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--	 Introduction	 i

This report covers progress and activity on NASA Grant NSG-2016

from . l • April 1975 through 30 September 1975. Effort during this time	
i

period had three objectives:

(a) Final development of a static aeroelastic analysis
package for oblique wings in the subsonic flight
regime.

(b) Improvement of the subsonic flutter analysis package
with three-dimensional unsteady aerodynamics.

(c) Investigation of flutter analysis techniques suitable
for the supersonic flight regimes.

Results of these efforts are discussed below.

The documentation and source deck for the static aeroelastic analysis

computer program with the acronym AIRLOD was delivered to NASA Ames Research

Center in May 1975. This program was forwarded to LTV - Dallas by NASA/Ames.

Checkout of this program by LTV has proven satisfactory; a few minor errors

were uncovered and corrected. Program extensions and improvements have

been suggested, but these improvements are being held in abeyance because

of more pressing problems.

Subsonic Flutter Analysis

Several improvements have been made in the subsonic flutter analysis

package. Chief among these improvements is an improved, more accurate

mass matrix formulation and capability to handle three rigid-body degrees

of freedom. In addition, ar. expanded modal analysis capability was added

to the program package. Checkout of the analysis package has Progressed
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--	 to the. point where a_hfgh confidence level in the_ program has been attained.

A preliminary copy of this program package has been deli vered to NASA/Ames

for use on the Ames CDC 7600. The program was originally developed for

the I.B . M. 370/158 machine.

The AIRLOD computer program and the subsonic flutter analysis colter

programs have been used to generate a great deal of new numerical data:

This data has formed the basis of two papers written during the summer

and submitted to the AIM Journal and AIM Journal of Aircraft. Copies

of these papers have been sent to the grant monitor and are attached to

this report.	 }

Principal Theoretical Results

Principal findings thus far have been that at least two types of flutter

instability can occur in the subsonic flight regime.. The first of these

types of instability is associated with a low value of the ratio of wing

roll moment of inertia to fuselage roll moment of inertia. This mode of

instability is characterized by low reduced frequencies ( k) at flutter

(k = wb/V, where w = frequency, b = wing semi -chord and V is airspeed).

This type instability involves primarily a coupling between wing elastic

bending and fuselage rigid roll; this instability 'resembles a vehicle in-

stability.

The second type of flutter instability involves classical bending-

torsion flutter with 1 slight amount of rigid roll coupling. This mode

of instab ' lity occurs at a relatively high reduced frequency ( of the order

of k = 0 . 25) and is characterized by larger values of the ratio of wing

roll moment of inertia to fuselage moment of inertia. In general, if the
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transition from bending-torsion flutter to bendi ng roll flutter can be
r	 ^

precluded, the flutter speed of the aircraft can be kapt at . values far

above the wing ' s clamped divergence speed. Research is continuing to

discover the mechanism which triggers this change.

Although primary emphasis has been thus far placed on the effect

of roll on the flutter of oblique wings, research has been initiated on

the effect of fuselage pitch inertia on stability. The objective of this

research will be to define critical parameters which may adversely couple

rigid body pitch to elastic deformation.

Transient Response

It should be noted that the aerodynamic influence coefficients generated

in the flutter program also may be used to solve for the transient re-

sponse of the vehicle at low reduced frequency. These low reduced fre-

quencies correspond to a slowly maneuvering vehicle. Such a study of

dynamic stability and control is not :urrently within the scope of the"present

grant and is deferred to some future time. However, subsonic respr'nse of

the aircraft at speeds below the critical speed is of great importance.

Supersonic Flutter Analysis

The supersonic flight regirria with subsonic leading edges is, for

flutter, next in importance after the high subsonic regime. Unfortunately,

no one unified method seems available for the generation of supersonic

aerodynamic influence coefficients. The particular difficulty which

arises in the case o-4 ;he subsonic leading edge is that the region between



the foremost Mach cone and the leading edges (the so^called diaphragm

region) complicates the solution for velocity potential formulations.

The Mach box formulation of the supersonic flow problem presents

one way of solving for the aerodynamic influence coefficients. This

method has been found to have several deficiencies, the principal

shortcomings being inaccuracy at low supersonic Mach nuibers (M < 1.2)

and the computational time necessary for some planform configurations.

In addition, available computer codes are restricted to analyzing-sym-

metrical planforms. A literature search has uncovered three potentially

worthwnilL methods for solving the supersonic problem; these methods are

discusseL below.

Available Solution Methods for Supersonic Flutter Analysis

A computer program is available through COSMIC which can be used to

predict flutter at supersonic speeds. This program is called LAR-10199

and was developed by E. C. Yates at Langley Research Center. The

analysis method used in the program is based . upon so-called modified strip

theory. A separate analysis of the static, rigid wing must be available

to predict the spanwise distribution of lift curve slope and the chord-

wise position of the aerodynamic center (AC). This latter quantity is

extremely important to flutter analysis. It has been noted that the

failure of linearized supersonic theory to accurately predict the AC

position leads to overly unconservative flutter predictions in many cases.

However, Yates shows that with the proper prediction of the static AC,

good results may be achieved.
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A second method of supersonic flutter prediction is the use of piston

theory. While piston theory is commonly used to predict flutter when

M >> 1 or M 
2 
k >> 1, a correcti%n has been suggested to give agreement with

the second-order quasi-steady supersonic theory of Van Dyke. This cor-

rection is thought to extend the validity of piston theory to lower

supersonic Mach numbers and lower reduced frequency.

The Mach box method is also available for use in the flutter analysis.

It appears, however, that a reprogramming of the method is necessary to

account for asymmetry of the wing. This reprogramming effort does not

need to be as extensive as existing Mach box programs since existing

programs usually concern themselves not only with the wing pressure dis-

tribution but also with wing-tail interference effects. This latter

effect is of no concern to the present analysis. An investigation of

the time required for this programming effort is currently underway.

In addition to the above methods, other techniques have been suggested

for calculating supersonic AIC's. Prime among these are the acceleration

potential kernel function techniques. A literature survey of related

papers is currently being conducted.

Planned Approach to Supersonic Flutter Analysis

Because of the disparity ` analytical results often encountered in

supersonic flutter analysis, the author believes it to be prudent to pursue

several courses of study simultaneously. As a temporary measure, the

program LAR-10199 should be obtained and made operational as quickly as

possible. At the least, this method can identify, in a qualitative

5



manner, the flutter behavior which may be encountered in the supersonic

flight of the oblique wing.

A listing of a computer program to compute piston theory AIC's with

thickness effects and sweep corrections included is available at V.P.I.

This program has the capability of generating aerodynamic data for a flutter

program. An attempt will be made to make this program operational.

Finally, the effort necessary to generate a simple Mach box routine

will be assessed, together with an investigation of newer supersonic AIC

generation methods. The rationale behind the study of these methods is

to generate and compare data generated by different theories and to com-

pare differences and similarities of results.

Continuing Subsonic Flutter Work

i	 A substantial amount of subsonic flutter investigations remain to

be done. These studies include the effect of pitch inertia on flutter

and the effect of shifting the wing c.g. relative to the aerodynamic

center and the elastic axis. These efforts will continue; a graduate

student is presently doing graduate work in this area.

