9)
    JJl=(LLL+1)/2
    JJ2=(LLZ+1)/2
    LLJ=LLL-1
    LLJ=LL2-1
    IF(K.GT.3) GO TO 1011
    L.2I=L2J-2
    IF(L2I.LT.0) GO TO 1510
    GO TO 1100
1011 IF(K.GT.6)GO TO 1012
```

```
    L2I=L2J
    GC TO 1100
    1012L2I=L2J+2
    1100 CONTINUE
    IF(MOD(K,3).NE.1)GO TO 1111
    LII=L1J-2
    IF(LII.LT.O) GO TG 1510
    GO TO 1200
    1111 IF(MOD(K,3).NE.2) GO TO 1112
    LII= LIJ
    GO TO 1200
    1112L1I= L1J L 2
    1200 CONTINUE
    ABC= ABCC(LL1,LL2,K)
    IF(ABC.NE.O.O) GO TO 1299
CALCULATION OF VEFF(LII,L2I /LLJ,L2J)
    CCI= CG20(LLI,L1J)
    CCz= CG20(L2I,L2J)
1211 CONTINUE
    IF(K.LE.5) CSIGN= (-1.0)**(LIJ+L2J)
    IF(K.GE.6) CSIGN= (-1.0)**(LII+L2I)
    C=FLOAT((2*L1I+I)*(2*L2I+1)*(2*LIJ+1)*(2*L2J+1))**0. 25 *CSIGN
12.12 CONTINUE
    B= VBB*CC1*CC2
1213 CONTINUE
    A = 0.0
    IF(L2I.NE.L2J) GO TO 1215
    A= VAA*CC1/ SQRT(FLOAT(2*L2I+1))
    IF{MOD(L2I,2).NE.O} A= -A
1215 IF(LII.NE.LIJ) GO TO 1219
    AA= VAA*CC2/ SQRT(FLCAT(2*L1I+1))
    IF(MOT)(LII,2).NE.O) AA= -AA
    A=A+AA
1219 CONTINUE
    ABC=C*(B+A)
    ABCC(LL1,LL2,K)=ABC
1299 CCNTINUE
    wI = BROT*FL!\DeltaT(LLI*(LII +1)+L.2I*(L2I +1))
    WJ= BROT*FLOAT (L1J*(L1J+1)+L2J*(L.2J+1))
    WIJ=ABS(WI-WJ)
    EI= ETOT-WI
    EJ= ETOT-WJ
    IF(EI.LE.O.O.OR.FJ.LE.O.O) GO TO 1510
    EIJ=0.5*(EI+EJ)
    CALL ROOT(RC)
```

```
    BRC=1.0-(BIMP/RC)**2+VC6/EIJ/RC**6
    EIJI=EIJ*BRC
    IF(K.EQ.5) GO TO 1500
    IF(LII.EQ.LZJ.AND.K.EQ.3) GU TO 1500
    IF(L1I.EQ.L2J.AND.K.EQ.7) GO TO 1500
    AIJ= VVALP*SQRT(EIJI)/WIJ
    EW=EIJI/WIJ
    DBALPH= EW/AIJ
    APAI=1.570796327/AIJ
    F= EXP(-APAI)
    FAIJ= 2.O末APAI*F/(1.0-F*F)
    AAA=ABC*OBALPH*FAIJ
C*** 999 CHECK PRINT
    959 CONTINUE
    1498 CONTINUE
    NCOUNT = NCOUNT+1
    1499 CUNTINUE
        AMATRX(JJL,JJ2,K)=AAA
        RETURN
    1500 C.ONTINUE
        AAA= ABC/VVALP* SQRT(EIJI)
        GO TO 1498
    1510 CONTINUE
    AAA= U.0
    GO TO 1499
    END
    SUBRDUTINE RDOT (RC)
C** REVISED 8/26/74
    COMMON /CMVR1/VC,VALPHA,VCG,BIMP,EKIN
    RMIN=1.12
    RRO=ALOG(VC/EKIN)/VALPHA
    IF(RRO.GE.4.1) RRO= 4.1
    N=1
    3099 CONTINUE
    RR=RRO
    3100 CENTINUE
    RL=EKIN*BIMP**2/RR**2
    V = VC* EXP(-VALPHA*RR)
    VI= -VALPHA*V
    IF(VCG.EQ.O.O) GO TO 3101
    VR=VC6/RR**6
    V = V-VR
    VL=VI+6.0#VR/RK
```

```
    3101 CONTINUE
    F=(V+RL-EKIN)/(2.0*RL/RR-V1)
    IF(ABS(F/RR).LT.0.1E-5) GO TO 3199
    IF(N.GE.1OO) GO TO 3299
    RR=RR+F
    IF(RR.LT.RMIN) GO TO 3900
    N=N+1
    GO TO 3100
