General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
FINAL REPORT

STEREOMETRIC BODY VOLUME MEASUKicMENT
 NAS 9-11604, Mod 6S

R. E. Herren, Ph.D.

Principal Investigator

Biostereometrics Laboratory
Texas Institute for Rehabilitation and Research
Baylor College of Medicine.

$$
1975
$$

ACKNONLEDGLIENT

We wish to thank Dr. Malcolm Smith, and Dr. Michael A. Whittle for help in expediting this research. We also are indebted to Dr. Ulrich Luft for his help with the comparative study and to Mr. Dale Calvert for recording the stereopairs at Loveless Foundation. Sections one and two of the report are largely based on two earlier reports by Dr . Whittle and Dr . Luft, respective'y, which described our joint effort.

Tr 1 le of Contents

I. Title Page
II. Acknowledgement. i
III. Table of Contents ii
IV. List of Figures $4 i$
V. List of Tables iv
VI. Introduction 1
VII. Effects of Extended Space Flight on Body Form of Skylab Astronauts Using Biostereometrics. 2
Method
Plotting
Data Reduction
Evaluation of Findings For All Three Skylab Missions
VIII. Comparison of Body Volume Determinations Using Hydrostatic Weighing and Biostereometrics 24
Results
IX. Stereometric Records - Extent and Variety of Coverage 34
X. First Intemational Symposium on Biostereometrics; Washington, D.C., September 10-13, 1974. 48
XI. Training of Technology Inc. Technician it. Biostereonetrics Principles and Procedures. 54
XII. References 55

Figures
Page
Figure I-1: Diagram of Stereometric Apparatus 3
Figure I-2: UWW and XYZ Coordinate Systems, Body Part Numbering, and Direction of Plotting 6
Figure I-3: Frontal and Lateral Views Plotted by Computer 12
Figure I-4: Cross -section Plotted by Computer 13
Figure I-5: Extension of Body Levels into Upper Legs, and Upper Leg Levels into Body. The cross-hatched areas would give unrealiable volume estimates and are not used except for curve fitting 17
Figure I-6: Correlation Between $\mathrm{H}_{2} \mathrm{O}$ and Stereometric Measurement of Body Volume 29
Figure I-7: Adjusted correlation Between $\mathrm{H}_{2} \mathrm{O}$ and Stereometric Measurement of Body Volume. 31
Figure II-1: Cross-sectional plots based on polynomial computation 35
Figure II-2: Volume distribution curve (VDC)--cross sectional are plotted against length (distance along vertical axis from head to foot). 36
Figure II-3: Composite cross sectional (polynomial based) and VDC display-any point on the curve gives the cross sectional area at the corresponding level on the body 37
Figure II-4: Perimeter (girth) distribution curve--the girth at any horizontal level of the body can be obtained by reading the perimeter value at the appropriate leve 1 38
Figure. II-5: Cross sectional plots based on raw coordinate data. 39
Figure II-6: Volume distribution curve derived from raw coordinate data 40
Figure II-7: Perimeter distribution curve derived from raw coordinata data. 41
Figure II-R: As for II-1. 42
Figure II-9: As for II-2. 43

Figures cont.

Page
Figure II-10: As for II-4. 44
Figu: II-11: As for II-5. 45
Figure II-12: As for II-6. 46
Figure II-13: As for II-7 47
\square

List of Tables

Page

Table I: Regional and total body volume, and body weight: Difference between mean preflight and first postflight measurements (average for all Skylab crewmen: 9 subjects)...... 19
Table II: Postflight recovery of volume of body segmerts (average for final Skylab crew: 3 subjects) 20
Table IIT: Comparative numerical data for hydrostatic and stereometric body volume measurement. 32

This report covers the work performed under contract NAS 9-11604, Mod 6S during the period March 1, 1974 -- Feimuary 30, 1975, by the Biostereomecrics Laboratory, Texas Institute for Rehabilitation and Research, in cooperation with the Food \& Nutrition Branch, Biomedical Research Division, Directorate Life Sciences, L.B. Johnson Manned Space Center.

The report is divided into four main parts, as follows:
I. Effects of Extended Space Flight on Body Form of Skylab Astronauts Using Biostereometrics.
II. Comparison of Body Volume Determinations Using Hydrostatic Weighing and Biostereonetrics.
III. First International Symposium on Biostereometrics, Washington, D.C., September 10-13, 1974.
IV. Training of Technology Inc. technician in Biostereonetric. principles and procedures.
I. Effects of Extended Space Flight on Body Form of SkyIab

Astronauts Using Biostereometrics.

The stereometric measurements of body form first made on the Apollo 16 crew have now been performed on all Skylab astronauts. The same biostereometric principles were used thoroughout the series, but, as with all the other missions, the final Skylab flight provided an opportunity to make further refinements. Specifically, some modifications in the data reduction procedures were explored and the results are outlined below. The balance of this section comprises a review of the data acquisition procedures and an evaluation of the findings for the three Skylab missions as a whole.

Method
Four stereometric cameras were used, for the data acquisition (Fig. I-I). The principal axes of the lenses of the two cameras were parallel, and separated horizontally by 50.8 cm (20 inches). The cameras were Hasselblad ' C ' cameras with $38 \mathrm{~mm} f 4.5$ lenses. The backs of the cameras had been modified to accept 6.3 cm ($21 / 2$ inch) square glass plates, and to put fiducial marks on the plates to facilitate alignment during the subsequent plotting process. The cameras were mounted on a trim pod, and care was taken to insure that the tro cameras were at the same height from the floor ($90 \mathrm{~cm}, 35$ inches), and that their axes were horizontal. The photographic plates were 1.83 m . (6 ft) from the plane of the 'control' stands to which distance the cameras were focused. The 2 control stands are portable structures consisting of a light telescopic stand supporting a steel tape measure with inch markings, and 4 pairs of discs which are

Fig. I-I: Diagram of Stereometric Apparatus.
separated by a fixed distance ($15.555 \mathrm{~cm} ; 6.124 \mathrm{ins}$) in the long axis of the system. The 2 stands are placed opposite each other with the steel tapes about $90 \mathrm{~cm}(35.4 \mathrm{in})$ apart, to define a plane in which the subject stands. The subject is nude except for an athletic supporter, and he wears an elastic siculi cap to press his haix down. He stands on a pair of 'footprints' to give a reproducible location for the feet, and holds his axns straight and a little way away from the body, with the fingers and thunbs pressed together. Between each pair of cameras was a strobeprojector in which a 500 joule electronic flash tube projected a pattern of lines on the subject. The strobe-projector consisted of the flash tube, a condenser, a 35 mm transparency with a pattern of randomly arranged lines, and a projection lens ($36 \mathrm{~mm}, \mathrm{f} .3 .0$). The projector was focused at the plane of the control stands. The cameras were fired remotely by a solenoid, and the strobe projectors weze each fired by one of the cameras. The cameras were used at full-aperture (f 4.5), and the shutter speed was adjusted, using exposure meter readings, to allow the room lighting to augment, but not to obliterate, the lighting from the strobes. This was necessary to visualize the top of the head and the shoulders, which were inadequately illuminated by the strobes.

The photographs were taken in black and white on Kokak ' M ' plates (ASA 250) and developed for 8 min . in DK50 developer. The subject was photographed twice at each session, to allow for equipment malfunction or breakage of plates.

Plotting:

The plates were plotted and digitized in pairs on a Kern PG2 mechanical projection stereoplotter after enlargement to 25.4 cm using of a precision enlarger. The three-dimensional coordinates of a series of points were determined in arbitrary scale units and punched on IBM cards. The first card identified the subject and measurement; the next 3 cards were 'scale cards', followed by the cosrdinates of all the points on the body surface, for the front of the subject, then the scale cards and coordinate data for the back. The zero point of all 3 axes was taken as the center point of the measuring tape on the control stand to the subject's left. The 3 axes were named U(vertical), V(1ateral) and W (front-to-back), using the sign convention shown in Fig. 2.

