General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA GRANT NSG 1055

Principal Investigator: Govind S. Khandelwal Professor of Physics
Department of Physics and Geophysical Sciences School of Sciences and Health Professions Old Dominion University

Submitted by: Old Dominion University Research Foundation Norfolk, Virginia 23508

January 26, 1976

Technical Monitor: Dr. John W. Wilson Astrophysics Section
 Space Physics Branch Environmental and Space Sciences Division Langley Research Center

This report includes the progress of research in the study of development of a dosimeter for distributed body organs.

The basis for the great interest in the development of a space dosimeter is the dose which a particle will deposit in human tissue. In the attached paper, the calculational methods for estimation of dose from external proton exposure of arbitrary convex bodies is briefly reviewed and all of the necessary information for the estimation of dose in soft tissue is presented. The effects of nuclear reaction which become important for determining dose equivalent are included in these calculations. This work on "Proton-Tissue Dose Calculations" is proposed for publication as a NASA-TM.

The above results are currently being applied towards the development of space radiation dosimetry of distributed body organs.

Proton-Tissue Dose Calculations
 John W. Wilson NASA-Langley Research Center Hampton, Va.
 and
 Govind S. Khandelwal Old Dominion University Norfolk, Va.

ABSTRACT

Calculational methods for estimation of dose from extemal proton exposure of aribtrary convex bodies is briefly reviewed and all of the necessary information for the estimation of dose in soft tissue is presented. Special emphasis is on retaining the effects of nuclear reaction especially in relation to the dose equivalent.

INTRODUCTION

When an object is exposed to external radiation, the dose field within the object is a complicated function of the character of the external radiation, the shape of the object (including orientation), and the object's material composition. Calculation of dose within an object involves solution of the appropriate Boltzmann transport equation where the external radiation source imposes boundary conditions on the solution. Although general purpose computer programs exist for making such estimates (ref. 1), they are seldom used in practice when the object is bounded by a complicated surface as, for example, is the human body.

Instead, calculations are usually made for simple geometric shapes from which inferences are then made for more general geometries and the resultant errors are uncertain.

In the case of external proton radiation such as that encountered near \because high-energy accelerators, in space, and in high-altitude aircraft, it was found that the problem of dose estimation could be greatly simplified (ref. 2) and still include the effects of nuclear reaction, which imposes the major hurdies in any accurate calculation, with a high degree of accuracy. Furthermore, it was show that the mothod, when in error, was always conservative. Required for such calculations is a knowledge of the transition of protons in semi-infinite slab geometry which is the simplest geometry for existing transport computer programs: Indeed, almost everything that is known about the dose in humans due to external proton radiation is inferred from calculations in slab geometry (ref. 3).

In the present note, a general method for estimation of dose in arbitrary convex geometry in terms of dose conversion factors in slab. geometry is briefly discussed. These dose conversion factors for protons in tissue are then represented using buildup factors. A parametric form for the buildup factors is presented. \because :The values for the parameters are derived from Nonte Carlo calculations of various authors. All of the necessary information to estimate dose and dose equivalent for proton irradiation of convex objects of arbitrary shape is contained herein.

A	average atomic weight
A_{1}	fitting ${ }_{1}$ parameters for $1^{1}=1,2,3,4 ;(\mathrm{cm})^{\circ}$. $(\mathrm{cm})^{-1}:(\mathrm{cm})^{-2},(\mathrm{~cm})^{-1} \quad 2,2,3,4 ;(\mathrm{cm})$
c	velocity of light, cm/sec
$D(\vec{x})$	dose at point. $\overrightarrow{\boldsymbol{x}}$
-	electron charge
E	proton energy, MeV
$\mathrm{E}_{\boldsymbol{r}}$	reduced proton energy, MeV
$\boldsymbol{P}(2, E)$	proton buildup factor, dimensionless
E	electron mass
N_{0}	Avogadrois number
$P(E)$	nuclear survival probability in tissue
$\mathrm{Q}_{\mathrm{F}}(\mathrm{S})$	quality factor, dimensionless
$R(E)$	proton range in tissue, cim
$R_{n}(z, E)$	dose conversion factor for normal incident protons, rad (or rem) $\mathrm{cm}^{2} /$ proton
$R_{P}(z, E)$	primary proton contribution to $R_{D}(2, E)$
$\mathrm{R}_{5}(\underline{\text { P }}$, $)$	secondary particle contribution to $\mathbf{R}_{\mathbf{n}}(\underline{z}, E)$
S(E)	proton energy loss rate in tissue, MeV/a
$\overrightarrow{\boldsymbol{x}}$	dose point position vector, cm
\boldsymbol{v}	proton speed, cm/sec
2	depth of penetration into a tissue slab, cm
$2^{(1)}$	distance from surface to dose point \vec{x} along direction \vec{n}, cn
2	average atomic number

c(2)
あ
$\phi(\boldsymbol{\Omega}, E)$
$\sigma(E)$
T(E)
energy of proton with range 2 in tissue, MoV
unit vector in direction of proton motion, dimensionless
proton differential fluence, protons/ cm^{2}.
proton macroscopic cross section, cm^{-1}
proton total optical thickness, dimensionless

THEORY

In passing through tissue, energetic protons interact mostly through ionization of atomic constituents by the transfer of small amounts of momentum to orbital electrons. Although the nuclear reactions are far less numerous, their effects are magnified because of the large momentum transferred to the nuclear particles and the struck nucleus itself. Unlike the secondary electrons formed through atomic ionization by interaction with the primary protons, the resulting radiations of nuclear reaction are mostly heavily ionizing and generally have large biological effectiveness. Many of the secondary particles of nuclear reactions are sufficiently energetic to promote similar nuclear reactions and thus cause a buildup of secondary radiations. The description of such processes requires solution of the transport equation. The approximate solution for the transition of protons in 30 cm thick slabs of soft tissue for fixed incident energeis are presented in references 4 through 11. The results of such calculations are dose conversion factors for relating the primary monoenergetic proton fluence to dose or dose equivalent as a function of position in a tissue slab.