Travel

During the time period =overed, a trip was made to the AIAA Structures/

Structural Dynamics Meeting held in May 1975 in Denver, Colorado. In

addition a visit to NASA/Ames Research Center was made on 25 -26 September

1975. During this visit the latest results of subsonic oblique wing

flutter studies were presented.
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ABSTRACT

Recent interest in asymmetrically swept, of oblique, wings has raised

fundamental questions about the flutter characteristics of such wings. This

paper presents two formulations of the oblique wing flutter problem; one formu-

lation allows wing bending deformations and the rigid body roll degree of freedom

while the second formulation includes bending-torsional deformation and roll

degrees of freedom. Flutter is found to occur in two basic modes. The first

mode is associated with bending-roll coupling and occurs at low reduced frequency

values. The other instability mode is primarily one of classical bending-torsion

with negligible roll coupling; this mode occurs at much higher reduced fre-

quencies. The occurrence of bending-roll coupling mode leads to lower flutter

speeds while the bending-torsion mode is associated with higher flutter speeds.

The ratio of the wing mass moment of inertia in roll to the fuselage moment of

inertia evidently plays a major role in the determination of which of the two

instabilities is critical.
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Nomenclature

[a] = flexibility matrix for clamped fuselage wing

c - wing chord measured perpendicular to elastic axis (Fig. 1

c = wing chord measured parallel to the free stream direction

c 	 2-dimensional sectional lift-curve slope

g = structural damping parameter

i = 47

Io = wing roll moment of inertia at zero sweep

k	 reduced frequency, tec/2Vn or we/2V

R = (Io/IT ) cos2A

V = airspeed

Vf = flutter speed

v  
= airspeed normal to swept axis, V  = Vcost.

A = sweep angle

P = air density

w = frequency of oscillation



Introduction

The recent interest in the use of an asymmetrically swept, high-

aspect-ratio wing to achieve high lift-to-drag ratios has generated

interest in the aeroelastic stability characteristics of such a configu-

ration. However, the undesirable static aeroelastic behavior of

symmetrically swept forward wings has prnmpted some caution on*the part

of structural engineers towards the asymmetrical wing. As a result, con-

siderable discussion of the merits of such a design and the potential

weight penalties which might be incurred has occurred. Jones and Nisbet

(Ref. 1) have presented data which tends to allay some misgivings about

the aeroelastic stability ff asymmetrically swept or oblique wings. Pro-

^iinent among their findings is the discovery that the inclusion of the

rigid body aircraft roll degree of freedom has a stabilizing effect on

-^	 the aeroelastic stability of the wing, when compared to the stability of

a similar, but clamped, wing. Their analytical results were obtained

through the use of quasi-static aerodyanmic theory to represent the per-

turbation lift forces generated by the harmonic motion of their idealized

flexible model.

This study seeks to explore in somewhat more detail than Ref. (1)

the flutter behavior of asymmetrically swept or oblique wings; to accom-

plish this task the results of two studies are presented. The first

study examines the flutter behavior of an idealized, uniform-property

wing in incompressible flow and at various asymmetrical angles to the

flow. For this portion of the study, quasi-steady aerodynamic strip

theory will be employed in-t'e equations of motion; the Galerkin method

will be used to solve these equations.

N	
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•	 The second portion of the study entails the use of a more sophisti-

cated approach to the solution of the oblique wing flutter problem. This
I

approach uses a finite-element, unsteady aerodynamic representation

together with a multi-degree-of-freedor; structural model to examine more

closely and more accurately the flutter behavior of variable planform

wings.

From these studies, it will be shown that, at moderate sweep angles,

the flutter speed of the wing may be lowered when compared with the flut-

ter speed of the wing at zero sweep. 'n addition, the sh&-;: of the wing

planform and the spanwise distribution of stiffness and weight will have

a significant effect on the relation between flutter speed and sweep

angle.

Discussion

The first part of this study is concerned with the aeroelastic anal-

ysis of a simplified oblique wing model, shown in Fig. 1. The impetus

for such a study stems from the desirability of ;assessing  the behavior of

the flutter speed of the win g as it is asymmetrically swept. This model

repre!ants a wing of uniform structural and aerodyanmic properties, asym-

metrically swept at an angle A to the flow. This high aspect ratio wing

is idealized as a beam with a straight elastic axis, free to roll about

an axis Naialiel to the flow. It is assumed that mass is distributed

along this roll axis such that a mass moment of inertia, If , simulating

the roll moment of inertia of the fuselage, appears concentrated there.

To examine the aeroelasti; stability of this model, assume that it

is caused to undergo small osc-' 11 ations about a "wings level" static

equilibrium portion. The stability of the subsequent motion can be

determined by an examination of the character of this free vibration.

2



The structural oehavior of this wing can be modelled through the use of

conventional Euler -Bernoulli beam theory. It is further assumed that the

L ^^	
wing has no torsional flexibility so that only bending flexibility is

important. The limits to the _ validity of this latter assumption will be

discussed later in this paper.

In Ref. 2 , Barmby and Cunningham discuss the flutter analysis of

symmetrically swept wings through the use of aerodynamic strip theory and

the Theordorsen functions. The present study neglects all the noncircu=

latory aerodynamic terms in Ref. 2 but retains two of the circulatory

terms. In addition, the free vibratory motion is assumed to take place

at a value of reduced frequency k = we/2V nwhich is so small that the flow

i

i^ ^uasi-steady. The circulatory aerodynamic terms retained are the term

which corresponds to the familiar damping -in-roll and the term which

arises from the angle of attack generated by bending deformations of a

swept wing (Ref. 2).

The assumptions about the behavior of this idea l ized model under-

going small oscillations in the airstream lead to the following

differential equation of motion for the elastic wing.

m ° 

2 
1.11 + EI a^ + (gccEQ Cos 2A) 

ay 
tanA	 (1)

at	 ay

2
+ gccUr

	n aW _ gccE^Cos2A
^cosn at	 V'^

- mPycosA = 0

where m = w4,ng mass per unit length along the y-axis

El = bending stiffness of cross-section perpendicular to y-axis

q _ freestream dynamic pressure

W = wing upward deformation due to bending only

t = time

p = roll rate in radians per unit time
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Nondimensionalization of Eq. (1) ,yields the following equation.

ML4 w+a4w + aw_ a	 PL n

El	
aT
	 an	 tanA V

	
(2)

+ sin r ('V-L) _(TE2̂ pcosA) n = 0

where (') = differentiation with respect to time

w=W/L

n = y/L

a = gccLCCL3sinAcosA/EI

The requirement that the sum of all roll . moments generated by wing oscil-

latory motion be equal to zero results in the additional equation:

-1

	( If + I ocos2A p = gccLaL2Cos3A	 an ndn tanA	 (3)

+ mL3cosA	 wndn

i	 '
_ 3 gcc

Lce
L2 Cos 3A (PL)

gccL 

a 

L3ros2A	 1

+	 V	 f1 wndn

If we let = p cosA then Eq. (3) may be written as

^ + 3 1^ ^ _ (YSinA) f an ndn + 2 VIFT-)^ wndn
`J -1 	1

	 (4)

i.