The scale cards were arranged as follows:

Cols:	$1-6$	7	8	$9-14$	$15-20$	$21-26$	$27-44$	$45-62$	$63-80$
	No. Man F / B	V_{1}	U_{1}	W_{1}	$V, U, \delta N_{2}$	$V, U, \delta W_{3}$	$V, U, G W_{4}$		

The first 6 columns identify the card deck; column 7 gives the crewman, as follows:

$1=$ Kerwin	$2=$ Conrad	$3=$ Weitz
$4=$ Bean	$5=$ Lousma	$6=$ Garriott
$7=$ Carr	$8=$ Gibson	$9=$ Pogue

The 8th column (F / B) contains 1 for data from the front of the body, two (2) for the back. Then follow the V, U, $\mathrm{a} W$ coordinates of 4 points, as follows:

Card 1 = points above and below the center of each tape, separated by 48 or 60 inches in the W axis.

Cards 2 and 3 = points on the front and back disc of each pair of discs, giving the scale in the Z axis.

Fig. I-2: UWV and XYZ Coordinate Systems Body Part Numbering and Direction of Plotting.

The data cards were arranged as follows:

Cols:	1	2	3-8	9-14	15-20	21-32	33-44	45-56	57-68	69-80
Man F/B			U	V	W	VGH_{2}	VEF_{3}	$V W_{4}$	$V \mathcal{G W}_{5}$	VEW_{6}

The format in which the coordinates are punched consists of the sign, followed by S digits with no decimal point; the first 2 digits are the whole number, and the last 3 are the decimal places, corresponding to a Fortran format of F 6.3. Each data card had a singie U coordinate, and from 1 to 6 pairs of VGW; if less than 6 coordinates were punched, the remainder of the card was blank. The first coordinate plotted was a single point at the top of the head; then followed data for the front, level by level, working downwards, in the following order: 1) head and trunk, 2) right arm, 3) left arm, 4) right leg, 5) left leg. The spacing between successive levels was generally 2 inches, but 1 inch spacing was used in the following areas: chin and upper neck; wrist and hand; ankle and foot. The top of the head, and the feet at floor level, were plotted at their appropriate levels. After the final card for the left foot came a blank card, then the scale cards for the back, then the highest level of the back of the head. The data were then plotted ievel-by-level and part-by-part, as for the front, with 2 exceptions: I) the back was plotted from the subject's left to his might; 2) a blank card followed each complete body part, except the last, which was followed by a card with either -1 or -9 in the first 2 columns.

Data Reduction

1. Production of Levels Data

The raw data are processed by the CUT progran, which performs the following:

1) The scale in the U axis is calculated from the mean distance between the points plotted along the steel tapes, after deciding whether the distance between the points is 48 or 60 inches.
2) The scale in the W axis is calculated from the mean distance between the pairs of discs on the control stands.
3) The data for the front are multiplied by the two scale factors to give the coordinates in centimeters. The ti scale is used for the V axis.
4) Sets of data cards in which the level in the U axis differs by Iess than 0.15 mm are regarded as a single level, and a mean value for U is calculated.
5) A number from $1-5$ is assigned to the block of data to indicate the body part involved, as follwos: $1=$ Head and trunk, $2-$ Right arm, $3=$ Left arm, $4=$ Right leg, and $5=$ Left Leg. The change in body part is detected by an increase in the U value by over 0.15 mm . On some sets of data, the U level does not increase between the left arm and the right leg - in these cases a ${ }^{\text {idumy }}$ card has to be inserted, with the coordinates of a single point below the left hand, in order to keep the body part detection correct.
6) The program constantly checks values to determine the maximum valae in the V axis, and the minimum in the W axis.
7) The scale factors are calculated for the data from the back of the body, and the data are processed as in $3,4,5$, and 0 .
8) The U levels for both front and back are examined, and the lowest detected. Any value within 4.1 mm of this Ievel is taken as the same level, and the mean of these values becomes the foot level.
9) The data are then scanned, level-by-level, and body part-bybody part, matching fronts and backs: levels within 4.1 mm are taken as the same, and the mean value taken.
10) The coordinate system is revised from UVW to $X Y Z$ as follows:

X - MAXIMUM V - V COORDINATE
$\mathrm{Y}=\mathrm{U}$ COORDINATE - FOOT LEVEL
$Z=W$ COORDINATE $-\operatorname{Minimum~} W$
This puts the origin of the X, Y, Z system at the level of the feet, as far to the right as the farthest point of the subject, and as far forward as the farthest point of the subject; in practice these points usually corresponded to the right little finger and the tip of the nose.

The program outputs a printout of the data, and also stores a copy on magnetic mass storage (file 7). These data are in the format used in all subsequent operations. The format is as follows:

First card: Format (3Ab): Subject I.D. and measurement.
First card of a leve1: Format (14F5.2, F6.2, 13, I1), consisting of:
14F5.2:7 pairs of X\&Z values
F6.2:Y valuc for level
13: Number of points in level
I1: Body part code (1-5).
Subsequent cards in a level: Format (145F5.2), consisting of 7 pairs of $X G Z$ values.

The first point of a level is repeated at the end of that level, so that the section will always form a closed shape.

Because of the difference in spacing between the wrist and hand ($1^{\prime \prime}$ between levels) and the body ($2^{\prime \prime}$ between levels), the output of the !CUT' program puts the wrists and hand levels in the wrong order. A program called 'SORT' is used to rewrite the 'levels' data to mass storage (file 7) with all the levels in the correct order.

Subject I.D, and measurement were coded as follows:

$\mathrm{CN}=$ Conrad	$K=$ Kerwin	$W=$ Weitz
$\mathrm{B}=\mathrm{Bean}$	GR = Garriott	$\mathrm{L}=$ Lousma
$C R=\operatorname{Carr}$	$\mathrm{GB}=$ Gibson	$\mathrm{P}=$ Pogue

Photographs for the 3 missions were taken as follows;

No photographs were taken of Lousma on 26 Oct 173, and the first set of photographs for the final mission (12 Oct. '73) have not been plotted. 2. Troubleshooting

A program called 'PLOT' is used to plot on microfilm the level-by-level coordinates. Any errors in the data are easily seen on the sections, and the raw data may be examined and the errors corrected. The transformation between the XYZ and UWW coordinates is given on the printout of the 'CUT' program. Most errors are in the order in which points are
plotted. Occasionally, a card is obvious ly mispunched and the correct value can be deduced and used to correct the error. Any point which is obviously impossible is removed, although in practice very few such points have been found.

3. Location of Landmarks

A program called ' CF ' is used to derive data describing the outline of the subject, viewed both from in front and from the side. The data at each Y level are taien and the point-by-point coordinates are smoothed into a curve (see section 4). The maximum and minimum values of the smoothed curve in the XGZ directions are detected, and stored in mass storage (file 7), along with the Y levels, in the same format as the 'levels' data. A program 'CC' takes these data and makes a tape for use on a 'Calcomp' plotter, which plots the frontal and lateral views on graph paper (Fig. 3). The 'CC' program is also able to plot a single crosssection on paper (Fig. 4).

Landmarks are determined from transparent prints made by a 'Thermofax' copier from the frontal and lateral views. For each subject, the distance between the inner sides of the arms is measured on the frontal view, at the highest level at which the arms were plotted separately. Whichever set of data shows the least separation becomes the model for establishing the arm "cut-off" plane. Vertical lines are drawn on the graph through these points, and each of the other graphs is, in turn, superimposed on the model. The best fit possible with the contoun of shoulders, neck and upper chest is detemined, and the overlying graph is then marked with the 'cut-off' lines. Subsequent processing regards any part of the upper trunk outside these lines as belonging to the appropriate arm.