Whenever the radiation is spatially uniform, the dose at any point \vec{x} in a convex object may be calculated according to reference $2 . b y$

$$
\begin{equation*}
D(\vec{x})=\int_{0}^{\infty} \int_{\Omega} R_{n}\left[z_{n}(\vec{\Omega}), E\right] \phi(\vec{\Omega}, E) d \vec{\Omega} d E \tag{1}
\end{equation*}
$$

where $R_{n}(z, E)$ is the dose at depth z for normal incident protons of
energy E on a tissue slab, $\phi(\vec{\Omega}, E)$ is a differential proton flusnce along direction \vec{R}, and $z_{x}(\vec{\Omega})$ is the distance from the boundary along $\vec{\Omega}$ to the point \vec{x}. It has been shown that equation (1) always overestimates the dose, but is an accurate estimate when the ratio of the proton beam divergence due to nuclear reaction to the bodies radius of curvature is small. Equation (1) is a practical prescription for introducing nuclear reaction effects into calculations of dose in geometrically complex objects as the human body. The main requirement is that the dose conversion factors for a tissue slab be adequately known for a broad range of energies and depths.

Available information on conversion factors are for discrete energies from 100 MeV to 1 TeV in rather broad energy steps and for depths from 0 to 30 cm in semi-infinite slabs of tissue (refs. 4,5,8, and 9). The nuclear reaction data used for high-energy nucleons is usually based on Monte Carlo estimates (refs. 12-14) with low-energy neutron reaction data taken from experimental observation. The quality factor as defined by the ICRP (ref. 15) is used for protons. The quality factor for heavier fragments and the recoiling nuclei is axbitrarily set to 20 which is considered conservative although the average quality factor obtained by calculation is comparable to estimates obtained through observations made in nuclear emulsion (ref. 16).

To fully utilize equation (1), the fluence-to-dose conversion factors for normal incident protons on tissue slab must be known for all energies and depths. A parametrization of the conversion factors was introduced by Wilson and Khandelwal (ref. 2) which allowed reliable
interpolation and extrapolation from known values. In the following, a refinement and extension of that work will be discussed.

Fluence-to-Dose Conversion Factors

The conversion factor $R_{n}(2, E)$ is composed of two terms representing dose due to the primary beam protons and the dose due to secondary particles produced in nuclear reaction. : Thus,

$$
\begin{equation*}
R_{n}(Z, E)=R_{p}(z, E)+R_{s}(z, E) \tag{2}
\end{equation*}
$$

Where the primary dose equivelent conversion factor is given by

$$
\begin{equation*}
R_{p}(z, E)=P(E) Q_{F}\left[s\left(\varepsilon_{p}\right)\right] s\left(E_{r}\right) / P\left(\dot{E}_{r}\right) \tag{3}
\end{equation*}
$$

The LET denoted by $S(E)$ in equation (3) is calculated using Bethe's formula above 243.8 keV as given by

$$
\begin{equation*}
S(E)=\frac{4 \pi N_{c} e^{4} Z}{m v^{2} A}\left\{\ln \left[\frac{2 m v^{2}}{I\left(1-v^{2} / c\right)}\right]-v^{2} / c^{2}\right\} \tag{4i}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{Z}=\text { average atomic number } \\
& A=\text { average atomic weight } \\
& I=\text { adjusted ionization potential } \\
& m=\text { electron mass } \\
& \text { = electron charge } \\
& v=\text { proton velocity } \\
& c=\text { velocity of light } \\
& N_{0}=\text { Avogadro's number }
\end{aligned}
$$

At proton energies below 243.8 KeV , the LET is calculated by the empirical expression

$$
S(E)=E^{.303}(2517-6283 E)
$$

(Ab)
which approximately accounts for the inner shell corrections in soft tissue. The proton range in soft tissue is given by

$$
\begin{equation*}
R(E)=\int_{0}^{E} d E^{\prime} / s\left(E^{\prime}\right) \tag{5}
\end{equation*}
$$

with the reduced energy in equation (3) given by

$$
\begin{equation*}
E_{r}=E[R(E)-Z] \tag{6}
\end{equation*}
$$

where $\epsilon(x)$ is inverse function of $R(E)$. The total nuclear survival probability for a proton of energy E is given by

$$
\begin{equation*}
P(E)=\operatorname{erp}\left[-\int_{0}^{E} \sigma\left(E^{\prime}\right) d E^{\prime} / s(E)\right] \tag{7}
\end{equation*}
$$

where the macroscopic cross section $\sigma(E)$ for tissue as calculated by Bertini is given by Alsmiller et al. (ref. 18). The proton total optical thickness given by

$$
\begin{equation*}
\gamma(E)=\int_{0}^{E} \sigma\left(E^{\prime}\right) d E^{\prime} / s\left(E^{\prime}\right) \tag{8}
\end{equation*}
$$

is tabulated in table 1 for purposes of numerical interpolation. In the case of conversion factors for absorbed dose, the $R_{p}(z, E)$ is taken as

$$
\begin{equation*}
R_{P}(Z, E)=P(E) S\left(E_{r}\right) / P\left(E_{r}\right) \tag{9}
\end{equation*}
$$