+ (YV-L)
	 i wndn

where IT = I f + Io 
Cos 2A

Iw = I
o 
Cos 2A = 3 mL3 CPS 2A

= gcc La: L2 Cos 3A/IT

A14
	 4
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i
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To solve Eqs. (2) and (4), the time dependency is eliminated by recogni-

tion that the functions w(n,t) and 0(t) are separable such.that

	

w(n,t) = f(n)e
rt
	(5a)

f 	 = inert

Next, Eq. (2) is separated into two parts, one valid in the region -1 :5 n

j	 < 0, the other valid in the region 0 5 n <_ 1. Finally the resulting set

of equations is solved approximately through use of Galerkin's method. A

simple polynomial to use for such a solution is that shape obtained for

uniform loading of a cantilever beam. In this case the function f(n) is

approximated as:

	

a (6112 . 4n3 + n4)	
0 `- n i l

	

3 

(6n2 + 4n3 + n4)	 -1 ` n ` 0	 (6)

where a and b are unknown constants. the Galerkin method leads to a set

of three homogeneous algebraic equations, represented in matrix form as:

	

ja	 0

	

[.
1

di3J b = 0

	 (7)

	

,J 0	 0

The coefficients d ij are given in the Appendix to this paper.

It is found that, in the absence of the roll freedom, the first

natural frequency of vibration of the clamped wing, in vacuo, is pre-

	

dicted by the Galerkin method to be 	 \

	

wo = 3.530 VjE I4	(a)

This compares with the exact solution (Ref. 3)

wo = 3.518

	

	 EI	 (9)

mL4

For,,the clamped wing, it is found that the sweptforward wing undergoes

}	 static divergence when r is zero. This occurs at a value of a equal to

5



-	 6.40.	 The exact wolution gives a value of a for static divergence of

6.33 (Ref.	 4).

If all the system parameters, such as EI, A and V,are substituted

into the expressions for d id , then the determinant of the matrix did,
i

written as A(d
ij

), can be used to find r through the relation:

A(d
ij

) = 0	 (10)

With reference to Eqs.	 (5a,b), it is seen that if r is found to be a real

number, then motion is aperiodic.	 A positive real value of r indicates

aperiodic instability or static divergence. 	 On the other hand, if r is

found to be a complex number, motion is harmonic. 	 If r =	 + iw then the
^

motion is periodic of frequency w. 	 For negative values of -, the motion
3

decays, but for positive values of « it grows with time.	 This latter

situation corresponds to the dynamic aeroelastic instability commonly

referred to as wing flutter.	 At the value r = iw, the system undergoes

undamped oscillation and is said to be in neutral equilibrium.	 For a

given set of system parameters, the airspeed V at which this occurs is

called the flutter speed, VF.

The way in which the problem is presently formulated allows us to

pick one system parameter as the unknown in Eq. 	 (10).	 The magnitude of

the complex number r is of no interest, but rather the value of velocity

at which neutral	 stability occurs.	 For this reason, it is found to be

advantageous to let r = iw in the expressions for d.. and to express these
^J

coefficients in terms of w0 and the parameter a, defined as

s = a/adiv	
(lla)

:s

where
^div 

= 32/5 = 6.40	 (llb)

The expressions for d id in terms of these parameters may be found in the

Appendix.



Given the system phy

may be expressed in terms

terms, the determinant is

given respectively by the

C

( 4 1 -39R -
w	 [	 400

sical parameters, the determinant in Eq. (10)

of the independent variable 0. Collecting

found to have a real part and an imaginary part

expressions

ww 

2	
80 R + 30 + D2wo 1 40 R(12a)

C[2(
	 C	 )^

+ 1 -0 2 +263R+41 ^D =0
-2-5	 60

and

	

	 (
cam l4 1 - 77 l (w l2 `1 + 1 	1

\Wo /	 Su
R/ - \`^o/ \	 40 R + 120 '^J^	 (12b )

+2 (1 + 02/25) = 0

2W2 _ 104 pccL^L	 0r^
where	 D wo 40	 2m	 ^tan4 )	

(13a)

3 5 — 2m^l) (^ann )and	 *,D =	 (13b)

The selection of a value of 0 which yields identical values of the

ratio w/w0 in Eqs. (12a,b) completes the solution. From this value of 0,

the flutter velocity may be obtained.

The above solution procedure was implemented for a small model wing

constructed of aluminum sheet with a constant thickness of 0.064 inches.

The wing properties were taken to be:

Material density = 0.101 lbm/in3

c = 4 in.	 L = 20 in.	 c 	 2n

I o/I f	3	 EI = 374.0 lbf-in.

Using a sea level air density value, Eqs. (12a),(b) were solved numeri-

c
cally using a Newton's method trial and error solution technique. The

results of this analysis are shown in Fig. 2.
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From Fig. 1, it is seen that the flutter speed decreases as the wing

is swept. For small values of A, the value of V F greatly exceeds that of

the clamped wing static divergence speed, VD* However, as. A increases,

the critical speeds VF and V  draw closer together; at A = 900 they will

coincide. As suggested by Jones and Nisbet in Ref. 1, the moment of

inertia ratio IWI T plays a significant role in the flutter analysis of

this asymmetrical wing. From the expression for Iw/IT , it is clz:ply

seen that this ratio tends to zero as A approaches 90 0 . It has been sug-

gested that this mass moment of inertia ratio should be as large as

possible to improve flutter performance. The results in Fig. 2 supmort

this suggestion.

Since one of the original assumptions of the present analysis was

that the flutter instability occurs at relatively small values of reduced

frequency k it is worthwhile to note the values of reduced frequency for

Ui	 which the instabilities in Fig. 2 occur. These numbers are listed in

Table I. Although these reduced frequencies are reasonably small, the

accuracy of these results is probably somewhat degraded by the quasi-

steady flow assumption.

The model just analysed is similar to, but not identical to, a

series of models used by Papadales (Ref. 5) in wind tunnel experiments at

Virginia Po -,ytechnic Institute. Those experiments had as their primary

objective the study of the static aeroelastic characteristics of clamped

oblique wings. However, when those tests were completed, simple flutter

tests were conducted on roll-free models. Although no attempt to take

accurate data was made during these flutter demonstration tests, the

velocity magnitudes shown ih jfig. 2 correspond to the order of magnitude

of the velocities observed in these demonstrations. In addition, for

8
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sweep angles greater than 15-20% the primary mode of instability was

observed to be a fundamental symmetrical bending mode coupled with a

rigid body roll oscillation (Ref. 5).

For sweep angles less than about 20 0 , the tests described in Ref. 5

found a flutter mode which resembled a more conventional bending-torsion

coupling with a slight degree of rigid body roll interaction. These

observations, together with the desire to obtain a more accurate versa-

tile analysis model, sugge::ted the application of a more sophisticated

analysis technique to the oblique wing flutter problem. It is to this

analysis that He now tir ,n oaar attention.

Conventional flutter analysis of realistic aircraft employs assumed

structural deflections or mode shapes together with generalized coordi-

nates assigned to these mode shapes. An excellent discussion of modal

and non-modal matrix methods of flutter analysis is given by Rodden in

Ref. 6. In addition, Ref. 6 presents a succinct discussion of how to

include free-free boundary conditions into the conventional restrained or

clamped model. This latter discussion follows the development given in

Ref. 7, but is more general. The highlights of Ref. 6 are reviewed here.

To analyze the flutter behavior of a planform such as that shown in

Fig. 4, it is necessary that the following items be taken into account:

the distributed mass of the wing along the span; the variable bending and

torsional stiffness along the span; and the unsteady, three-dimensional

aerodynamic forces and moments associated with deformations caused by

wing oscillations. With the assumption of simple harmonic motion at fre-

quency m, the classical matrix equation for flutter analysis, before the

inclusion of assumed modes," ys given by (Ref. 6):

~	 2

h =(T + ig/ 
[
a] F[M] + pbrs [Ch] jh} 
	 (14)

O	 9
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In this equation the static flexibility matrix [a] has been divided by 	
C

l	 the factor (1 + ig) to account for the structural damping necessary to

sustain simple harmonic motion. The elements of the vector th} are .

actual elastic deflections and rotations at con-crol points on the wing.