Fig. I-3: . Frontal and Lateral Views Plotted by Computer

Fig. I-4: Crosis-section Plotted by Computer

Five horizontal cut-off planes are determined, using the final preflight data as the model. The level of the ulnar styloid of each Wrist is determined on the frontal view for the 'model', and the same position is located by superimposing each of the other graphs. As arm position varies, it is often necessary to rotate the overlying graph in order to match the wrists, and to take the value of the Y level in the center of the wrist. The error in volume introduced by this rotation is likely to be very small. On the lateral view, the position of the sternal notch, the gluteal fold and the ankle joint are estimated, and lines drawn across both the frontal and lateral views at these levels. The other graphs are then superimposed, in turn, and the positions of these 3 planes are determined independently on the frontal and lateral views. Rules have been established for acceptability of the resulting estimates of level:

1) If the distance from sternal notch to ankle joint in the graph under examination exceeds that in the model, neither asternal notchgluteal fold nor gluteal fold-ankle distance is permitted ot be less than in the model.
2) Conversely if the sternal noth-ankle distance is less than in the model, neither of its 2 components may exceed the corresponding distance in the model.
3) If the estimates of the level of a given landmark from the latioral and frontal views differ by 1 cm or less, the mean of the two is taken.
4) If the estimates differ by more than 1 cm , both are reassessed in an attempt to move them cioser together. This process may be repeated as many times as necessary until the estimates are within lcm , when a mean is taken. Although this process is entirely empirical, in practice there is usually no difficulty in determining the position of the landmarks, and in most cases the estimates from the 2 views are within 2 or 3 millimeters. When a discrepancy does arise, it is usually obrious that the estimate from one view is much more reliable than the other, and the latter can readily be changed.
4. Determination of Cross-Sectional Areas

The program 'CA' calculates the axea of each cross-section. It first determines the center point of the section by averaging the X and Z values, then scans the section in sectors between the plotted coordinates. The radius to two adjacent points are determined, and the intermediate points at 0.02 radian angles are interpolated in such a way that the radius increments smoothly from one coordirate to the next along a spiral path. The area of each incremental arc is determined. Where the angle between points is less than 0.02 radians, or a residual angle is left after a whole number of 0.02 radian sectors, its area is calculated by the sine formula. In the region of the shoulders, the program calculates the area beyond the "arn cutoff' planes, and assigns chis area to the appropriate arm. The output of the program to magnetic storage (file 9) is a level-by-level Listing of format (F6.2, I2, F7.2), consisting of the Y level, the body part number ($1-5$) and the area in cm^{2}.

5. Calculation of Volumes

The progran "VOL' is a conversational program which calls for the body part number and the upper and lower Y levels between which the volume is required (format $11,2 F 5,0$). It then scans the body part required and fits a smooth curve to each successive cross-sectional area, generating values for intermediate cross-sectional areas at 1 mm intervals. The areas are integrated between the upper and lower Y levels to give the volume of the segment under examination. In order to eliminate dis- . crepancies in the curve-fitting axound the junction between the body and the legs, the body is taken as extending down through the first two levels of the legs (which are added together to give the new 'body' levels), and the legs are taken as extending up through the last two levels of the body (which is divided in the ratio of the areas of the top sections). Where the gluteal fold comes below the highest plotted section of the legs, an inaccurate volume determination for the buttocks would result, so that it is necessaxy to calculate the buttocks volume down to some intermediate level above the highest leg section, and add to it the volume of each leg from that level down to the gluteal fold (Fig. 5). The body segments examined on the Skylab study are as follows:

1) Upper third of sternal notch-gluteal fold segment ($=$ 'chest')
2) Middle third of sternal notch-gluteal fold segment ($=$ 'abdomen').
3) Lower third of sternal notch-gluteal fold segment ($=$ 'buttocks').
4) Upper 40% of gluteal fold-ankle joint ($=$ 'thigin').
5) Lower 60% of gluteal fold-ankle joint ($=$ 'calf').
6) Arm fiom highest leve1 to wrist ($=$ 'arm').
7) Truncated total volume (total of I-5 above plus both axms from sternal notch level to wrist).
8) Total volume (including head and shouldexs, hands and feet).

Fig. I-5:Extension of Body Levels into Upper Legs, and Upper Leg Levels: into Body. The cross-hatched areas would give unreliable volume estimates and are not used except for curve fitting.

Evaluation of Findings For All Three Skylab Missions

Table 1 gives the preflight mean volume of the body and its segments for the 9 Skylab astronauts and the change observed at the first postflight measurement. Body weight is also given. Although all the body segnents examined showed a postflight reduction in volume, the changes observed in the chest and ams were small, and not statistically significant. The greatest absolute losses of volume were seen in the abdomen and thigh, although the loss of volume fron the calves was proportionally greater. The loss in weight exceeded the loss in total volume by 686 g , but this difference is not statistically significant, and probably results from the accumulation of inaccuracies when the volume of the whole body is calculated. It is hoped to eliminate these inaccuracius on future studies, and it may one day be possible to re-analyze the Skylab data, with an improvement in precision.

The rate of recovery of body volume was followed only on the final Skylab flight, in which 3 sets of photographs were obtained in the first 5 days postflight. Table II gives the difference in volume between various body segments and their mean preflight volume, for the 3 pos+flight measurements. The abdominal volume varies a great deal, as it is sensitive to food and drink intake - the recovery-plus-1 day measurements were made in the middle of the day, whereas the recovery-pius-4 days measurement was made before breakfast. Nonetheless, a marked increase In valume is seen between recovery day and the other 2 measurements. Buttock volume increased by 200 mI during the postflight period. Both the

	Preflight Mean	Postflight Difference	Proportional Difference	Significancet
Liters	Liters	Percent		
Arms (Both)	6.927	-0.066	-1.0	N.S.
Chest	13.749	-0.150	-1.1	N.S.
Abdomen	11.305	-0.541	-4.8	$\mathrm{P}<0.001$
Buttocks	13.583	-0.393	-2.9	$\mathrm{P}<0.005$
Thighs (Both)	9.411	-0.559	-5.9	$\mathrm{P}<0.001$
Calves (Both)	6.349	-0.472	-7.4	$\mathrm{P}<0.001$
		-2.342	-3.3	$\mathrm{P}<0.001$
Total Body Volume	71.267	Kg		
Kg	Kg	-3.023	-4.2	$\mathrm{P}<0.001$
Body Veight	71.988			

tPaired t-test
Table I. Regional and total body volume, and body weight: Difference between mean preflight and first postflight measurements (average for atl Skylab crewmen: 9 subjects)

		Difference from Preflight Mean Volume (Liters)			
		Recovery Day	Recovery +1 Day	$\begin{aligned} & \text { Recovery } \\ & +4 \text { Days } \end{aligned}$	$\begin{aligned} & \text { Recovery } \\ & +68 \text { Days } \end{aligned}$
N	Abdomen	-0.566	+0.186	-0.123	+0.411
	Buttocks	-0.042	+0.034	+0.156	+0.845
	Thighs (Both)	-0.425	-0.323	$+0.009$	+0.776
	Calves (Both)	-0.450	-0.270	-0.120	+0.306

Täble II. Postflight recovery of volume of body segments (average for final Skylab crew: 3 subjects)
thighs and the calves show a rapid increase in volume, the rate of increase being initially greater in the calves, aithough by $R+4$ the thighs had reached their preflight volume, whereas the calves were still 120 ml deficient.

Discussion
It is unfortunate that the pressures on the time of the astronauts prevented more photographic sessions being possible, particularly during the first few days following splashdown. However, the data coliected does provide some interesting pointers to changes in body composition resulting from space flight. The rapid increase in volume in the first 5 days postflight clearly results from an increase in body fluid, the adaptation to zero gravity having caused a reduction in fluid volume, which is inappropriate for the 1-gravity environment. The recovery of volume proceeded faster in the calves than in the thighs, due to their more dependent position.

