@ https://ntrs.nasa.gov/search.jsp?R=19760009745 2020-03-22T16:33:16+00:00Z

THE APPLICATION OF INTERACTIVE GRAPHICS TO LARGE

TIME-DEPENDENT HYDRODYNAMICS PROBLEMS®

Fred Gama-Lobo and Lynn D. Maas

Los Alamos Scientific Laboratory

Introduction

This paper is a companion to a movie produced at LASL entitled
"Interactive Graphics at Los Alamos Scientific Laboratory".
The intent of the paper is to complement the movie. The movie
presents the actual graphics terminal and the functions
performed on it much better than any written description could
possibly convey. However, the movie compresses and simplifies
the processes being presented because the pace of a movie
prevents detailed description. This paper attempts to put in
perspective the complexity of the application code and the
complexity of the interaction that is possible, which may not
be apparent from the simple problem run as an example in the
movie and the few simple examples of interaction presented in’
the movie. The paper, by itself, does not have as much of an
1mpict, however, without the visual examples presented in the
movie.

Interactive Graphics System Description

The interactive refresh graphics system in use at LASL
consists of a Sanders Associates, Inc. Model 960 display
indicator, a Varian 620i minicomputer, and two Control Data
Corporation (CDC) 7600 computers. The minicomputer controls
two CRT displays, handles input devices, and communicates with
the CDC 7600 computers on which the user programs run (see
Figure 1).

A terminal consists of an alphanumeric keyboard, 16 system
control keys, 16 lighted user function keys, a data tablet, a
light pen, and a CRT. The minicomputer currently is
supporting two terminals. One of these terminals has a
single-color CRT with a display area of 14 inches square (1024
by 1024 resolution) while the other terminal has a four-color
CRT (CPS, Inc. Penetration CRT) with a display area of 10
inches square (1024 by 1024 resolution).

*This work was performed under USERDA Contract W-7405-Eng. 36.

419

The minicomputer communicates with the two CDC 7600 host
computers via a multiplexed IO path at the rate of 3.2
megabits per second. The CDC 7600 host computers are running
a mono-program batch operating system with modifications to
allow interaction with the graphics system. Interaction is
achieved by means of a high job priority and a disk
rollin-rollout capability in the host computer.

This system was designed to provide interactive graphics for

large, typically long-running programs that had previously
been restricted to batch operation.

Application Code

One code that was .adapted to run on this system is a
two-dimensional Lagrangian hydrodynamics code. The problems
run by this code are set up as a two-dimensional matrix of
points. These points define a mesh of quadrilateral zones
that describe the geometry of the problem. The code carries
the geometric information and all the physical attributes of
the problem in doubly-dimensioned arrays. It carries two
coordinates and two components of velocity for each mesh point
and it carries a material identification, mass, density,
temperature, pressure and other physical quantities for each
quadrilateral zone. The indices to these arrays are called K
and L by convention. For a constant K, points sequentially
indexed by L are connected by line segments and a sequence of
such connected points is called a K line. For a constant L,
points sequentially indexed by K are connected by line
segments and a sequence of such connected points is called an
L line. The intersections of K and L lines form the
quadrilateral zones. By convention, the zone quantity arrays
indexed by K and L refer to the quadrilateral connecting the
points (K,L) , (K-1,L) , (K-1,L-1) , and (K,L-1).

The code computes the motion of the problem in time by
breaking the problem up into discrete time steps. The
following is a simplified description of the computational
cycle for each time step. First, the code establishes a time
step for the cycle based on various stability criteria. The
code then uses numerical difference equations based on
analytic equations describing the physical phenomena occuring
in the problem to determine the motion of each mesh point for
the cycle. This is essentially done by differencing the
pressures of the zones surrounding a point to determine the
change in velocity for the point during that cycle and then
multiplying the velocity by the time step to determine the
change in position of the point. The mass of each zone does
not change with time, so the new volume of each zone is used

420

to compute a new density. Tabular equations of state are then
used to get a new pressure for each zone. The code then goes
through the same cycle for the next time step.