The mass matrix [M] and aerodynamic influence coefficient matrix [C h] are

both multiplied by the frequency squared. The coefficients of [:. h ] refer

to the air density p, the reference semi-chord b  and the wing semi-span

s. The elements of [Ch ] are complex numbers and functions of Mach number

and the local control point reduced frequency, k = wb/V, where b is the

local semi-chord. With the formulation in Eq. 14, the unsteady aerodyna-

mic forces enter into the problem, mathematically, as complex masses.

The idealization of the wing structure as an assemblage of beams,

each with a straight elastic axis, perm'ts the use of conventional finite

element structural analysis methods to describe the wing stiffness and

(-	 flexibility. The reader is referred to Refs. 8 and 9 for discussions of

this method. Similarly, the mass matrix may be formulated from finite

element methods. The mass matrix must account for the fact that the wing

shear centers may be offset from the wing chordwise location of the cen-

ters of mass. Finally, to model the three-dimensional aerodynamic forces

and moments, the doublet-lattice method (Ref. 10) was used. To employ

this method, an existing computer program (Ref. 11) was employed to gen-

erate aerodynamic influence coefficients.

A computer program was written to calculate the matrices in Eq. 14

using these methods. The free vibration modes for the clamped system

are then used to reduce the size of the Matrix equations. The free-free

boundary conditions are thentintroduced to "free" the clamped system

t_
	 described in Eq. 14; this allows rigid body roll croadmm . Once these

matrices have been formed, the eigenvalues and eigenvectors may be

10



	

•	 found. Since the aerodynamic influence coefficients are functions of

f '	 reduced frequency k and !loch number (in these studies, Mach number is

zero), a set of eigenvalues and eigenvectors corresponding to each value

of k is generated. The familiar V-g method (Ref. 3, pp. 565-568) is then

used to find the value of velocity at which neutral stability occurs.

To assess the effect of torsion and unsteady aerodynamics on the

flutter analysis of the oblique wing, the uniform property aluminum wing

was reanalyzed. The wing is considered to have the same structural pro-

perties as before, but, in the present example, GJ is taken to be equal

to 1346 lb-in. It should be noted that the flat, sheet—aluminum wing has

a ratio of first bending to first torsion which is slightly higher than

that common to conventional aircraft.

The analysis of the constant property wing, including roll freedom

and torsional flexibility and employing the doublet-lattice method was

	

0	 . conducted with a sixty degree-of-freedom model. These sixty degrees of
freedom were obtained by considering ten control points on each wing;

each control point has pitch, plunge and bending rotation elastic degrees

of freedom. This model was subsequently reduced to a twenty degree-of-

freedom model by using the first twenty natural modes of the system.

The results of this flutter analysis are displayed in Fig. 3 as

ratios of the instability velocity (either flutter or divergence) to the

velocity at which wing torsional divergence occurs at zero sweep; this

latter velocity is denoted as VDO'

In Fig. 3 the behavior of the wing when the fuselage is clamped is

shown as the curve labelled VD/VDO* With the fuselage clamped, instabi-

lity is found to occur at a-reduced frequency k = 0; this is divergence.
}

When roll freedom is allowed, and when I o/i f = 3, a dynamic instability

appears; this is flutter and i- shown as the curve VF/Vno* Unlike the

ti
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strip theory results, the flutter speed does not tend to infinity as A

tends to zero. In fact, the flutter speed reaches a maximum near 15 0 of

sweep and then declines, approaching the clamped divergence speed at a

sweep angle of 60 0 . From an examination of the mode of instability in

the analysis and from test observation, it is found that, from A = 00

until near A = 30 0 , the instability resembles-bending-torsion flutter

such as might be observed on symmetrically swept back wings; an increas-

ing amount of rigid body roll appears as A increases.

As a further illustration of the flutter behavior of oblique wings,

a non-uniform wing planform, constructed in the same manner as the uni-

form property wing, was analyzed. This wing (Fig. 4) has a modified

elliptical planform and is constructed to give, theoretically, the mini-

mum induced drag for a given lift, given span and given roo , bending

moment (Ref. 12). In this case, the wing-fuselage combination has a roll

moment of inertia ratio Io/I f = 11.69. Fig. 5 shows the stability behav-

ior of the clamped and roll-free wings. While the decrease in divergence

speed with increasing A for the clamped wing shown in Fig. 4 resembles

that of the uniform property wing, the behavior of the flutter speed for

the nonuniform wing is much different. Once again, for large sweep

angles, the decrease of flutter speed with sweep angle is seen in Fig. 5;

however, the roll-free flutter speeds and clamped divergence speeds are

more widely separated in Fig. 5 than in Fig. 3.

To assess the importance of the roll moment of inertia, the aero-

elastic stability of the nonuniform property wing shown in Fig. 4 is

again studied. However, the roll moment of inertia of the fuselage is

now increased by a factor ofitwo. The results of this study are prey

sented in Fig. 6 and are compared to those previously obtained using the

s•
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smaller fuselage roll moment of inertia. Once again, the results are

displayed as ratios of flutter speed to clamped divergence speed at zero

sweep angle.

The effect of increasing the fuselage roll moment of inertia is

clearly seen in Fig. 6. The flutter speeds for both moment of inertia

ratios are seen to be identical until about a 15 degree sweep angle.

Near this point the flutter mode for the Io/If = 5.85 wing becomes pre-

dominantly one of fundamental bending with rigid body roll coupling.

This is seen to depress the flutter speed as A increases.

As a final example, consider the uniform property aluminum wing.

This wing has been previously analyiad using quasi-steady strip theory

aerodynamics and elastic beading degrees of freedom with roll coupling.

It has also been analyzed with a bending-torsion model which used the

doublet-lattice aerodynamic loads. For the present example, the value

I	 of the torsional stiffness GJ is chosen to be 10 times that of the exam-

ple whose results were presented in Fig. 3. The results of the present

study are shown in Fin. 7, where they are compared with those presented

in Fig. 3. In Fig. 7, the designation "Wing 2" refers to a uniform

property wing with properties identical to those of "fling 1" except that

wing sectional torsional stiffness of Wing 2 is ten times that of tiling 1.

In Fii , 7, the relation between flutter speed and A for Wing 2 is

seen to have a discontinuity near A = 15 0 . Increasing the value of GJ is

found to have a pronounced effect on flutter speed at moderate sweep

angles, but has little effect on flutter at high sweep angles. The dis-

continuity is believed to be caused by a sudden change in the'flut.t&e

made near 15 degrees sweep.*' For sweep angles beyond 15 0 , the results

i

f
t

i'
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obtained for this wing with high torsional stiffress resemble those

obtained with the bending model and strip theory airloads. The reduced

frequencies at the onset of flutter of Wing 2 are displayed in Table II

for several sweep angles. From this table, it is seen that the flutter.

which occurs primarily as a roll-bending or flapping instability,occurs

at relatively low reduced frequencies -then compared with the reduced fre-

quencies which arise at the onset of bending-torsion flutter. Also, a

comparison of the reduced frequencies in Tables I and II shows that the

reduced frequencies at flutter in the two studies are comparable in mag-

nitude.