All the astronauts showed a rapid increase in weight in the first few days postflight, but the weight had generally leveled out by recovery plus 4 days, suggesting that rehydration was complete. The volume changes observed in the final crew at that time may be taken to represent the sum of the in-flight changes in fat and muscle, possibly modified by a little postflight recovery.

The postflight change in volume of the buttocks for the 9 Skylab astronauts correlates well with the postflight change in weight (correlation coefficient 0.92); suggesting, as might be expected, that the buttocks are a"sensitive indicator of body fat. Using the regression equations from this correlation, and correcting for the effects of dehydration on
the volume of the buttocks, it may be calculated that around 2.2 Kg of the postflight weight loss resulted from the combined loss of fluid and muscle, the remainder being due to changes in body fat.

The final Skylab crew relaxed their dietary and exercise regimes following the flight, and put on weight. The resulting change in volume of different body parts enables a correction to be made for subcutaneous fat in the postflight volume changes. With the small number of data points, such calculations must be taken as very approximate, but there appears to have been a mean loss for the final Skylab crew of about 90 g of muscle from each calf, and about 70 g from each thigh. Such losses are very modest, and are a tribute to the in-fiight exercise program. With even less postflight data points, it is possible only to make very rough estimates for the first and second Skylab crews. The loss of muscle from the calf appears to be similar from one mission to another, whereas the loss of thigh muscle apparently decreased with succeeding missions. This observation fits in well with the use of the bicycle ergometer in-flight, which was increased on successive missions, but provides better exercise for the thigh muscles than for the calf.

A correlation coefficient of 0.92 has been established between the change in buttock volume over the course of the flight and the in-fligh caloric intake, expressed per Kg of Iean body mass (LBM). A caloric intake of $49 \mathrm{Kcal} /$ day $/ \mathrm{kg}$ LBM appears optimal to preserve the fat depots at their preflight level. Only 1 Skylab crewnan exceeded tlas intake, and he increased his fat reserves. The 2 crewnen losing the most fat in the course of their flight had intakes of 37 and $41 \mathrm{Kcal} /$ day $/ \mathrm{kg} \mathrm{LBM}$. The
remaining crewmen had intakes in the $45-48 \mathrm{Kcal} /$ day $/ \mathrm{kg}$ LBM range, and all but I lost a little fat.

Conclusions
The 9 Skylab astronauts returned from their space flights with changes in the quantities of fluid, muscle and fat in their bodies. The change in fluid resulted from the adaptation of the cardiovascular system to the zero-g environment, and amounted to a deficit of almost 2. liters. It was replaced in the first 4 days postflight. The losses of muscle were fairly modest, amounting to about 160 g in each leg on the final mission. Losses were probably a little greater, particularly in the thigh, on the first 2 flights, and probably reflected the level of exercise undertaken. Techniques havernot yet been devised to measure changes in muscle bulk in the upper part of the body, although no statistically significant changes in the volume of the:arms or chest were observed. Changes in body fat were related to caloric intake, an in-flight intake of $49 \mathrm{Kcal} / \mathrm{day} / \mathrm{kg}$ lean body mass appearing necessary to preserve the body fat at its preflight level, a value which was exceeded in practice by only 1 crewman.

Biostereometrics is a relatively new science, but it is emerging as a powerful tool in the medical and biological sciences. The stereoscopic photographs of the Skylab astronauts took no more than 5 minutes of the sulject's time for each measurement, but provide a permanent detailed record of body form, which may, if necessary, be re-examined at any future date, either to answer new questions, or to take advantage of the increased accuracy resulting from improvements in the analytical technique.
II. COMPARISON OF BODY VOLUNE DETERMINATIONS USING PYDROSTATIC WEIGHING AND BIOSTEREOMETRICS

Knowledge of total body volume is essential for estimating gross body composition in terms of fat content and fat-free weight from body density based on the simple equation:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Water displacement or hydrostatic weighing has been the most widely used method for determining body volume for many years. In centers where the necessary equipment-water tank and weighing apparatus--is a relatively permanant fisture, the hydrostatic weighing procedure has proved effective for measuring total body volume in healthy subjects. However, the method is unsuitable for use with the very young, the very old, and seriously ill patients. It's relatively low portability and other practical limitations ruled it out for use in the Skylab biomedical examinations. This situation led to the use of biostereometrics, a more convenient but less well established procedure, in the present series of astronaut studies.

A coincidience led to the companion study described below. The Biostereometrics Laboratory was engaged in a collaborative study with the Lovelace Foundation involving stereometric measurements of children undergoing treatment at the Lovelace clinic. The attention of Dr. Ulrich Luft, a longtime member of the Lovelace staff and a NASA principal investigator associated with the Skylab Life Sciences program, was drawn to the biostereometric measurement activities. As a result,
\square
\square
he suggested that a study of the two methods be undertaken while the biostereometric equipment was in use at Lovelace. We wholeheartedly approved of this suggestion and the necessary arrangements were made with Dr. Luft to take dual measuxements on ten adult subjects.

The following description of the comparative study is largely derived from the preliminary report submitted by Dr, Luft. We have added further details about the biostereometric-data reduction procedures and some further comments aimed at helping to interpret the findings. In general, however, we consider Dr. Luft's conclusions to be faix and insightful, as we would expect from someone with his considerable experience in the realm of body composition studies.

Methodology

Measurements were made consecutively with both methods on ten healthy male volunteers, between 8 and 9 in the morning, in the fasting state. In two of the subjects the stereo and $\mathrm{H}_{2} \mathrm{O}$ measurements were made two days apart, but their body weight had not changed more than 100 g . The biostereometric photography of the subjects was performed with a fourcamera system with strobe projector on loan for this study from Dr. R.E. Herron similar to that employed on the astronauts of the SKY-LAB program (8). The photographer had been trained in the procedure in the Biostereometrics Laboratory where the photographs were analyzed and processed.

For the hydrostatic weighing the subject is seated in a light metal chair suspended from a dynamometer balance (Chitillon 31154) of 15 kg capacity in a stainless steel tank filled with water that is maintained at $34^{\circ} \mathrm{C}$. The chair is lowered by block and tackle so that the subject is immersed up to his chin. Immediately before putting his head under water the subject is required to take five deep breaths fairly rapidly, followed by a maximal inspiration. Then a mouthpiece is offered to him by an attendant and he exhales approximately $2 / 3$ of his vital capacity, previously marked on the recording drum, into a spirometer. At this point the operator calls "halt", the mouthpiece is withdrawn and the subject submerges his head without further loss or intake of air (nose clip) for 10-15 seconds until the reading is taken on the balance. The entire procedure is practiced before entering the tank and ths subject is directed not to press his lungs while submerged to minimize the reduction in Iung volume. Three consecutive measurements are performed and the corresponding readings of submerged weight and exlaled gas volune is corrected to

BTPS conditions and subtracted from the subjects's total lung capacity previously measured in the pulmonary function laboratory by a N_{2} washout method (4) to obtain the residual volume in the lungs on submerging. Body volume and density are calculated by the following equations:

$$
\begin{aligned}
& V_{b}=\frac{M a-(M w+R V-D w)}{D w} \\
& D_{b}=\frac{M a-\left(M w+V V_{i v}\right.}{M a-}
\end{aligned}
$$

where $V_{b}=$ body volume, $M a=$ weight in air,$M w=$ weight under water, $R V=$ residual lung volume, $D V=$ density of water at tank temperature and $D=$ body density. The variation between three measurements of V_{b} taken in this manner is less than 0.20 liters (approximately $0.3 \% V_{b}$). The average of three measurements was taken for each subject.