Rezoning

An annoying problem with Lagrangian hydrodynamics codes is
mesh tangling. As was mentioned before, the motion of each
point is calculated independently. One would hope that if the

equations used are correct, all the zones would stay regular.
However, the complex motions of the mesh can cause some of the

zones to get very distorted. These distortions can sometimes
cause problems, such as zones getting artificially high
temperatures and pressures because the zones are
unrealistically compressed or the distorted zones causing the
problem to run at a lower than normal time step, thereby
requiring more computer time to complete the problem. There
are also unphysical distortions that occur when a mesh point
somehow gets a spurious velocity that causes it to cross over
into a zone outside its surrounding zones. The reason such
problems occur is not always known, but it is probably because
og trying to describe a continuous medium with a finite number
of zones.

The remedy to these problems is rezoning. This is done by
moving points to reduce the distortions. The new mesh
configuration is then mapped onto the o0ld mesh to redistribute
the physical quantities, such as mass and energy, based on the
intersections of new zones with old zones.

Interactive Techniques Used in the Code
Rezoning

The most significant application of interactive graphics in
the code is in rezoning. The rezoning process deals almost
entirely with graphical data and is done very naturally at the

iraphics terminal. The easiest way to discuss the value of
nteractive graphics in this application is to compare the

rezoning process prior to the availability of interactive
graphics with the current techniques.

421

The old rezoning process was as follows. First, a drawing of
the mesh was obtained by running a restart dump tape through a
post-processing code which generated a plot on a Calcomp
plotter. This mesh plot was then examined to determine the
area where tangling occured. At this point, it was often
necessary to get another mesh plot of an enlarged window
around the area of tangling, because such tangling usually
occurs where zones are being crushed and points are so close
together that they are not resolved in a drawing of the full
mesh. In order to define such a window, it was necessary to
look up coordinates of points in a listing, sketch the desired
window on the drawing, and measure relative distances to the
%g;:g points to determine the coordinates of the window

Be

At the graphics terminal, a series of windows can be examined
in succession and the area of mesh tangling can be quickly
isolated. No coordinates need be known because the user can
define the window he wants from the full mesh display on the
screen by using the data tablet to point to the positions of
the window limits. If the resulting window is still too big
to resolve the tangled lines, he can continue defining smaller
windows until he does resolve the tangled lines.

Rezoning is accomplished by moving mesh points to reduce
distortions. There are several input commands to the rezone
code to do this. The most natural method is to move a point
by giving it a new set of coordinates. With card input, the
coordinates have to be punched on a card. Determining the
coordinates needed to move a point can be complicated if one
has to extract this information from a mesh drawing. It is
easy enough to mark the new position of the point on the
drawing, but it is then necessary to measure the components of
the distance of that point to an existing point in the
problem, look up the coordinates of that point in a 1listing,
scale the measured components from the drawing to the problem
coordinate system, and then add them to the coordinates of the
existing point. Since this is so cumbersome, people tended to
use other available commands that do such things as equally
space lines, straighten lines, and map the proportional
spacing along one line onto another. The command to equally
space a line, for instance, needs only the indices of the two
end points of the line specified.

At the graphics terminal, it is very easy to move a point.

The user points to a mesh point on the display and then points
to the new location, using the data tablet. The display then
changes and the mesh point moves instantly to its new
location. Commands such as equal space are also simplified.
Determining indices of points from a mesh drawing can be a
nuisance, too, when dealing with a large problem having many

422

points. At the graphics terminal, the user points to the end
points of the line to be equally spaced, using the tablet.

Again, the display changes instantly to show the results ot
the equal space command.

This brings up another advantage of interactive graphics. The
entire rezoning process takes place sequentially with each
step producing a new picture. In the batch mode, the entire
rezone would have to be predetermined prior to submitting a
rezone run. This was usually done by sketching on the mesh
drawing. If the rezone was complicated, then the drawing
would become very confusing, thereby necessitating several
batch submitals of rezone runs, each requiring a
post-processing run to generate mesh drawings. It was not

unusual for a rezone to consume several days, and therefore
people avoided doing them.