Buildup Factors

The representation of the conversion factors is simplifiod (see ref. 2) by rewriting equation (2) as

$$
\begin{align*}
R_{n}(z, E) & =\left[1+R_{z}(z, E) / R_{p}(z, E)\right] R_{p}(z, E) \\
& \equiv F(z, E) R_{p}(z, E) \tag{10}
\end{align*}
$$

where $F(z, E)$ is recognized as the dose buildup factor. The main advantage for introducing the buildup factor into equation (10) is that unlike $R_{R}(2, E)$, the buildup factor is a smoothly varying function oi energy at all depths in the slab and can be approximated by the simple functin.

$$
\begin{equation*}
F(z, E)=\left(A_{1}+A_{2} z+A_{3} z^{2}\right) \text { epp }\left(-A_{y} z\right) \tag{11}
\end{equation*}
$$

where the parameters A_{i} are understood to be energy dependent. The A_{i} coefficients are found by fitting equation (11) to the values of the buildup factors as estimated from the Monte Carlo calculations of proton conversion factors. The resulting coefficients are shown in table 2. The coefficients for $\mathbf{1 0 0}, \mathbf{2 0 0}$, and 300 MoV protons were obtained using the Monte Carlo data of Turner et al. (ref. 4). The values at $400,730,1500$ and 3000 NeV were obtained from the results of Alsmiller and Amstrong (ref. 9). The 10 GeV entry was obtained from the calculations of Armstrong and Chendler (ref. 9). Values noted in table 2 by asterisk on the corresponding energy were obtained by interpolating between data points or smoothly extrapolating to unit buildup factor at proton energies near the Coulomb barrier for tissue
nuclei ($=12 \mathrm{MeV}$). The resulting buildup factors are shown in figures 1 and 2 in comparison to the Nonra Carlo results where the orror bars were determined by drawing smooth limiting curves so as to bracket the Nonte Carlo values and to follow the general functional dependence. These uncertainty limits should, therfore, be interpreted as approximately 20 limits, rather than 10 ranges usually used in expressing uncertainty limits.

CONVERSION FACTOR COMPUTER CODE

To utilize equation (1) in a specific problem requires values for the conversion factor $R_{n}(2, E)$ over the range of interest. Formulae for these iactors are presented in the previous section. A computel. code has been generated to return values of $R_{n}(z, E)$ for arbitrary depth z and energy E. This code is listed in the appendix and is described briefly here. There are six main functions to be generated relating to LET, range-energy relations, quality factor, and the functions relating to nuclear reaction effects given as nuclear survival probability and buildup factor.

The functions relating to ionization by the primary beam are generated by the function subroutine RTISS. Tables for $R(E)$, and $S(E)$ are generated on the first call to RTISS. Subsequent intermediate values are found by numerical interpolation above 10 KeV . A simplified approximation based on equation (4b) is used at lower energies. The function $\varepsilon(x)$ is found by numerical inversion of $R(E)$.

The quality facter is approximated by

$$
\begin{equation*}
Q_{F}(5)=0.065^{0.8} \tag{12}
\end{equation*}
$$

for S greater than $35 \mathrm{MeV} / \mathrm{ca}$ and set to unity for smaller LET.
The values shown in table 1 of the optical density are generated in the function subroutine $P N(E)$ and stored in an array for numerical intsrpolation and the nualear survival probability is calculated using equation (7).

The coefficients for calculating the buildup factors are generated by subrjutine ANTER as a function of energy by interpolating betwoen the valus: shown in table 2.

The conversion factors are generated by subroutine RESP by supply parameters z and E which represent distance in centimeters of cissue and proton energy E in units of MeV . The returned values of the conversion factors have units of rad (or rem; per proton per centimeter squared.

sample calculations

To illustrate the usage of the buildup factors described here, calculations of the dose in slab geometry for normal incident protons with spectra typical of the space environment have been made. Calculations were also made neglecting nuclear reaction effects and the percentage contribution to the dose and dose equivalent due to nuclear reactions are shown in figures 3 and 4. The spectra indicated by GCR in the figures represent galactic cosmic radiation with spectrum given by

$$
\begin{equation*}
\phi_{G C R}(E)=\phi_{0}\left(1+E / m_{p}\right)^{-2.5} \tag{13}
\end{equation*}
$$

The spectra denoted by the parameter P_{0} represent solar cosmic ray spectra given as

$$
\begin{equation*}
\phi_{s \in R}(E)=\phi_{0} \exp \left[-P(E) / P_{0}\right] \tag{14}
\end{equation*}
$$

with the rigidity given as

$$
\begin{equation*}
P(E)=\frac{1}{q}\left[E\left(E+2 m_{p}\right)\right]^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

where q is the proton charge and m_{p} is the proton mass. The value $P_{0}=100 \mathrm{NV}$ corresponds to an intermediate-energy solar event and $P_{0}=400 \mathrm{NV}$ corresponds to a high-energy solar event. The curve denoted by $E_{0}=100 \mathrm{MeV}$ represents the energetic inner belt protons with spectrun

$$
\begin{equation*}
\phi(E)=\phi_{0} \operatorname{erp}\left(-E / E_{0}\right) \tag{16}
\end{equation*}
$$

It is clear from the figures that dose estimates for galactic cosmic rays and high energy solar cosmic rays cannot be accurately calculated without proper account of nuclear reactions. This is especially true for estimat:: of the dose equivalent.