Conclusions

Before summarizing the results of this paper and listing conclusions,

certain features of the idealized models studied should be reviewed.

These models were chosen for analysis because of past experience with
t

wind tunnel tests. A constant thickness, sheet metal wing has a bending

stiffness which is proportional to the wing chord measured perpendicular

to the wing elastic axis; the torsional stiffness varies in a similar

manner. This proportionality of the stiffness to the wing chord leads to

bending and torsional stiffness distributions which are concave downward

when plotted versus the spanwise coordinate. In actuality, the bending

stiffness distribution which results from considerations of wing strength

usually appears to have a concave upward distribution (cf. Ref. 3, p. 45).

The wings considered in this study had wing sectional centers of

mass coincident with the shear centers; thus, there was no elastic axis-

c.g. offset. Dynamic coupling was either nonexistent, as in the case of:t
the unfi	 property wing, or' minimal, as in the case of the variable

property wing. This latter wing has a line of shear centers which is

curved slightly forward whey the wing is	 in its unswept position.

N	 14



The combinations and permutations of the various parameters which

affect the aeroelastic stability of an aircraft are seemingly endless.

However, several conclusions may be drawn from the present studies at

zero Mach number. Prominent among these conclusions is that the inclu-

sion of the rigid body roll degree of freedom into the flutter model

causes the mode of instability to change from an aperiodic instability

(divergence) to an oscillatory instability (flutter). The degree to

which the stability boundary is modified depends upon the sweep angle A

and the ratio of the moments of inertia in roll of the aircraft fuselage

and the wing in its unswept position.

If the wing instability appears as a coupling between the wing's

fundamental bending mode and rigid body roll (the "flapping" mode), flut-

ter speed is reduced as A increases. However, if the :,stem parammaters

are such that flutter appears primarily as a bending -torsion coupling,

the flutter speed may actually increase as the wing is swept. If the

wing can be either elastically or dynamically tailored, it may be possi-

ble to avoid the flapping mode type of instability altogether.

Topics v: ,ranting further investigation include: the effect of Mach

number on oblique wing flutter; the significance of elastic axis - c.g.

offset; and the effect of elastic tailorin- u^ the wing. It is antici-

pated that these and other studies will provide further insight into this

unique aerodynamic design.

__L
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Table I - Reduced Frequency k at Flutter (Fig. 2)

^z

k = me/2Vn A (Degrees)

0.0225 15

0.0330 30

0.0494 45

0.0587 60

Table II - Reduced Frequency k at Flutter

(Wing 2, Fig. 7)

k = we/2V A (Degrees)

0.29 0.

0.29 7.5

0.29 15

0.022 20

0.025 25

0.028 30

0.038 45

0.045 .60
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Appendix

The application of Galerkin's method to Eqs. (2,3) results in the

determinant in Eq. 10. The elements of the matrix 

[di^^ 

are given below.

2
dil =-(mi

o//
l +iwD+1 +g	 (Al)

`` 

d12 = 0	 (A2) .

_ 9 ^ 2
d13 - 8 `w0^ - iwD
	 (A3)

d21 = 0	 (A4)

f
1

0

r

r

2
d22 = - (^	 + iwD + 1 - B (A5)

\o /

d23

2
= - 8 ' w
	

- iwD
C

(A6)

o/

d31 =	 w2 (13R/30) - iw*(13/45) -	 (ysinA)(3/5) (A7)

d32 = - w2 (13R/30) + iw*(13/45) - (ysinA)(3/5) (A8)

d33 = - w2 + iw*(2/3) (A9)

The following definitions of terms are used in the above equations.

D = (13/162)(xL/VsinA) 1P = yL/V

R = (I o/IT )Cos 2A x = gccLw-L3sinAcosA/EI

S = x/acr = 5x/16 y = gcc L= L 2 Cos 3A/IT
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Fig. 1 - Uniform Property Wing; Definition of Geometrical Parameters.

Fig. 2 - Strip Theory Prediction of Flutter Speed	 VF 	 Versus Sweep Angle A

and Divergence Speed VD Versus A.

Fig. 3 - Ratio of Aeroelastic Instability Velocity to Divergence Velocity at

Zero Sweep Angle, VDO ; Uniform Property Wing With Bending-Torsion

Flexibility; Doublet-Lattice Aerodynamics.

Fig. 4 - Nonuniform Wing Planform.

Fig. 5 - Ratio of Aeroelastic Instability Velocity to Clamped Divergence

Velocity at Zero Sweep Angle; Nonuniform Wing Planform With Bending-

Torsion Flexibility.

Fig. 6 - The Effect on Flutter of Doubling the Fuselage Moment of Inertia.

Fig. 7 - The Effect of Greatly Increasing the Torsional Stiffness of a Uniform

Property Wing; Torsional Stiffness of Wing 2 is 10 Times That of Wing 1.
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Abstract

A static aeroelastic phenomenon unique to an aircraft with asymmetrically

swept wings is disc, Wised and the potential magnitude of its importance assessed.

For this assessment, a simple formula is derived from the analysis of a highly

idealized model. The validity of this formula is examined through the use of

a more sophisticated numerical analysis. Among the -results of this analysis

are the following: aileron settings of a few degrees are sufficient to trim

such aircraft in roll for lg flight; the use of so-called built-in twist in

the form of an initial wing anhedral provides an efficient alternative to

aileron trim; if the wing is elastically tailored in a proper ashion, it

may be possible to design a wing whose elastic deformation under airloads
1

provides a form of self-trim in roll at the cruise q of the aircraft, in

 width case no aileron input or anhedral is necessary.

j



•	 Introduction

The oblique wir;g aircraft concept is currently being explored as a possi-

ble method of achieving high lift-to-drag (L/D) ratios at high transonic and

low supersonic soeeds (Ref 1,2). Prominent among the features of this uncon-

ventional aircraft is a wing of relatively large unswept aspect ratio (of the

order of 8-12) which can be pivoted so that it presents itself at an oblique

angle to the flow (Fig. 1). Theoreti:.,lly, this asymmetrical,sweeping of.a

high aspect ratio wing results in e . ry efficient wing shape in this speed

range (Ref. 3). That this theory is valid has been shown in wind tunnel tests

at the NASA Ames Research Center (Ref. 4). While demonstrably advantageous tc

the aerodynamicist, such a design suggests potential structural stiffness and

strength difficulties which deserv- careful consideration. Of these difficul-

ties, the areas of static aeroelasticity and flutter behavior of the wing seem

kD	
most important and worthy of analysis.

The term static aeroelasticity is commonly applied to aeroelastic problems

where inertia effects can be safely neglected. Control effectiveness and the

redistribution of airioads on a flexible aircraft are prime examples of prob-

1,:­s where the equilibrium state of the flight vehicle is highly dependent upon

the interaction between the airloads and the flight structure. On the other

hand, static wing divergence provides an example of a static aeroelastic stabi-

lity problem. Since this latter problem is of no concern to a freely flying

.oblique winged aircraft (Ref. 2), the attention of this paper will be focused

only on the problem of flexible %"- q airload redistribution and the lateral

trim requirements of flexible wings which are asymmetrically swept.