In order to insure that the gas volume in the subject's lungs duxing the stereophotography was as close as possible to the RV during the underwater weighing, the subject took a maximal inspiration and exhaled slowly to the same volume marked on the spirometer before holding his breath for the photograph.

Results

Table 1 shows the results for body density (column 2) and net body volume (column 3) by the $\mathrm{H}_{2} \mathrm{O}$ method. Net body volume is the gross volume less the lung gas volume (column 4) and is used to estimate D by equation 3. Since the stereometric method gives gross body volume, the lung gas volume (columm 4) must be added to the net volume (column 3) by the $\mathrm{H}_{2} \mathrm{O}$ method
in order to compare the two directly (colunns 5 and 6).
Without exception the values with the stereometric method were higher than with the $\mathrm{H}_{2} \mathrm{O}$ procedure. Using a paired comparison, in which the individual differences were analyzed, the mean difference (2.191 liters) was statistically highly significant (p. <.0005), but the standard error of the mean difference was relatively small (SEM: . 273 liters).

The linear regression of the values obtained with the $\mathrm{H}_{2} \mathrm{O}$ method (y) and the stereometric method (x) is plotted in Fig. I-6 with the identity line. The correlation coefficient was quite high:

$$
r=.996
$$

The regression equation was:

$$
y=1.008 x-2.791
$$

SDy at $\bar{x}=0.914$ liter
The individual points were all close to the regression line (Fig. I-6)..

Discussion
The high correlation coefficient and the tight fit of the data around the regression line for the two methods inplies that both procedures have a high degree of precision. However, the highly significant diffexences between the mean values raises the question: which of the two methods is more accurate in estinating the true body volume. A strong argunent in favor of the $\mathrm{H}_{2} \mathrm{O}$ method is that the values obtained for body density give results more compatible with those to be found in the literature from direct determinations on body tissue for animals (5) and man (3).

Figure I-6: Correlation Between $\mathrm{H}_{2} \mathrm{O}$ and Stereometric Measurement of Body Volume.

The mean density (D) for the 10 subjects by the $\mathrm{H}_{2} \mathrm{O}$ method was 1.064 (Table 1 column 2) and with the stereo method 1.030. According to the equation proposed by Keys and Brozek (3) for the fat fraction of the body (Ff)

$$
F f=\frac{4.201}{D_{b}}-3.813
$$

the mean D from the $\mathrm{H}_{2} 0$ method gives a fat fraction of 13.5%, which is in good agreement with the mean value of 13.9% reported by the same authors for a larger number of subjects in the same age category. Making the same calculation with the mean D from the stereometric method results in a fat fraction of 26.6% indicating considerable obesity. Not one of our subjects was grossly overweight. Therefore it appears justified to assume that the results of the $\mathrm{H}_{2} \mathrm{O}$ method are closer to the true value.

In view of the consistency and precision of the stereometric method and the fact that the discrepancy with the $\mathrm{H}_{2} \mathrm{O}$ method. is apparently not due to a random error but to a strictly systematic one, it might be feasible to utilize the regression established from H 0 method data to adjust stereometric values obtained in future studies to correspond with values that would be found by the $\mathrm{H}_{2} \mathrm{O}$ method. With this in nind we have transformed the stereometric data from Table. 1 , colum 6 to the adjusted body volume by equation 4. The individual results are shown in Table 1 , colunn 9 and are plotted in Fig. I-7. All points are now closely clustered around the identity line and the mean values differ by only 0.016 liters and the average for body density is identical (Table 1, colunms 2 and 11). Obviously the validity of this type of manipulation of the stereo data will have to be tested on a much larger number of paired measurements on subjects of different body types before it can be accepted with confidence.

Figure I-7: Adjusted correlation Between $\mathrm{H}_{2} \mathrm{O}$ and Stereometric Measurement of Body Volume.

	Hydrostatic Weighing					Steremetric Measuxement					-
						Original			Adjusted		
	I	2	3	4	5	6	7	8	9	10	11
$\begin{aligned} & \text { Subj. } \\ & \mathrm{Nr} . \end{aligned}$	Mass kg.	D	Vol. net	VoI. Lung	Vol. gross	Vol. gross	Yal. net	D	Vol. gross	Vol. net	D
1	60.40	1.087	55.566	3.458	59.024	60.728	57.270	1.055	58.423	34.962	1.099
$\because 2$	77.35	1.042	74.232	3.716	77.948	78.729	75.013	1.031	76.568	72.854	1.062
3	77.05	1.054	73.102	3.137	76.239	78.073	74.936	1.028	75.907	72.773	1.059
4	71.70	1.069	67.072	4.172	71.199	73.953	69.826	1.027	71.954	67.623	1.060
5	78.65	1.042	75.480	5.233	80.713	82.085	76.852	1.023	79.951	74.717	1.053
$6{ }^{6}$	79.65	1.068.	74.579	3.169 .	77.748	79.776	76.607	1.040°	77.623	74.451	1.070
+ ${ }_{-} 7^{*}$	71.55	1.034	69.197	1.798	70.995	73.296	71.498	1.001	71.091	69.292	1.033
O80	88.40	1.085	63.041	4.721	67.762	70.590	65.869 .	1.038	68.364	63.639	1.075
	53.55	1.068	50.140	1.665	$51.802{ }^{\text {: }}$	54.221	52.556	1.019	51.864	50.195	1.067
10,	78.10°	1.090	71.651	4.238	75.889	79.783	75.545	1.034	77.630	73.392	1.064
"Mean"	71.64:	1.064	67.406	3.526	70.932	73.123	69.597	1.030	70.916	67.390	1.064

Table III. Comparative numerical data for Hydrostatic and stereometric body volume measurement.

The systematic overestimation of body volume by the stereometric method used here may be due to the lack of coverage of hidden body concavities, for example, in such areas as the armpits, the groin and the buttocks. However, if it can be shown that this source of error is sufficiently consistent to be amenable to a correction, as proposed here, the stereometric method would be acceptable as a rapid, convenient and accurate method for estimating body volume.

Additional cameras or other procedural modifications could be used to achieve"more detailed coverage, but, if further research shows that the discrepancy between stereometric and hydrostatic is consistent, then a simple adjustment can be made.

Finally, it is important to recognize that stereometric records can be analyzed and displayed in various ways to yield body form and volumetric information not readily available heretofore. The following series of records for two of the Albuquerque subjects illustrate this potential.

Stereometric Records - Extent and Variety of Coverage
Figures II, 1-13 illustrate the type of data produced by stereometric analysis on the Albuquerque subjects (two cases are shown). These examples demonstrate the extent and variety of body form and volume data contained in the stereometric records.

Subject A
Figure II-1. Cross-sectional plots based on polynomial computati n.
Figure II-2. Volume distribution curve (VDC)--cross sectional are plotted against length (distance along verti. al axis from head to foot).

Figure II-3. Composite cross sectional (polynomial based) and VDC display-any point on the curve gives the cross sectional area at the corresponding level on the body.

Figure II-4. Perimeter (girth) distribution curve--the girth at any horizontal level of the body can be obtained by reading the perimeter value at the appropriate level.

Figure II-5. Cross sectional plots based on raw coordinate data.
Figure II-6. Volume distribution curve derived from raw coordinate data.
Figure II-7. Perimeter distribution curve derived from raw coordinate data.

Subject B

Figure II-8. As for II-1.
Figure II-9. As for II-2.
Figure II-10. As for II-4.
Figure II-11. As for II-5
Figure II-12. As for II-G.
Figure II-13. As for II-7.
The difference between the volume computed using the polynomial and the volume computed using the raw coordinate data was 0.3%. The corresponding figure for Subject B was 0.2%.

Fig. II-2: Volume distribution curve (VDC)--cross sectional are plotted against length (distance along vertical axis from head to foot).

Fig. II-3: Composite cross sectional (polynomial based) and VDC display- any point on the curve gives the cross sectional area at the corresponding level on the body.