Although reasonable estimates ($\pm 10 \%$) of low and intermediate solar cosmic ray absorbed doses are expected, the dose equivalent estimates must include nuclear reaction effects. Marginally good estimates of absorbed dose for inner belt protons can be made by neglecting nuclear reactions but dose equivalent estimates require of inclusion nuclear reaction effects.

REFERENCES

1. Alsmiller, R. G.: High-Energy Nucleon Transport and Space Vehicle Shielding. Nucl. Sci. and Eng., Vol. 27, pp. 158-189, 1967.
2. Wilson, J. W., and Khandelwal, G. S.: Proton Dose Approximation in Arbitrary Convex Geometry. Nucl. Technol., Vol. 23, pp. 298-305, Sept. 1974.
3. Neufeld, J.. and Wright, H. A.: Radiation Levels and Fluence Conversion Factors. Health Phys., Vol. 23, pp. 183-186, August 1972.
4. Turner, J. E.; Zerby, C. D.; Woodyard, R. C.; Wright, K. E.; Kinner, W. E.; Snyder, W. S., and Neufeld, J.: Calculation of Radiation Dose from Protons to 400 MeV. Health Phys., Vol. 10, pp. 783-803, 1964.
5. Zerby, C. D., and Kinney, W. E.: Calculated Tissue Current-to-Dose. Conversion Factors for Nucleons Below 400 MeV . Nucl. Inst and Methods, Vol. 36, pp. 125-140, 1965.
6. Snyder, W. S.; Wright, H. A.; Turner, J. E., and Neufeld, J.: Calculations of Depth-Dose Curves for High-Energy Neutrons and Protons and Their Interpretation for Radiation Protection. Nucl. Applications, Vol. 6, pp. 336-343, April 1969.
7. Wright, H. A.; Anderson, V. E.; Turner, J. E.; Neufeld, J., and Snyder, W. S.: Calculation of Radiation Dose Due to Protons and Neutrons with Energies from 0.4 to 2.4 GeV . Health Phys., Vol. 16, pp. 13-31, 1969.
8. Alsmiller, R. G., and Armstrong, T. W.: The Absorbed Dose and Dose Equivalent from Neutrons in the Energy Range 60 to 3000 MeV and !rotons in the Energy Range 430 to 3 C 00 MeV . Nucl. Sci. and Eng., Vol. 42, pp. 367-381, 1970.

9: Armstrong, T. W., and Chandler, K. C.: Calculation of the Absorbed Dose and Dose Equivalent from Neutrons and Protons in the Energy Range from 3.5 GeV to 1.0 TeV . Oak Ridge National Laboratory, ORNL-TM-3758, Nay 1970.
10. Armstrong, T. W., and Bishop, B. L.: Calculation of the Absorbed Dose and Dose Equivalent Induced by Medium-Energy Neutrons and Protons and Comparison with Experiment. Radiation Res., Vol. 47, pp. 581-588, 1971.
11. Wright, H. A.; Hamm, R. N., and Turner, J. E.: Effects of Lateral Scattering on Absorbed Dose from 400 HeV Neutrons and Protons. Proc. Intern. Congress for Protection Against Accelerator and Space Radiation, CERN 71-16, Vol. 2, Health Physics, pp. 207-219, July 1971.
12. Bertini, H. W.: Low-Energy Intranuclear Cascade Calculation. Phys. Rev., Vol. 131, No. 4, pp. 1801-1821, August 1963.
13. Bertini, H. W.: Intranuclear Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment. Phys. Rev., Vol. 188, No. 4, Pp. 1711-1930, December 1969.
14. Bertini, H. W., and Guthrie, M. P.: News Items Results from Mediun-Energy Intranuclear-Cascade Calculations. Nucl. Phys., Vol. Al69, No. 3, pp. 670-672, July 1971.
15. International Commission on Radiobiological Protection, Protection Against Electromagnetic Radiation above 3 MeV and Electrons, Neutrons and Protons. ICRP Publication 4, The MacMillan Co., New York, 1964.
16. Schaefer, H. J., and Sullivan, J. J.: Nuclear Emulsion Recordings of the Astronaut's Radiation Exposure on the First Lunar Landing Mission Apollo XI. National Aeronautics and Space Administration, NASA CR-115804; 1970.
17. Alsmiller, R. G.; Santoro, R. T.; Barish, J., and Claiborne, H. C.: Shielding of Manned Space Vehicles Against Protons and Alpha Particles. Oak Ridge National Laboratory, ORNL-RSIC-35, Nov. 1972.