3199 CONTINUE
    RC= RR
    RETURN
3299 CONTINUE
    WRITE(6,998) RR,F,RRO
    998 FORMAT (1HO//5X,14HERROR N GT 100,3X,3HRR=F13.5,3X,2E13.5//1
    RR=RRO
    GO TO 3199
3900 CCNTINUE
    RRC= 0.5*(RRO+RMIN)
    GO TO 3099
    END
*DECK CG2O
    FUNCTIUN CG2O(J1,J2)
    IF(J2.EQ.JL+2.OR.JZ.EQ.Jl-2) GO TO 8001
    IF(JL.EQ.Jl) GOTO }800
    C=0.0
    GO TO 8100
    8 0 0 1 ~ C O N T I N U E ~
    IF(J2.EQ.J1+2) J=Jl
    IF(J2.FQ.J1-2) J= J2
    XI= FLUAT (J+2)/FLOAT (2*J+5)
    x2= FLOAT (J+1)/FLOAT (2*J+3)
    x3=1.0/FLOAT (2*J+1)
    C=SQRT(1.5**1**2**3)
    GO TO 80Y9
8002 CONTINUE
    J= Jl
    X1= FLOAT (J+1)/FLOAT(2* J+3)
    x2= FLOAT(J)/FLGAT(2*J+1)
    X3=1.0/FLOAT(2*J-1)
    C= - SQRT(X1*X2*X3)
8099 IF(MOO(J,2).NE.O) C= -C
8100 CG20= C
    RETURN
    END
```


REFERENCES

1. Deiwert, George S.: Reflection of a Shock Wave From a Thermally Accommodating Wall; Molecular Simulation. Phys. Fluids, vol. 16, no. 8, Aug. 1973, pp. 1215-1219.
2. Deiwert, George S.; and Hanson, R. K.: Reflection of a Thick Planar Shock Wave From a Coplanar Surface. In Rarefied Gas-Dynamics; Proc. Eighth Internat1. Symp., 1972; Academic Press, N. Y., 1974, pp. 145-155.
3. Sturdevant, B.; and Steinhilper, E. A.: Intermolecular Potentials From Shock Structure Experiments. In Rarefied Gas-Dynamics; Proc. Eighth Internat1. Symp., 1972; Academic Press, N. Y., 1974, pp. 159-166.
4. Hanson, Ronald K.: Experimental Study of a Shock-Wave Reflection From a Thermally Accommodating Wall. Phys. Fluids, vol. 16, no. 3, March 1973, pp. 369-374.
5. Bird, G. A.: Approach to Transitional Equilibrium in a Rigid Sphere Gas. Phys. Fluids, vol. 6, no. 10, Oct. 1963, pp. 1518-1519.
6. Bird, G. A.: The Velocity Distribution Function Within a Shock Wave. J. Fluid Mech., vol. 30, 1967, pp. 479-487. Pt. 3, Nov. 29, 1970.
7. Bird, G. A.: The Structure of Normal Shock Waves in a Binary Gas Mixture. J. Fluid Mech., vol. 31, pt. 4, March 18, 1968, pp. 657-668.
8. Bird, G. A.: Direct Simulation Monte Carlo Method - Current Status and Methods, pp. 85-93; The Formation and Deflection of Shock Waves, pp. 301-311. In Rarefied Gas-Dynamics; Proc. Sixth Internat1. Symp., 1968; Academic Press, N. Y., 1969.
9. Bird, G. A.: Aspects of the Structure of Strong Shock Waves. Phys. Fluids, vol. 13, no. 5, May 1970, pp. 1172-1177.
10. Deiwert, George S.; and Yoshikawa, K. K.: Analysis of a Semiclassical Model for Rotational Transition Probabilities. (To be published by the Physics of Fluids, Sept. 1975.)