Fig. II-4: Perimeter (girth) distribution curve-- the girth at any horizontai level
of the body can be obtained by reading the perimeter value at the appropriate level.

Fig: II-5: Cross sectional plous based on raw coordinate data.

Fig. II-7: Perimeter distribution curve derived from raw coordinate data.

Fig. II-9: As for II-2.

Fig. II-10: As for II-4.

Fig. II-12: As for II-6.

Fig. II-13: As for II-7.
III.

First International Symposium on Biostereometrics, Washington, D.C., Septenber 10-13, 1974

Biostereometrics '74-A Report

A review of the presented papers.

TIne anthenathonal, society of Photogrammetry Conmission V Symposiam; "Biosteremnetrics ' 74 " hild in Washington, D.C., September $10-13,1974$, was hosted hy the American Society of Photngrammetry in conjunction with the XIV International Congress of Surveyors. The Proceedings pullished by the AS? cointait complete minnseripts of aill papers presented at the symposium, except for a lew which missed the printer's deadline., [n this report I will sammatrize the presentialions, nemtion some of the highlights, and make a fiew personal comments.
For the benefit of readers who are unfamiliarwiththe term" "liostereometrics," perhaps a definition would he belpful. Biostereometriess is the spatial and spatio-temporal analysis of himhogteat fierm and function based on principher of amputic geometry. The primary tools of hipstememetrics are stereophotography, holugripliy, interferometry and other threedinuensional form sensing techniques whieh yidel signals, inazery, or other data which can be readily handled by modern stereophutters, comparators, compterers, and related ditia promessing and display devices.

The atiph components of the symposiun were seven tecluical sessions, an informal fontu, and a speaker's lunclieon.
Sessim 1 on "Biostereometric Systems" openech with a series of welcones from ISP President, Dr. S.C. Gatible, Commission V President, Dr. 1L.M. Kitaria, and tide Prugram Chainma, Dr. R.E. IJeron.

In the first paper, Dr. Karara, University of i

- Cupies are nuwilable from ASP Hencicumarters, 105 North Vittinia Avenue, Falls Church, 'firginin 22016, USA The price for ASP mentiers is 3.50 aut for han-atembers $\$ 12.50$.

Illinois, reviewed recent developmetats in the design of photugrammetric systems for use in liostereometrics. He stressed the need for close cooperation between photogrammetric engineers and biomedical suecialists in order to ensure future expansion of thes field.
L.F.II. Beard of Addenbrooke's Hospital, Cambridge, Englaud, in a paper co-iththored by P.F. Dale, K.B. Alkinson, II.J. Law, and A.R. Elkington, described the design and use of a hand-held stereometric camera which promises to make stereometric ant lysis more widely accessible for hospital and other clintical use,
Prolessor J.R. Cuzzi, Baylor Colleque of Medicine, IIonstom, USA, ontlined wh antomatic system for stereonetric analysis hated on the possibility of comtrolling the ohjuet, the photographic conditions and the necessary clements of orientation.

Dr. W. Fitig, University of New Brunswick, Camada, described an abalytieal plotter system and derivation of the pertinent equations for precision mappingofaclose-range olject.
W.J. Iams of Memortal University of Newformalland, St. Johns, Camacla, in a paper coathored by Dr. Johm W, Evims, descrihed how a photogrammetric system has been used to monitor interactions of organisms and rock substrate over a three-yem perind along the Barbatos coastline.

Col. M. Kurta, U.S. Army, read a paper authored by Dr. E.M. Mikhail, Purchue University, USA, concerning the growing polentials of hologrammetry in biostereometries. Examples involving the use of Colograns and hologtiphic stereomudels were described and connged.
G. Voss, Jenoptik, Jena G.m,b.IT., German

Domocratic Requblic, roviowed recent developments in the fonal Instranemt Systen for biostereometries. Jinphasis was placod on the cameras, e.er., the: UWhK $10 / 131 S_{\text {, and }}$ Sugquetions for mew atpplications were given.

 holm, Sweden, itacimbing two limither mpers on biosteicmometrios systems and six papers on ctanio-facial morphologsy.

Dr.J. Hoble. Wild He erbruge lustrments, N.Y., described thw the Witd 1P31, 132 and C40 canneras and widely available aerial mapping instruments con be used for biosterematric purpmes.
f.t: Hugh Baylor College of Medicine, Hobstom, USA, omblined a procedure for situntitheons recording of front athd reat stereoppaits of a standing human subject and the ansocifated uste of conventional plotting tuchaigues.
I. Newtom, University of Newcastle uprin Tyne, Englam, despaited an investigation of several different tochmighes of posing the heend hor staliess of bacial change. The :accarates of the varions systems were reyiowed and compared.
(D). R.J. Lovesey, Royal Air Force, Finatmonngh. England, described the developurent of a projected grid (hight-slit) system of photogrammetry lor ase, in anthemumetrie stulies such as the measurement of licial form.
A.A. Wripht, Itospital for Sick Children, Toronth, Cansolla, in a paper co-athored hy II.U. Lichtenterys and R. Mowre, deserileed varin)us uses of stereometric datia (inelusting the menduction of " physical models) for phannumburical tecemistruction of congental fat chal deformities.
K 3 . Alkinsm, University College, London, in a bapercopanthored by I. Nowlon and B.D.(: Murgat examined the relationships betweren prositlesis content and volume determination in a catse al breast reconstractive surery.
1.j. Donvman, University Coliege London, in a paper co-atulemed by A.R. Elkington, reported on at fexsibility study involving the use of photogrammetry to measure glateoma clevelopment in the human retina.

Prol. K. Torlegtred, Royal institute of Technology, Stuckholm, in a prper cotuthored hy C.E.T. T. Krakiat, con mpared the use of a lights.sit methex with stereophotogrammetry fir measuring volume of a momail optic tive.

Session 11I, with Dr. V.M. Kralky, National Hesemel, Comecil, Othw: Cameda, presid-

ing, comprised seven further mapers on
cranio-fatial morpholowy.

Dr. Bernard Schwartz, Tults Univarsity School of Medicine, Mostom, USA, in a piper co-athored by Dr. R.E. Herron and Prol. J. K , Cuzzi, described some of the advantages of asing sterembetric pamameters other thats contour maps for quantifying llie geonetry of the eye and its component structures.

Dr, V.K. Kratky presented a review paper on problems assuciated with the choice of instrumentation and malytic methoms for ophathanologie applications of photogranmetry.

Dr. G.L. Portney, University of Californit, Davis, USA, described the use of photngrammetry for measuring three dimensional changes in the optic nerve liead cup in normal and glancomitous eyes.

Dr. 13.E. Cohtan, University of Michigan, Am Abor, USA, described meliminary results achieved with a system of instrumentation for stereometric analysis in ophthalmolorgy.

Dr. W.W. Bowley, University of Connectcont, Stowe, USA, in a paper co-inthored by rs. C. Burstone, II.A. Koenig and R. Siatkowski, described the use of a laser holographic syslem and a finite olement tedinirue for predicting tooth displacement lasied on a ben-times-sized model.

Dr. J.E. Bergstrom, Royal lustitute of Techoolosy, Stockholm, in a puper eoathoted hy Carl-Ohaf Jomason, reported on the aceuracy of a stereophotogrammetric method involving a stereomictroseope for chantifyine gingival tof ography in tieo.

Dr.M.J. lorstron, Universily of Mmenesota, Minne:apolis, USA, in a paper co-inthored hy lr. F. Aldgren, F.D. Durmam, R.J. Isatacson, T.M. Sueidel, and A. Firdman, desuribed a steren movie system for shereometric measurement of hman jaw molion.