APPENDIX

PROGRAM LISTING FOR CONVERSION FACTOR CALCULATION

SUSROUTINE RESP(EN,X,RAD,REM)

C THIS SUGROUTINE GENERATES VALUES FOR THE SLAB CONVERSION FACTORS FOR VALUES OF PROTON ENERGY EN (MEV) AND DEPTH IN THE SLAB X (CM)

REAL C(B)
ENER=EN
$E X=X$
CALL ANTER (ENER•C•R)
RRES=R-EX
ENERP=ET1S(RRES)
IF (ENERP) $34 \cdot 33 \cdot 34$
33 CONTINUE
RAD=0.
$R E M=0$.
RETURN
34 CONTINUE
CALL APROB (EX,ENER,PROB)
CALL ATOPP(ENERP,STOPP)
2 CALL AF (STOPP, QALF)
22 PES=PROB*STOPP*OALF
COREO=(C(1) +x*(C(2)+x*C(3)))*EXP(-x*C(4))
COREC $=(C(5)+x *(C(6)+x * C(7))) * E X P(-x * C(8))$
IF (COREO.LT.I.) COREO=1.
IF (COREC.LT•1-) COREC=1.
REPA $=$ PES*CCREO *1.6E-8
PES=OROB*STOPD
RAD=PES*COREC*1-6E-8
RETURN
END

SUBROUTINE ANTER(ENER•C•R)
C THIS SUBROUTINE GENERATES THE VALUES OF THE PARAMETERS
C OF THE ANALYTIC FITS OF THE MONTE CARLO RESULTS

REAL C(8),A(12.8),E(12)
LOGICAL FALS


```
        110000./
            0ата A/1.0.1.2.1.4.1.5.1.6.1.70.1.90.3.40.4.32.4.65.5.35.6.20.
        2 0.0.0.0..02..07..0!,.11..13..156..167..170..17U..280.
```



```
        40.0..013..030..0385,.cn3..033..022!..015C..O13..012..C10..010.
        #1.0.1.0.1.1.1.!2.1.1E.1.2.1.24.1.4.1.57.1.0.2..2.3.
        65.0..01..040..06..762..065..071..09..094..095..10..11.
        70.0.0.0.0.0.0.0.0.0.0.0.0.0..00n1..02080..0015..0c2..00205.
        00.c..01,.026,.c31..032..c25..0228..0!5..0122..012..01..01/
    DATA FALS/.T./
    EATA [PT/-1/.
    P=QTIS(ENER)
    IF(FALS) GO TO 10
    1 CONTINUE
    ELOG=ALOG(ENER)
    CALL IUNI(12.12.E.B.A.2.ELOG.C.IPT.IERR)
    RETURN
    IO CONTINUE
    nO 11 t=1.12
    E(I)=ALOG(E(I))
    1: CONTINUE
    FALSE.F.
    GO TO 1
    END
```

SUBROUTINE AF(STOPP.GALF)

THIS SUBROUTINE COMPUTES THE OUALITY FACTOR AS A FUNCTION OF LINEAR ENERGY TRANSFER
IF(STOPP-35.)11.11.12
1: OALF:I.
RETURN
12 OALF=.06*STOPP**. 8
RETURN
END

SUBROUTINE APROB(EX•E.PROB)
$=$ OF A PROTON OF ENERGY E (MEV) AFTER TRAVELING A DISTANCE EX (CM) IN TISSUE

```
    RRES=RTIS(E)-EX
    HROB=0. -
    IF(RRES.LE.O.) RETURN
    ENEM=ETIS(RRES)
    PRCB=PN(E)/PN(ENEW)
    RETURN
    FN!
```

 FUNCTION PN(E)
 C PN GIVES PROBABILITY THAT PROTON TRAVELS FULL RANGE WITHOUT
C BEING ABSORBED
EXTERNAL FOX
LOGICAL TRU
REAL R(30).ET(30)

23000..4000..5000..5000..7000..3500..19000.1
DATA TRU/.T./
DATA IPT/-1//
IF(TRU) GO TO 10
1!1 ER=E
CALL IUNI(30.30.ET.I.R.2.ER.BYRD.IRT.IERR)
PN=EXP(-SYRO)
gETURN
15 TRU= \boldsymbol{F}.
$R(1)=0$.
DO $1 \quad 1=2.30$
EU=ET(!)
G=ET(I-1)
CALL MGAUSS(G,EU,OA,ANS,FOX,F,1)
R(1)=R(1-1)+ANS
1 CONTINUE
PRINT 19
19 FORMAT(///.25x.*PN GRID*//)
PRINT 119
110 FORMAT (IOX.*E VALUES FOR GRID*//)
PRINT 226. ET
226 FORMAT (2X.8E15.6)

```
        PRINT 227
227 FC&MAT (///.10X.#R VALUES FOR GRIO*)
    PRINT 226.R
    GO TO 111
    END
```

 SUGROUTINE FOX (X,F)
 ENER:X
 3 CALL ASIGM(ENER.SIGMA)
CALL ATOPP (ENER•STOPP)
$F=S I G M A / S T O P P$
2 RETUAN
END

SUBROUTINE ASIGM(ENER.SIGMA)
THIS SUBROUTINE GENERATES VALUES OF TOTAL NONELASTIC MACROSCOPIC CROSS SECTION (CM**2/G) IN TISSUE AS A FUNCTION OF PROTON ENERGY ENER(MEV)