There is a class of problems that will not run without a large
number of rezones. Some problems run recently have required
some rezoning about every 5 minutes of CP time, with the
problem running a total of 5 hours of CP time. Such problems
were usually not run prior to the interactive graphics
capability, and if they were, they would have taken several
months. Now they can be done in four or five terminal
sessions of approximately two hours each.

Monitoring

The other key interactive feature of the code is the
capability of monitoring the execution of the code and
interrupting at any time to rezone. The execution is
initiated by typing RUN at the keyboard. While the problem is
being monitored, successive pictures are displayed on the
screen at time intervals specified by the user. In this mode,
the code remains resident in the host computer and just
continues running. The user can stop the run at any time by
hitting a fuction key. The user can then examine the mesh and
various problem values printed on the screen and he has the
option of rezoning or continuing to run the problem. This
capability is essential to give the user total control of the
calculation at the terminal.

In the initial implementation of interactive graphics in this
code, the rezone package was a separate code. It ran
interactively, while the main computational code still ran in
the batch mode. There was an immediate payoff in the

423

simplification of rezoning, but for problems requiring 50
rezones, that meant submitting 50 batch computational runs and
scheduling 50 terminal sessions to do the rezoning.

This was not the only drawback. The way the computational
code communicated with the rezone code was by restart dumps on
tape taken at time intervals specified by the user. Quite
often these dumps were not available at the best times for
rezoning. It was not unusual to get a batch run back in which
the mesh looked good for one time dump and was so badly
distorted on the next dump that the rezoning required became
very complicated. The monitoring capability lets the user
pick the optimum rezoning times. He can do this visually by
looking at the mesh or by examining various quantities printed
on the screen which may indicate that there are problems
arising in the calculation.

It is this monitoring function which necessitates the link to
a machine with the great computational speed and capacity of a
CDC 7600. ‘For typical problems, the meshes range from 5000 to
10000 zones and describe very complicated geometries. A large
memory is required to hold the many physical quantities stored
for the mesh. Also, the numerical difference equations used
by the code to describe the physical processes being studied
with the aid of this code are very complex and require the
computational speed of the fastest computers currently
available to run problems in a reasonable amount of time.
Typical problems can consume from 5 to 10 hours of CP time.
The rezoning, by itself, could be done by a much slower
computer, but the capability of total interactive control of a
calculation that the monitoring function, along with the
rezoning, provides, absolutely requires that the graphics
terminal be linked to the fast computer.

The batch operating system on the host computer turns out to
be an advantage for this application. This class of code
generally does not compete well in a time-sharing environment.
During a terminal session, a user will typically consume an
hour of CP time, consisting of five minute chunks of
computational time separated by rezones. For the user to make
efficient use of his time at the terminal, those 5 minute
computational chunks requiring the full capacity of the host
should be executed without interruption. On this system, that
is possible. The number of possible terminals is severely
limited on such a system, of course, but in a computing
environment consisting of many large, long-running codes, the
numnber of terminals must be limited.

424

114 113
CRPS CR@S
HPST CPMPUTER T@ GTC
INTERFACE |
PP11 | [7600-GTC 7600-GTC || |PP11
INTERFACE INTERFACE

GRAPHICS TERMINAL +—{ ASR 33 |
COMPUTER s——
GTC READER
GTC-GT
INIEREACE GRAPHICS TERMINAL 1 lﬂ GRAPHICS TERMINAL 2
GT1 GT2
CRT (Black § White) CRT (4 colors)
DATA TABLET | DATA TABLET |
KEYBOARD | KEYBOARD |
16 CONTROL KEYS | 16 CONTROL KEYS |
16 FUNCTION KEYS | 16 FUNCTION KEYS
LIGHT PEN
Figure 1

Hardware Configuration of LASL Interactive Graphics System

425