Session IV was devoted to spatio-temporal-four-cionensional, sladies in biostercometrics. Dr. H.M. Kara, University of Illinois, USA, presidecl.
V.D. Brandow, University of Illinois, read the paper of Dr. M.I. Bullock, University of Quecosland, St. Lucin, Anstralies, on the use of stereophotogrammetry in a companative stody of three-dinonsional spinal nad leg novements in foot perdal operations.

Dr. F.G. Lipuert, Universityof Washington, Scattle, USA, in a paper co-authored by Drs. M. Hussain and S.A. Veress, evaluated two photogrammetric appronches, one semianalytical, the other analytion, for three or Cour-rimensional mensurement of musenk-

.. skeletah motions. Both medical ind engineering aspects were considered.

Prot. J. R. Cuzai, Baylor Collogre or vedidine, llonston, pessented a piper, corathomed ly D.V. Combet and 12 Li. Hermm, deserihiny luw a set of st.reometric besty
 from a digital thee edinemsional deseription of hanam body geometry.

Dr. R. Stowe, Artorme Nationali
 athered by N.A. Firigurio amel JiV. Howe, clescribed the use of a sheroometrice x-ray systen lor meastring in wiov skeletal motions.
B.G. 'Irenhalth, Shriners ILospital for Crippleal Chithtren, Winatpeg, Cunda, in : paper edratuhored by Dr. D.A. Winter and G.D. Alimer, presented the results of asing a TV-computer approach to the solation of two spatio-s.anporad problems in clinical medicine, we relating tal feventrienlat gemmedry and the other to h_{t} man gat kinematics.

Dr. H.E. Herron, Maylur College of Medicine, I Iomston, in a paper co-inthored lay Dr. Y.l. Alndel-dziz, deseribed the development of a simple stereotatrie sensor, the
 stump-scocke? gennotry for improving the fit of antificial limbs.

- On Scoplember 12. the President of 1SP's Commission V, Dr. W.A1. Karam, and the Chairman of ASD's Close-Ranige Photogmametry Commithe, Mi, JR,F, MeGivern, hosterd a lumehenu at the International Club of Washington in homor of the symposinm speakers. The lancheon was co-sponsored by the Jolhowiber eombanies: H. Dell Foster Comanay, Calileo Comporation of Anmerica, The Kelshthestment Division of Damko Arlinglon, Juc., Kerm Jostruments, Inc., and Zena Combiny. The menerons contributions of thesit combanir's are gratefatly acknowledged. We arte also indebled to Mr. S. Jack Frichman, Execontive Viee President, O.M.I. Copporalion wf Anerica, who was instrumental in having the elnhis excellent stalf and facilities pat at our dispusall For this nemorable occasim.

Sessiom V, with Probessor Ifans Grouel, Uaiversity of Düsseldorl, leederal Republic of Gorminy, presiding, was devoted to steremetric x-ays. Prof. Cremed, in the operning payer, revieweal somet of the theoretical and practical problems atssociated with steremoetrie x-ray analysis of the relationship between the child's skall and the mother's pelvic dimessions shorlly helore detivery. The: locadization ol tamors was also disctusped.

Dr. B. Altschuler, Brooks AFB, $\operatorname{San} \mathrm{An}-1$ tonio, Texas, in a piper eo-atulhored hy RAM. Ferty and D: M.D. Alschuler, reported on :an impoved mathematical lechatune (mal(iangular laminagraphy) for deriving; anial sections, serial eruss sections, werial satithat: sections, and sertal fromtal sections ol amatomical strachmes.
Prol. T. Oshima, 'lokyo University, Jigan, presented an overview of receal de-
 chating at wide ramse of clinieal, bobogieal, and industrial applications.
E. Seeger, Stutgart Uuiversity, Fecleral Republic of Gerimany, in a paper co-anthored
 stereocomparater fur stereometric $x-a y^{2}$ amatysis. The historical hackgromad of stereometrie x-ray analysis was also bielly reviewed.

C-O Jonasom, Royal Institue of Teechnology, Stockholn, in a puper co-iathoued by ki.O. Frykhotm itud A. bryhhuhn aleseribud. the application of a stereonmetric method for three-dimensional measurement of twoth impressions in eriminological investigalions.

Jrol. J. Kobedin, Miani-Dale Conmmaily Collese, USA, ontimed a course fur the training of photogrammetric teehnicians in liosstereometries, archilecture, thansportation, and other fields.
An informal formon was held on ithe everning of September 12, with Dr, RLE: Heran presidinen (Figute 1). This very infomal happening consisted ol briel presentations by those with eguipueno, lilms, and slite-tape shows to display, pronote, or otherwise take atvanthe of a willingly caplive audiences. Spmesesmen and exlibitors included those named .a the composite pholograph which aceompaties this report and others who escapuad the attentions of roving photographer Johan llugt. As well as having an opportmity to sample bram-washing in atl its intermational variety, the fortm parlieipants genecally "lot their hair down" and bad a forthright, iuformative, and stimalating exchange, which lasted until the hotel stalf demanded that the rom be cleared so that they condel set up the chairs for next mornitu's session.

Session VI, with K.B. Alkinson, University Coblege London, presiding, was devoled to s. wites of hody geometry/form.
J. Delor, National Geopraphical Institute, St. Mande, France, in a papure eo-anthered by if. llorel, clescribed an analog photogrammetric method for determining hunam body surfice geometry as an aid to raliation dose phanning.
K.3. Atkinson, University College, Lon-i
don, read a paper submitted by A. Boyde, University College Londun, and I.F. Hoss
 ing Ifth., Salishory, lingland. Two now stereometric plotting instruments clesigned especially for use with scaming electron microseopie records were deseribed.
1)r. S. Chosh, The Ohic State University, Cohmbus, USA, oullined a new procedure foramatical calibralion ollter seamingelectron microscope and reported the results of a sample test at three diflerent mannitieations.

J'rofessen Pill. Hume, University of Shetfield, Bughand, described the use of a modilied chat-"Multiplex" stereometric camera inat study of normad and abmomat facial morphatony and growth of children.

Dr. J.1'. Dumeat, University of British Colunbia, ina paper co-ituthored by J. Foortand S.C. Bair, oullined a now approach to the physical modelins of human body parts based on an itutomatic process eatled "Polyhedrad Minchining." A sillonethe technidne, using optical or video recording, was also deseribed.

Prul. Homorodi, Cenctetic Lnstitute, Budapest, Itungry, read a paper submitted by Drs. M. Dunokos and B. Kismatoni, Techaical Universily, Buchapest. Hungrary, The paper dealt with the use of a simple stereometric method ol' recordine facint morphology, particularly ear foma, in a health survey of mentatly haudienpped chideren.

Dr. V. Kratky, National Researel Council, Otanva, Gamada, read a piper anthored by Dr. G.W.D. Arnstrong, Dr. 'I.J, Blachat, and M.C. van Wijk. The paper deserileed an application of analytieal photogrammetry to evaluate the performance of a transverse loating system in surgieal carrection of seoliosis.

Session VIL, with Dr. A.E, Herron, Buylor College of aledicine presiding, inchaded seventhather papers on loodygeometry/bim.
l'vof. J. Auderson, Kings College, London, it a panereo-anh hored by A. Shont, M. Ahateh, aud R.D. Cower, deseribed the development and use of a now approach to stercometric moasurement of bocty form based on a palse-motulated ultra-sonic cannera which houses the tamsmitter, receiver, and associated cirenitry.

Dr. M.J. Whitle, NASA, Hanston, in a paper eo-anthred hy Dr. R.L', Herron, Jik. Cuza, and J.E. Hugs, described recent uses of the Baylor Biosteremmetric System to nemitor the efleres of extemberl space light on the body lioms of shogad astromats.

Dr. H. Jahashi, Shazumat Univen ity, Ja.. - pan, deseribed his work in moire inter-

Eerometry as related to biosteremotric studies. Theoretical and practical aspects of - the neethod were reviewed.