REAL EN(43).CROS(43)
DATA EN/25.32.29.86.34.16.39.86.44.65.50.01.60.19.70.24.79.47.89.9'
$11.100 .8 \cdot 117.9 .139 .3 \cdot 156 \cdot 3 \cdot 175 \cdot 3 \cdot 185 \cdot 5 \cdot 202.9,266 \cdot 1.304 .7 .375 \cdot 2.407$. $27.471 \cdot 6 \cdot 507 \cdot 1 \cdot 574 \cdot 5 \cdot 611 \cdot 4.678 \cdot 3 \cdot 714.5 \cdot 775 \cdot 4 \cdot 809 \cdot 3 \cdot 870 \cdot 4 \cdot 916 \cdot 8 \cdot 1007$
 A100cO.
OATA CROS/2.614.2.365.2.153.1.995.1.957.1.757.1.621.1.526.1.451.1. $1379 \cdot 1 \cdot 327,1 \cdot 261 \cdot 1 \cdot 211 \cdot 1 \cdot 187 \cdot 1 \cdot 164 \cdot 1 \cdot 152 \cdot 1 \cdot 141 \cdot 1 \cdot 097 \cdot 1 \cdot 087 \cdot 1 \cdot 100 \cdot 1 \cdot$ $2136 \cdot 1 \cdot 199 \cdot 1 \cdot 212 \cdot 1 \cdot 255 \cdot 1 \cdot 293 \cdot 1 \cdot 350 \cdot 1 \cdot 379 \cdot 1 \cdot 424 \cdot 1 \cdot 440 \cdot 1 \cdot 471 \cdot 1 \cdot 478 \cdot 1 \cdot$ $35 \cdot 4 \cdot 1 \cdot 477 \cdot 1 \cdot 480 \cdot 1 \cdot 453 \cdot 1 \cdot 455 \cdot 1 \cdot 437 \cdot 1 \cdot 475 \cdot 1 \cdot 461 \cdot 1 \cdot 453 \cdot 1 \cdot 46 \cdot 1 \cdot 458$. 4:.452/
DATA IPT/-1/
1: E=FNER
1F (ENER.LT•25.32) ENER=25.32
CALL IUNI(43.43.EN.1.CROS.2.ENER.CROSS.IPT.IERR)
SIGMA=(CROSS/100.)
ENER=E
RETURN
END

FUNCTION RTIS(E)

C

THIS SUBROUTINE GENERATES THE RANGE-ENERGY RELATIONS AND LET FOR IROTONS IN TISSUE

EXTERNAL ATOE
REAL ET(57), RT(57),ST(57)
LOGICAL FALSE
DATA FALSE/ETO/
DATA NP/57/

$47900.6500 \cdot 10000.1$
$N=1$ -
1F(FALSE)GO TO 10 .
12 CONTINUE.
RTIS=E**.697/(2517.**.697)
IF (E.LT..OI) RETIJRN
$A=A L O G(E)$ -
DO 1 IE=2.NP
IF(A.LT•ET(IE)) GO TO. 2 .
1 CONTINUE -
2 ! = E
SLOPE=(RT(I)-RT(I-1))/(ET(I)-ET(I-1))
RAL=RT(1-1)+SLOPE*(A-ET(I-1)) -
RTIS=EXP(RAL)
RETURN
-
ENTRY STIS
$N=2$
IFIFALSE)GO TO 10 .
13 CONTINUE
RTIS =E**•303* (2517•-6283.*E)
IF (E.LT••01) RETURN
$A=A . L O G(E)$ -
DO 3 IE=2,NP
IF(A.LT•ET(IE)) GO TO. 4 .
3 CONTINUE .
4 ! = IE.
SLOPE=(ST(I)-ST(I-I))/(ET(I)-ET(I-I)) -
SAL =ST(I-1)+SLOPE*(A-ET(I-1)) 。

```
    RTIS=EXPISALI
    GETURN .
    ENTRY ETIS
    N-3.
    IF(FALSEIGS TO 10
14 CONTINUE *
    RTIS=(25:7.*.697*E)**1.43472
    IF(EOLT..O1) RETURN
    R=ALOG(E).
    DO S IRE2.NP
    IF(R.LT.RT(IR)) CO TO 6.
    S CONTINUE
    6 I=IR.
        SLOPE=(ET(I)-ET(I-1))/(RT(I)-RT(I-I)).
        EAL EET(I-1)+SLOPE*(R-RT(I-1))
        RTISEEXP(EAL)
        RETURN .
10 CONTINUE.
    RT(1):#0.
    ST(1)=0.
    M=O6
    CO 21 1=2.NP
    CALL ATOPP(ET(I),STII)T
    CALL MGAUSS(ET(I-1),ET(1),M.ANS.ATOE,F.I)
2! RT(I):RT(I-I)+ANS
    RIRST=RT(2)
    EIRSTシET(2)
    CO 11 IX=2.NP
    ET(IX)=ALOG(ET(IX))
    RT(IX)=ALOG(RT(IX))
11 ST(IX)=ALOG(ST(IX)) -
    FALSE=.F.
    GO TO (12.13.14)N.
    ENO.
```

 SUBROUTINE ATOE(E,F)
 CALL ATOPP\{E,S \}
 \(F=1 \cdot / S\)
 RETURN
 END

SUAROUTINE ATOPP（ENER．STDPP）

C THIS SUBROUTINE COMPUTES THE STOPPING POWER FOR PROTON IN TISSUE
IF（ENER．CT．．243甘）GO TO 2
STOPP＝（2517．－6283．＊ENER）＊ENER＊＊．303
RETURN
2 2ETA＝ENER／938．211
3ETAS＝（（ZETA＊（ZETA＋2•））／（（ZETA＋1•）＊＊2））
waE＝1．022201EG＊BETAS，（1．－BETAS）
FBET＝ALOG（WBE）－BETAS
STOPP $=.30726148 *(-2 \cdot 2378342+.529726 * F B E T) / B E T A S$
RETURN
END