Earlier studies have focused attention of stability and control character-

.{
istiL*& which might be of importance to oblique wing aircraft design (Refs. 5,

I J	 6,7). In Ref. 7, the author very briefly explored the possible influence of

^	 -1 -



static aeroelasticity on oblique wing design. Further work in this area has

shown that the analysis presented in that reference can be extended and inter-

preted in such a way as to yield meaningful results. For this reason, the

present study is divided into three parts: the analysis of the potential aile-

ron control requirements for an oblique winged aircraft to ensure lateral

equilibrium at various flight speeds; the presentation, analysis and comparison

of an alternative mode of ensuring lateral equilibrium, the use of so-called

built-in or geometric twist; and, finally, an assessment of the validity of the

assumptions used and results obtained in the latter two studies.

Discussion

Some insight into the magnitude and importance of the oblique wing lateral

trim problem can be obtained through the study of the simplistic elastic wing

model considered in Ref. 7. The analysis of this model, shown in Fig. 2, will

seek to determine the extent to which aileron deflection, or some other means

of control, is necessary to ensure lateral equilibrium. Although the analysis

of the use of aileron deflection for this same model has been briefly discussed

in Ref. 7, the essential features of that analysis will be reviewed here and

the results extended because they bear heavily upon the ensuing geometric twist

analysis.

The idealization shown in Fig. 2 represents a continuous,uniform-property,

elastic wing, of constant chord, swept at an angle A to the direction of

flight. The wing is uncambered and has full-span ailerons for lateral control.

For the formulation of the analytical model, the wing is assumed to behave as a

slender beam with a straight elastic axis; torsiLial flexibility of the wing is

ignored to simplify the analysis. Finally, aerodynamic strip theory is used to

describe both the applied loads and the aeroelastic loads. With reference to

Fig. 2, the governing differential equation of equilibrium of the flexiblef
!	 f

wing, under the usual elementary beam theory assumptions can be written (in
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nondimensional form (cf. Ref. 8, pp. 479-481) as:

W do EI

d4w + a dw = PO  + saw -1 < 
n 

< 1
	

(1)

where w(n) = -bending deformation, nondimensionalized with respect to L.

Po = constant load per unit length in the n direction.

El = bending stiffness, a constant.

7► = gccLm0 sin A cos A/EI.

B	 = gccLa L3 cost A/EI.

q = dynamic pressure.

c 	 two-dimensional sectional lift curve slope per unit chordwise

angle of attack.

cLd = two-dimensional sectional lift curve slope per unit aileron
deflection.

If this wing were to be clamped at its center, a roll moment would be gen-

erated if ailerons were not applied in an antisymmetrical manner. This roll

moment occurs because of the well-known tendency of sweptforward wings to

develop lift forces when deflected upward and the tendency of sweptback wings

to lose lift when similarly deflected upward.- In the wind tunnel, a wing roll

moment can be counteracted by the tunnel mount; in free flight, some mode of

lateral control must be used. The analysis which follows assumes that longi-

tudinal trim is supplied by control surfaces which do not enter this problem.

As shown in Ref. 7, the full span ailerons may be used to null out the

aeroelastic roll moment on the oblique wing if they are deflected such that the

following relation is satisfied.

	

d o	 0<n<1	
(2)

..	
-ao	 -1 < r^ < 0
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Moment equilibrium about the roll axis requires that

do = (cL-*%tan A f 

1 
dw	 (3)

cL8	 -1

The assumption of the existence of a very stiff wing pivot support struc-

ture at the aircraft centerline allows one to separate Eq. 1 into two regions,

thus simplifying its solution. In this case, eack wing half is assumed to be

clamped at the aircraft centerline, or wing root position, and free of bending

moments and shear at the wingtips. With these assumptions, a closed -form solu-

tion for do in Eq. 3 may be found. Because the term dw/dn enters into the

aeroelastic load computation, this derivative is of more significance than the

deflection w(n) itself. For this reason, the solution to Eq. 1 is usually pre-

sented in terms of the variable r(n) where

r(n) = dw	 (4)

With the definition of r(n) in Eq. 4, the solution for r(r) is written

symbolically as:

r(n)

rR(n)	 0 ' n ^ 1	
(5)

_

rL (n)	 -1 < n < 0

The functions rR (n) and r L (n) are given in the Appendix to this paper. Substi-

tution of these expressions into Eq. 3 and subsequent integration yields an

expression for do.

d6 = poL3	
TL-TR	

(6)

SEI	 TL+TR
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The variables T L and T  are functions of the aer"lastic parameter a and are

also to be found in the Appendix.

It is found that, if the sweptforward wing portion is clamped at the root

and in tre absence of aileron application, the wing will undergo static diver-

gence at a value of a= 6.33 (C=-f. 8, 311-311). The value of the parameter a

thus provides one measure of t'ie influence of static aeroelasticity in this

type of problem. A relaac parameter which is sometimes useful is the variable

q*. The parameter q* -o ,.ates the ratio of the flight q to the divergence q,

gDIV'

q* = g/gDIV	 (1)

If the variables A, EI, L and c are meld fixed, then

q* = x/6.33	 (8)

The magnitude of the aileron deflection parameter do may b? conveniently

examined if we look at the behavior of another parameter, y, found from a mani-

pulation of Eq. 6.

Y = 6.33 1 do/ (poL3/El)	 I cL°` tan A/cLa	(9)
A graph of y versus q* is given in Fig. 3. Two features of the relation shown

in Fig. 3 are worthy of note. First of all, as q* approaches the value 4.335,

the parameter y tends to an infinite value because, at this value of q*, T L =

TR . Also, it is seen that the value of y is nearly equal to unity for values

of q* in the range 0 < q* < 1.50. If this latter observation is used, together

t
with Eq. 9, then

-5-



60 = y p00 (4c L an A 6.33
EI 

0OA)

or	 6  = poL3	 cLd tan Al6.33

EI	
cLa

(1Ob)

Eq, 10b can be rendered more meaningful if p  is related to the lg flight

condition of an aircraft of gross weight W. p  represents the load per unit

length (assumed-constant) along the swept span caused by the airloads on the-

rigid wing; a relation between po and W is readily obtained if we ignore both

the aileron induced airloads and the aeroelastically induced airloads. This

relation is

2p0L = W	 (ll)

Therefore, the first coefficient in Eq. 10b becomes

poL3 ti A2	(12)
EI	 2EI

The degree to which Eq. 12 is an approximation will be discussed later. How-

ever, it should be remarked here that the inclusion of aeroelastic lift into

the analysis causes the term on the left hand side of Eq. 12 to be a fraction

of the term on the right. This fraction is very close to unity for reasonable

values of q*. By substitution of Eq. 12 into Eq. 10b, one obtains the result:

do	 WL2 	 CL. tan A /12.66 (radians)	 (13)
El	

cL6

The most striking feature of Eq. 13 is that 6 o does not depend on the dynamic

pressure and therefore is not an explicit function of the flight speed. The
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parameter do does, however, depend upon the wing flexibility and the sweep

-!	 angle A. Although formulated for a lg flight condition, the weight W enters

the equation linearly and could Just as well have been written as NW for an Ng

condition. This feature of Eq. 13 means that, once the aircraft is trimmed for

one flight speed at a given sweep angle A, it is trimmed for all flight speeds

at that same sweep angle and altitude. To illustrate the order of magnitude of

the aileron deflection which might occur for a large transport aircraft, let us

use the following data which are chosen to be typical of this class of aircraft.

W = 400,000 lb.

EI = 20.0 x 10 11 lb-in.

CL_ = 2.5
cLs

L	 = 1200 in.