Dr. J. der llovamesian, Oakland University, mochester, $\begin{gathered}\text { tidhigan, in a papor co-anthured }\end{gathered}$ by M. Taltalian described the use of morite interferometry in conteal, podiatric, hiomechanical and other human morphological sturties.
Li,V. Pree, Birusingham, Alahma, nutimed further uses of a moire interferthertic methos in biostereonetries, wilh special we erence tostndies olexternal spinal geomelry.

Dr. R.E. Herron, haylor College ol Medicine, Ilouston, presented mu epilogue which focused on helpiag the bepinnes to anderstand the proceedings of the Biostereometries 74 Symposinn and thanking the speatkers, exhibitors, and atterntees.

Dr. H.M. Kiuturt, in a brief closing session, thanked everyone for their fine support. 'The first lnternational Symposiam on Biostereonetrics was then abiomoned.

It is didicult to smmanize ma lew lines the overell inpact of a meeting which ranged so wiblely as this one. The expressed gon of the symposimm was to stimulate inproved communications among those already interested is: biostereometrics such as researehors, clinticians, designers, instrament mantificturers, and others. In adlition, it was hoped Hhat newcomers to biostereonotries would find the preventations and proceectings usefulas an introduction to the "state-of-hle-ant."

Many participants formally and informally expressed satisilaction that the symposimen had madeed provided a valuable and ohtogether too rare opportmity to make fritethls and discosss mutual interests with firr-flang eorlengnes. Ihorefully, many of these comtetets will be sustained drumgh the nedimuot correspondence and exchange of reprints motil the next symposimu comes aromat.

The seope and variety of the presentations must have been somewhat overwhelming for nowemmers and even for some of the more oxperienced partiefiputs. Yot, the liet that the symposinm clich not represent a very coherent whole is not surprising, considering that we are dealing with a new fold falthongh the roots of stereometric analysis go back at beast live centurjes). New seiences develop in which theory and technology intersect; and, in this instance, now unclerstanclings about the mathematical atialysis of onganic lorm are "intersecling" with advances in photo-ontics, electronies, and other modern
 ware, and deotetical insights from what have: traditionally been maller dispame disei-

plines will take tine, but the future course stems ahnost assitred (perhapss inevitable).

More specifieally, the symposium demonstrated that:
(1) "Ihe mathematical stratagy of biostereometrics is sumud, but the methords intust lie
 :ust cost-edteretive.
(2) "there is mat unters.il "hest" method of stereonetrie sensing. The muge of gotential ap)plicalions is so lorom and the the asmemert conditions and sen vinian that we cath expetet to sere many dillerent teelanigues and inshrumentation systefus platy infoutant roles in the lifture.
(3) Atore abjeotive evaluation of the varions appowites to sterembertic semsing is meded.
(d) Hestareh which is aboed at better uncturstancling and elestintion of at inoblem must he cleanly distinguished from the development of
 soltware designo). It is yenetally inappropriate to evaluate cone type of study by the stiandards one would inpply to the offere.
(5) Cammanicalians latevera craponents of
 physieal stientists anul mannfacturers mast be presily imporved. 'I'luere is still tuo much "reinventing ot the whece." Inatrument manflac-
 tduce bise' lam in-louse and local expuerts can provide.
(i) A Ensl of us yietd tou often to min unfortumate ethenocentricity in atrilutimsthe someses of relavint liberuture and ideas, which belies the poturtial of modern inlimation metrieval systems stach ath ate available in lintaries around the: world. American writers emet to quote other Ameciems, the British other British, the Cmbetians other Canamians, the Prench other French, the Geombins ulher Germans, Swedes other Sivertas, aml mo atm. In the biomediend sciences thete stundal be to mational knowledge lounduries.
This; writer will cominue to do everythingpossible lortomave stach bounciaries (inadver-

1

tentorolluewise). By the tine of the Ielsinkimeeting, I hape to complete a supplament to the bibliography on biostereometrics compiled for the 1972 ISP meeting in Otawa. Anyone interested can obtain a copy of the supplement after the Ifelsinki meeting by writing ta the Bostereonetrics Labomatory, Baylor College of Mealicine, 1333 Nonstand Avente, Houstom, Texas 77025, USA. Comtributions of repmints and ohler pertinent information would be greatly appectiated and inchuded in liture suppleanents.
blefore conclucling this report, I want to express my personal thanks lo Dr. 1L.M. Katata, for his inclefatigahle and always timely contributions as symposian eonrdinator: Dr. K. Wong, U.S. correspondent for ISP Conmission V, for yeoman serviee on the program committee; to V.D. Brandow and J. 3. Hhenacho, both fiom the Uaversity of $11-$ linois, for stpervising the registration procedives and helpang the participants in myriad ways with consistent gool hamor, ame to Jaine R. Cuzai, John E. Mhegs, Sherry Cilleland, Mariorie Gordon, and uther staffomenbers of the Biostereometrics Laboratory, Baylor College of Hedicine, for assistance too wideranging to recount in detail lere.

I have not been able to do justice to all the ! planees, pheakers, exhihitors, program assistants, and other paticipants whose contributiems made the symposime what it was. One experibnced olsserver commanated that "1t was as perfect a symponilum as I have ever expertenced." "this remark reflects the unusual spirit of cooperation and cothusiasm which prevaled anong those involved at all stages of the ambertakinge It also might help to exphatin why the progran chairman and the planing commitue regard their association with this stimulating event as a rare privilege.

originali page is OF BOOE QUALIIY
IV. Training of Technician, Technology Inc., in Biostereometrice Principles and Techniques.

Between mid October and the end of the report period Mr. Cris
Keys from Technology Inc. was given insturction in the areas indicated below. The total time devoted to this effort was 118 man hours. Time spent by Mr. Keys using the facilities of the Biostereometrics Laboratory under direct and indirect supervision was 115 hours.

Hours
A. General P-• aciples of Biostereometrics. 6
B. Photography.

1. Setting up equipment.
2. Picture taking.
3. Handling ξ_{T} process plates.
4. Printing
C. Plotting
5. Principles involved.
6. Preparation of plotter.
7. Use of digitizer and keypunch.
8. Plotting front and neck of whole body.
9. Sorting and arranging punched IBM cards.
D. Computer Analysis.
10. Matrix algebra.
11. Curve fitting principles.
E. Consultation.
12. Design ideas for spacelab biostereonetric equipment.
13. Stereometric techniques for analysis of underwater subjects.

REFERENCES

1. Behnke, A.R., B.G. Feen and W.C. Welham. The specific gravity of healthy men, bodyweight: volume as an inclex of obesity. M.A.M.A. 118:495~498, 1942 .
2. Herron, R.E., J.R. Cuzzi, J.R. Hugg and K.R. Rouk. Stereometric measurement of body and limb volume changes during extended space missions. Final Report. NAS 9-10567. NASA - Houston. March, 1971.
3. Keys, A. and J. Brocek. Body fat in adult man. Physiol. Rev, 33:245325, 1953.
4. Luft, U.C., E.H. Roorbach and R.E. MacQuigg. Polmonary nitrogen clearance as a criterion of ventilatory efficiency. Amer. Rev. Tb. and Puln. Dis. 72:465-478, 1955.
5. Pace, N. and E.N. Rathbun. Studies in body composition. J. Biol. Chem. 158:685-691, 1945. '...
6. Pierson, W.R. A photogrammetric technique for the estimation of surface area and volume. Amer. N.Y. Acad, Sci. 110:107-112, 1963.
7. Siri, W.E. Apparatus for measuring human body volume. Rev. Sci. Inst. 27:729-738, 1956.
8. Whittle, M., R. Herron, and J. Cuzzi. Biostercometric analysis of body form. Proc. SKY-LAB Life Science Symposium. NASA TMX-58154. L. B. Johnson Space Center, Houston, Texas. Nov. 1974.