SUBROUTINE MGAUSS（A．B．N．SUM．FUNC，FOFX．NUMGER）

DIMENSION U（5），R（5），SUM（1），FOFX（1）
DO 1 LL＝1．NUMBER
1 SUM（LL）$=0.0$
IF（A．EO．B）RETURN
U（1）：。4255528こ0509184
$U(2)=0283302302935376$
$U(3)=-160295215350488$
$U(4)=067468316655508$
$U(5)=013046735741414$
$R(1)=.147762112357376$
$R(2)=013463335965499$
$R(3)=.109543181257991$
$R(4)=.074725674575290$
$R(5)=033335672154344$
FINE：N
DELTA＝FINE／（B－A）
DO $3 \mathrm{~K}=1 \mathrm{~N}$
$x 1=K-1$
FIP：E＝A＋XI／DELTA
$00211=1.5$
UU＝U（II）／DELTA＋FINE
CALL FUNC（UU．FOFX）

DO 2 JOYBOY=1, NUYBER
? SUM(JOYBOY) =R(ill*FOFX(JOYBOY)+SUM(JOYBOY) DO 3 JJ=1, 5
UUZ(1.0-U(JJ))/ DELTA+FINE
CALL FUNC (UU,FOFX)
CO 3 NN=1. NUMBER
$3 \operatorname{SUM}(N N)=R(J J) * F O F X(I N N)+S U B A(N N)$
OO 7 IJKEI, NUMBER
7 SUM(IJK)=SUM(IJK)/OELTA RETURN
END

c**		-IUNI093
c* pupposes		* Iunicnat
c*	SLBROUTINE IUNI USES FIRST OR SECOND ORDEA	- iunicost
c*	-AGRangian lmitar Olation to estlinatt tre values	* Iunioner
c*	O A SET OF FUNCPIONS AT A SOIMT XO. LVI	- Iuniocri
c*	USES ONE INTEDENDENT VARIABLE TABLEE, ANO A DEPFENDENT	* iunionbi
c*	IARIASLE TABLE FOR EKCH FUNCTION TO GE : VALUATEO.	*IUNTOn9!
c*	THE ROUTINE ACCEPTS THE INCE日ENDENT VARIGHLEES SPACED	* Iuniloioc
c*	-T EOUAL OR UNEOUAL INTEPVALS. EACH UEPENDENT•	* luntolic
E*	\because ARIAELE TABLE MUST CONTAIN FUNCTION VALUES CORAES-	- Iuniolze
C*	POMOING TO EACH XIII IN THE IM.DEPENDENT VARIABLE	* IUNiOI3C
c*	TEE:E. THE ESTIMATED VALUES ARE RE URNED IN THE YO	- Iuniolac
c*	gR2AY WITH THE N-TH VALUE OF THE ARRGY HOLDING THE	*IUNIOI56
c*	VILUE OF THE N-TH FUnction value evaluated at xo.	* IUNT0166
C*		* IUNIOITC
C* USE?		*IUN10180
c*	CALL IUNI(NMAXXONIX,NTAB,Y-IORDER,XO,YO.IPT, IERR)	*IUNIO190
C*		* IUNIO200
C* PARAMETERS9		* IUNTOPio

- IUNIC220
*IUNI0230
*IUNIO24C
*IUNI0250
*IUNIOZ60
*IUNI0270
*IUNIO280
- IUNI0290
- IUNI0300
- IUNI0310
* IUNI0320
- IUNI 033!
- IUNI0340
*IUNI0350
- IUNI 0360
*IUNI0370
-IUNI 0380
-IUNIC390
-IUNI0400
- IUNIO410
-IUNIO420
*IUNI0430
-IUNI0440
-IUNI0450
-IUNI0460
-IUNIO470
-IUNIO480
-IUNI. 170
-IUNIOE"•
-IUNiosio
- IUNI0520
-IUN:OS3C