For this data, we obtain, from Eq. 13:
t Y ' 

A

.a0 
= 3.26 C tan A I (degrees)	 (14)

At 45° of sweep, a full-span asymmetrical aileron deflection of 3.26° is neces- 	
i

sary to ensure lateral equilibrium. Although not extremely large, such a

deflection might have an adverse effect on aircraft yaw trim and cruise L/D.

Turning to the second objective of this paper, the previous discussion has
i

illustrated but one method of controlling the tendency of the oblique wing to 	
3

develop a rolling moment in flight. One method of improving aerodynamic per-

formance in aircraft has been the use of geometric angle of attack distributions

or "built-in twist." For this application, the flight structure is geometric-

ally tailored to satisfy some performance objective.

Wind tunnel tests of "rigid" oblique wings and the analysis of such wings

a` t

	 by methods employing accurate aerodynamic theories have shown that there is a

tendency for the lift distribution to build up on the sweptback wing. This
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	 tendency causes a roll moment o^Dosite in direction to that caused by aeroelas-

I	
tic effects. To cancel out this adverse situation, it has been proposed

s
	

that some amount of upward wing geometric curvature or dihedral be used to

alleviate this roll moment (Ref. 9).
G

4

	 To understand how a swept wing with a built-in deflection can develop an

angle of attack with respect to the airstream, consider the situation shown in

Fig. 4 ( the reader is referred to a similar, more complete discussion given in

Ref. 10, pp. 474-479). Since small rotations transform as vector quantities,

it is seen that the angle of attack «, seen by the freestream parallel to the

flight direction is, for a sweptback wing section, given by the expression

- = B COSA - *sinA	 (15)

For a sweptforward wing, the above relation is modified by substitution of a

"plus" sign for the negative sign before the second term on the right hand side.

-.lt	 If e, the twist angle along the swept axis, is zero then the inclination

of a sweptback wing such that the swept axis forms an angle * with the horizon-

tal plane, i.e. a dihedral, results in a constant negative angle of attack

along the wing. Conversely, a dihedral on a sweptforward wing results in a

constant positive angle of attack. Thus, for an oblique wing, a built-in dihe-

dral angle tends to generate a set of lift forces which roll the aircraft so as

to elevate the sweptforward wing tip; an anhedral would produce just the oppo-

si^:..= Affect. The key point here is that the anhedral -dihedral effect is, in

ess.?nce, a built-in geometric twist effect. The purpose of the ensuing discus-

Sion is to show how this effect can provide lateral equilibrium without any

aileron action.

Wi th the assumptions used in the previous aileron study and once again

using chordA se cross sections, the nondimensional governing equation of equi-

librium for the flexible wing with an initial built-in dihedral angle

-8-
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t

distribution *(n) (*(n) is the angle formed by the swept axis

zontal plane) is as follows:
l^
)

d 4 w + a dw = PO L
3

 -1 < n < 1	 (16)

dW do EI

z

The definitions of the quantities other than *(n) used in Eq. 16 are identical

to those used in Eq. 1. To cancel the aeroelastic roil moment, a constant ini-

tial built-in anhedral angle is used such that *(n) is defined as:

+*,	 - 1 <n<0
V^(n) =	

o	 -	 (17)
-*0 	0 <n <1

The comparison of Eqs. 16 and 17 with Eqs. 1 and 2 shows that they are

made identical  i f

^ s	 ,yo = do	 cLa )/tan A	
(18)

cLa

To guarantee roll moment equilibrium, 
*0 

must satisfy the relation

	

1	 1
*0 = ^- n dw do =

J
 - n r (n) do	 (19)

	

1	 do	 1

The solution for the variable r(n) = dw in this problem is identical to that

do
presented for the previous aileron problem if the term A*0 replaces the term

060 in the expressions for r  and r  given in the Appendix. Substitution of

these expressions into Eq. 19 and subsequent integration yields a relation for

*0 given by:

*	 3

	

o _ 1	 poL ^	 TL -TR	 (20)

a E I	
T TT:
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The expressions for T 	 and
T 
	 are those presented in the Appendix.

Assumptions similar to those given for the aileron analysis lead us to an

approximation for Eq. 20 given by:

*° = 12-^ €f i

	

21
	

(21)

An examination of Eq. 21 and comparison of this relation with Eq. 13

reveals how remarkably efficient the use of built-in twist, in the form of the

initial anhedral, is for the oblique wing roll equilibrium problem. Eq. 21 has

no factor ( c EQ/cEa ) tan A, reflecting the fact that the same airfoil sections

which are causing the roll equilibrium problem are also being used for its

solution. As the influence of aeroelasticity increases with the angle of sweep,

so too does the counteracting built-in twist effect, since the sine of A in Eq. 15

increases with A.

I	 From Eq. 21, it is seen that the anhedral angle of the swept axis is not a

function of flight speed. Use of the same typical parameters as were consid-

ered for the aileron example results in a value for ,y o of

	

*0 = 1.30 degrees
	

(22)

This initial anhedral angle is small and corresponds to a situation where the

wing tips are initially located a distance of 27.2 inches below a horizontal

plane passing through the fuselage centerline, a rather small distance when

compared to the 100 foot semi-span.

Since the simplistic formulas given by Eqs. 13 and 21 are approximations,

even for the idealized model used in this analysis, two additional tasks remain

before this study can be considered complete. The first of these tasks is the

deterbi-ination of the extent to Which the aeroelastic lift contribution affects

the accuracy of these strip theory expressions. The second task is to

i
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determine to what extent the use of aerodynamic strip theory to describe the

Aj	 loads affects the problem solution. For the sake of brevity, we will examine

only the geometric twist problem, since the solutions to this problem and to

the aileron problem are mathematically similar.

To accomplish the first task, we begin by summing all of the vertical

forces which act upon the idealized wing and the equate these forces to the

aircraft gross weight; the following expression results.

1
2 p 0 

L3 
a	 dw do _ WL 2

MI	 f-I do	 IT

The integral term in Eq. 23 represents the relative vertical distance between

the wing tips. Physical reasoning leads one to expect that this will be a

small negative quantity. It is this latter term which is ignored in the formu-

lation of Eqs. 12 and 20.

Direct integration of the integral term in Eq. 23 using the expressions

for r(n) and subsequent solution for p0 yields the relation:

p 
0 
L 3

 WL2	 TL+TR	 (24)
EI	 2EI TRUE-TLU

UL and U  are defined in the Appendix. The substitution of Eq. 24 into Eq. 20

gives the exact solution for *0:

^0	
1	 TL-TR	

WL2	 (25)
2a TRUL-T LUR EI

Tha coefficient of the factor IWL 2 /EI1 is a function of the aeroelastic

para%q ter a. Eq. 21 approximat, s the value of this coefficient to be 1/12.66

or 0.07900. This approximation is the result of taking the value of y to be

unity and ignoring th- aeroelastic lift. The ratio *0/(WL2/EI) is shown in

(23)
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precluded. Even more important is the realization that the use of strip theory

results in the overestimation of loads towards the wing tips.

To investigate these possible shortcomings an analysis, based upon the

theoretical model developed in Ref. 11, was carried out. The aerodynamic theory

used in Ref. 11 is based upon a modification of the Weissinger-L method

detailed in Ref. 12. The structural model assumes the wing to be a beam with

bending-torsion flexibility. The analysis method detailed in Ref. 12 is a

matrix method which permits spanwise variations in wing elastic properties; its

chief advantages are the ease with which it may be programmed for the computer

and the relatively short computer run times needed for static aeroelastic

analysis.