11. Bird, G. A.: Numerical Simulation and the Boltzmann Equation. In Rarefied Gas-Dynamics; Proc. Seventh Internatl. Symp., 1970, in press.
12. Hirschfelder, Joseph 0.; Curtiss, Charles F.; and Bird, R. Byron: Molecular Theory of Gases and Liquids. John Wiley $\&$ Sons, Inc., N. Y., 1954.
13. Parker, J. G.: Rotational and Vibrational Relaxation in Diatomic Gases. Phys. Fluids, vol. 2, no. 4, July-Aug. 1959, pp. 449-462.
14. Lordi, John A.; and Mates, Robert E.: Rotational Relaxation in Nonpolar Diatomic Gases. Phys. Fluids, vol. 13, no. 2, Feb. 1970, pp. 291-308.
15. Pearson, W. E.; and Hansen, C. F.: Collision Induced Rotational Transition Probabilities in Diatomic Molecules. In Rarefied GasDynamics; Proc. Eighth Internat1. Symp. 1972; Academic Press, N. Y., 1974, pp. 167-175.
16. Itikawa, Y.: Calculation of Rotational Transition Probabilities in Molecular Collision. Application to $\mathrm{N}_{2}+\mathrm{N}_{2}$. (To be published by the J. Phys. Soc. Japan, Oct. 1975.)
17. Rabitz, Herschel: Effective Potentials in Molecular Collisions. J. Chem. Phys., vol. 57, no. 4, Aug. 15, 1972, pp. 1718-1725.
18. Takayanagi, Kazuo: The Theory of Collisions Between Two Diatomic Molecules. Progr. Theor. Phys., vol. 11, no. 6, June 1954. pp. 557-594.
19. Pechukas, Philip; and Light, John C.: On the Exponential Form of TimeDisplacement Operators in Quantum Mechanics. J. Chem. Phys., vol. 44, no. 10, May 15, 1966, pp. 3897-3912.
20. Mori, Masatake: Exponential Approximation for Transition Probability. J. Phys. Soc. Japan, vol. 23, no. 5, Nov. 1967, pp. 1086-1093.
21. Leonas, V. B.: Studies of Short-Range Intermolecular Forces. Sov. Phys. Uspekhi, vol. 15, no. 3, Nov.-Dec. 1973, pp. 266-281.
22. Hanley, H. J. M.; and K1ein, Max: On the Utility of the m-6-8 Potential Function. NBS Tech. Note 628, Nov. 1972.
23. Takayanagi, Kazuo: Vibrational and Rotational Transitions in Molecular Collisions. Progr. Theor. Phys. Suppl., vol. 25, 1963, pp. l-98.
24. Klimontovich, Yu, L.: The Statistical Theory of Nonequilibrium Processes in a Plasma. Pergamon Press, Oxford, N. Y., 1967.
$1.05-$

Figure 1.- Variation of rotational temperature depending on specified values for the potential

Figure 2.- Temperature and distribution functions: Complete equilibrium initial conditions.

Figure 3.- Translational and rotational distribution functions: Complete equilibrium initial conditions.

Figure 3.- Continued.

Figure 3.- Concluded.

Figure 4.- Temperature and distribution functions: Equipartition initial conditions.

Figure 5.- Translational and distribution functions: Equipartition initial conditions.

Figure 5.- Continued.

Figure 5.- Concluded.

Figure 6.- Temperature and distribution functions: Nonequipartition initial conditions.

(a) $t / \tau=15$

Figure 7.- Translational and rotational distribution functions: Nonequipartition initial conditions.

Figure 7.- Continued.

Figure 7.- Concluded.

```
185001 C1 U D 76C109 S00903DS
DEFT OF THE AIR FCECE
AF WEAPONS IABOEATCRY
ATTN: TECHNICAL LIERARY (SOL)
KIRTIAND AFE NM }8711
```

POSTMASTER: \quad| If Undeliverable (Section 158 |
| :--- |
| Postal Manual) Do Not Return |

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.
TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Details on the availabilify of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: *Institute of Space and Aeronautical Science, University of Tokyo, Tokyo, Japan; visiting professor at Stanford University; and guest worker at Ames Research Center from August to October 1974.