ON－－E FIRST CALL IPT MUST BE INITIALIZFD TO－ 1 SO＊IUVIOS50 THA－W2NOTONICITY WILL EE CHECKEU．UPON LEAVING THE＋IUNIC560 ROUTINE IPT EOUALS THE VALUE OF THE INOEX OF THE X＋IUNI3570 VALUE PRECEOING XO UNLESS EXTFAPOLATION WAS ＊IUN10580 PERF URYED．IN THAT CASE THE VALUE OF IPT IS＊IUVIO590 RETUZNED AST
＝U OENOTES XC．LT．X（1）IF IHE \times ARRAY INCREASING ORDEH AND X（I） IS IN DECREASING ORDER． INCREASING ORDER ANO XO
IERR

```

IS INDECREASING ORDĖR．\(\quad \because\) IUNIOG6O
ON SUBSEOUENT CALLS．IPT IS USED AS A POINTER TO EIUVI0670 BEGIN THE SEARCH FOR XO．
＊I UN 10690
＊IUNI2690
＊IUNI0700
ERROR PARAMETER GENERATED．BY THE ROUTINE
＝0 NORMAL RETURN
＝J．THE J－TH ELEMENT OF THE \(X\) ARRAY IS OUT OF ORDER
\(=-1\) ZERO ORDER INTERPOLATION PERFORMED BECAUSẺ IORDER \(=0\) ．
＝－2 ZERO ORDER INTERPOLATION PERFORMED BECAUSE ONLY ONE POINT ：NAS．IN \(X\) ARRAY．
＊IUN10710
＊IUN10720
＊IUN10730
＊I UNI 0740
＊IUN10750
＊IUNI 0760
＊IUN 10770
＝－3 NO INTERPOLATION WAS PERFORMED BECAUSE INSUFFICIENT POINTS KERE S：JPPLIED FOR SECOND ORDER INTERPOLATION．
＊IUN10780
＊IUNI0790
＊IUNI08C0
\(=-4\) EXTRAPOLATION HAS PERFORMEO
UPON RETURN THE PARAMETER IERR SHOULD EE TESTED IN THE CALLING PROGRAM．

\section*{REQUIRED ROUTINES}

NONE
SOURCE
CMPS ROUTINE MTLUP MODIFIED
IUNI 081 C
＊IUNi082C
＊IUNi0830
＊I UNI 10840
＊IUNi0850
＊IUN 10860
＊IUN！28？0
＊IUNI0880
BY COMPUTER SCIENCES CORPORATION＋IUVI0S90
＊IUNI 0900
Language
FORTRAN
＊IUNI0910
＊IUNi0920
－IUNI0930
DATE RELEASED AUGUST 1．1973
＊IUN10340
LATEST REVISION
JUNE 9． 1975
＊IUNI0950
＊IUNI 10960
＊IUNI 10970
OI MENSION X（1），Y（NMAX•1），YO（1） NMI \(=\mathrm{N}-1\)
\(1 \cong ロ \square=0\)
\(J=1\)

TEST＝OR ZERO ORDER INTERPOLATION
```

DE:-x=x(2)-x(1)
I= (10%OER E゙O. 0) GO TO 10
IE (N.LT. 21 心O TO 20
CO Ta 50

```
IUVII060
IUNI 1070
IUNI 1080
IUNIIn90
```

iミR\#=-1
@<゙ TO 30
29 !モスマ=-2
3J Sכ 4O NT=1,NTAB
YO(NT)EY(i ONT)
CONTINUE
RETURN
50 IF (IPT •GT. -!) GO TO 69
C
C
C
C
c
C
C
SO
C
C
C
65 IF (IPT -LT. 1) IPT=1
IF (IPT -GT. NMI) IPT=NMI
!N= SIGN (1,0.DELX *(XƠ-X(IPT).1)
70 O= X(IPT) - XO
I=(P* (X(IPT +1)- X0)) 90.180.80
ZO IOT =IPT +IN
TEST TO SEE IF IT IS NECCESARY TO EXTRAPOLATE
IF (I.T.GT.O .AND. IPT -LT.N) GO TO 70
IERR=-4
IPT=IPT-IN
TEST =OR ORDER OF INTERPOLATION
90 IF PIORDER.GT. 1) GO TO 120
FIRST ORDER INTERPOLATION

```
        IUNIIIOC
        IUNIIIIC
        IUNIII2G
        IUNIII3R
        IUNILIAC
        IUN11156
        IUNII:GC
        IUNI1:7C
        IUNIIIEC
        IUNII19C
        IUNI 1200
        IUNI1210
        IINII 2 EG
        IUNI 1-230
        IUNI 1240
        IUNI 1250
        IUNI 1260
        IUNI 1270
        IUNI 1280
        IUNII290
        IUNI 1300
        IUNII310
        IUNII 320
        IUNI 1330
        IUNI 1340
        IUN I 1350
        IUN I 1360
        IUNI 1370
        IUNI 1380
        IUNI 1390
        IUNI 1400
        IUNII410
        IUNII420
        IUNI 1430
        IUNI 1440
        IUNII 450
        IUNI 1460
        IUNI 1470
        IUNI 1480
        IUNII490
        IUNI 1500
        IUNII510
        IUNII520
        IUNII530



Tahle 1. Total Tissue Optical Thickness for Protons
\begin{tabular}{|c|c|c|c|}
\hline E, GeV & T (E) & E, GeV & \(\tau\) (E) \\
\hline 0. & 0. & 1.3 & 6.57 \\
\hline . 01 & . 0033 & 1.5 & 8.03 \\
\hline . 025 & . 0171 & 1.7 & 9.52 \\
\hline . 05 & . 0510 & 2.0 & 11.76 \\
\hline . 1 & . 135 & 2.2 & 13.27 \\
\hline . 15 & . 239 & 2.4 & 14.78 \\
\hline . 2 & . 362 & 2.6 & 16.29 \\
\hline . 25 & . 501 & 2.8 & 17.79 \\
\hline . 3 & . 655 & 3.0 & 19.29 \\
\hline . 35 : & . 822 & 4.0 & 26.62 \\
\hline . 4 & 1.004 & 5.0 & 33.81 \\
\hline . 5 & 1.429 & 6.0 & 40.84 \\
\hline . 7 & 2.471 & 7.0 & 47.75 \\
\hline . 9 & 3.743 & 8.5 & 57.91 \\
\hline 1.1 & 5.143 & 10.0 & 67.85 \\
\hline
\end{tabular}
Table 2. Buildup Factor Parameters

*Valuos obtained by interpolation.

Figure 1.- Rad buildup factor for several depths in tissue as a function of incident proton energy.

Proton Energy, GeV
- 人


Depth, cm

```