To test the validity of the simplistic relations derived previously in

this paper, a computer study using the model just described was conducted on an

elastic wing model similar in size to a set of elastic wings used in wind tun-

nel tests at Virginia Polytechnic Institute (Ref. 13). The idealized model has

the following properties:

c	 = 4 inches

L	 = 20 inches

cLQ = 6.28 per radian

EI = 1000.0 lb-in.

The torsional stiffness input to the computer program was chosen to be ten

times the bending stiffness so that only bending flexibility was important to

the analysis. The results of the analysis of this idealized, uncambered wing

give the value of the initial built-in anhedral in terms of the wing loading

parameter, W/S lb/ft 2 . Given the scale of the idealized wing model, a value of

W/S of the order of 1 to 2 psf..is probably representative when compared with
j

the large transport data given previously. For this small model, the use of

Eq. 21 gis an anhedral value of
IMeC80on't $
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^Vo 	2.012 x: \S
	

degrees

The above mentioned computer analysis was run at a Mach number of zero and

at three sweep angles, A	 15°, 30° and 45 0 .	 The studies were run for q*

values in the range 0 < q < 2.5. 	 Attention is called to the fact that gDIV

changes with A.	 The results.of this study are displayed in Fig. 6.

Y In Fig.	 6, the required anhedral angle (per ,unit 4J/'S psf,_) is plotted ver-

sus q* for the three sweep angles considered.	 A solid straight line is drawn

to represent the strip theory prediction. 	 From this figure,, it is seenthat at

each value.of A, the required value of
o i

s a function of q*.	 The change in

required,yo is dramatic in the range 0 <_q* < 0.50, but less so above q* = 0.50.

In all cases the strip theory formula overestimates the required value of 	 o;

the reason for this overestimation is that the use of strip theory results in

an idealization that is too flexible from a static aeroelastic standpoint.
G

That this latter observation is true can be seen in the fact that strip theory

underestimates the value of 
gDIV 

by about 30% when compared to the numerical

method being u.sed'here.

Of further interest is the observation that, at low values of q*, a nega-

tive value of Vo is required.	 This corresponds to the observation

in Ref. 9. that some slight upward curvature of the wing is necessary to correct

r
a small roll moment caused by the lift distribution shifting toward the down-

stream wing tip.	 These small values of q* correspond to what the author would

term a "rigid" wing.

Some potential importance may be attached to the fact that crossover

points exist in the curves presented in Fig. 6 Where the required anhedral

changes sign.	 It is to be noted that these changes in sign occur at progx°es-

sively larger values of q* as A increases.	 At this point, by-definition, no

,
lateral trim is required to maintain equilibrium.	 This occurs because the roll

x
}



moment caused by the airload buildup towards the sweptback wing tip is just

cancelled by the aeroelastica' l y induced load buildup towards the sweptfory;ird

wing tip. On an actual aircraft, this crossover or zero point would be a func-

tion of such parameters as wing planform shape, sweep angle, Mach number and

stiffness distribution.

At the crossover point, no built-in anhedral or ai l eron action is neces-

sary, no matter what the wing loading or load factor. The desirability of

designing the wing so that the zero point occurs as closely to the cruise speed

as possible, if not precisely at this speed ,is obvious. Since so many other

design objectives must be met by the structural engineer, this latter objective

may be difficult to fulfill in practice.

Conclusions

Some unique static aeroelastic problems posed by the asymmetrical sweeping

of a high aspect ratio wing have been examined through the use of a simplified

model. Although the use of such an idealization to represent problems which

are likely to occur in actual aircraft designs and the solutions to these

problems is an oversimplification, the author nevertheless believes that

several useful conclusions or guidelines may be drawn From this`study.

The use of strip theory to represent aerodynamic and aeroelastic loads

leads to answers which overestimate the amount of aileron input or geometric

twist necessary to ensure lateral equilibrium, particularly at low values of

q	 In addition, the error introduced by strip theory increases as A. in-

creases. The simplistic formulas derived from strip theory assumptions thus

give "''conservative results much asthey do when'used in conventional static

aeroelastic stability studies.

i
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The results derived through the use of more accurate aerodynamic theory

show that as the parameter q* increases, increased demand is made on the method

which guarantees lateral equilibrium. For small values of q* near zero, few

demands are made to guarantee.latera'i equilibrium. The parameter q* can be

made small, given a constant operating q, by increasing the clamped divergence

q of the aircraft by one of several conventional methods; these methods include

stiffening the structure or redistributing the wing area so that more of the

area is inboard. Fo - aircraft which are designed in a conventional manner to

the usual strength and stiffness criteria, the amount of modification to pre-

elude the roll problem discussed in this paper is probably minimal. The normal

"droop" of an aircraft wing due to gravity provides some anhedral effect.

Of potential theoretical interest in the areas discussed in this paper is

the use of structural modifications to further improve static aeroelastic

performance. Modifications such as asymmetrical wing stiffening or redistri-

bution of wing stiffness to bring the crossover or zero point near to the cruise

q might prove to be wor.; ,,while. A similar study of the use of various wing

planforms and their relative merits might also be in order.

To summarize, this problem of asymmetrical wing static aeroelastic equili-

brium is one which must certainly be considered by the designers of such an

aircraft. It is likely, however, that after all the conventional design cri-

teria are met, this additional unique criteria will cause few, if any,

additional problems for this aircraft configuration.

N	 -16-
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TABLE I

q* /(WL2/EI)

(Exact value)

Per cent error in

approximate value

(p

o 

L3/EI)/(WL2/2EI)

(Exact value)

0.00 0.0750 + 5.33 1.00

0.25 0.0751 + 5.19 0.998

0.50 0.0753 + 4.91 0.991

0.75 0.0756 + 4.50 0.980

1.00 0.0761 + 3.81 0.964

1.50 0.0776 + 1.81 0.916

2.00 0.0797 - 0.878 0.846

2.50 0.0827 - 4.47 0.749

3.00 0.0867 - 8.88 0.618

3.50 0.0921 -14.2 0.444

4.00 0.0994 -20.5 0.207

The approximate value of ^ 0/(WL 2/EI) is 0.0790.
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The analytical expressions for r L (n), rR (q), TL (A), TR (a), UL (A) and

Uo (a) used in the body of this paper are presented below. In the region

-1 < n < 0, r(n) is given by:

p L3

j	 rL(n)	 13 EI - sd
p	x

a

1 - e-a(l+n) + 2ea(1+n)/2 cos f(1+n)	 (Al)

e-a + 2ea/2Cos f

where a = X1/3 and f = a(31/2/2).

In the region 0 < n < 1, r(n) is given by:

p L3

rR (n) = 13 EI + Sao x
a

I	 1 - ea(1-n) + 2e-a(l-n)/2cos f(,._ 9) (A2)

ea + 2e-a/2cos f

The expressions for TL and TR are given by:

e
-3a/2 - cos f + 31/L sin f_	 (A3)

TL	 a2(e-3a/2 + 2cos f)

T - e3a/2 - cos f - 31/2 sin f	 `	 (A4)
R	 a2 

(e 3a/2 + 2cos f)

The expressions for U L and U  are:

cos f + 31/2 sin f - e- 3a/2
	 (AJ)

UL -	 a(e-3a/2 + 2cos f)

_ cos f - 3 1/2 sin f - e3a/2
	

(A6)

UR	 a (e
3a/2 

+ 2cos f)
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